WorldWideScience

Sample records for 141ce 144ce fission

  1. Chromatographic isolation of 144Ce and 144Pr from the wastes of irradiated uranium treatment

    A two-step chromatographic technique was elaborated to isolate 144Ce, 144Pr from a solution of uranium fission products in 6M HNO3. The oxidation to Ce(III) by bromate and selective adsorption of 144Ce(IV) on anion exchange column were used to concentrate and purify 144Ce. Some impurities of uranium, 95Zr, 95Nb, 106Ru remain in 144Ce solution after the first step of its isolation. The final purification is achieved by passing the 6M HNO3 solution of 144Ce(IV) through the HDEHP-coated teflon column. The decontamination factors of 144Ce from main fission products are given. 7.2 mCi of (144Ce+144Pr) are recovered from each gram of irradiated uranium trioxide with the yield greater than 99%. An improvement of known generator was carried out to elute a purer 144Pr from maternal 144Ce(IV) adsorbed on the anion exchange column. (author)

  2. Quantitative analysis of fission products by γ spectrography

    The activity of the fission products present in treated solutions of irradiated fuels is given as a function of the time of cooling and of the irradiation time. The variation of the ratio (144Ce + 144Pr activity)/ 137Cs activity) as a function of these same parameters is also given. From these results a method is deduced giving the 'age' of the solution analyzed. By γ-scintillation spectrography it was possible to estimate the following elements individually: 141Ce, 144Ce + 144Pr, 103Ru, 106Ru + 106Rh, 137Cs, 95Zr + 95Nb. Yield curves are given for the case of a single emitter. Of the various existing methods, that of the least squares was used for the quantitative analysis of the afore-mentioned fission products. The accuracy attained varies from 3 to 10%. (author)

  3. Assessment of selected fission products in the Savannah River Site environment

    Most of the radioactivity produced by the operation of a nuclear reactor results from the fission process, during which the nucleus of a fissionable atom (such as 235U) splits into two or more nuclei, which typically are radioactive. The Radionuclide Assessment Program (RAP) has reported on fission products cesium, strontium, iodine, and technetium. Many other radionuclides are produced by the fission process. Releases of several additional fission products that result in dose to the offsite population are discussed in this publication. They are 95Zr, 95Nb, 103Ru, 106Ru, 141Ce, and 144Ce. This document will discuss the production, release, migration, and dose to humans for each of these selected fission products

  4. A new 144Ce/144Pr radioisotope generator system

    A miniaturized generator system was developed containing manganese dioxide-coated alumina on which 144Ce is deposited and from which 144Pr is eluted with an aqueous solution of 1% KIO3 in 1 N nitric acid. More than 60% of the 144Pr was recovered with a 99.9% radionuclide purity even after 2000 ml eluant and 1000 1 or air had been passed through the column. (author)

  5. Toxicity of 144Ce inhaled in a relatively insoluble form by immature beagle dogs. VI

    Immature Beagle dogs (approximately equal to 3 months of age at exposure) have been exposed by inhalation to a relatively insoluble form of 144Ce (in fused aluminosilicate particles) to compare the resulting patterns of metabolism, dosimetry and biological effects with those seen in dogs exposed at 12 and 14 months of age and at 8 to 10.5 years of age. Five blocks of longevity animals, each consisting of 10 exposed dogs and one control, are currently on experiment. The initial lung burdens of the 144Ce-exposed dogs range from 0.004 to 140 μCi 144Ce/kg body weight. Three dogs with initial lung burdens of 73 to 120 μCi 144Ce/kg body weight died at 66 to 121 days after exposure with pulmonary injury and congestive heart failure. One dog with an initial lung burden of 140 μCi 144Ce/kg body weight died at 91 days after exposure with severe radiation pneumonitis and minimal pulmonary fibrosis and another dog whose initial lung burden was 70 μCi 144Ce/kg body weight died at 511 days after exposure with pulmonary injury that was mainly fibrotic in nature. Two dogs with initial lung burdens of 52 and 64 μCi 144Ce/kg body weight had primary pulmonary hemangiosarcomas and died at 618 and 689 days, respectively, with cumulative average absorbed beta doses to lung of 23,000 and 29,000 rads. One dog with an initial lung burden of 28 μCi 144Ce/kg body weight was euthanized at 1227 days after exposure with a hemangiosarcoma of the mediastinum, and another dog with an initial lung burden of 12 μCi 144Ce/kg body weight died at 1520 days after exposure from epilepsy. Serial observations are continuing on the surviving 40 exposed and five control dogs

  6. Toxicity of 144Ce inhaled in a relatively insoluble form by immature Beagle dogs. XVII

    Immature Beagle dogs (3-mo old) received a single, brief inhalation exposure to 144Ce in fused aluminosilicate particles as part of a series of studies designed to study the effects of age on dose response relationships for inhaled radionuclides. Forty-nine dogs inhaled graded levels of 144Ce that resulted in initial lung burdens ranging from 0.004-140 μCi/kg 0.15-5200 kBq/kg) body weight. Five control dogs inhaled nonradioactive fused aluminosilicate particles. Forty-one of the 144Ce-exposed dogs have died: 11 with lung tumors 4 with tumors of the tracheobronchial lymph nodes, with a nasal cavity tumor, and 9 with non neoplastic diseases of the respiratory tract. Observations are continuing on the 8 144Ce-exposed dogs that are surviving at this time. (author)

  7. Toxicity of inhaled 144CeCl3 in beagle dogs. VIII

    Studies on the metabolism, dosimetry, and effects of inhaled 144CeCl3 in the Beagle dog are continuing to provide information that will aid in assessing the biological consequences of inhaling 144Ce such as might be released in certain nuclear accidents. Studies on the tissue distribution of inhaled 144CeCl3 have shown that the 144Ce deposited in lung is translocated at a moderately rapid rate to liver and skeleton and that significant radiation doses are accumulated by all three organs. Fifty-five dogs that inhaled 144CeCl3 and 15 control dogs were placed in a longevity study and are being observed for their lifespan. The 144Ce dogs had long-term retained burdens with values ranging from 20 to 2900 μCi. Thirty-one of the dogs exposed to 144CeCl3 have died; 8 at 21 to 44 days after inhalation with signs attributed to severe bone marrow damage and associated pancytopenia; 2 at 138 and 144 days with radiation pneumonitis; 3 at 309 to 874 days with hepatic necrosis; 1 at 510 days with marrow aplasia; 1 at 375 days with pulmonary fibrosis; and 16 at 799 to 3081 days, most with neoplasms or myeloproliferative disorders. In this last group, 1 dog had an osteosarcoma, 3 had squamous cell carcinomas of the maxilla, 2 of the latter also having primary pulmonary neoplasms, 5 had hemangiosarcomas of the liver, 1 had a hemangiosarcoma of the nasal cavity, 2 had myelogenous leukemia, 1 had myelofibrosis with myeloid metaplasia, 1 had spinal cord ependymomas, and 2 did not have neoplasms. One of these had severe myelomalacia and the other diffuse hepatic lipidosis with severe degeneration. Two controls died; 1 with a thyroid carcinoma and 1 with aspiration pneumonia. Serial observations are continuing on the 24 surviving 144CeCl3 dogs and 13 control dogs. (U.S.)

  8. Toxicity of inhaled 144CeCl3 in beagle dogs. XI

    Studies on the metabolism, dosimetry and effects of inhaled 144CeCl3 in Beagle dogs are being conducted to assess the biological consequences of inhaling 144Ce such as might be released in certain nuclear accidents. Studies on the organ distribution of inhaled 144CeCl3 have shown that the 144Ce deposited in the lung is translocated at a moderately rapid rate to liver and skeleton and that significant radiation doses are accumulated by all three organs. Fifty-five dogs that inhaled 144CeCl3 and 15 control dogs are being observed for their life span. The 144Ce dogs have long-term retained burdens with values ranging from 20 to 2900 μCi. Forty-five of the dogs exposed to 144CeCl3 have died; eight from 21 to 44 days after inhalation with severe bone marrow damage and associated pancytopenia; two at 138 and 144 days with radiation pneumonitis; three from 309 to 874 days with hepatic necrosis; one at 510 days with marrow aplasia; one at 375 days with pulmonary fibrosis; and 30 from 799 to 4085 days, most with neoplasms or myeloproliferative disorders. In this last group, one dog had an osteosarcoma, five had squamous cell carcinomas of the nasal cavity (two also having primary pulmonary neoplasms), six had hemangiosarcomas of the liver, one had a hemangiosarcoma of the nasal cavity, two had myelogenous leukemia, one had myelofibrosis with myeloid metaplasia, one had spinal cord ependymomas, one had a malignant melanoma (also an ependymoma) and two had mammary adenocarcinomas. Three dogs had primary pulmonary neoplasms including two with bronchogenic adenocarcinomas and one with an adenoma. Seven did not have malignant neoplasms. Two of these had severe myelomalacia, one had pulmonary edema, three had congestive heart failure and one had diffuse hepatic lipidosis with severe hepatic degeneration

  9. Toxicity of 144Ce inhaled in a relatively insoluble form by immature Beagle dogs. XII

    Immature Beagle dogs (3 months old) were exposed once by inhalation to an aerosol of 144Ce incorporated in fused aluminosilicate particles. The influence of this age on the dose-response relationships is being compared to that of 13-mo-old and 8 to 10.5-yr-old dogs. This study involves 49 dogs that received graded initial lung burdens from 0.004 to 140 μCi 144Ce/kg body weight and five control dogs. To date, 19 of the 144Ce-exposed dogs and one of the controls have died. Dogs with the highest initial lung burdens of 144Ce died during the first 4 months with radiation pneumonitis, pulmonary fibrosis, and congestive heart failure. Pulmonary hemangiosarcoma was the primary finding in dogs that died at 1.5 to 2 years after exposure. Deaths beyond that time have been due primarily to extrapulmonary hemangiosarcomas. Observations are continued on the surviving 30 144Ce-exposed and four control dogs at 7.0 to 11.2 years after exposure

  10. Toxicity of 144Ce inhaled in a relatively insoluble form by aged Beagle dogs. XII

    The toxicity of relatively insoluble 144Ce inhaled by 8- to 10.5-year-old Beagle dogs is being investigated to determine possible age-related differences in long-term biological responses. Forty-two dogs were exposed to aerosols of 144Ce in fused aluminosilicate particles to yield initial lung burdens of 2.2 to 75 μCi 144Ce/kg body weight, and 12 control dogs were exposed to non-radioactive fused aluminosilicate particles. All 144Ce-exposed and control dogs have died or were euthanized between 197 and 2726 days after the inhalation exposure. Prominent findings in the 144Ce-exposed dogs were radiation pneumonitis in 19 of the 23 dogs that died during the first 943 days after exposure, and neoplastic disease in 13 of the 20 dogs that died beyond 904 days after exposure. Pulmonary tumors were found in five of these dogs. In contrast to the study with young adult dogs, in which pulmonary hemangiosarcomas were one of the prominent findings, all of these tumors were carcinomas

  11. Toxicity of inhaled 144Ce in fused aluminosilicate particles in aged beagle dogs. V

    The toxicity of 144Ce in fused aluminosilicate particles inhaled by 8- to 10.5-yr-old dogs is being investigated to provide information on age-related differences in the response of older members of the human population to accidental inhalation of radioactive aerosols. These data on aged dogs will be compared to the results of similar studies of dogs exposed at approximately 3 mo or 12 to 14 mo of age. Six blocks of five female dogs each have been divided into four exposure levels with mean initial lung burdens of 7.2, 14, 28 and 57 μCi 144Ce/kg body weight. Six blocks of four male dogs have been divided into three exposure levels with mean initial lung burdens of 7.2, 14 and 28 μCi 144Ce/kg body weight. Controls in each block were exposed to fused aluminosilicate particles containing stable cerium. Fifteen dogs with initial lung burdens ranging from 20 to 75 μCi 144Ce/kg body weight and cumulative doses to lung of from 22,000 to 74,000 rads have died or were euthanized 197 to 1207 days after exposure with clinicopathologic findings of radiation pneumonitis and pulmonary fibrosis.Pulmonary retention of the inhaled 144Ce was similar to that observed previously in dogs exposed at 18 to 22 mo of age in a radiation dose pattern study. Serial observations are continuing on the 19 surviving 144Ce-exposed and eight control dogs

  12. Toxicity of 144Ce fused clay particles inhaled by aged dogs. III

    The toxicity of 144Ce fused clay particles inhaled by 8- to 10.5-year-old dogs is being investigated to provide information on age-related differences in the response of older members of the human population to accidental inhalation of radioactive aerosols. These data on aged dogs will be compared to the results of similar studies using dogs exposed at approximately 3 months or 12 to 14 months of age. To date, 7 blocks of 5 dogs each, divided into 4 exposure levels with mean initial lung burdens of 7.5, 14, 24, and 57 μCi/kg body weight and control dogs exposed to non-labeled fused clay particles have been entered into a longevity study. Twelve dogs with initial lung burdens ranging from 20 to 75 μCi 144Ce/kg body weight and cumulative doses to lung of from 22,000 to 74,000 rads have died at 197 to 943 days post-inhalation with clinico-pathologic findings of radiation pneumonitis and pulmonary fibrosis. Two of these also had congestive heart failure. In addition, 4 dogs with ILBs of 8 to 14 μCi 144Ce/kg body weight have died of mammary neoplasms or congestive heart failure but without radiation pneumonitis. One dog with an ILB of 9 μCi 144Ce/kg body weight died with a chronic interstitial foreign body pneumonia. Two control dogs have died, one with a mammary carcinoma and one with pyometra. Pulmonary retention of the inhaled 144Ce was similar to that observed previously in dogs exposed at 18 to 22 months of age in a radiation dose pattern study. Serial observations are continuing on the 11 surviving 144Ce-exposed dogs and 5 controls. (U.S.)

  13. Toxicity of 144Ce inhaled in a relatively insoluble form by immature Beagle dogs. VIII

    The influence of age at exposure on the resulting patterns of deposition, retention, dosimetry and biological effects from a single inhalation exposure to a relatively insoluble form of a beta-emitting radionuclide with a relatively long physical half-life is being investigated. Immature Beagle dogs (3 months of age) have been exposed once, by inhalation, to an aerosol of 144Ce incorporated in fused aluminosilicate particles. Eighteen of these dogs were serially sacrificed to study the patterns of deposition, retention and dosimetry and the remaining 49 dogs received graded initial lung burdens that ranged from 0.004 to 140 μCi 144Ce/kg body weight and are being observed over their life span for study of the resulting long-term biological effects. Five control dogs are also included in this study. To date, 13 of the 144Ce-exposed dogs in the longevity study and none of the controls have died. Dogs with the highest initial lung burdens of 144Ce died first (during the first 4 months) with radiation pneumonitis, pulmonary fibrosis and congestive heart failure. Pulmonary hemangiosarcoma was the primary finding in dogs that died at 1.5 to 2 years after exposure. Deaths beyond that time have primarily involved extrapulmonary hemangiosarcomas. One dog, 627B, with an initial lung burden of 24 μCi 144Ce/kg body weight died during the past year at 2341 days after exposure with a widely disseminated hemangiosarcoma showing heavy involvement of the liver and skin. Observations are continuing on the surviving 36 144Ce-exposed and five control dogs

  14. Toxicity of 144Ce inhaled in a relatively insoluble form by aged beagle dogs. VI

    The toxicity of 144Ce inhaled in fused aluminosilicate particles by 8 to 10.5-year-old dogs is being investigated to provide information on age-related differences in the response of older members of the human population to accidental inhalation of radioactive aerosols. These data on aged dogs will be compared to the results of similar studies of dogs exposed at approximately 3 months or 12 to 14 months of age. Six blocks of five female dogs each have been divided into four exposure levels with mean initial lung burdens of 7.2, 14, 28 and 57 μCi 144Ce/kg body weight. Six blocks of four male dogs each have been divided into three exposure levels with mean initial lung burdens of 7.2, 14 and 28 μCi 144Ce/kg body weight. Controls in each block were exposed to fused aluminosilicate particles containing stable cerium. Eighteen dogs with initial lung burdens ranging from 14 to 75 μCi 144Ce/kg body weight and cumulative doses to lung of from 22,000 to 74,000 rads have died or were euthanized 197 to 1207 days after exposure with clinicopathologic findings of radiation pneumonitis and pulmonary fibrosis

  15. Effect of 144Ce inhaled in fused clay particles on the tracheobronchial lymph nodes

    Tracheobronchial lymph node changes and lymphopenia are sequelae to inhalation of relatively insoluble radioactive aerosols by Beagle dogs. To assess the development of these lesions, tracheobronchial lymph nodes from dogs that inhaled 144Ce in fused clay particles were examined at intervals from 2 to 730 days after exposure. Initial lung burdens in the dogs studied ranged from 33 to 63 μCi/kg body weight. The concentration of radioisotope in the tracheobronchial lymph nodes increased during the first year after exposure and exceeded that in the lung about 100 days after exposure. Autoradiographs of the lymph nodes showed that 144Ce particles were present in macrophages in the paracortical zone two days after exposure and that concentrations continued to increase in the paracortical zone and medullary cords. Histologic changes in the nodes included atrophy of the germinal centers and lymphocytic follicles, loss of lymphocytes and accumulation of macrophages in the paracortical zone, accumulation of pigment and isotope-laden macrophages in the medullary cords, occasional infiltrates of neutrophils in the medullary cords and, at later time periods, focal fibrosis of the medullary cords. Tracheobronchial lymph node weights of the dogs exposed to 144Ce in fused clay were not decreased until 512 days after exposure. These findings indicate that tracheobronchial lymph nodes accumulate relatively high burdens of 144Ce after inhalation of 144Ce in a relatively insoluble form and that the pathologic changes resulting from these burdens are basically atrophic in nature. Primary neoplasms in lymph nodes have not been observed in dogs with initial lung burdens from 0.0024 to over 30 μCi/kg body weight followed for up to 2000 days post-exposure. At the higher levels, however, a high incidence of primary pulmonary neoplasia has been observed. (U.S.)

  16. Toxicity of 144Ce inhaled in a relatively insoluble form by immature Beagle dogs. VII

    Immature Beagle dogs (approx. = 3 months of age at exposure) have been exposed by inhalation to a relatively insoluble form of 144Ce (in fused aluminosilicate particles) to compare the resulting patterns of metabolism, dosimetry and biological effects with those seen in dogs exposed at 12 and 14 months of age and at 8 to 10.5 years of age. Five blocks of longevity animals, each consisting of 10 exposed dogs and one control, are currently being studied. The initial lung burdens of the 144Ce-exposed dogs range from 0.004 to 140 μCi 144Ce/kg body weight. Three dogs with initial lung burdens of 73 to 120 μCi 144Ce/kg body weight died at 66 to 121 days after exposure with pulmonary injury and congestive heart failure. One dog with an initial lung burden of 140 μCi 144Ce/kg body weight died at 91 days after exposure with severe radiation pneumonitis and minimal pulmonary fibrosis and another dog whose initial lung burden was 70 μCi 144Ce/kg body weight died at 511 days after exposure with pulmonary injury that was mainly fibrotic in nature. Four dogs with initial lung burdens of 52 to 79 μCi/kg body weight had primary pulmonary hemangiosarcomas and died between 618 and 738 days, with cumulative average absorbed beta doses to lung of 23,000 to 31,000 rads. Two of these dogs, 1027S and 1024D, died within the past year. One dog with an initial lung burden of 28 μCi/kg body weight was euthanized at 1227 days after exposure with an hemangiosarcoma of the mediastinum. Within the past year, Dog 627S, with an initial lung burden of 48 μCi/kg body weight, died 1732 days after exposure with hemangiosarcoma primary in the liver or spleen. A dog with an initial lung burden of 12 μCi/kg body weight died from epilepsy at 1520 days after exposure. Serial observations are continuing on the surviving 37 exposed and five control dogs

  17. Toxicity of inhaled 144Ce fused clay particles in beagle dogs. VII

    The metabolism, dosimetry, and effects of inhaled 144Ce in fused clay particles are being investigated in the Beagle dog to aid in assessing the biological consequences of release of 144Ce in a relatively insoluble form such as might occur in certain types of nuclear accidents. The toxicity of inhaled 144Ce fused clay is also of general interest since it is representative of intermediate-lived beta-emitting radionuclides. Two major studies with young adult dogs (12 to 14 months of age at exposure) are involved: (1) a metabolism and dosimetry study in which 24 dogs were serially sacrificed over an extended period of time, and (2) a longevity study with 2 series of dogs; Series I with 15 dogs exposed to aerosols of 144Ce in fused clay particles to yield initial lung burdens of 11 to 210 μCi/kg body weight and 3 control dogs exposed to nonradioactive fused clay particles and Series II with 96 dogs exposed to aerosols of 144Ce in fused clay particles to yield initial lung burdens of 0.0024 to 66 μCi/kg body weight and 12 control dogs exposed to nonradioactive fused clay particles. Twenty-eight dogs died or were euthanized at 143 to 2396 days after inhalation of 144Ce. The prominent findings were radiation pneumonitis in 17 dogs that died or were euthanized at early time periods and neoplastic disease in 10 of the 11 dogs that died or were euthanized at 750 days or later; 5 with hemangiosarcoma of the lung, 1 with both a hemangiosarcoma and a fibrosarcoma of the lung, 1 with both a bronchiolo-alveolar carcinoma and a hemangiosarcoma of lung, 1 with a hemangiosarcoma of lung, bronchiolo-alveolar carcinoma, and a bronchiogenic adenocarcinoma, and 1 each with a hemangiosarcoma of the mediastinum and of the spleen. The cumulative radiation dose to the lung at time of death has ranged from 22,000 to 140,000 rads. Serial observations are continuing on the 83 survivors and 15 controls. (U.S.)

  18. Extraction of carrier-free 144Ce with acetylacetone and 8-hydroxyquinoline

    The extraction of carrier-free 144Ce with 3.25 to 0.65 M solutions of acetylacetone in carbon tetrachloride and with 1.0 to 0.01 M solutions of 8-hydroxyquinoline in chloroform at a constant as well as variable pH was investigated. On the basis of the analysis of distribution curves it may be presumed that in both extraction systems the oxidation of cerium(III) to cerium(IV) microamounts takes place. The distribution curves of extraction and reextraction in the systems with 8-hydroxyquinoline show a considerable complexity. In the extraction system with acetylacetone constants were found which satisfactorily express the distribution of 144Ce in this system. (author)

  19. Biological effects of repeated exposure of beagle dogs to relatively insoluble aerosols of 144Ce. IV

    This experiment is being conducted to study the behavior and long-term biological effects in Beagle dogs of 144Ce inhaled in fused aluminosilicate particles in repeated inhalation exposures for comparison with similar data from dogs that were exposed only once to a similar aerosol. Four groups of nine dogs each were exposed once every eight weeks for two years (13 exposures) to achieve specified exposure goals. The 144Ce-exposed dogs received increasing or relatively constant beta radiation dose rates in contrast to the steadily decreasing dose rate seen after a single inhalation exposure. Exposures in the first and second groups were planned to yield a cumulative absorbed dose to lung of approximately equal to 35,000 rads and those in the third group approximately equal to 17,000 rads within two years after the first exposure. Singly exposed dogs that had died with pulmonary tumors when this experiment was initiated had cumulative doses to death of 29,000 to 61,000 rads. All 13 exposures have been completed. One dog in the 4.5-μCi 144Ce/kg body weight group died at 771 days after first exposure with emaciation, adrenal cortical degeneration and bone marrow aplasia. One control dog died accidentally during anesthesia. During the past year, two additional dogs have died. One dog in the repeated 2.5-μCi 144Ce/kg body weight group died at 1256 days after the first exposure with radiation pneumonitis and pulmonary fibrosis and a control dog died at 1052 days with autoimmune hemolytic anemia. The remaining 32 dogs appear to be in good physical condition except for a persistent lymphopenia at approximately equal to 4 years after the first exposure. They are being maintained for life span observations

  20. The uptake of 90Sr, 137Cs and 144Ce by leaves of spring wheat and rape

    The distribution and accumulation of 90Sr, 137Cs, 144Ce through the leaf surface into the plant have been studied. The results show that the uptake rate of 137Cs by crop plant is about 53%, while the uptake rate for 90Sr and 144Ce is about 0.4%. However 90Sr is absorbed in significant amount from soil whereas 137Cs is absorbed in negligible amount

  1. Influence of chelation therapy (DTPA) on 141Ce retention in rats

    We investigated the influence of oral and parenteral administration of chelation therapy on the retention of 141Ce in young rats. Opposite to results obtained in adult rats present results show high efficacy of oral chelation therapy in reducing radiocerium retention in the whole body and organs of suckling rats. (author) 3 refs

  2. Liver tumors in Beagle dogs exposed by inhalation to 144CeCl3

    Primary malignant hepatic neoplasms developed in 9 of 55 Beagle dogs (16 percent) exposed to 144CeCl3 in CsCl aerosol (seven primary hepatic hemangiosarcomas, one hepatocellular carcinoma and one intrahepatic bile duct carcinoma). Cerium-144 was rapidly translocated from the lung to the liver and skeleton; the liver received the highest cumulative beta dose. The latent periods of hepatic hemangiosarcomas appeared to be dose-related; death from hepatic hemangiosarcoma occurred earlier in dogs which received higher beta doses

  3. Development of a phantom and assessment of (141)Ce as a surrogate radionuclide for flood field uniformity testing of gamma cameras.

    Saxena, Sanjay Kumar; Kumar, Yogendra; Malpani, Basant; Rakshit, Sutapa; Dash, Ashutosh

    2016-06-01

    This paper describes an indigenous method for development and deployment of rechargeable liquid filled phantom with newly proposed radionuclide (141)Ce for determination of extrinsic uniformity of gamma cameras. Details about design of phantom, neutron irradiation of cerium targets, chemical processing of (141)Ce, charging of phantom with (141)Ce solution and their performance evaluation are presented. Suitability of (141)Ce in quality assurance of gamma cameras used in in-vivo diagnostic imaging procedures has been amply demonstrated. PMID:27031297

  4. Standard test method for gamma energy emission from fission products in uranium hexafluoride and uranyl nitrate solution

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF6) and uranyl nitrate solution. It is intended to provide a method for demonstrating compliance with UF6 specifications C 787 and C 996 and uranyl nitrate specification C 788. 1.2 The lower limit of detection is 5000 MeV Bq/kg (MeV/kg per second) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon detector efficiency and background. 1.3 The nuclides to be measured are106Ru/ 106Rh, 103Ru,137Cs, 144Ce, 144Pr, 141Ce, 95Zr, 95Nb, and 125Sb. Other gamma energy-emitting fission nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its us...

  5. Biological effects of repeated inhalation exposure of Beagle dogs to relatively insoluble aerosols of 144Ce. V

    The behavior and long-term biological effects in Beagle dogs of 144Ce inhaled in fused aluminosilicate particles in repeated inhalation exposures are being studied for comparison with data from dogs that were exposed only once to a similar aerosol. Four groups of nine dogs each were exposed once every 8 weeks for 2 years (13 exposures) to achieve specified exposure goals. These goals were: to increase the lung burden by 2.5 μCi 144Ce/kg body weight with each exposure in the first group; to reestablish lung burdens of 9 or 4.5 μCi 144Ce/kg body weight in the second and third groups, respectively; and to expose controls (fourth group) to fused aluminosilicate particles containing stable cerium. With these exposure sequences, the 144Ce-exposed dogs received increasing or relatively constant beta radiation dose rates in contrast to the steadily decreasing dose rate seen after a single inhalation exposure. Exposures in the first and second groups were planned to yield a cumulative absorbed dose to lung of approx. = 35,000 rads and those in the third group approx. = 17,000 rads within two years after the first exposure. All 13 exposures have been completed. During the past year, one dog in the 9.0 μCi 144Ce/kg body weight group died at 1558 days after the first exposure with autoimmune hemolytic anemia. The remaining 24 144Ce-exposed and seven control dogs generally appear to be in good physical condition with exception of a persistent lymphopenia at approx. = 5 years after the first exposure. They are continuing to be maintained for life span observations

  6. K-shell ionization in the beta decay of 141Ce

    The total K-shell ionization probability accompanying the β- decay of 141Ce to the 0.145-MeV level in 141Pr was determined to be (1.79 +- 0.11) x 10-4 from Pr Kα x rays in coincidence with the 0.145-MeV gamma ray. This result is in very good agreement with the theoretical calculations of Law and Suzuki

  7. Effects of inhaled 144Ce on cardiopulmonary function and histopathology of the dog

    Twelve dogs inhaled single doses of relatively insoluble particles containing 144Ce and six dogs inhaled particles containing stable cerium as controls. Pulmonary function, clinical, and radiographic evaluations were performed serially. The dogs developed progressive radiation pneumonitis and pulmonary fibrosis similar to that previously reported for whole-lung irradiation from internal or external sources. Focal histologic changes in bronchioles and alveoli were detected functionally during treadmill and tube-breathing stresses at a time when the dogs' clinical and radiographic appearances were normal. Moderate functional impairment was associated with more severe inflammatory and proliferative changes in airways and alveoli. Severe impairment resulted from progressive fibrosis and scarring. These were several strong correlations between functional indices and histological scores. There was a nonlinear relationship between cumulative radiation dose and effects, and once the functional alterations became clinically evident, the disease progressed with little further increase in dose

  8. Biological effects of repeated inhalation exposure of beagle dogs to aerosols of 144Ce in fused clay particles I

    This experiment was initiated to study the biological behavior and long-term effects of repeated inhalation exposures to 144Ce in fused clay particles compared with those seen in Beagle dogs that received a single exposure as young adults. The 36 dogs, divided into four equal groups, are exposed every 8 weeks to achieve the following: to maintain lung burdens of 9 and 4.5 μCi 144Ce/kg body weight in the first and second groups, respectively; to increase the lung burden by 2.5 μCi 144Ce/kg body weight in the third group with each exposure and to expose controls (fourth group) to fused clay containing stable cerium. With these exposure sequences, the 144Ce-exposed dogs will receive increasing or maintained β dose rates in contrast to the steadily decreasing dose rate seen after a single inhalation exposure. Exposures to the first and third groups will produce a cumulative absorbed dose to lung of approximately equal to 35,000 rads and those to the second group will yield approximately equal to 17,000 rads within 2 yr after the first exposure. Single exposure dogs that had died with pulmonary neoplasia when this experiment was initiated had cumulative doses to death of 29,000 to 61,000 rads. Six of the planned 13 exposures have been completed to date. All exposed dogs are surviving and will be maintained for lifespan observation. (U.S.)

  9. Effect of fasting on the transit time of 144Ce in the mouse gut

    Our work with G.I. absorption of actinide elements indicates greater absorption by fasted animals than by animals on regular diets (Weiss and Walburg, undated). Residence time of a metallic compound in the gut may be an important factor influencing G.I. absorption. Cerium-144 (III) chloride was administered by gavage to fasted mice and to mice on regular feed. The G.I. tract was excised, cut into sections, and the activity of each section determined as a function of time after dosing. Our results indicate rapid transit of 144CeCl3 along the empty mouse gut. One hour after dosing, about half the Ce is in the cecal contents; about 40% remains in stomach contents. Twelve hours after dosing, only about 2% remains in the cecum; by 16 hours, almost the entire dose has been cleared from the intestine. Transit times in mice with stomach and intestines containing food were 12 hours longer than in fasted mice. These results lead to the conclusion that factors other than G.I. residence time determine G.I. absorption of actinides in mice

  10. Effect on canine lymphocyte function of 144Ce inhaled in fused clay particles

    Beagle dogs exposed by inhalation to 144Ce in fused clay particles develop a persistent lymphopenia and the remaining peripheral lymphocytes in these dogs show a depressed in vitro response to plant mitogens. These studies were designed to evaluate the cellular basis for this defect. The survival and growth of lymphocytes from irradiated and control dogs were evaluated through 96 hours of culture. Many irradiated lymphocytes that were viable in vivo died within 24 hours in vitro. The remaining lymphocytes appeared to grow normally indicating that the early in vitro death was responsible for at least a portion of the difference between irradiated and control lymphocyte cultures. A second experiment was designed to determine if any humoral factors in plasma of irradiated dogs were responsible for the poor response of the lymphocytes. Lymphocytes from irradiated and control dogs were grown with plasma from both types of animals. Heterologous plasma had no apparent effect on lymphocyte growth, indicating that humoral factors were not involved. (U.S.)

  11. Biological effects of repeated inhalation exposure of Beagle dogs to relatively insoluble aerosols of 144Ce. VI

    Beagle dogs were exposed repeatedly to a relatively insoluble form of 144Ce (in fused aluminosilicate particles) to study the deposition, retention and long-term biological effects for comparison with data from dogs that were exposed only once to a similar aerosol. Four groups of nine dogs each were exposed once every 8 weeks for 2 years (13 exposures) to achieve specified exposure goals. These goals were: to increase the lung burden by 2.5 μCi 144Ce/kg body weight with each exposure; to reestablish lung burdens of 9 or 4.5 μCi 144Ce/kg body weight and to expose controls to fused aluminosilicate particles containing nonradioactive cerium. With these exposure sequences, the 144Ce-exposed dogs received increasing or relatively constant beta radiation dose rates in contrast to the steadily decreasing dose rate seen after a single inhalation exposure. Following completion of the exposure series, the dogs are being observed for the development of long-term biological effects. To date, 11 dogs have died or were euthanized, nine exposed dogs and two controls. Although pulmonary hemangiosarcomas were a prominent finding in dogs exposed once to the same aerosol at a level that led to cumulative doses to lung similar to these repeatedly exposed dogs, only one has been observed in the repeatedly exposed dogs. Other effects of note to date include three pulmonary carcinomas, two hemangiosarcomas of the tracheobronchial lymph nodes and one splenic hemangiosarcoma. Observations are continuing on the surviving 18 exposed and seven control dogs

  12. Kinetic study of the deposition of 144Ce, 143Pr and 147Nd on a platinum anode

    Investigation of the electrodeposition of radioactive rare earth metal isotopes confirm that, depending on the conditions of electrolysis, they can be deposited on the platinum either cathodically or anodically. The anodic deposition of these isotopes can take place with electrochemical oxidation or electrosorption without electron-transfer, depending on the lanthanide(III-IV) oxidation potentials. The present paper reports the results of the investigation connected with the anodic deposition of 144Ce, 143Pr and 147Nd. (author)

  13. Yield-Energy Dependence for 147Nd and 144Ce Under Strong Neutron Field

    QIAN; Jing; LIU; Ting-jin; SUN; Zheng-jun; SHU; Neng-chuan

    2012-01-01

    <正>The data of the fission product yield play an important role in the nuclear science technology and nuclear engineering because they are the key data in the calculation of the decay heat, shield design, nuclear verification, radiochemistry reprocessing and nuclear safety, etc. Especially, it is the essential data in fission power estimation for a fission device. It is well known that there exists a consecutive neutron spectrum with the energy from 1 keV to 15 MeV for a fission-fusion device. So in order to estimate the

  14. Use of 141Ce as a particulate digesta flow tracer in ruminants. II. Behavior of the tracer at the duodenum and in the feces

    A ration of 600 g chopped hay and 150 g ground sorghum is given twice daily to sheep fitted with a rumen cannula and a duodenal reentrant cannula. 141Ce flow rate at the duodenum and in the feces is compared to flow rate of stained hay particles after ingestion of a single labelled meal. After an adaptation period during which both daily meals are labelled, variations in 141Ce concentration are then measured in the duodenal and fecal dry matter. The tracer is used to estimate dry mater digestibility indirectly. Duodenal data show that the mean retention time of 141Ce in the rumen is about 15% less than that of stained particles. The meal after the radioactive one momentarily depresses 141Ce excretion rate while it accelerates that of the stained particles. Mean retention time in the whole gastro-intestinal tract of a meal of 600 g chopped hay 150 g ground sorghum is 40.4+-3.8 h or 32.4+-3.7 h, depending on whether stained particles or 141Ce is used. All the 141Ce ingested is recovered in the feces. Mean recovery of 141Ce in the feces excreted during 200 hours after dosage is 100.2+-5.0%. After a period of adaptation where all meals are radioactive, feces of 2 sheep are sampled either by total collection or directly in the rectum. Dry matter digestibility does not differ whether calculated from total collection or by the indirect method using 141Ce

  15. Decontamination of 60Co and 144Ce. low-activity liquid wastes with the Fe3+ /OH- /Ca2+ /PO-4-3- system

    The influence of reaction time, concentrations of Fe3+ and PO-4-3+, temperature and agitation velocity in the efficiency of decontamination of 60Co and 144Ce low-activity liquid wastes using the Fe3+ /OH-/Ca2+ /PO-4-3+ precipitator system was stud ied in this paper. The mathematical models of this process were obtained for 60Co and 144Ce. The best conditions for the decontamination we re calculated using the optimization program

  16. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium in the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for

  17. Biological alterations resulting from chronic lung irradiation. I. The pulmonary lipid composition, physiology, and pathology after inhalation by beagle dogs of 144Ce-labeled fused clay aerosols

    Three groups of four beagle dogs inhaled a 144Ce-labeled fused clay aerosol; two additional dogs per group, exposed to a stable cerium-labeled fused clay aerosol, were used as controls. At monthly intervals, one diaphragmatic lobe of each of two dogs exposed to 144Ce and one control animal from each group was lavaged with isotonic saline. The recovered lavage solutions were centrifuged to isolate lung cells (mostly macrophages) and surfactant for lipid analyses. The groups were sacrificed at 2, 4, and 6 mo after exposure, when the lungs of the dogs exposed to 144Ce had average cumulative radiation doses of 23, 36, and 59 krad, respectively. Chronic irradiation of the lung resulted in a progressive radiation pneumonitis which was assessed clinically and pathologically at various intervals. At sacrifice, the lungs were analyzed for 144Ce and the right apical and diaphragmatic lobes were minced and lyophilized and the lipids were extracted. Total lipids from all lung samples were determined gravimetrically and individual compounds were identified, isolated, and quantitated. The quantities of lipid in lung tissue, in pulmonary cells, and in surfactant increased as a function of time and radiation dose. Neutral lipids (sterol esters and triglycerides) accounted for most of the increase. (U.S.)

  18. Suppression of the pulmonary clearance of Staphylococcus aureus in mice that had inhaled either 144CeO2 or 239PuO2

    The rate of pulmonary clearance of inhaled Staphylococcus aureus in mice was determined at intervals after inhalation exposure to either 144CeO2 or 239PuO2. In mice with mean initial lung burdens between 0.6 and 4.7 μCi 144Ce the pulmonary clearance of S. aureus was suppressed up to 12 weeks after inhalation of 144CeO2. In mice with mean initial lung burdens between 1.3 and 29.0 μCi 239Pu the pulmonary clearance of S. aureus was suppressed up to 26 weeks after inhalation of 239PuO2. The suppressed pulmonary clearance of S. aureus appeared to correlate with the radiation dose rate to the lungs at the time of exposure to bacteria but not with the cumulative radiation dose to the lungs. The changes in bacterial clearance did not appear to be correlated with changes in body weight, hematological parameters, or radiation-induced histopathological changes. Altered bacterial clearance may be related to radiation damage to pulmonary macrophages. It was concluded that irradiation of the lung from radionuclides inhaled in relatively insoluble forms may result in increased bacterial invasion of the lungs

  19. Use of 141Ce as a particulate digesta flow tracer in ruminants. I. Determination of uptake on feed and behavior in rumen digesta in vivo

    The suitability of 141Ce as a particulate digesta flow tracer is studied in sheep. The amount and the factors of cerium uptake on feed particles by incubating alfalfa hay and sorghum seeds in water containing 141Ce in solution are determined. After soaking one hour, 80% radioactivity is retained on the hay 17% on the sorghum. Incubation time is the main factor determining uptake rate. This uptake is solid on the hay and more fragile on the sorghum. The evolution of 141Ce distribution among the different physical constituents of rumen digesta is studied on two sheep given a single radioactive meal (10μCi). These sheep are fitted with a rumen cannula and fed twice daily with hay (80%) and sorghum (20%). There is little 141Ce in solution in the supernatant liquid after centrifugation of digesta. At the end of the 'labelled' meal, specific radioactivity (RAS) of liquid-phase digesta, separated by filtering on two layers of gauze, is equal to or higher than the RAS of the solid phase. It increases up to the next unlabelled meal and then decreases. Microorganisms may cause this transfer of liquid-phase radioactivity to the large particles. Specific radioactivity of the microorganisms remains very high after the 'labelled' meal as compared to that of different granulometric fractions of solid digesta

  20. CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    Gando, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Ishikawa, H; Koga, M; Matsuda, R; Matsuda, S; Mitsui, T; Motoki, D; Nakamura, K; Oki, Y; Otani, M; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Takemoto, Y; Tamae, K; Ueshima, K; Watanabe, H; Xu, B D; Yamada, S; Yamauchi, Y; Yoshida, H; Cribier, M; Durero, M; Fischer, V; Gaffiot, J; Jonqueres, N; Kouchner, A; Lasserre, T; Leterme, D; Letourneau, A; Lhuillier, D; Mention, G; Rampal, G; Scola, L; Veyssiere, Ch; Vivier, M; Yala, P; Berger, B E; Kozlov, A; Banks, T; Dwyer, D; Fujikawa, B K; Han, K; Kolomensky, Yu G; Mei, Y; O'Donnell, T; Decowski, P; Markoff, D M; Yoshida, S; Kornoukhov, V N; Gelis, T V M; Tikhomirov, G V; Learned, J G; Maricic, J; Matsuno, S; Milincic, R; Karwowski, H J; Efremenko, Y; Detwiler, A; Enomoto, S

    2013-01-01

    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.

  1. An experimental study of the time dependence of uptake from soil of 137Cs, 106Ru, 144Ce and 99Tc into green vegetables, wheat and potatoes

    In this study the experimental data were analysed using the CEGB's dynamic foodchain model, and were used to validate the relevant part of the model structure, to produce model-specific input data and to identify possible future improvements to the model structure. The root uptake of the specified radionuclides was studied and the concentration levels measured. The data were analysed using a simplified version of the general model. The compartment system incorporated within the model was shown to be capable of reproducing the data for 137Cs, 106Ru and 144Ce to an extent sufficient to justify its use in ingestion radiological dose assessments, but to be less successful in fitting the 99Tc data. The analysis resulted in the production of a well validated set of model-specific input data relevant to UK conditions and agricultural practice differing significantly from values obtained from global literature surveys. Possible future improvements to the model structure were also identified, aimed at providing improved estimates of crop contamination levels for timescales in excess of those considered in this study. (U.K.)

  2. The study of the effect of gamma radiation on the ionic and collodial solutions of 144Ce/III/ at trace concentration by the method of self-diffusion and centrifugation

    Gamma irradiation of a solution of trace concentration of 144Ce/III/ at pH 3.0 causes an increase in the self-diffusion coefficient of 144Ce/III/ and small decrease in its centrifugable fraction. The significant increase in the self-diffusion coefficient is observed after irradiation at pH 9.0 and 11.0 and on the centrifugation of these solutions an increased susceptibility of particles containing 144Ce/III/ to the coagulation accurs. The measurements were performed by a method of the open end capillary immersed into the excess of inactive solution and the self-diffusion coefficient calculated as described earlier. The solutions were irradiated either directly in the capillaries for the self-diffusion measurment fixed in the glass tubes or in borosilicate Sial glass sample tubes with subsequent pipetting into the capillaries. The dose rate of 60Co γ-radiation was about 0.4 Mrad. hour-1, the time of irradiation was 1.5 to 15 hours. The period between the end of the irradiation and the beginning of the self-diffusion measurement amounted to about 15 to 30 min. (F.G.)

  3. Evaluation of fission product yields from fission spectrum n+239Pu using a meta analysis of benchmark data

    Chadwick, Mark B.

    2009-10-01

    Los Alamos conducted a dual fission-chamber experiment in the 1970s in the Bigten critical assembly to determine fission product data in a fast (fission neutron spectrum) environment, and this defined the Laboratory's fission basis today. We describe how the data from this experiment are consistent with other benchmark fission product yield measurements for 95,97Zr, 140Ba, 143,144Ce, 137Cs from the NIST-led ILRR fission chamber experiments, and from Maeck's mass-spectrometry data. We perform a new evaluation of the fission product yields that is planned for ENDF/B-VII.1. Because the measurement database for some of the FPs is small—especially for 147Nd and 99Mo—we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data. The %-relative changes compared to ENDF/B-VI are small for some FPs (less than 1% for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (3%) and 147Nd (5%). We suggest an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average energies.

  4. Radiochemical methods used by the IAEA's laboratories at Siebersdorf for the determination of 90Sr, 144Ce and Pu radionuclides in environmental samples collected for the International Chernobyl Project

    During the IAEA's International Chernobyl Project to assess the radiological consequences of the nuclear reactor accident, the Agency's Laboratories at Seibersdorf participated in the collection and analyses of environmental samples from the Soviet Union. Under Task 2 of this effort, the determination of the activity concentrations of 90Sr and the alpha-emitting Pu radionuclides was important for the corroboration of the official USSR environmental contamination maps. The present paper describes in detail the sampling methods and radiochemical procedures used for the 90Sr, 144Ce, 238Pu and 239,240Pu analyses in these samples with emphasis on the grass and soil treatments. (Author)

  5. Preparative electrophoresis of industrial fission product solutions

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137Cs, 90Sr, 141+144Ce, 91Y, 95Nb, 95Zr, 103+106Ru. (author)

  6. Behaviour of solid fission products in the HTGR coated fuel particles

    Results of profile measurements for volume concentrations of 134,137Cs, 144Ce, 155Eu, 106Ru and fissionable material in the HTGR coated fuel particles which have been subjected to standard tests in the temperature range of 1273-2133 K and at burnup up to 17% fima are presented. Values of the effective coefficients of cesium diffusion in kern and protective coating of fuel particles which were subjected to standard in-pile tests in spherical fuel elements at the temperature of 1273 K and the burnup up to 15% fima as well as the value of relative release of solid fission products from the samples studied are given

  7. Appendix to Health and Safety Laboratory environmental quarterly, March 1, 1976--June 1, 1976. [Tabulated data on content of lead in surface air and /sup 7/Be, /sup 95/Zr, /sup 137/Cs, /sup 144/Ce, and /sup 90/Sr in surface air, milk, drinking water, and foods sampled in USA

    Hardy, E.P. Jr.

    1976-07-01

    Tabulated data are presented on: the monthly deposition of /sup 89/Sr and /sup 90/Sr at some 100 world land sites; the content of lead and /sup 7/Be, /sup 95/Zr, /sup 137/Cs, and /sup 144/Ce in samples of surface air from various world sites; and the content of /sup 90/Sr in samples of milk, drinking water, and animal and human diets collected at various locations throughout the USA. (CH)

  8. Influence of complex formation on extraction of some fission products by sorption on inorganic sorbents

    Sorption of fission products of radionuclides 137Cs, 89,90Sr, 90,91Y, 86Rb, 133Ba, 95Zr+95Nb, 95Nb, 103,106Ru, 141,144Ce, 115mCd, 113Sn, 125Sb by hydroxides Fe(III), Mn(IV) on the background of 1 mol/l of NaNO3 at the pretense of ions SO42-, C2O42- at a wide ph range (1+14) is studied in present work. Optimal conditions of extraction of each radionuclide by sorption on inorganic sorbents are defined.

  9. Fission product release from ZrC-coated fuel particles during postirradiation heating at 1600 C

    Release behavior of fission products from ZrC-coated UO2 particles was studied by a postirradiation heating test at 1600 C (1873 K) for 4500 h and subsequent postheating examinations. The fission gas release monitoring and the postheating examinations revealed that no pressure vessel failure occurred in the test. Ceramographic observations showed no palladium attack and thermal degradation of ZrC. Fission products of 137Cs, 134Cs, 106Ru, 144Ce, 154Eu and 155Eu were released from the coated particles through the coating layers during the postirradiation heating. Diffusion coefficients of 137Cs and 106Ru in the ZrC coating layer were evaluated from the release curves based on a diffusion model. 137Cs retentiveness of the ZrC coating layer was much better than that of the SiC coating layer. ((orig.))

  10. Distribution of fission products in graphite sleeves and blocks of the ninth and tenth OGL-1 fuel assemblies

    Distribution of fission products in graphite sleeves and blocks of the ninth and tenth OGL-1 fuel assemblies was measured by gamma spectrometry with lathe sectioning. The assemblies were loaded with HTGR fuel compacts, which had been produced by a scaled-up facility for the High Temperature Engineering Test Reactor (HTTR) being developed by JAERI; and they were irradiated in an in-pile gas loop, OGL-1. Fission products detected in the sleeves were 137Cs, 134Cs, 155Eu, 154Eu, 144Ce, 125Sb and 110mAg. The last nuclide, however, may have been produced by activation of a stable isotope, 109Ag, contained as impurity. Effective retention capability of the sleeve was observed for 155Eu, 154Eu, 144Ce and 125Sb; while, not for 137Cs and 134Cs. Concentration of 137Cs in the graphite blocks was markedly higher at the downstream side than at the upstream side of the coolant. This was ascribed to migration of the nuclide with the coolant flow and its subsequent sorption on the surface of the block. (author)

  11. Measurements of fission product concentrations in surface air at Bombay, India, during the period 1975-1981

    Measurements on airborne fallout radioactivity for the period 1975 up to the middle of 1981 are given. Normally, these measurements are confined to Bombay, but after nuclear tests, some of the other stations where these measurements were carried out in previous years are operated for some time to study the levels of fresh activity. The levels of the long-lived fission products 144Ce, 106Ru and 137Cs, and the short-lived fission products 95Zr and 140Ba, were measured, whenever they could be detected following nuclear tests, and tabulated. The data indicate that the activity varies by large factors from tests of similar yield, depending on the meteorological and other conditions. It was determined that the travel time for the Chinese test debris from Lop Nor, China to the West-coast of India is 14 to 16 days

  12. Fission Yields of Some Isotopes in the Fission of Th232 by Reactor Neutrons

    The fission yields of the longer-lived isotopes produced in the fission of Th232 are not very well known; existing data show rather large discrepancies and/or uncertainties. Since we feel that at least some of these discrepancies arise from difficulties in measuring the absolute activities of the fission products, we measured the fission yield of 10 selected isotopes whose decay schemes are well understood. The thorium foils were irradiated in a position at the edge of the core of the SAPHIR swimming pool reactor. Following irradiation, the thorium was dissolved after addition of appropriate carriers. The fission products of interest were determined by conventional radiochemical methods that had to be modified slightly to ensure good decontamination from the abundantly formed Pa233 . The chemical yields were determined by gravimetric methods. Counting was done preferentially on a γ-spectrometer that had been calibrated at 11 different energies by standards either obtained from the IAEA or prepared by 4πβ-counting. In the case of Sr90, Ru106 and Ce144 a β-proportional counter was used that had been calibrated for these isotopes. In addition to the sought elements, Mo99 was isolated from each foil to serve as an internal monitor for the number of fissions taking place. The experiment thus gave the ratio of the yield of the sought element to the yield of Mo99. This ratio ''R'' was obtained for Sr90, Ru103, Ru106, Ag111, Pd112, I131, Cs137, Ba140, Ba141, Ce141 and Ce144, Results indicate the existence of a third peak in the yield mass curve in the region of symmetric fission. Yields of fission products relative to the Mo99 yields are given, and the absolute yields calculated by assuming y Mo99 = 2.78%. This number was derived from the work of Iyer et al., and was obtained by normalizing the area under the yield mass curve to 200%. (author)

  13. Fission Product Yields from Fission Spectrum n+239Pu for ENDF/B-VII.1

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small - especially for 99Mo - we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on the

  14. Delayed fission

    Delayed fission is a nuclear process that couples beta decay and fission. In the delayed fission process, a parent nucleus undergoes beta decay or electron capture and thus populates excited states in the daughter nucleus. This review covers experimental methods for detecting and measuring delayed fission. Experimental results (ECDF activities and beta-DF activities) and theory are presented. The future prospects for study of delayed fission are discussed. 50 refs., 8 figs., 2 tabs

  15. Application of inorganic exchangers in fission product separation

    Synthetic ion exchangers ammonium phosphomolybdate/phosphotungstate (APW), polyantimonic acid (PA) and manganese dioxide have been investigated for separation of cesium, strontium and cerium respectively with a view to their use in fission product separation. Their breakthrough capacities and elution characteristics were determined using 137Cs, sup(85,89)Sr and 141Ce as tracers. Results indicate that : (1) Cs adsorbed on APW is easily eluted with 3M NH4NO3 at a temperature of 500C with an overall yield of 90% in about 10 column volumes, (2) strontium adsorbed on PA is completely eluted by 1M AgNo3 + 8M HNO3 at room temperature and (3) manganese sulphate (1 mg/ml) + 3M HNO3 elutes cerium adsorbed on manganese dioxide. Column characteristics (exchange capacity and flow rate) are not affected upto 6 cycles of sorption-elution. Based on these findings, a scheme of separation of fission products from waste solution is proposed. Pu uptake on PA is found to be governed by U/Pu ratio in the solution. The ratio > 104 inhibits the uptake. Pu on PA is eluted in 10 column volumes by 0.01M ascorbic acid +2M nitric acid. The exchange PA can be used over 20 cycles of sorption-elution. (M.G.B.)

  16. Ternary Fission

    The fission process in which heavy nuclei fragment into three large charged panicles, in place of the usual two, has been studied in the case of thermal-neutron-induced fission of U235 and the spontaneous fission of Cf252. Solid-state detectors, a fast triple coincidence system and a three-coincident-parameter analyser were used to measure the three fission fragment energies parallel with the detection of each ternary fission event. Experimental evidence is presented supporting the existence of ternary fission by specifically excluding recoil phenomena and accidental events as contributing to the observed three-fold coincidence events. Mass-energy-angular correlations of ternary fission have been determined and are summarized as follows: The total kinetic energy release in ternary fission appears to be slightly higher (by approximately 10 MeV) than that for binary fission. In the case of the spontaneous ternary fission of Cf252, the frequency of occurrence is observed to be greater than 2.2 x 10-6 ternary fission events per binary fission event. Tripartition of Cf252 results preferentially in division into two medium mass particle (one of which has a mass number near 56) and one larger mass. In the case of thermal-neutron-induced fission of U235, the frequency of occurrence is observed to be greater than 1.2 x 10-6 ternary fission events per binary fission event. Ternary fission of U236: results in the formation of one light fragment (near mass 36) and two large fragments or, as in the case of Cf252, two medium fragments and one large one. These results indicate that axially asymmetric distortion modes are possible in the pre-scission configurations of the fissioning nucleus. A description is given of experiments designed to radiochemically detect the light fragment resulting from ternary fission. (author)

  17. Nuclear fission

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.)

  18. Nuclear fission

    V.M. STRUTINSKY's semi-classical method is the most precise to determine the energy of the different states along the fission way. The double-humped fission barrier explains fission isomerism. V.M. STRUTINSKY's barrier explains the ''intermediate structure'' observed in the cross section under the threshold; it provides also the observed effect of ''vibrational resonances'' with an interpretation. Taking an asymmetry parameter in consideration, a triple-humped fission barrier seems to be essential now for the light actinides. There is still a microscopic fission barrier to be explained

  19. Determination of uranium fission products interference factors in neutron activation analysis

    Neutron activation analysis is a method used in the determination of several elements in different kinds of matrices. However, when the sample contains high U levels the problem of 235U fission interference occurs. A way to solve this problem is to perform the correction using the interference factor due to U fission for the radionuclides used on elemental analysis. In this study was determined the interference factor due to U fission for the radioisotopes 141Ce, 143Ce, 140La, 99Mo, 147Nd, 153Sm and 95Zr in the research nuclear reactor IEA-R1 on IPEN-CNEN/SP. These interference factors were determined experimentally, by irradiation of synthetic standards for 8 hours in a selected position in the reactor, and theoretically, determining the epithermal to neutron fluxes ratio in the same position where synthetic standards were irradiated and using reported nuclear parameters on the literature. The obtained interference factors were compared with values reported by other works. To evaluate the reliability of these factors they were applied in the analysis of studied elements in the certified reference materials NIST 8704 Buffalo River Sediment, IRMM BCR- 667 Estuarine Sediment e IAEA-SL-1 Lake Sediment. (author)

  20. Spontaneous fission

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  1. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    Abrecht, David G; Schwantes, Jon M

    2015-03-01

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores. PMID:25675358

  2. Fission-Product Development Laboratory cell-decommissioning project plan

    The Fission Product Development Laboratory (FPDL) at Oak Ridge National Laboratory (ORNL) was a full-scale processing facility for separating megacurie quantities of 90Sr, 137Cs, and 144Ce for a variety of source applications, operating at full capacity from 1958 to 1975. Since facility shutdown, the inactive portions of the FPDL have been maintained in a protective storage mode as part of the ORNL Surplus Facilities Management Program (SFMP). Due to the significant radio-nuclide inventory remaining in the facility, the high surveillance and maintenance costs necessary to assure radionuclide containment, and the potential for reuse of the facility by other programs, the decommissioning of the inactive portions of the FPDL has been given a high priority by the SFMP. In response to this program direction, plans are being made for initiation of these activities in late FY 1983. This project plan has been prepared to satisfy the program documentation requirements for SFMP project planning. The plan outlines the scope of the proposed effort, describes the proposed methods of project accomplishment, and provides estimates of the project resource needs and schedule

  3. Spontaneous Fission

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  4. Inorganic oxides as alternative in the separation of non fissioned residual uranium

    The Al2O3, SiO2 and SnO2 as well as vegetable carbon have been studied for its possible use as sorbent in the concentration and separation of non fissioned residual uranium of some fission products such as: 141 Ce, 134 Cs, 125 Sb, 103 Ru, 95 Zr, 95 Nb of alkaline aqueous systems. The separation efficiency has been evaluated using natural uranium and radionuclides in static and dynamic processes, through liquid scintillation and gamma spectrometry. Therefore Al2O3, SiO2, SnO2 and carbon were pre-treated thermic and chemically and characterized through the technique of Nitrogen absorption analysis, X-ray diffraction and IR spectroscopy. By means of the p H determination and the aqueous system potential the present hydrolysis products were determined. The inorganic oxides show structural and surface changes due to the treatment. The adsorption process is realized by different mechanism depending of the sorbent. The results show that the retention capacity is a dependence of the oxides pre-treatment and of the hydrolysis products in the aqueous system, as well as of the experimental conditions. Not in this way for carbon in which the results show the treatment and the experimental conditions significantly have not influence in its adsorption capacity. (Author)

  5. Fission Product Yields from Fission Spectrum n+ 239Pu for ENDF/B-VII.1

    Chadwick, M. B.; Kawano, T.; Barr, D. W.; Mac Innes, M. R.; Kahler, A. C.; Graves, T.; Selby, H.; Burns, C. J.; Inkret, W. C.; Keksis, A. L.; Lestone, J. P.; Sierk, A. J.; Talou, P.

    2010-12-01

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small — especially for 99Mo — we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on

  6. Ternary fission

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  7. Benchmarking Nuclear Fission Theory

    G. F. Bertsch(INT, Seattle, USA); Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-01-01

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  8. Fission Spectrum

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  9. Singlet Fission

    Smith, M. B.; Michl, Josef

    2010-01-01

    Roč. 110, č. 11 (2010), s. 6891-6936. ISSN 0009-2665 Grant ostatní: Department of Energy(US) DE-FG36-08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : solar energy conversion * photovoltaics * singlet fission Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010

  10. Ideological Fission

    Christiansen, Steen Ledet

    materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However, it is...

  11. Studies of the coagulation flotation of bentonite and its application to the removal of Co2+ ions and fission products, Ce and Eu

    The regions of dispersion, coagulation precipitation, coagulation flotation, and redispersion were determined for aqueous bentonite-cationic surfactant and bentonite-cationic surfactant-polyacrylamide(PAA) systems. The region of coagulation flotation was markedly extended by the addition of PAA to both the lower and higher concentration regions of the cationic surfactant, hexadecyldimethylbenzylammonium chloride(HDBAC), and to the lower concentration region of bentonite. The phenomenon of coagulation flotation was investigated in detail and was applied to the removal of Co2+ ions and nuclear fission products, 144Ce and 155Eu, from an aqueous solution. The composition of the reagents for the maximum efficiency of bentonite flotation corresponded to that of the maximum efficiency of Co2+-ion flotation. The effect of the pH on the flotation efficiency was studied in particular. The maximum flotation efficiency of 96% was obtained at pH 11 for Co2+ ions, 86% at pH 9.7 for 144Ce, and 93% at pH 10.5 for 155Eu. These radioactive elements were almost completely adsorbed on the surface of bentonite particles and were floated with them in the pH region of the maximum flotation efficiency. It was confirmed that Co2+ ions could be floated also from an extremely low concentration (10-9 mol/l) of Co2+ ions with nearly the same efficiency of flotation and with the additives in the same condition. Co2+ ions could also be effectively removed by using the step-by-step flotation, showing as high a flotation efficiency as 99.8%. (auth.)

  12. Fission meter

    Rowland, Mark S.; Snyderman, Neal J.

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  13. Determination of uranium fission products interference factors in neutron activation analysis; Determinacao de fatores de interferencia de produtos de fissao de uranio na analise por ativacao neutronica

    Ribeiro Junior, Ibere Souza

    2014-09-01

    Neutron activation analysis is a method used in the determination of several elements in different kinds of matrices. However, when the sample contains high U levels the problem of {sup 235}U fission interference occurs. A way to solve this problem is to perform the correction using the interference factor due to U fission for the radionuclides used on elemental analysis. In this study was determined the interference factor due to U fission for the radioisotopes {sup 141}Ce, {sup 143}Ce, {sup 140}La, {sup 99}Mo, {sup 147}Nd, {sup 153}Sm and {sup 95}Zr in the research nuclear reactor IEA-R1 on IPEN-CNEN/SP. These interference factors were determined experimentally, by irradiation of synthetic standards for 8 hours in a selected position in the reactor, and theoretically, determining the epithermal to neutron fluxes ratio in the same position where synthetic standards were irradiated and using reported nuclear parameters on the literature. The obtained interference factors were compared with values reported by other works. To evaluate the reliability of these factors they were applied in the analysis of studied elements in the certified reference materials NIST 8704 Buffalo River Sediment, IRMM BCR- 667 Estuarine Sediment e IAEA-SL-1 Lake Sediment. (author)

  14. Neutron cross sections of 28 fission product nuclides adopted in JENDL-1

    This is the final report concerning the evaluated neutron cross sections of 28 fission product nuclides adopted in the first version of Japanese Evaluated Nuclear Data Library (JENDL-1). These 28 nuclides were selected as being most important for fast reactor calculations, and are 90Sr, 93Zr, 95Mo, 97Mo, 99Tc, 101Ru, 102Ru, 103Rh, 104Ru, 105Pd, 106Ru, 107Pd, 109Ag, 129I, 131Xe, 133Cs, 135Cs, 137Cs, 143Nd, 144Ce, 144Nd, 145Nd, 147Pm, 147Sm, 149Sm, 151Sm, 153Eu and 155Eu. The status of the experimental data was reviewed over the whole energy range. The present evaluation was performed on the basis of the measured data with the aid of theoretical calculations. The optical and statical models were used for evaluation of the smooth cross sections. An improved method was developed in treating the multilevel Breit-Wigner formula for the resonance region. Various physical parameters and the level schemes, adopted in the present work are discussed by comparing with those used in the other evaluations such as ENDF/B-IV, CEA, CNEN-2 and RCN-2. Furthermore, the evaluation method and results are described in detail for each nuclide. The evaluated total, capture and inelastic scattering cross sections are compared with the other evaluated data and some recent measured data. Some problems of the present work are pointed out and ways of their improvement are suggested. (author)

  15. Fission Research at IRMM

    Al-Adili A.; Fabry I.; Borcea R.; Zeynalov S.; Kornilov N.; Hambsch F.-J.; Oberstedt S.

    2010-01-01

    Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f), 234 U(n,f), prompt neutron emission in fission of 252 Cf(SF) as well as the prompt fission neutron spectrum of 235 U(n,f) and is presenting the most important results.

  16. Inorganic oxides as alternative in the separation of non fissioned residual uranium; Oxidos inorganicos como alternativa en la separacion del uranio residual no fisionado

    Baca G, A

    1997-07-01

    The Al{sub 2}O{sub 3}, SiO{sub 2} and SnO{sub 2} as well as vegetable carbon have been studied for its possible use as sorbent in the concentration and separation of non fissioned residual uranium of some fission products such as: {sup 141} Ce, {sup 134} Cs, {sup 125} Sb, {sup 103} Ru, {sup 95} Zr, {sup 95} Nb of alkaline aqueous systems. The separation efficiency has been evaluated using natural uranium and radionuclides in static and dynamic processes, through liquid scintillation and gamma spectrometry. Therefore Al{sub 2}O{sub 3}, SiO{sub 2}, SnO{sub 2} and carbon were pre-treated thermic and chemically and characterized through the technique of Nitrogen absorption analysis, X-ray diffraction and IR spectroscopy. By means of the p H determination and the aqueous system potential the present hydrolysis products were determined. The inorganic oxides show structural and surface changes due to the treatment. The adsorption process is realized by different mechanism depending of the sorbent. The results show that the retention capacity is a dependence of the oxides pre-treatment and of the hydrolysis products in the aqueous system, as well as of the experimental conditions. Not in this way for carbon in which the results show the treatment and the experimental conditions significantly have not influence in its adsorption capacity. (Author)

  17. Energy released in fission

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  18. Assessment of a Compton-event suppression γ-spectrometer for the detection of fission products at trace levels

    The improvement in detection limits for low and high activity samples measured with the Compton-suppression γ-spectrometer installed at the Institute for Transuranium Elements (ITU) for environmental monitoring of radioactivity, as well as nuclear safeguards, is discussed. The advantage of using two parallel acquisition lines for simultaneous measurement with and without Compton-event suppression is outlined with respect to cascade and non-cascade γ-emitters. The background reduction by Compton-event suppression made it possible to detect small peaks, which otherwise would not have been found in a conventional spectrum. In Compton-event suppression mode, the detection limit for 137Cs was improved by a factor of about 3, for 241Am we found a factor of 1.2 both in high and low active samples. The measurements of environmental reference samples showed good agreement with certified values in both acquisition modes. The application of this instrument for the determination of fission products in smear samples is described. In particular, for nuclides like 54Mn, 125Sb and 144Ce, an improvement in the detection limits by a factor of 1.6-2.4 was obtained

  19. Release behavior of metallic fission products from pyrocarbon-coated uranium-dioxide particles at extremely high temperatures

    Hayashi, Kimio; Fukuda, Kousaku (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1990-04-01

    Uranium-dioxide particles coated by pyrocarbon (BISO), which were irradiated at 1,300 {approx} 1,400degC to burnups of ca. 1% FIMA, were heated isochronally and isothermally at temperatures between 1,600 and 2,300degC. Release fractions of {sup 137}Cs, {sup 155}Eu and {sup 106}Ru were larger than 10{sup -2} after heating at 2,000degC for 2 h; the results were in contrast to much smaller release fractions from TRISO particles with intact silicon-carbide (SiC) coating. The release of {sup 137}Cs and {sup 144}Ce from the BISO particle was controlled by diffusion in the dense pyrocarbon layer at temperatures between 1,600 and 2,300degC, while that of {sup 155}Eu and {sup 106}Ru was controlled by diffusion in the fuel kernel above 1,800degC. These results can be used as reference data on release behavior of the fission products from TRISO particles with defective SiC layers. (author).

  20. Release behavior of metallic fission products from pyrocarbon-coated uranium-dioxide particles at extremely high temperatures

    Uranium-dioxide particles coated by pyrocarbon (BISO), which were irradiated at 1,300 ∼ 1,400degC to burnups of ca. 1% FIMA, were heated isochronally and isothermally at temperatures between 1,600 and 2,300degC. Release fractions of 137Cs, 155Eu and 106Ru were larger than 10-2 after heating at 2,000degC for 2 h; the results were in contrast to much smaller release fractions from TRISO particles with intact silicon-carbide (SiC) coating. The release of 137Cs and 144Ce from the BISO particle was controlled by diffusion in the dense pyrocarbon layer at temperatures between 1,600 and 2,300degC, while that of 155Eu and 106Ru was controlled by diffusion in the fuel kernel above 1,800degC. These results can be used as reference data on release behavior of the fission products from TRISO particles with defective SiC layers. (author)

  1. Fission Mass Yield Studies

    Mass yields from fission induced by a span of neutron energies up to 18 MeV have been measured for Th232, U235 and U238 target nuclei. Particular attention has been given to the dependence of symmetric fission yields on energy. To study the effect of angular momentum, fission yields from the U236 compound nucleus formed by alpha-particle irradiations of Th232 were also studied over the same span of excitation energies. A standard set of Pd109, Ag111, Pd112 and Ag113 symmetric fission yields was generally measured for all irradiations. In addition, yields of Eu156, Cs136 and 2.3-d Cd115 were measured for some selected combinations of projectile, energy and target nucleus. Assays for Zr97 and sometimes also Ba139 served as fission monitors. Altogether 150 fission yields were measured for these combinations of target nucleus, projectile and incident energy. About one-third of these were checked by replicated irradiations. At highest energies for the U236 compound nucleus the symmetric fission yield from alpha-particle-induced fission is about 13% higher than for neutron-induced fission. Dips in symmetric fission yield were observed at the energy onset of third-chance fission for each target and projectile. Some indication of a small central peak in the mass distribution was observed in the yields from U236 compound nucleus fission, but not from the Th233 compound nucleus fission. Detailed mathematical methods have been developed to separate the effects of fissions preceding and following neutron emission. These methods were used to remove the effects of second- and third-chance fissions from the measured symmetric fission yields. These calculated yields for first-chance fission show no dips with energy. The calculations also show that perhaps half the difference between symmetric yields for alpha- particle-induced fission of Th232 and neutron-induced fission of U235 is attributable to angular momentum effects. Both calculated first-chance yields and measured yields

  2. Fission Research at IRMM

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  3. Complex fission phenomena

    Poenaru, D N; Greiner, W

    2005-01-01

    Complex fission phenomena can be studied in a unified way. Very general reflection asymmetrical equilibrium (saddle-point) nuclear shapes, may be obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in cold fission phenomena can be explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined. Predictions of two alpha accompanied fission are experimentally confirmed.

  4. To fission or not to fission

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  5. Fission neutron statistical emission

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  6. Fast fission phenomena

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted

  7. Complex fission phenomena

    Poenaru, Dorin N.; Gherghescu, Radu A.; Greiner, Walter

    2005-01-01

    Complex fission phenomena are studied in a unified way. Very general reflection asymmetrical equilibrium (saddle point) nuclear shapes are obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in binary cold fission of Th and U isotopes is explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are ou...

  8. Intermediate energy nuclear fission

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  9. Fission product yields

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  10. Thermal fission rates with temperature dependent fission barriers

    Zhu, Yi; Pei, Junchen

    2016-01-01

    The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective ...

  11. Study on separation of 137Cs from 235U fission process waste - utilization of silica gel-supported ferrocyanide complex salt for 137Cs picking

    In connection with the potential domestic demand especially in the fields of industry and nuclear medicine, the separation of 137Cs from 235U fission process waste is to be of interest although its economic value could be a polemic. A preliminary study on the separation of 137Cs from the 235U fission process waste generated in the production of 99Mo in P.T. BATAN Teknologi, Serpong, was performed through experiments on 137Cs picking from sample solution of the radioactive fission waste (RFW). The presented study is aimed to gain experimental data supporting utilization of the matrix of silica gel-supported ferrocyanide complex salt for the separation of 137Cs from RFW. Subsequent step would be the recovery and purification of 137Cs as part of production technology of 137Cs. The RFW sample was batch-treated with the matrix of silica gel-supported ferrocyanide complex salt which was synthesized from silica gel, potassium hexacyanoferrate(II) and copper(II) chloride. The binding of radioisotopes in RFW on the matrix was observed by γ-spectrometry of the RFW solution before and during the treatment. The results showed that approximately 85% of 137Cs could be picked from the RFW sample into the matrix. Less amount of 95Zr and 95Nb was bound into the matrix. 103Ru was slightly bound into the matrix whereas 141/144Ce and 129mTe were not. It was observed that by using 0.2 and 0.4 g of matrix for 10 ml of RFW, the amount of matrix influenced the binding quantity of 95Zr and 95Nb but not that of 137Cs. (author)

  12. Muon-induced fission

    A review of recent experimental results on negative-muon-induced fission, both of 238U and 232Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238U. (author)

  13. Fission gas detection system

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  14. Fission Xenon on Mars

    Mathew, K. J.; Marti, K.; Marty, B.

    2002-01-01

    Fission Xe components due to Pu-244 decay in the early history of Mars have been identified in nakhlites; as in the case of ALH84001 and Chassigny the fission gas was assimilated into indigenous solar-type Xe. Additional information is contained in the original extended abstract.

  15. Thermal fission rates with temperature dependent fission barriers

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  16. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  17. Fission Fragments Discriminator

    Nuclear fission reaction between Uranium-235 nucleus and thermal neutron caused the high energy fission fragments with uncertainly direction. The particle direction discrimination was determined. The 2.5 x 3.0 mm2 polyethylene gratings with 1-6 mm thickness were used. The grating was placed between uranium screen that fabricated from ammonium-diurinate compound and polycarbonate nuclear track film recorder irradiated by neutron from Thai Research Reactor (TRR-1/M1) facility. The nuclear track density was inversely with grating thickness. It's only fission fragments normal to uranium screen pass through film recorder when grating thickness was 4-6 mm

  18. Fission fragment rocket concept

    A new propulsion scheme is outlined which may permit interstellar missions for spacecraft. This scheme is based on the idea of allowing fission fragments to escape from the core of a nuclear reactor. (orig.)

  19. Fission Systems for Mars Exploration

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  20. Review of Fission Theory

    A survey of the present state of fission theory is attempted. The basic requirements of a theory of a physical process are outlined and against this background the state of fission theory is summarized, with special emphasis on developments in the past few years. An attempt is made to bring out the most important outstanding problems to be settled by future experiments and theory. (author)

  1. Fission product detection

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells

  2. Fission gas release (FGASRL)

    During irradiation of water reactor fuel rods, gaseous fission products are produced in the fuel and are slowly released to various voipd volumes in the fuel rods. The released fission gases degrade the initial fill gas thermal conductivity and thus change the thermal response of the fuel rods. Moreover, fuel rod internal pressure is increased so that the cladding mechanical response is affected. The fission gas release subcode FGASRL is intended for use in analytical codes which predict water reactor fuel pin behavior. The development effort was directed primarily at improving code predictions of the gas release model used in FRAP-S3 which overpredicts release of fuels irradiated at relatively low operating temperatures and therefore small gas release fractions. The fission gas release subcode (FGASRL) presented in the report describes a two-step gas release process: (a) fission gas release from fuel grains to the grain boundaries, and (b) fission gas release from the grain boundaries to internal free volume of the fuel pin

  3. Prompt Neutrons from Fission

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  4. Biological effects of radiation: The induction of malignant transformation and programmed cell death

    In the Chernobyl explosions and fire, powderized nuclear fuel was released from the reactor core, causing an unexpected fallout. X-ray analysis and scanning electron microscopy showed that the isolated single particles were essentially pure uranium. These uranium aerosols contained all of the nonvolatile fission products, including the b-emitters, 95Zr, 103Ru, 106Ru, 141Ce, and 144Ce. The hot particles are extremely effective in inducing malignant transformation in mouse fibroblast cells in vitro. The major factor responsible for this effect is focus promotion caused by a wound-mediated permanent increase in cell proliferation (mitogenesis associated with mutagenesis). Transformed foci were analysed for the activation of c-abl, c-erb-A, c-erb-B, c-fms, c-fos, c-myb, c-myc, c-Ha-ras, c-Ki-ras, c-sis, and c-raf oncogenes at the transcriptional level. The pattern of oncogene activation was found to vary from focus to focus. Long interspersed repeated DNA (L1 or LINE makes up a class of mobile genetic elements which can amplify in the cell genome by retroposition. This element is spontaneously transcriptionally activated at a critical population density and later amplified in rat chloroleukaemia cells. UV light and ionizing radiation induce this activation prematurely, and the activation is followed by programmed cell death (apoptosis) in a sequence of events identical to that seen in LIRn activation occurring spontaneously

  5. Fission waves can oscillate

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  6. Current position on fission product behavior

    The following phenomena are treated and modeled: fission product release from fuel, both in-vessel and ex-vessel; fission product deposition in the primary system, fission product deposition in the containment, and fission product revolatization

  7. Fission modelling with FIFRELIN

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  8. Fission modelling with FIFRELIN

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  9. Fission modelling with FIFRELIN

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e-). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  10. Characteristics of Coulomb fission

    Oberacker, Volker; Greiner, Walter; Kruse, Hans; Pinkston, William T.

    2006-01-01

    Within an extended semiquantal theory we perform large-sized coupled-channel calculations involving 260 collective levels for Coulomb fission of 238U. Differential Coulomb fission cross sections are studied as a function of bombarding energy and impact parameter for several projectiles. In the Xe + U case, total cross sections are also given. We find a strong dependence on projectile charge number, PCF(180°)∼(Zp)6 in the region 50≤Zp≤92 for a fixed ratio E/ECoul, which might...

  11. Fission dynamics of hot nuclei

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  12. Discoveries of isotopes by fission

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  13. Microscopic Description of Induced Fission

    Schunck, N

    2013-01-01

    Selected aspects of the description of neutron-induced fission in 240Pu in the framework of the nuclear energy density functional theory at finite temperature are presented. In particular, we discuss aspects pertaining to the choice of thermodynamic state variables, the evolution of fission barriers as function of the incident neutron energy, and the temperatures of the fission fragments.

  14. Status of fission yield measurements

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  15. Fission product data library

    A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)

  16. Fission yields in the thermal neutron fission of plutonium-239

    Fission yields for 27 mass numbers were determined in the thermal neutron fission of 239Pu using high resolution gamma ray spectrometry and radiochemical method. The results obtained using gamma ray spectrometry and from the investigations on the fission yield of 99Mo using radiochemical method were reported earlier. These data along with fission yields for 19 mass numbers determined using radiochemical method formed a part of Ph.D. thesis. The data given here are a compilation of all the results and are presented considering the neutron temperature correction to 239Pu fission cross-section which is used for calculating the total number of fissions in these studies. A comparison is made of the resulting fission yield values with the latest experimentally determined values and those given in two recent compilations. (author)

  17. Fission modes of mercury isotopes

    Warda, M; Nazarewicz, W

    2012-01-01

    Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asymmetric fission in $^{180}$Hg [1] have stimulated renewed interest in the mechanism of fission in heavy nuclei. Here we study fission modes and fusion valleys in $^{180}$Hg and $^{198}$Hg using the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. We show that the observed transition from asymmetric fission in $^{180}$Hg towards more symmetric distribution of fission fragments in $^{198}$Hg can be explained in terms of competing fission modes of different geometries that are governed by shell effects in pre-scission configurations. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.

  18. Dynamical features of nuclear fission

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  19. Fission product revaporization

    One of the major developmental advances in severe accident analysis since the Reactor Safety Study relates to the accounting for radionuclide retention in the reactor coolant system (RCS). The retention is predicted to occur as materials released during core heatup and degradation are transported through the RCS to the break (broken pipe, relief valve, etc.). For accidents involving relatively long RCS-transit times (e.g., station blackout in PWRs), the fraction of released material predicted to remain in the RCS can be large. For example, calculations for the Surry station blackout sequence showed retention of approximately 80% of the cesium and iodine species. Factors affecting fission product revaporization are post-vessel-failure thermal hydraulics, heat loss through vessel and pipe walls, and revaporization chemistry. The accident conditions relevant to this issue range from those present immediately after vessel failure to those present after containment failure. The factors that affect fission product revaporization are discussed

  20. Fission fragment angular distributions

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  1. Statistical theory of fission

    In nuclear reactions where a compound nucleus is formed at high excitation energies, one is forced to use a statistical theory to explain the observables of the reaction. The statistical theory of fission of Weisskopf-Ewing-Newton and Ericson is applied to binary spallation of 16O, 20Ne, and 14N by protons in the proton energy range of 20 to 150 MeV, 0 to 105 MeV, and 0 to 41.9 MeV, respectively. The capture cross section of the incident proton is calculated from the reaction cross section using appropriate optical model potentials. The differential and total cross sections for binary fragmentation into near symmetric mass nuclei are calculated which are in reasonable agreement with experimental results. The kinetic energy spectrum and decay widths in the final channels are also calculated, however these have not been measured experimentally for comparison. All of these calculations are done using three different ion-ion optical potentials suggested by others. One then reformulated the statistical theory to include the second law of thermodynamics. Both theories are applied to neutron induced fission of 239Pu, 235U, 233U, 229Th, and 226Ra at several different neutron and alpha energies using the recently proposed external barrier between the saddle and the scission point. The transmission functions are calculated using a set of coupled equations in the exit channels. The computed results indicate that the model can account for the observed variation of the percentage mass yield spectra. Furthermore one calculated the most probable kinetic energy in the fission in all cases and found it to agree with the observation. The spontaneous and isomer fission half lives are calculated giving good agreement with experimental data. The kinetic energy spectrums are also computed for some representative daughter pairs. The inclusion of the second law of thermodynamics improves the agreement between theory and experiment

  2. Extended optical model for fission

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  3. Oral Zn-DTPA therapy for reducing 141Ce retention in suckling rats

    In neonatal rats DTPA reduced the intestinal retention of cerium ingested as an additive in its chloride form to milk. It also reduced retention of absorbed cerium. A similar decrease of cerium retention in gut and whole body was obtained after simultaneous or 24 hours' delayed DTPA administration. (author)

  4. Low-energy ternary fission

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  5. Fission in Rapidly Rotating Nuclei

    A. K. Rhine Kumar

    2014-02-01

    Full Text Available We study the effect of rotation in fission of the atomic nucleus 256Fm using an independent-particle shell model with the mean field represented by a deformed Woods-Saxon potential and the shapes defined through the Cassinian oval parametrization. The variations of barrier height with increasing angular momentum, appearance of double hump in fission path are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm nucleus. The second minimum vanishes with increase in angular momentum which hints that the fission barrier disappears at large spin.

  6. Hidden systematics of fission channels

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  7. Fission yield measurements at IGISOL

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  8. Fission yield measurements at IGISOL

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  9. Fission approach to cluster radioactivity

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  10. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  11. Fast fission phenomenon

    In these lectures we have described two different phenomena occuring in dissipative heavy ion collisions : neutron-proton asymmetry and fast fission. Neutron-proton asymmetry has provided us with an example of a fast collective motion. As a consequence quantum fluctuations can be observed. The observation of quantum or statistical fluctuations is directly connected to the comparison between the phonon energy and the temperature of the intrinsic system. This means that this mode might also provide a good example for the investigation of the transition between quantum and statistical fluctuations which might occur when the bombarding energy is raised above 10 MeV/A. However it is by no means sure that in this energy domain enough excitation energy can be put into the system in order to reach such high temperatures over the all system. The other interest in investigating neutron-proton asymmetry above 10 MeV/A is that the interaction time between the two incident nuclei will decrease. Consequently, if some collective motion should still be observed, it will be one of the last which can be seen. Fast fission corresponds on the contrary to long interaction times. The experimental indications are still rather weak and mainly consist of experimental data which cannot be understood in the framework of standard dissipative models. We have seen that a model which can describe both the entrance and the exit configuration gives this mechanism in a natural way and that the experimental data can, to a good extend, be explained. The nicest thing is probably that our old understanding of dissipative heavy ion collisions is not changed at all except for the problems that can now be understood in terms of fast fission. Nevertheless this area desserve further studies, especially on the experimental side to be sure that the consistent picture which we have on dissipative heavy ion collisions still remain coherent in the future.

  12. The SPIDER fission fragment spectrometer for fission product yield measurements

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement

  13. The SPIDER fission fragment spectrometer for fission product yield measurements

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  14. Energy from nuclear fission(*

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  15. Observation of cold fission in 242Pu spontaneous fission

    Coincidence γ-ray data from the spontaneous fission of 242Pu were collected at the Lawrence Berkeley Laboratory high purity Ge (HPGe) array, GAMMASPHERE. Data from several cold-fission (0 neutron emission) isotopic pairs were observed and are presented. An interesting trend in the fractional population of cold-fission events was observed and is discussed. Relative yields of Zr-Xe, Sr-Ba, and Mo-Te pairs were measured. The Zr-Xe system has the most complete data set. Some speculations on the trend in the number of neutrons emitted as a function of the mass of the Xe isotope populated are presented. Comparisons between the yields from the spontaneous fission of 242Pu and the yields from thermal-neutron-induced fission of 241Pu are also presented. copyright 1996 The American Physical Society

  16. Entrance-channel dependence of fission transients

    Charity, R. J.

    2004-01-01

    Fission transients describe the fission rate as it evolves towards the quasistationary value given by Kramers' formula. The nature of fission transients is dependent on the assumed initial distribution of the compound nuclei along the fission coordinate. Although the standard initial assumption of a near-spherical object leads to a transient suppression of the fission rate (fission delay), a moderate initial fissionlike deformation can reduce the magnitude of this suppression. For still large...

  17. Separation of plutonium from uranium and fission products in the zirconium pyrophospate column

    Distribution coefficients were of the following ions were determined in the system zirconium pyrophosphate - aqueous solution HNO3 : Pu3+, Pu4+, PuO22+, UO22+, 234Th2+, 95Zr, 95Nb, 106Ru, 144Ce3+, 90Sr2+, 137Cs+, 59Fe3+ and 59Fe2+. According to the distribution coefficients it can be concluded that the separation of some cations is possible. This was proved by using separation columns. The following successful separations were completed: 90Sr2+ from 90I3+, 90Sr2+ from 90I3+ and 1'37Cs+, UO2+ from 234Th4+, Pu4+ from UO22+, 95Zr, 95Nb, 106Ru, 144Ce3+, 90Sr2+, 137Cs+. Decontamination factors of plutonium from the mentioned cations were determined. It was found that the sorption of Cs+ and Sr2+ is based on ion exchange

  18. Fission throughout the periodic table

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  19. Fission fragment driven neutron source

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  20. Fission at high angular momenta

    By studies on the system 40Ar+165Ho by means of selected measuring methods which made a differential selection of certain angular momentum ranges and by this a discrimination between ''fast fission'' and compound-nucleus fission possible the validity of fundamental predictions of the model of the ''fast fission'' hitherto experimentally no yet confirmed was studied: 1) At the turning point of the trajectory for ''fast fission'' calculated by Gregoire the corresponding shape of which must be responsible for the angular distribution the centers of the two fragments must be separated by about 11 fm. 2) The widths of the mass distributions after ''fast fission'' and compound-nucleus fission must be different by a factor 2. The measurements of the angular dependence showed that both prediction cannot be simultaneously brought into accordance with the experimental results. The results of coincidence measurements between fission fragments and alpha particles confirmed the assumption mentioned under topic 2. The analysis of the angular dependence then yielded for the shape of the nuclear complex leading to ''fast fission'' a more compact shape than that indicated by Gregoire, namely with a distance of the fragments of about 7 fm. (orig.)

  1. Fission throughout the periodic table

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs.

  2. Fission of Halving Edges Graphs

    Khovanova, Tanya; Yang, Dai

    2013-01-01

    In this paper we discuss an operation on halving edges graph that we call fission. Fission replaces each point in a given configuration with a small cluster of k points. The operation interacts nicely with halving edges, so we examine its properties in detail.

  3. Fission Dynamics of Compound Nuclei

    Iwata, Yoritaka; Heinz, Sophia

    2012-01-01

    Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and quasi-fission events are expected to appear. In this paper, possible fission dynamics of compound nuclei is presented.

  4. Ternary fission of nuclei into comparable fragments

    Karpeshin, F. F., E-mail: fkarpeshin@gmail.com [D.I. Mendeleev Institute forMetrology (VNIIM) (Russian Federation)

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  5. Progress in fission product nuclear data

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  6. Ternary fission of nuclei into comparable fragments

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values

  7. Fifty years with nuclear fission

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  8. Prompt Fission Neutron Emission in Resonance Fission of 239Pu

    Hambsch, Franz-Josef; Varapai, Natallia; Zeinalov, Shakir; Oberstedt, Stephan; Serot, Olivier

    2005-05-01

    The prompt neutron emission probability from neutron-induced fission in the resonance region is being investigated at the time-of-flight facility GELINA of the IRMM. A double Frisch-gridded ionization chamber is used as a fission-fragment detector. For the data acquisition of both the fission-fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection, large-volume liquid scintillation detectors from the DEMON collaboration are used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data. Neutron multiplicity investigations for actinides, especially in resonance neutron-induced fission, are rather scarce. They are, however, important for reactor control and safety issues as well as for understanding the basic physics of the fission process. Fission yield measurements on both 235U and 239Pu without prompt neutron emission coincidence have shown that fluctuation of the fission-fragment mass distribution exists from resonance to resonance, larger in the case of 235U. To possibly explain these observations, the question now is whether the prompt neutron multiplicity shows similar fluctuations with resonance energy.

  9. Fission fragment angular distribution in heavy ion induced fission

    S. Soheyli

    2006-06-01

    Full Text Available   We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a without neutron correction and b with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the average emitted neutron from compound nuclei considering the best fit for each system.

  10. Fission fragment angular distribution in heavy ion induced fission

    S. Soheyli; I. Ziaeian

    2006-01-01

      We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a) without neutron correction and b) with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the averag...

  11. Prompt fission neutron emission in resonance fission of 239Pu

    The prompt fission neutron emission probability was investigated at the time-of-flight facility GELINA at the IRMM. A double Frisch-gridded ionization chamber was used as a fission fragment detector. For the data acquisition of both fission fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection large volume liquid scintillation detectors from the DEMON collaboration were used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data

  12. Fifty years with nuclear fission

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  13. The spectroscopy of fission fragments

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  14. Fission track studies of tektites

    The fission track analysis method was used for the age determination of tektites. The tektite samples were obtained from Hainan Island and Leizhou Peninsula. The method consists in cutting and polishing two sections of a sample, irradiating one of these with a known thermal neutron flux (5.90 x 1015/cm2), etching each section identically with hydrofluoric acid, and then comparing the fission track densities in two cases with a microscope. Their fission track age is found to be around 0.7 Ma

  15. The spectroscopy of fission fragments

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  16. Change over from compound nuclear fission to quasi-fission

    Bhattacharya P; Golda K. S.; Rana T. K.; Mukhopadhyay S; Mukherjee G; Meena J. K.; Kundu S.; Bhattacharya S; Bhattacharya C.; Banerjee K; Ghosh T. K.

    2010-01-01

    Fission fragment mass distribution has been measured in two reactions to populate compound nucleus 246Bk. Both the target nuclei were deformed. However, entrance channel mass asymmetry of the two systems was on the either side of the Businaro Gallone mass asymmetry parameter. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be significantly different for the 14N+232Th reaction compared to the 11B+235U reaction. T...

  17. Chemical Production using Fission Fragments

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author)

  18. Background radiation from fission pulses

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  19. Measurement of fission cross sections

    A review is presented on the recent progress in the experiment of fission cross section measurement, including recent activity in Japan being carried out under the project of nuclear data measurement. (author)

  20. Microscopic Description of Nuclear Fission Dynamics

    Umar, A. S.; Oberacker, V. E.; Maruhn, J. A.; Reinhard, P.-G.

    2010-01-01

    We discuss possible avenues to study fission dynamics starting from a time-dependent mean-field approach. Previous attempts to study fission dynamics using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that different initial conditions may be needed to describe fission dynamics depending on the specifics of the fission phenomenon and propose various approaches towards this goal. In particular, we provide preliminary calculations for studying fission following a heavy-io...

  1. Advanced Space Fission Propulsion Systems

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  2. Velocity fluctuations of fission fragment.

    Llanes Estrada, Felipe José; Martínez Carmona, Belén; Muñoz Martínez, José L.

    2016-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fr...

  3. Laser spectroscopy of fission fragments

    The study of the nuclear structure of fission fragments is discussed. They are neutron-rich nuclei the structure of which possesses some peculiarities. Two regions of fission fragments are discussed: near the shell closures N = 50 and N = 82 and at the boundary of the deformation. A view on the optical properties of these elements is presented and different laser spectroscopic methods for their investigation are proposed. (author)

  4. The microscopic theory of fission

    Younes, W.; Gogny, D.

    2009-01-01

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a $^{239}\\textrm{Pu}$ target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emi...

  5. Hidden systematics of fission channels

    Schmidt Karl-Heinz; Jurado Beatriz

    2013-01-01

    It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in th...

  6. Energy dependence of fission observables

    Paşca, Horia

    2016-01-01

    The mass, charge and isotopic distributions of fission fragments are studied within an improved scission-point statistical model in the reaction 235U+n at different energies of the incident neutron. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments. The calculated mass distribution of 238U+n is also compared with experimental data.

  7. Fission hindrance and nuclear viscosity

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  8. Superheavy nuclei and fission barriers

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  9. Dynamin-mediated membrane fission

    Morlot, Sandrine

    2012-01-01

    Membrane fission is required for vesicular traffic between intracellular compartments. Dynamin is a GTPase implicated in vesicle scission during Clathrin-mediated endocytosis. It polymerizes into a helix at the neck of endocytic buds. Upon GTP hydrolysis, conformational changes reduce the helical radius and pitch showing that fission proceeds through a constriction mechanism. We show that the deformation of Dynamin helices is highly concerted and damped by the friction between membrane and Dy...

  10. Alpha Particle Emission in Fission

    Soon after it was discovered that alpha particles are occasionally emitted in fission, it was concluded, on the basis of the energy and angular distributions of these particles, that they are emitted from the space between the fragments at times close to that of the snapping of the neck that connects them. It is shown that, independent of any (still unknown) dynamic features of the alpha-particle ejection process, the energy required to emit alpha particles from between the fragments at the indicated time is barely available. Presumably the rareness of alpha particles in fission, and the apparent absence of still heavier ''third'' particles, is associated with the marginal energy supply at the time of actual fragment division. The fact that the total kinetic energy release in so-called ternary fission is roughly equal to that in normal binary fission instead of being about 20 MeV larger is shown to imply that the mean fragment separation at the division time is larger in ternary fission. This is interpreted to indicate that alpha particles are emitted with greatest probability n those fissions where ample energy happens to be provided through the stretching of an abnormally long neck between the fragments before they actually divide. It is suggested that the release of the alpha particles is a sudden rather than adiabatic process. (author)

  11. Fission fragment angular distributions and fission cross section validation

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was

  12. Status of fission power

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  13. Properties and detection of ionizing radiation resulting from instantaneous fission and fission product mixture

    The different types of ionizing radiation accompanying fission and mixtures of fission products, their activity, the determination of the age of fission products and the biological hazard of radiation caused by instantaneous fission are described. The possibility is described of detection, and of the dosimetry of ionizing radiation resulting from instantaneous fission and emitted by a mixture of fission products, the determination of the dose of neutron radiation, surface contamination, internal contamination and the contamination of water and foods. (J.P.)

  14. Relative quantifying technique to measure mass of fission plate in a fission chamber

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the α-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  15. Fission product solvent extraction

    Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF)

  16. The latest progress of fission track analysis

    Fission track analysis as a new nuclear track technique is based on fission track annealing in mineral and is used for oil and gas exploration successfully. The west part of China is the main exploration for oil and gas. The oil and gas basins there experienced much more complicated thermal history and higher paleotemperature. In order to apply fission track analysis to these basins, following work was be carried out: 1. The decomposition of grain age distribution of zircon fission tracks. 2. Study on thermal history of Ordos basin using zircon fission track analysis. 3. The fission track study on the Qiang Tang basin in tibet

  17. Energy production using fission fragment rockets

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.

  18. Energy production using fission fragment rockets

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  19. Contribution to the study of nuclear fission

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  20. Compact fission counter for DANCE

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4π γ-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed γ-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture γ rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to α particles, which is important for experiments with α-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from α's. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable

  1. Compact fission counter for DANCE

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  2. Thorium-uranium fission radiography

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  3. Neutron emission prior to fission

    In recent years, many groups have measured neutrons and light charged particles in coincidence with fission fragments in heavy ion reactions. In most cases, particles emitted with an energy spectrum and angular distribution characteristic of that of compound nucleus evaporation have been measured in excess of statistical model predictions. They have chosen to investigate this effect in detail by studying neutron emission in the 158Er composite system. The advantage of this system is that it can be produced by a variety of projectile target combinations. They have chosen four combinations which form 158Er with similar critical angular momenta but varying excitation energy. The rationale is to form the same system with different neutron emission times; if the enhanced neutrons are being emitted during the fission process, the different emission time scales might possibly be used to time the fission process. In addition, they impose an additional constraint - that they have a significant fission barrier for most of the partial waves involved in the fission process. The reactions they have selected are 16O + 142Nd (207 MeV beam energy), 24Mg + 134Ba (180 MeV), 32S + 126Te (180 MeV), 50Ti + 108Pd (216 MeV)

  4. Change over from compound nuclear fission to quasi-fission

    Bhattacharya P.

    2010-03-01

    Full Text Available Fission fragment mass distribution has been measured in two reactions to populate compound nucleus 246Bk. Both the target nuclei were deformed. However, entrance channel mass asymmetry of the two systems was on the either side of the Businaro Gallone mass asymmetry parameter. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be significantly different for the 14N+232Th reaction compared to the 11B+235U reaction. The entrance channel mass asymmetry was found to play a significant role in deciding the fusion process.

  5. Nuclear fission and neutron-induced fission cross-sections

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  6. Ternary fission of superheavy elements

    Balasubramaniam, M.; Vijayaraghavan, K. R.; Manimaran, K.

    2016-01-01

    Ternary fission of superheavy nuclei is studied within the three-cluster model potential energy surfaces (PESs). Due to shell effects, the stability of superheavy nuclei has been predicted to be associated with Z =114 , 120, and 126 for protons and N =184 for neutrons. Taking some representative nuclei we have extended the ternary fission studies to superheavy nuclei. We adopted two minimization procedures to minimize the potential and considered different arrangements of the fragments. The PES from one-dimensional minimization reveals a strong cluster region favoring various ternary breakups for an arrangement in which the lightest fragment is kept at the center. The PES obtained from two-dimensional minimization reveals strong preference of ternary fragmentation in the true ternary fission region. Though the dominant decay mode of superheavy nuclei is α decay, the α -accompanied ternary breakup is found to be a nonfavorable one. Further, the prominent ternary combinations are found to be associated with the neutron magic number.

  7. Status of fission yield data

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs

  8. Report of fission study meeting

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  9. The VERDI fission fragment spectrometer

    Frégeau M.O.; Bryś T.; Gamboni Th.; Geerts W.; Oberstedt S.; Oberstedt A.; Borcea R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This conf...

  10. Spontaneous fission of superheavy nuclei

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  11. Velocity fluctuations of fission fragments

    Llanes-Estrada, Felipe J; Martinez, Jose L Muñoz

    2015-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  12. Velocity fluctuations of fission fragments

    Llanes-Estrada, Felipe J.; Carmona, Belén Martínez; Martínez, Jose L. Muñoz

    2016-02-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  13. Advanced Fission Reactor Program objectives

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  14. Search for Singlet Fission Chromophores

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  15. Surface fission tracks in diamond

    Scanning Probe Microscope (SPM) images reveal important fingerprint features of latent tracks induced in diamond by fission fragments from a californium source. Collimated fission fragments with a binary distribution of the predominant energies of 79.4 and 103.8 MeV, are assumed. Cavities, reticular formations around these cavities, and black spots of graphite were found. A brief discussion on the possible track formation mechanism is given on the basis of the explosion spike theory; an attempt to determine latent track core and halo parameters is included

  16. The wastes of nuclear fission

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  17. Fission properties of the heaviest elements

    The authors discuss fission properties of the heaviest elements. In particular they focus on stability with respect to spontaneous fission and on the prospects of extending the region of known nuclei beyond the peninsula of currently known nuclides

  18. Progress in fission product nuclear data

    This is the 12th issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the IAEA. The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The type of activities included are: measurements, compilations and evaluations of fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and lumped fission product data (decay heat, absorption etc.). The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences

  19. Absolute calibration technique for spontaneous fission sources

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  20. Correlation measurements of fission-fragment properties

    Oberstedt A.; Martinez T.; Kis Z.; Karlsson J.; Hambsch F.-J.; Cano-Ott D.; Göök A.; Borcea R.; Billnert R.; Belgya T.; Oberstedt S.; Szentmiklosi L.; Takác K.

    2010-01-01

    For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energ...

  1. Shell effects and fission fragments angular anisotropy

    The impact of the shell corrections attenuation effect with growth of the fissionable nuclei temperature on the angular anisotropy of the fission fragments is considered. The experimental data on the anisotropy of the fission fragments angular distributions of the compound nucleus, formed in the 4He + 238U reactions, are analyzed within the frames of the transition states model in the fission barriers saddle point and statistic theory of nuclear reactions. The obvious kind of the shell corrections attenuation function is obtained

  2. Nuclear fission in covariant density functional theory

    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission paths in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation. (authors)

  3. Superfluid fission dynamics with microscopic approaches

    Simenel, C; Lacroix, D; Umar, A S

    2016-01-01

    Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.

  4. Nuclear fission in covariant density functional theory

    Afanasjev A.V.; Abusara H.; Ring P.

    2013-01-01

    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.

  5. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    Rios Huguet, A; Stevenson, PD; Goddard, P.

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Met...

  6. Nuclear-fission studies with relativistic secondary beams: analysis of fission channels

    Boeckstiegel, C.; Steinhaeuser, S.; Schmidt, K.-H.; Clerc, H. -G.; Grewe, A.; Heinz, A.; de Jong, M; JUNGHANS A. R.; Mueller, J.; Voss, B.

    2007-01-01

    Nuclear fission of several neutron-deficient actinides and pre-actinides from excitation energies around 11 MeV was studied at GSI Darmstadt by use of relativistic secondary beams. The characteristics of multimodal fission of nuclei around 226Th are systematically investigated and interpreted as the superposition of three fission channels. Properties of these fission channels have been determined for 15 systems. A global view on the properties of fission channels including previous results is...

  7. Brownian shape dynamics in fission

    Randrup Jørgen; Möller Peter

    2013-01-01

    It was recently shown that remarkably accurate fission-fragment mass distributions are obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potentialenergy surfaces; the current status of this novel method is described here.

  8. Brownian shape dynamics in fission

    Randrup Jørgen

    2013-12-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions are obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potentialenergy surfaces; the current status of this novel method is described here.

  9. Search for singlet fission chromophores

    Havlas, Zdeněk; Akdag, Akin; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, Josef

    Philadelphia: American Chemical Society, 2012. 31PHYS. ISSN 0065-7727. [National Fall Meeting of the American Chemical Society /244./. 19.08.2012-23.08.2012, Philadelphia] Institutional support: RVO:61388963 Keywords : singlet fission * chromophores Subject RIV: CF - Physical ; Theoretical Chemistry

  10. How spontaneous fission was discovered

    The 70th anniversary of the discovery of spontaneous fission by the young Russian physicists Konstantin A. Petrzhak and Georgii N. Flerov is commemorated. The situation in the 1940s is described and the activities of the 2 scientists, including their involvement in the development of the A-bomb, is outlined. (P.A.)

  11. Forage: A sensitive indicator for airborne radioactivity

    As a part of the radiological environmental monitoring program at the Joseph M. Parley Nuclear Plant to meet the requirements of NRC Regulations 10 CRF 50, Appendix I, routine sampling of forage was implemented. Indicator plots of forage (grass) were established at the plant site boundary in the two Meteorological sectors having the highest X/Q values for ground-level dispersion of airborne radioactivity. Likewise, a control plot was established in a sector having a significantly lower X/Q value at a distance of 18 miles. Procedures for maintenance of the grass plots, sampling of forage, and sample preparation for measurement of gamma radioactivity with a Ge (Li) detector were developed during the reported three year measurement period. Three atmospheric nuclear tests by the Peoples Republic of China in 1976 and 1977 has proven forage sampling to be convenient, sensitive, and in the judgement of the authors gives results which are superior to most other media sampled for airborne radioactivity. Typical measured levels of radioactivity from 150 to greater than 10,000 pCi/kg (dry weight) were obtained for the principal fission products in the Chinese bomb fallout, which included 95Zr-95Nb, 103Ru, 131I, 140Ba-140La, 141Ce, and 144Ce. On a unit weight basis the level of radioactivity measured was consistently higher for forage than for green leafy vegetables. This was attributed to the higher surface area for the forage. For comparison, plots of airborne concentrations for gross beta and particulate gamma emitters are shown during the time periods that include the Chinese nuclear tests. (author)

  12. Spontaneous fission. A many-body approach

    Iwamoto, Akira; Bonasera, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    We propose new model to calculate the fission phenomena in tunnel region. By the Vlasov equation and the imaginary time method, we could calculate actinides nuclear fission. This method makes possible to describe unified the motion of fission inside and outside of potential wall. The potential energy and mass parameters can be calculated by no means of the special model. The freedom of internal motion are calculated automatically both collective and a particle motion. Accordingly, particle released during fission process can be calculated. The kinetic energy of fragment after fission was very agreeable with the calculation results. (S.Y.)

  13. Theory of nuclear fission. A textbook

    This book brings together various aspects of the nuclear fission phenomenon discovered by Hahn, Strassmann and Meitner almost 70 years ago. Beginning with an historical introduction the authors present various models to describe the fission process of hot nuclei as well as the spontaneous fission of cold nuclei and their isomers. The role of transport coefficients, like inertia and friction in fission dynamics is discussed. The effect of the nuclear shell structure on the fission probability and the mass and kinetic energy distributions of the fission fragments is presented. The fusion-fission process leading to the synthesis of new isotopes including super-heavy elements is described. The book will thus be useful for theoretical and experimental physicists, as well as for graduate and PhD students. (orig.)

  14. Progress in fission product nuclear data

    This is the eleventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS

  15. The nucleon phase of binary fission

    Full text: The main step of the fission process is a sharing-out of nucleons, within a 'nucleon-phase', between the valence shells of the primordial cluster of the internally-dissociated fissioning system and the valence shells of the 'A =126 nucleon core' of the nascent heavy fragment. The formation of an 'A = 82 nucleon core' in the nascent light fragment explains the asymmetric fission mode of the light actinide nuclei. The nucleon partition in the nucleon phase can be understood in the framework of chemical thermodynamics. The formation of an 'A = 126 nucleon core' in the nascent light fragment of heavier fissioning systems explains the symmetric fission mode of 258Fm and that of heavier nuclei. But the new phenomenon of 'barrier-free' fission, discovered in 258Fm (s.f.), plays in this system and all symmetrically fissioning superheavy nuclei a very important role. (author)

  16. Fission product behaviour in severe accidents

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  17. Fission dynamics at low excitation energy

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  18. The Fission of Thorium with Alpha Particles

    Newton, Amos S.

    1948-04-15

    The fission distribution of fission of thorium with alpha particle of average energy 37.5 Mev has been measured by the chemical method. The distribution found shows that the characteristic dip in the fission yield mass spectrum has been raised to within a factor of two of the peaks compared to a factor of 600 in slow neutron fission of U{sup 235}. The raise in the deip has caused a corresponding lowering in fission yield of these elements at the peaks. The cross section for fission of thorium with 37.5 Mev alphas was found to be about 0.6 barn, and the threshold for fission was found to be 23 to 24 Mev.

  19. A fission fragment detector for correlated fission output studies

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  20. A fission fragment detector for correlated fission output studies

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup

  1. Cluster fission from the standpoint of nuclear fission

    Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics

    1996-03-01

    Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)

  2. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-01

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.

  3. Nuclear Dissipation from Fission Time

    Gontchar, I.; Morjean, M.; Basnary, S. [GANIL DSM/CEA, IN2P3/CNRS, BP 5027, 14076 Caen Cedex 5 (France)

    2000-04-21

    Fission times, pre-scission neutron multiplicities and GDR pre-scission {gamma}-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T {approx} 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k{sub red} {approx} 0.45 {+-} 0.10 applied to the wall term for the mononuclear configuration. (authors)

  4. Fission product yields from 22 MeV neutron-induced fission of 235U

    The chain yields of 28 product nuclides were determined for the fission of 235U induced by 22 MeV neutrons for the first time. Absolute fission rate was monitored with a double-fission chamber. Fission product activities were measured by HPGe γ-ray spectrometry. Time of flight technique was used to measure the neutron spectrum in order to estimate fission events induced by break-up neutrons and scattering neutrons. A mass distribution curve was obtained and the dependence of fission yield on neutron energy is discussed

  5. Fission product yields from 19.1 MeV neutron induced fission of 238U

    36 chain yields were determined for the fission of 238U induced by 19.1 MeV neutrons for the first time. Absolute fission rate was monitored with a double-fission chamber. Fission product activities were measured by HPGe γ-ray spectrometry. Threshold detector method was used to measure the neutron spectrum in order to estimate the fission events induced by break-up neutrons and scattering neutrons. A mass distribution curve was obtained and the dependence of fission yield on neutron energy was discussed

  6. Fission Data and Nuclear Technology

    Accurate nuclear data for fissile nuclei are required not only by reactor designers, but also by reactor physicists for the interpretation of integral experiments, e.g. studies of the change of reactivity with irradiation. Some of the requests that have been made for such fission data, and the reasons behind them, are discussed, along with the progress that has been made towards their fulfilment. An attempt is made to outline those areas where better data are required. (author)

  7. The VERDI fission fragment spectrometer

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  8. The VERDI fission fragment spectrometer

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  9. Sexual differentiation in fission yeast

    Egel, R; Nielsen, O; Weilguny, D;

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  10. Experimental techniques for fission data measurements

    Progresses in the development of experimental techniques or fission data measurements are reviewed briefly. This review comprises techniques for the preparation of special compound nuclei leading to fission (fission entrance) as well as experimental techniques which permit the measurement of the diversified characteristics of the emitted radiations in fission (fission exit). The latter developments are only considered when also other parameters than yield, mass, and energy of fission fragments are determined. Ionization chambers developed at CBNM are described in more detail. A simple ionization chamber with Frisch grid was used to determine fission layer characteristics, e.g. the number of fissile nuclei of a sample with an accuracy of smaller than 0.3 %. A twin ionization chamber is described which has an advantageous 2 x 2π solid angle for fission fragment detection, a timing jitter of less than 0.7 ns, an energy resolution of smaller than 500 keV for fission fragments, and an angular resolution of ΔcosΘ < 0.005. Also the nuclear charge distribution of the fragments can be determined. A pulse pile-up rejection circuit was developed, which reduces pulse pile-up by more than a factor 30. This detector is well suited for correlation measurements between fission fragment parameters, like mass and total kinetic energy, and the characteristics of the different radiations emitted from the fragments. This type of ionization chamber was successfully used in several experiments and some results are shown to demonstrate its capabilities. (author)

  11. Sensitivity of Makrofol fission track detectors

    Neutron fluence can be determined by means of fission track detectors consisting of fission foils in contact with suitable dielectrics (Makrofol E plastic was used in this case). Fission fragments emitted from the fissionable material into the plastic sheet generate permanent damage trails which can be made visible by an etching process. These tracks are then counted by means of an optical microscope or other methods and the number of tracks is proportional to the neutron fluence. The efficiency is defined as the ration of the number of tracks counted to the number of fissions in the fissionable layer. It is calculated from the mean range of the fission products in the fissionable material and in the plastic. The loss of very flat tracks with a small penetration angle caused by etching a certain bulk layer from the plastic foil is also taken into account. The formulas for the efficiency are deduced for thin fission layers and for thick fission foils. These calculations are made on the basis of the experimentally confirmed assumption that the ratio V of the track etching rate to the bulk etching rate is at least equal to 200. These high values for this ratio V are valid if an adequate period (several days) of oxygen influence to the damage trails is guaranteed. The calculated values of the efficiency are compared with experimental values and the uncertainty is discussed. (orig./HP)

  12. Technical Application of Nuclear Fission

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  13. Status of fission yield evaluations

    Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references

  14. The discovery of uranium fission

    Uranium was discovered 200 years ago. Its radioactive character was first demonstrated in 1896 and two years later radium was extracted from uranium minerals. In 1911 studies with alpha rays from radioactive decay led to the unexpected discovery of the atomic nucleus. Exposure of beryllium to alpha rays yielded neutrons, first detected in 1932. Starting in 1934, neutron irradiation of uranium produced radioactive substances erroneously attributed to transuranium elements but with confusing properties. Painstaking experiments by chemists left no doubt on 17 December 1938 that barium was produced by these irradiations: the neutrons had split some uranium nuclei. The physics of the fission process was understood two weeks later; after a few months, neutron multiplication was found to be probable. This review deals with the eminent scientists involved, their successes, errors and disappointments, and the unexpected insights which occurred on the paths and detours of scientific research. It is, therefore, instructive also to discuss how fission was not discovered. The momentous discovery must be considered inevitable; the great tragedy was that Germany started World War II just at the time when the possibility of nuclear chain reactions and bombs became known. The consequences and anxieties that remain after 50 years of nuclear fission demand that mankind act with reason and conscience to maintain peace. (author)

  15. Fission fusion hybrids- recent progress

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  16. Collective spectra along the fission barrier

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  17. Radiochemical studies on nuclear fission at Trombay

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  18. International conference on fifty years research in nuclear fission

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  19. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  20. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  1. Mechanisms of Mitochondrial Fission and Fusion

    van der Bliek, Alexander M.; Shen, Qinfang; Kawajiri, Sumihiro

    2013-01-01

    Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a hea...

  2. Measurements of Fission Cross Sections of Actinides

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  3. Fission product retention in HTGR fuels

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  4. Nuclear fission with a Langevin equation

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out and discussed. A strong friction coefficient, estimated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. The calculations are performed with a collective mass depending on the collective variable and with a constant mass. Fission rates calculated at different temperatures are shown and compared with previous available results. (author) 23 refs.; 7 figs

  5. Fission barriers and half-lives

    The authors briefly review the development of theoretical models for the calculation of fission barriers and half-lives. They focus on how results of actual calculations in a unified macroscopic-microscopic approach provide an interpretation of the mechanisms behind some of the large number of phenomena observed in fission. As instructive examples they choose studies of the rapidly varying fission properties of elements at the end of the periodic system

  6. Improved Calculation of Thermal Fission Energy

    Ma, X. B.; Zhong, W. L.; Wang, L. Z.; Y. X. Chen; Cao, J

    2012-01-01

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. ...

  7. Fission of nuclei far from stability

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  8. Superfluid dynamics of 258Fm fission

    Scamps, Guillaume; Simenel, Cédric; Lacroix, Denis

    2015-01-01

    Theoretical description of nuclear fission remains one of the major challenges of quantum many-body dynamics. The slow, mostly adiabatic motion through the fission barrier is followed by a fast, non-adiabatic descent of the potential between the fragments. The latter stage is essentially unexplored. However, it is crucial as it generates most of the excitation energy in the fragments. The superfluid dynamics in the latter stage of fission is obtained with the time-dependent Hartree-Fock theor...

  9. Fission dynamics at low excitation energy

    Aritomo, Y.; Chiba, S.

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibrati...

  10. Rapid Separation of Fission Product 141La

    XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen

    2013-01-01

    141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then

  11. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    Goddard, P. M.; Stevenson, P. D.; Rios, A.

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Method...

  12. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  13. Shell Effects in Nuclear Fission

    The important part played by shell effects in nuclear fission has been reliably established experimentally and forms the basis of the theory of asymmetry of fission and other properties of fission fragments. However, from the theoretical point of view there are certain difficulties in understanding these effects, since at the moment of scission the fragments axe considerably deformed. When the shell effects are calculated in succession, the energy of the fissioning nucleus before scission may be presented in the form of the sum of the energies of the spherical fragments taking shell effects into account, the Coulomb interaction energy of the fragments and their deformation energy. The deformation energy of the fragments should be calculated not using the elasticity values of the fragments according to the drop model, but, for very low deformations, the single particle elasticity values taking into account the magic effects, with a gradual transition to the drop values for deformations at which the levels of neighbouring shells intersect. The single-particle elasticity values can be obtained from the experimental data on the Coulomb excitation of the nuclei. In Vandenbosch's calculations of fragment deformation, the elasticity of the fragments was based on the condition of coincidence between the deformation energy of the fragments and the experimental values for their excitation energy. However, in this case the elasticity was assumed to be constant at all deformations, and for this reason, although the elasticity values found in Vandenbosch do show magic'effects, they differ considerably in magnitude from the experimental elasticity values (see above).. The calculations of Vandenbosch also failed to take into account the magic effects for non-deformed fragments that lead to a reduction in the energy of the magic nucleus. Therefore, according to these calculations fission should be symmetrical, since the elasticity and consequently also the deformation energy (at

  14. Theoretical Description of the Fission Process

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  15. Theoretical Description of the Fission Process

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process

  16. Fission properties for r-process nuclei

    Erler, J.; Langanke, K; Loens, H. P.; Martínez-Pinedo, G.; Reinhard, P.-G.

    2011-01-01

    We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. Th...

  17. Some aspects of fission and quasifission processes

    B B Back

    2015-08-01

    The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.

  18. Fission investigations and evaluation activities at IRMM

    The IRMM has a longstanding tradition in the field of neutron induced fission physics studies. It is especially well equipped with world-class facilities as the high resolution neutron time-of-flight spectrometer GELINA and the 7 MV Van de Graaff accelerator for the quasi-monoenergetic neutron production. During the past decade several neutron induced fission reactions have been studied in the energy range from eV up to 6 MeV and spontaneous fission. The isotopes under investigation were 235,238 U(n,f), 239 Pu(n,f), 237 Np(n,f), 252 Cf(SF) and 233 Pa(n,f). For all isotopes but 233 Pa, the fission fragment mass-yield and total kinetic energy distributions were measured. 233 Pa was only investigated for the fission cross-section. The results have been described within the multi-modal fission model. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) as well as the the symmetric superlong mode were used for all the isotopes but 252 Cf. For this isotope at least one other fission mode had to be taken into account, the so--called standard III (S3) mode. Since the theoretical interpretation of experimental results was rather successful also an attempt was made to improve the evaluation of the respective fission cross-section as well as their neutron multiplicities and spectra. Here, the statistical model for fission cross-section evaluation was extended by including the multi-modality concept for fission. Based on the underlying model, separate outer fission barriers have been considered for each mode, while the inner barriers and isomeric wells are assumed to be the same. The self-consistent calculations of the fission cross-section as well as total, capture, elastic and inelastic cross-sections were in good agreement with the experimental data and evaluated nuclear data libraries. As a side product, also fission fragment mass yield distributions have been deduced at incident neutron energies hitherto unaccessible. Very

  19. Fission - track age of the Marjalahti Pallasite

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238U undergoes fission with fission-decay constant λf∼8.2x10-17 yr-1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238U, such as the spontaneous fission of presently extinct 244Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x108 yr ) the track density from spontaneous fission of 238U is nearly constant. However, the contribution

  20. Stochastic resonance in nuclear fission

    Fission decay of highly excited periodically driven compound nuclei is considered in the framework of Langevin approach. We used residual-time distribution (RTD) as a tool for studying the dynamic features in the presence of periodic perturbation. The structure of RTD essentially depends on the relation between Kramers decay rate and the frequency ω of periodic perturbation. In particular, the intensity of the first peak in RTD has a sharp maximum at certain nuclear temperature depending on ω. This maximum should be considered as fist-hand manifestation of stochastic resonance in nuclear dynamics

  1. Fission fragment excited laser system

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  2. Spectroscopy of heavy fissionable nuclei

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  3. Effect of inertia parameters on static fission path

    Properties of static (minimum potential) fission path in the formalism of Hofmann are investigated. It is pointed out that the inertial parameters greatly affect the fission path and hence the penetrability. The difficulty of determining fission path is discussed

  4. Calculations of fission rates for r-process nucleosynthesis

    Panov, I. V.; Kolbe, E.; Pfeiffer, B.; Rauscher, T.; Kratz, K.-L.; Thielemann, F. -K.

    2004-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that neverthe...

  5. Isoscaling of the Fission Fragments with Langevin Equation

    WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing

    2005-01-01

    @@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.

  6. Isoscaling of the Fission Fragments with Langevin Equation

    Wang, K.; Ma, Y. G.; Wei, Y. B.; Cai, X. Z.; Chen, J. G.; Fang, D Q; Guo, W; Ma, G. L.; Shen, W.Q.(Shanghai Institute of Applied Physics, Shanghai, 201800, China); Tian, W.D.; Zhong, C.; Zhou, X. F.

    2004-01-01

    Langevin equation is used to simulate the fission process of $^{112}$Sn + $^{112}$Sn and $^{116}$Sn + $^{116}$Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. Isoscaling behavior has been observed from the analysis of fission fragments of both reactions and the isoscaling parameter $\\alpha$ seems to be sensitive to the width of fission probability and the beam energy.

  7. Fission

    Progress is reported in the areas of radiation physics; radiation dosimetry and radiation biophysics; microdosimetry of internal sources; dosimetry of internal emitters; real-time measurement of Pu in air at below-MPC levels; analytical techniques for measurement of 99Tc in environmental samples; and radiation instrumentation--radiological chemistry

  8. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2015-11-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide Pu240 as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.

  9. Neutronics of Laser Fission-Fusion Systems

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-∞). (Author) 14 refs

  10. Progress in fission product nuclear data

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  11. Correlation measurements of fission-fragment properties

    Oberstedt A.

    2010-10-01

    Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  12. Calculation code of the fission products activity

    The document describes the two codes for the calculation of the fission products activity. The ''Pepin le bref'' code gives the exact value of the beta and gamma activities of completely known fission products. The code ''Plus Pepin'' introduces the beta and gamma activities whose properties are partially known. (A.L.B.)

  13. Options for Affordable Fission Surface Power Systems

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  14. Fission cross section calculations for Pa isotopes

    Based on the recently measured cross-section values for the neutron-induced fission of 231Pa and our experience gained with other isotopes, new self consistent neutron cross section calculations for n+231Pa have been performed up to 30 MeV. The results are quite different to the existing evaluations, especially above the first chance fission threshold. (authors)

  15. Fission gas behavior in safety experiments

    This book examines fission product release from power reactors during reactor safety experiments. Topics considered include modes and mechanisms of gas precipitation and migration, results and analysis of recent transient in pile experiments, modelling of fission gas behavior, and a review of knowledge and future work

  16. Progress in fission product nuclear data

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  17. Nuclear Power from Fission Reactors. An Introduction.

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  18. Spontaneous fission properties and lifetime systematics

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs

  19. Theoretical Description of the Fission Process

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  20. Superfluid dynamics of 258Fm fission

    Scamps, Guillaume; Lacroix, Denis

    2015-01-01

    Theoretical description of nuclear fission remains one of the major challenges of quantum many-body dynamics. The slow, mostly adiabatic motion through the fission barrier is followed by a fast, non-adiabatic descent of the potential between the fragments. The latter stage is essentially unexplored. However, it is crucial as it generates most of the excitation energy in the fragments. The superfluid dynamics in the latter stage of fission is obtained with the time-dependent Hartree-Fock theory including BCS dynamical pairing correlations. The fission modes of the 258Fm nucleus are studied. The resulting fission fragment characteristics show a good agreement with experimental data. Quantum shell effects are shown to play a crucial role in the dynamics and formation of the fragments. The importance of quantum fluctuations beyond the independent particle/quasi-particle picture is underlined and qualitatively studied.

  1. Fission dynamics with systems of intermediate fissility

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  2. Nuclear Fission as a Markov Process

    Starting from the assumption of a random transfer of nucleons between the two sides of a; fissioning nucleus, during the time from saddle point to scission, it is shown that the mass distribution data in low, intermediate and high energy fission can be given a reasonable -explanation based on the ground state properties of nuclei. The theory is extended to explain the shape of the deformation energy mass curves. These relations follow as a direct consequence of the equilibrium conditions that determine the mass distributions while the gap in the ''zig-zag'' curves is essentially due to the proton transfers. The time of fission is shown to be about 500 nucleonic times in thermal fission and this results from the properties of the transition matrix. The theory is also able to explain the small range of the threshold energies of fission, and the formation of a symmetry axis early in the process. (author)

  3. Microscopic Theory of Nuclear Fission: A Review

    Schunck, N

    2015-01-01

    This article reviews how nuclear fission is described within nuclear density functional theory. In spontaneous fission, half-lives are the main observables and quantum tunnelling the essential concept, while in induced fission the focus is on fragment properties and explicitly time-dependent approaches are needed. The cornerstone of the current microscopic theory of fission is the energy density functional formalism. Its basic tenets, including tools such as the HFB theory, effective two-body effective nuclear potentials, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The EDF approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schr\\"odinger equation into a collective Schr\\"odinge...

  4. Nuclear fission induced by Pi mesons

    Pi mesons are an important part of the interactions among strongly-interacting particles, and their reactions with complex nuclei involve reactions with a wide range of interactions and time scales, with the slowest being the familiar fission process. Decades of effort have produced a wide range of fission data with stopped and energetic charged beams, both positive and negative. These results are the result of many uncoordinated studies, but in total can give a very good view of pion-induced fission. This review will compare and combine the measurements, with comparisons to a range of theoretical expectations. It is found that the nature of fission induced by pi mesons is not significantly different from fission induced by other energetic particles, in spite of the special features of the mesonic beam. This specific arena of nuclear science may now be considered complete. (author)

  5. Systematics of Fission-Product Yields

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number ZF = 90 thru 98, mass number AF = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions

  6. Fission dynamics at low excitation energy. 2

    Aritomo, Y; Ivanyuk, F A

    2014-01-01

    The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  7. Calculated medium energy fission cross sections

    An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission

  8. Theory of neutron emission in fission

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity bar νp. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and bar νp on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and bar νp with higher accuracy than is currently possible

  9. Physics of neutron emission in fission

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  10. Fission Surface Power Technology Development Status

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  11. Fission gas behaviour in water reactor fuels

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  12. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  13. Contained fissionly vaporized imploded fission explosive breeder reactor

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  14. Downstream behavior of fission products

    The downstream behavior of fission products has been investigated by injecting mixtures of CsOH, CsI, and Te into a flowing steam/hydrogen stream and determining the physical and chemical changes that took place as the gaseous mixture flowed down a reaction duct on which a temperature gradient (10000 to 2000C) had been imposed. Deposition on the wall of the duct occurred by vapor condensation in the higher temperature regions and by aerosol deposition in the remainder of the duct. Reactions in the gas stream between CsOH and CsI and between CsOH and Te had an effect on the vapor condensation. The aerosol was characterized by the use of impingement tabs placed in the gas stream

  15. Production of fission 131I

    A method of iodine separation from other radionuclides generated by 235U fission has been developed in order to explore the possibilities to obtain 131I as by-product of the 99Mo routine production in the Ezeiza Atomic Centre. The experiments were designed to remove this element to gas phase, and the recoveries were investigated both with and without carrier addition. High volatilization percentages were achieved in the presence of iodine carrier. Some other alternatives to increase the iodine displacement to the gaseous phase, namely vacuum distillation, addition of hydrogen peroxide and use of a carrier gas, were also studied. The method developed, which employs a carrier gas stream, without carrier addition, allows the recovery of about 97% of the 131I, with high specific activity, in a simple and clean way. (author)

  16. Overview of fission yeast septation.

    Pérez, Pilar; Cortés, Juan C G; Martín-García, Rebeca; Ribas, Juan C

    2016-09-01

    Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins. PMID:27155541

  17. Aerosols and fission product transport

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  18. Fission studies at the IGISOL facility

    Studies of the properties of the fission products ant the induced fission reaction mechanism have been a significant part of the nuclear physics research program at the IGISOL for more than 20 years. For example, one of the key motivations behind the commitment of the JYFLTRAP was isobaric separation of the fission products for spectroscopic studies. Such experiments have indeed been performed, however, the JYFLTRAP twin trap has turned out to be even more versatile instrument anyone dared dream of in advantage. The precision atomic mass measurements of neutron rich fission products has thus far resulted in considerably improved mass value for more than 150 neutron-rich isotopes, on top of which becomes the work on proton rich side. The purification Penning trap has also proven to be an excellent tool for independent fission cross section measurements. This novel method employs ion counting after JYFLTRAP and is described in a detailed way. The method takes advantage of the fact that JYFLTRAP can be used as a mass filter with a precision such that it allows an unambiguous identification of most of the fragments produced in the low-energy fission of 238U. A satisfactory agreement with previous measurements was found for independent yields of Cs isotopes in 50 MeV proton induced fission

  19. On the mechanism of fission neutron emission

    This review represents the present knowledge of the mechanism of prompt fission neutron emission. Starting with a brief fission process characterization related with neutron emission, possible emission mechanisms are discussed. It is emphasized that the experimental study of special mechanisms, i.e. scission neutron emission processes, requires a sufficiently correct description of emission probabilities on the base of the main mechanism, i.e. the evaporation from fully accelerated fragments. Adequate statistical-model approaches have to account for the complexity of nuclear fission reflected by an intricate fragment distribution. The present picture of scission neutron emission is not clarified neither experimentally nor theoretically. Deduced data are contradictory and depend on the used analysis procedures often involving rough discriptions of evaporated-neutron distributions. The contribution of two secondary mechanisms of fission neutron emission, i.e. the neutron evaporation during fragment acceleration and neutron emission due to the decay of 5He after ternary fission, is estimated. We summarize the recent progress of the theoretical description of fission neutron spectra in the framework of statistical models considering the standard spectrum of 252Cf(sf) neutrons especially. The main experimental basis for the study of fission neutron emission is the accurate measurement of emission probabilities as a function of emission energy and angle (at least) as well as fragment parameters (mass number ratio and kinetic energy). The present status is evaluated. (author)

  20. Dynamical features of Coulomb-fission

    Fission following quasielastic scattering was investigated in the reactions 208Pb -> 238U below the Coulomb Barrier and 7.5 MeV/u 238U -> 238U at scattering angles forward of the grazing angle (870). A kinematically complete analysis of 3-body coincidences was carried out measuring position and time-of-flight of the scattered projectile-like particle and 2 fission fragments in large parallel plate detectors. In the reaction 208Pb -> 238U, measured at backward angles, the slope of the differential cross section at 5.4 MeV/u is in qualitative agreement with the theoretical expectation for Coulomb-fission. The angular distribution of the fission fragments, measured with respect to the semisector axis (apex line towards the projectile), is close to 1/sinTHETA and does not show any of the significant structures predicted by several theories. The anisotropy is smaller in all other coordinate systems investigated. The fission probability in the reaction 238U -> 238U, measured down to 5x10-4 at THETAsub(cm)=540 (corresponding to 75% Esub(cb) at the distance of closest approach) as well as the low excitation energy 0 as expected for Coulomb-fission. The absence of a detectable final state Coulomb interaction yields a lower limit of 1-2x10-20s for the lifetime of the fissioning nucleus. (orig./HSI)

  1. Multimodal nuclear fission model and its application

    As the nuclear fission models, the following are explained: random-neck rupture model; nuclear fission channel theory; breakpoint model, especially breakpoint model by Wilkins et al.; and multimodal random-neck rupture model. In addition, the prompt neutron spectrum analysis of multimodal model, and the application to the energy-dependent analysis of delayed neutron yield are also described. In the random-neck fracture model proposed by S. L. Whetstone, a nucleus has a form like 'elongated gourd' just before the rupture, and the mass distribution is determined by the part of the neck where cleavage occurs. The division of mass and charge in nuclear fission, according to the nuclear fission channel theory, is considered to be determined by which transition state the saddle point of fission barrier is passed through. On the other hand, the model, where the deformation of nucleus further proceeds and the division is determined by the breakpoint just before the division to two fissure pieces, is called the breakpoint model. The multimodal nuclear fission model is the concept to consider that there are several deformation channels for nucleus, and that each of them leads to a different rupture state. The model that combines the random-neck rapture model and multimodal fission model is the multimodal random-neck rupture model. (J.P.N.)

  2. Recent progress in analysis for fission products

    A great deal of progress has been achieved in analysis of fission products during the 1980s. In situ analysis of fission products and direct assay of radiowaste packages have been developed to meet the needs of radiowaste treatment and disposal. Activation analysis and non-radiometric method have been used to measure long-lived fission product nuclides. Their sensitivity is superior to that of traditional radiochemical analysis. Some new work on the Cherenkov counting technique and rapid radiochemical analysis has been published. The progress is reviewed from the point of view of methodology

  3. Thermodynamic analysis of volatile organometallic fission products

    The ability to perform rapid separations in a post nuclear weapon detonation scenario is an important aspect of national security. In the past, separations of fission products have been performed using solvent extraction, precipitation, etc. The focus of this work is to explore the feasibility of using thermochromatography, a technique largely employed in superheavy element chemistry, to expedite the separation of fission products from fuel components. A series of fission product complexes were synthesized and the thermodynamic parameters were measured using TGA/DSC methods. Once measured, these parameters were used to predict their retention times using thermochromatography. (author)

  4. Fission induced by nucleons at intermediate energies

    Lo Meo, S., E-mail: sergio.lomeo@enea.it [ENEA, Centro Ricerche Ezio Clementel, 40129 Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Mancusi, D., E-mail: davide.mancusi@cea.fr [CEA, Centre de Saclay, Irfu/SPhN, F91191 Gif-sur-Yvette Cedex (France); Massimi, C., E-mail: cristian.massimi@bo.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Vannini, G., E-mail: gianni.vannini@bo.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Ventura, A., E-mail: alberto.ventura@bo.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy)

    2015-01-15

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.

  5. Fission induced by nucleons at intermediate energies

    Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto

    2014-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.

  6. Rearrangement of cluster structure during fission processes

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.;

    2004-01-01

    groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual......Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...

  7. Neutron induced fission of 234U

    Pomp S.; Al-Adili A.; Oberstedt S.; Hambsch F.-J.

    2012-01-01

    The fission fragment properties of 234U(n,f) were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f) is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission o...

  8. Low energy fission: dynamics and scission configurations

    In the first part of this paper we recall a recent study concerning low energy fission dynamics. Propagation is made by use of the Time Dependent Generator Coordinate Method, where the basis states are taken from self-consistent Hartree-Fock-Bogoliubov calculations with the Gogny force. Theoretical fragment mass distributions are presented and compared with the evaluation made by Wahl. In the second part of this paper, new results concerning scission configurations are shown. Deviations of the fission fragment proton numbers from the Unchanged Charge Distribution prescription and fission fragment deformations are discussed. (authors)

  9. Fission cross section measurements for minor actinides

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  10. Detection of fission fragments by secondary emission

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author)

  11. The chemistry of the fission products

    This is a review of chemistry of some chemical elements in fission products. The elements mentioned are krypton, xenon, rubidium, caesium, silver, strontium, barium, cadmium, rare earth elements, zirconium, niobium, antimony, molybdenum, tellurium, technetium, bromine, iodine, ruthenium, rhodium and palladium. The chemistry of elements and their oxides is briefly given together with the chemical species in aqueous solution. The report also contains tables of the physical properties of the elements and their oxides, of fission products nuclides with their half-life and fission yields and of the permissible concentrations. (author)

  12. Binary and ternary fission within the statistical model

    The binary and ternary nuclear fission are treated within the statistical model. At the scission point we calculate the potentials as functions of the deformations of the fragments in the dinuclear model. The potentials give the mass and charge distributions of the fission fragments. The ternary fission is assumed to occur during the binary fission. (author)

  13. Future challenges for nuclear data research in fission (u)

    Chadwick, Mark B [Los Alamos National Laboratory

    2010-01-01

    I describe some high priority research areas in nuclear fission, where applications in nuclear reactor technologies and in modeling criticality in general are demanding higher accuracies in our databases. We focus on fission cross sections, fission neutron spectra, and fission product data.

  14. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  15. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  16. Active inspection fission signatures for the detection, quantification and identification of fissionable materials

    Recently there has been heightened interest in active inspection techniques that can nondestructively detect, identify and quantify fissionable materials for security, nonproliferation and nuclear forensics applications. These active techniques use a source of neutrons or high energy photons to stimulate nuclear reactions in the inspection object and then monitor the emitted secondary radiation for unique fissionable material signatures. These signatures are based on detecting emissions from fission reactions (e.g., prompt and delayed neutrons) and/or non fission reactions (e.g., nuclear resonance fluorescence). In this presentation, the authors will present recent experimental results using prompt neutrons, delayed neutrons and delayed γ rays as fissionable material signatures. The research first focused on how to detect these emissions in an intense radiation environment and the algorithms required to produce unique fissionable material signatures. The sensitivity, accuracy, speed and isotope specificity of each signature was then explored. Current work is focusing on how to effectively combine multiple signatures. (author)

  17. Fission fragment mass and angular distributions: Probes to study non-equilibrium fission

    R G Thomas

    2015-08-01

    Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.

  18. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  19. Description of peculiarities of prompt fission neutron spectrum in spontaneous fission of 252Cr

    Full text : 252Cf is the model object in theoretical and experimental studying of prompt fission neutron spectrum in the both spontaneous and induced fission of heavy nuclei. However, the form of spectrum observed has not been clearly understood especially in the region of lower and higher energies. The last compiled data are frequently used as a standart for the test of theoretical prescriptions of the neutron spectrum in spontaneous fission of 252Cf

  20. Spontaneous 238U fission half-life measurements based on fission-track techniques

    In the last recommendation of the International Union of Pure and Applied Chemistry (I.U.P.A.C.) on spontaneous fission half-lives for ground-state nuclides, a number of measurements of 238U based on fission-track techniques were discarded. The arguments given by the authors are not clear. A more detailed discussion of these determinations is given, considering the possible systematical errors inherent in fission-track approaches. (author)

  1. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18O, 40Ar and 64Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies εν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10-21s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  2. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission

    Mattila, Juha-Pekka; Shnyrova, Anna V.; Sundborger, Anna C.; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E.; Schmid, Sandra L; Frolov, Vadim A.

    2015-01-01

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate 1,2 , characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection 1-3 . Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi...

  3. Calculations of fission rates for r-process nucleosynthesis

    Panov, I V; Pfeiffer, B; Rauscher, T; Kratz, K L; Thielemann, F K

    2005-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that nevertheless fission leads to the termination of the r-process. Furthermore, it is discussed that the probability of triple fission could be high for $A>260$ and have an effect on the formation of the abundances of heavy nuclei. Fission after beta-delayed neutron emission is discussed as well as different aspects of the influence of fission upon r-process calculations.

  4. Evolution of gamma artificial radioactivity in coastal sediments of the English Channel during the years 1976, 1977 and 1978

    During 1976-1977, a state of equilibrium was found to prevail for 106Ru and 144Ce, especially in the North-West Cotentin and the Norman-Breton gulf, where reconcentration of both radionuclides was observed with preferential enrichment of the latter over the former. Levels of 125Sb and 137Cs were found to be low but were difficult to interpret, because of the particular physico-chemical behavior of 125Sb and the long half-life of 137Cs. The results obtained for 103Ru, 141Ce, 95Zr may be explained entirely by the contribution of atmospheric fallout. 144Ce and 106Ru levels in the Norman-Breton gulf may be for the most part ascribed to La Hague disposals, radionuclide dispersal from the emissary being characterized by an eastward transfer of the soluble fraction and a westward transfer of the particulate fraction, with transit times which may last up to 2 years. The boundary between the areas submitted respectively to the twofold impact of fallout and industrial waste, and to fallout alone would appear to lie between the mouth of the Trieux river and Morlaix Bay. From a graphic representation of the relationship between radionuclides, empiric distribution laws for 106Ru and 137Cs were established from 144Ce level parameters characteristic of the areas considered (years 1976-1977)

  5. Present status of fission yield data

    Fission yield data of minor actinides are needed for transmutation of nuclear waste by an ADS system. The yield data, however, are not enough for the application. The present status of the yield data is presented in this report. (author)

  6. Ternary fission induced by polarized neutrons

    Gönnenwein Friedrich

    2013-12-01

    Full Text Available Ternary fission of (e,e U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  7. "UCx fission targets oxidation test stand"

    Lacroix, Rachel

    2014-01-01

    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  8. Energy from nuclear fission an introduction

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  9. Development of fission Mo-99 production technology

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  10. Modeling dimer structure for efficient singlet fission

    Havlas, Zdeněk; Jovanovic, M.; Michl, Josef

    Kyoto: -, 2013. Oa1. [JCS International Symposium on Theoretical Chemistry /5./. 02.12.2013-06.12.2013, Nara] Institutional support: RVO:61388963 Keywords : singlet fission * dimer structure Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Singlet fission: The chromophores and their coupling

    Wen, Jin; Havlas, Zdeněk; Michl, Josef

    Santiago: -, 2014. IC119. [WATOC 2014. Congress of the World Association of Theoretical and Computational Chemists /10./. 05.10.2014-10.10.2014, Santiago] Institutional support: RVO:61388963 Keywords : singlet fission * chromophores * coupling Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Adsorption of fission products on mediterranean mud

    Partition coefficients of some fission products have been measured in sea water on mud taken from the bottom of the Mediterranean sea. A discussion follows on the behaviour of these radioisotopes. (author)

  13. TMI-2 fission product inventory estimates (draft)

    This report presents the results of analyses performed to estimate the inventory and distribution of selected radioisotopes within the TMI-2 reactor system. The intent of the report is to document the method used in estimating the fission product inventory and associated uncertainties. The values presented should be viewed as preliminary. Selected radioisotopes for which best-estimate inventories and uncertainties are presented include: Krypton (Kr-85), Cesium (Cs-137), Iodine (I-129), Antimony (Sb-125), Ruthenium (Ru-106), Strontium (Sr-90), Cerium (Ce-144), and Europium (Eu-154). The TMI-2 inventory data will provide a basis for relating the fission product behavior during a large-scale severe accident to smaller-scale experimental data and fission product behavior modeling work. This is an important link in addressing the many technical questions that relate to core damage progression and fission product behavior during severe accidents. 11 refs., 7 figs., 15 tabs

  14. Development of fission Mo-99 production technology

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  15. Electron spectra from decay of fission products

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  16. Is channeling of fission tracks taking place?

    Yada, K

    1999-01-01

    A single crystal of natural zircon which is sliced to have (010) basal plane and thinned by ion thinning is electron microscopically observed after slow neutron irradiation to ascertain whether channeling of the nuclear fission fragments is taking place or not. A fairly large number of the induced fission tracks are recognized at low magnification images where a considerable number of them are parallel to low-index lattice planes such as 100, 001, 101, 301, 103 though their directions changed some time up to several degrees. High resolution images of fission tracks often show a variety of zigzag passing of the tracks along low-index lattice planes in atomistic level. The rate of the tracks which are parallel to these low-index lattice planes is fairly high as about 45%, which strongly suggests that channeling of the fission tracks is taking place.

  17. Trajectory Calculations in Light-Particle Fission

    Trajectory calculations based on a three-point-charge model were carried out for fission accompanied by 1H, 2H, 3H, 4He, 6He, 3He emission. The calculations were carried out with the intent of obtaining for each of these modes of fission the initial conditions which best fit the experimental results. The results indicate that both the initial distances between the fission fragments at scission and the initial kinetic energies of the particles tend to decrease as the mass of the light particle increases. In addition it was found that the experimental results could be better fitted by assuming that the particles are emitted off the axis connecting both fission fragments rather than on this axis. (author)

  18. β-delayed fission from 230Ac

    ThO2 is irradiated with 60 MeV/u 18O beams. 230Ra is produced via the multi-nucleon transfer and dissipative fragmentation reactions of the target. 230Ra is radio-chemical separated from ThO2 and the other reaction products. The thin Ra sources are prepared. The mica fission track detectors are exposed to the Ra sources. γ-rays of Ra decay in the sources are measured by a HPGe detector. The mica foil is etched in HF solution. The etched mica foil is scanned with an optical microscope. The fission tracks that should come from β-delayed fission of 230Ac are observed. The β-delayed fission probability of 230Ac is determined to be (1.19 +- 0.85) x 10-8

  19. General view on the progress in nuclear fission : a review

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2016-01-01

    An overview is given on some of the main advances in experimental methods, experimental results and theoretical models and ideas of the last years in the field of nuclear fission. New approaches extended the availability of fissioning systems for experimental studies of nuclear fission considerably and provided a full identification of all fission products in A and Z for the first time. In particular, the transition from symmetric to asymmetric fission around 226 Th and some unexpected struct...

  20. General Description of Fission Observables: GEF Model Code

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte; Schmitt, C.

    2015-01-01

    The GEF (" GEneral description of Fission observables ") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barrie...

  1. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    Lestone, J. P.

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and meas...

  2. Mass and Charge Distribution in Low-Energy Fission

    The mass and charge distributions for thermal-neutron fission of U235 are discussed in considerable detail and compared with the corresponding distributions in other low-energy fission processes. Points discussed in connection with the mass distributions for binary fission include the positions of the peaks, valley and fine structure in a mass yield curve with respect to filled nuclear shells and the changes in the positions that occur with changing fissioning nucleus and excitation energy. The mass distribution from ternary fission is discussed also. For both binary and ternary fission comments are made concerning the mass distributions of primary fragments (before neutron evaporation) and of fission products (after neutron evaporation). Charge distribution is discussed in terms of charge dispersion among fission products with the same mass number and the variation with mass number of Zp, the ''most probable charge'' (non-integral) for a given mass number. Although direct information about charge distribution is limited to fission products, estimates are presented of charge distribution for primary fission fragments. Knowledge and estimates of mass and charge distribution for a fission process allow estimation of primary yields of all fission products or fragments. Although many estimated primary yields are quite uncertain mainly because of lack of knowledge of charge distribution, especially for fission products formed in low yield; some estimates of primary yields are presented to illustrate the need for and possible practicality of further experimentation. Fission processes other than thermal-neutron fission of U235 that are discussed include thermal-neutron fission of U233 and Pu239, spontaneous fission of Pu240 and Cf252, 14-MeV neutron fission of U235 and U238, 11-MeV proton fission of Ra226 and 22-MeV deuteron fission of Bi209. (author)

  3. Nucleon-induced fission at intermediate energies

    The absence of a satisfactory theoretical description to predict isotope yields as well as the need for experimental fragment mass and charge distributions at intermediate-energies form the motivation of this work. Like the objects under study, the research presented in this thesis consists two main parts. Part 1 concerns an activation experiment that has been performed at the 'Kernfysisch Versneller Instituut' (Nuclear Physics Accelerator Institute) in Groningen, Netherlands, using the AGOR cyclotron. Fission product yields have been measured resulting from 190 MeV proton-induced fission of natW, 197Au, natPb, 208Pb and 232Th. In Chapter 2 the experimental set up is discussed, followed in Chapter 3 by a description of the data analysis. The results on the reconstructed mass yields and the total fission cross sections are presented in Chapter 4. Part 2 is of a theoretical nature. The objective is to compute fission product mass yields from intermediate-energy nucleon-induced reactions. In the approach presented here, two stages can be distinguished. In the first stage the fission cross section is determined for the various fissioning isotopes as a function of their excitation energy in competition with other processes like pre-equilibrium decay and particle evaporation. ALICE-91 is a nuclear reaction code that takes care of this first stage. The second stage consists of constructing the total fission-fragment mass and charge distributions from the different contributions of all the equilibrated fissioning systems. Hence, a model is needed that gives a prediction for the fission-product mass yields in a large range of mass, charge, and excitation energy of the fissioning nucleus. For this purpose, the multi-modal random neck-rupture model by Brosa is extended with temperature-dependent shell and pairing corrections and a temperature-dependent LDM. The combination of ALICE-91 and the modified Brosa approach is used for the analysis of the experiments given in the

  4. High efficiency ionization chamber for fission experiments

    Complete text of publication follows. The width of fission fragment mass distribution indicates the number of di rent fragments which are produced during the fission process from a given excited state. Smaller width means more limited variety of fission fragments which can indicate clusterization effect in hyperdeformed states before fission and also means less amount of nuclear waste. A new gridded ionization chamber was constructed at Atomki to examine the mass distribution of the fission fragments from neutron induced fission of some U and Th isotopes. The design is based on a twin ionization chamber developed by C. Budtz-Jorgensen et al. Our aim was to increase the efficiency of the measurements by applying multiple detector units. This compound detector permits simultaneous measurement of the total kinetic energy and fission fragment emission angle with respect to the detector symmetry axis. The chamber consists of five twin parallel plate ionization chambers with Frisch grids. Assuming that at low counting rates only one target emits fission fragments in one event, the an- odes and the grids were interconnected form- ing two groups (A1-G1, A2-G2). In order to identify which target emitted the fission fragments the signals from each cathodes are also processed. The energy of the fission fragments is determined from the anode pulse heights, while the sum of the grid and anode signals is used to deduce the fragment emission angle θ with respect to the symmetry axis of the chamber: Qsum = -n0e[1 - (X/D)cosθ). The angle dependent energy losses in the tar get can be determined using this angular information. In order to minimize the distance between the targets and the neutron source, smaller distance between the plates and a smaller diameter had to be chosen as in Ref. This arrangement required higher gas pressure, which is necessary to stop the fission fragments before reaching the electrodes. A gas mixture of 90% Ar + 10% CH4 at 2 atm pressure was used. With a

  5. Fission-Fusion Neutron Source

    Full text of publication follows: In order to meet the requirement of fusion reactor developing and nuclear waste treatment, a concept of fission-fusion neutron source has been proposed with LiD cylinder in heavy water region of China Advanced Research Reactor (CARR) by slow neutrons to transfer to fusion neutron. The principal is the reaction of 6Li(n,α) to produce energetic tritium ion with 2.739 MeV in LiD by slow neutron, which will be bombarding the deuteron of LiD to induce fusion reaction to produce 14 MeV neutron. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by 14 MeV neutrons. When the concentration of tritium in LiD reaches O.5 x 1022 T/cm3 and the fraction of fusion reaction induced by deuteron recoils with tritium approaches to 1, the 14 MeV neutron flux will be doubled and redoubled increasing to approach saturation in which the produced tritium at time t is exhausted by fusion reaction to keep the constant of tritium concentration in LiD. At this case the 14 MeV neutron production rate is too high, it has to decrease the slow neutron flux with decreasing CARR reactor power progressively when the fusion neutron flux approaches to presetting value, for example 3.5 x 1014 n/cm2 sec and will approach to saturation at the low level of neutron flux. This paper describes the principle of fission-fusion neutron source, including the production rate of fusion neutron, the accumulation rate and concentration of tritium, the fusion reaction rate induced by deuteron recoils with tritium, the 14 MeV neutron flux of inner surface of LiD cylinder in the heavy water region of CARR reactor without neutron depression and the influence factors. To consider the neutron depression an assembly of LiD rods in 20 x 20 cm with a centre hole in CARR reactor must be designed to optimize the fusion neutron flux in centre hole. (author)

  6. The Risoe Fission Gas Project

    The RISOE Fission Gas Project has provided experimental data on fission gas release (FGR) from high-burnup water reactor fuel. The data are well-characterized with respect to pre-irradiation measurement, irradiation and post-irradiation examination, thus enabling their use in fuel performance code validation. The experimental data were obtained with 12 Zircaloy-clad UO2 pellet fuel pins, irradiated to burnups in the range 27,000-36,000 MWD/tU (pin average, peak pellet 43,700 MWD/tU). Most of the fuel pins were subjected to short-term reirradiations at increased power levels (''bump testing''), in order to simulate postulated power increases late in life. The 11 bump tests covered a range of bump terminal levels (BTL) of 301-434 W/cm (peak pellet), with hold time of 24 h except for one test at 72 h. The axial power shape during the bump testing differed from the base irradiation, thus each bump test was in fact a whole series of experiments with a range of BTLs. The integral pin FGR resulting from the bump testing was in the range 0-16%, increasing with BTL above 375 W/cm (peak pellet). Owing to the form of the axial power distributions, local release data were emphasized in the project, some of the observations being: (a) FG and Cs-137 releases seemed to correlate with local BTL as well as axial and radial position, and to do so in a similar manner; at the highest local BTL investigated (414 W/cm), local FGR had apparently saturated at 40% within 24 h; (b) the local releases increased with local BTL above 350 W/cm; (c) bump testing to about 414 W/cm virtually emptied the central region of the fuel for FG and Cs-137; (d) the release measurements and the ceramographic observations for the bump test with 72 h hold time suggest that this longer time may have given more local release for the lower local BTLs. (author)

  7. Fission Barriers of Compound Superheavy Nuclei

    Pei, J C; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. F...

  8. Energy partition in low energy fission

    Mirea, M.

    2011-01-01

    The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two ...

  9. MCNP6 Fission Multiplicity with FMULT Card

    Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  10. Modeling Fission Product Sorption in Graphite Structures

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  11. A revised calculational model for fission

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  12. Our 50-year odyssey with fission: Summary

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs

  13. Seventy-five years of nuclear fission

    S S Kapoor

    2015-08-01

    Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.

  14. Detector instrumentation for nuclear fission studies

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  15. A revised calculational model for fission

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  16. Fine structure in the fission fragment yields

    Discussed are the most interesting experiments on the fine structure of fission product yields of U, Pu, Th, Cf, Es, Cm, Fr, Np isotopes. Modern comprehension of the fine structure nature in connection with other problems of fission dynamics is considered. It is noted, that the fine structure results from pairing correlations in a nucleus. The conclusion is drawn, that the available set of experimental data is not sufficient to elucidate the fine structure nature

  17. Spontaneous fission of 256Rf, new data

    Svirikhin, A. I.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Andel, B.; Asfari, M. Z.; Gall, B.; Yoshihiro, N.; Kalaninova, Z.; Mullins, S.; Piot, J.; Stefanova, E.; Tonev, D.

    2016-07-01

    Spontaneous fission properties of the short-lived neutron-deficient 256Rf nucleus produced in the complete fusion reaction with a beam of multiply charged heavy 50Ti ions from the U-400 cyclotron (FLNR, JINR) are experimentally investigated. Its half-life and decay branching ratio are measured. The average number of neutrons per spontaneous fission of 256Rf (bar v = 4.47 ± 0.09) is determined for the first time.

  18. Fission track dating of zircon: a multichronometer

    Scattering in Fission Track ages of zircons of a single rock is possible when they present morphological and geochemical variations, if the greatest care is not taken in the choice of the etching conditions and the counting of tracks. The Fission Track study of two heterogeneous populations of zircons from the Mont Blanc granite and from the Gran Paradiso gneisses allows to show that zircon may work as a multichronometer

  19. Dynamics in heavy ion fusion and fission

    Dynamical aspects of heavy ion fussion and fission, mainly the aspect of damping which is meant as the dissipation of kinetic energy and the aspect of the effective mass of the fission motion, are discussed. Two categories of evidence of damping effects are given. One relates to the damping of the fission motion for the ground state shape and for the isomeric more elongated shape. The other relates to the damping of the fission motion from the last barrier to the scission point. The dependence of the effective mass associated with the fission motion on the deormation of nucleus is shown. As the elongation of the nucleus increases the effective mass of the fission motion varies strongly from being about forty times greater than the reduced mass in the beta-vibrational state of the ground state shape to being equal to the reduced mass in the moment of scission. Damping effects are expected to be propartional to the difference between the effective mass and the reduced mass. It is concluded that the damping in fussion reactions is relatively weak for lighter products and quite strong for superheavy products like 236U or 252Cf. (S.B.)

  20. JNDC nuclear data library of fission products

    The JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library for 1172 fission products is described in this report. The gross theory of beta decay has been used extensively for estimating unknown decay data and also some of known decay data with poor accuracy. The calculated decay powers of fission products using the present library show excellent agreement with the latest measurements at ORNL (Oak Ridge National Laboratory), LANL (Los Alamos National Laboratory) and UTT (University of Tokyo, Tokai) for cooling times shorter than 103 s after irradiation. The calculated decay powers by the existing libraries showed systematic deviations at short cooling times; the calculated beta and gamma decay powers after burst fission were smaller than the experimental results for cooling times shorter than 10 s, and in the cooling time range 10 to 103 s the beta-decay power was larger than the measured values and the gamma decay power smaller than the measured results. The present JNDC FP nuclear data library resolved these discrepancies in the short cooling time ranges. The decay power of fission products has been calculated for ten fission types and the results have been fitted by an analytical function with 31 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  1. Theoretical descriptions of neutron emission in fission

    Brief descriptions are given of the observables in neutron emission in fission together with early theoretical representations of two of these observables, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar νp. This is followed by summaries, together with examples, of modern approaches to the calculation of these two quantities. Here, emphasis is placed upon the predictability and accuracy of the new approaches. In particular, the dependencies of N(E) and bar νp upon the fissioning nucleus and its excitation energy are discussed. Then, recent work in multiple-chance fission and other recent work involving new measurements are presented and discussed. Following this, some properties of fission fragments are mentioned that must be better known and better understood in order to calculate N(E) and bar νp with higher accuracy than is currently possible. In conclusion, some measurements are recommended for the purpose of benchmarking simultaneous calculations of neutron emission and gamma emission in fission. 32 refs., 26 figs

  2. The Risoe fission gas project - an overview

    The Risoe Fission Gas Project has provided experimental data on fission gas release from high-burnup water reactor fuel. The data are well-characterized with respect to pre-irradiation measurement, irradiation and post-irradiation examination. The experimental data were obtained with 12 Zircaloy-clad UO2 pellet fuel pins, irradiated in a test assembly to an average of 32,000 MWd (tU)-1. Most of the fuel pins were submitted to short-term re-irradiation at increased power levels ('bump testing') in a test reactor in order to simulate postulated power increases late in life. The bump tests covered a range of bump terminal levels of 320 to 462 W cm-1 (peak pellet), mostly with a hold time of 24 h. Extensive hot-cell examinations were performed of base-irradiated and bump-tested fuel pins. The fission gas release resulting from the bump testing was in the range 0 to 16%, increasing with peak pellet levels above 400 W cm-1. Local fission gas releases were determined from retained-gas measurements on pellet size samples. Release of the fission product cesium as a function of local bump terminal level resembled the local fission gas release. The gas release measurements were corroborated by extensive ceramographic examinations and pore size analysis. (author)

  3. Modelisation of the fission cross section

    The neutron cross sections of four nuclear systems (n+235U, n+233U, n+241Am and n+237Np) are studied in the present document. The target nuclei of the first case, like 235U and 239Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237Np and 241Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author)

  4. Statistical model investigation of nuclear fission

    To assist in the improvement of fission product yield data libraries, the statistical theory of fission was investigated. Calculation of the theory employs a recent nuclear mass formula and nuclear density of states expression. Yields computed with a simple statement of the theory do not give satisfactory results. A slowly varying empirical parameter is introduced to improve agreement between measured and calculated yields. The parameter is interpreted as the spacing between the tips of the fragments at the instant of scission or as the length of a neck in the fissioning nucleus immediately prior to scission. With this spacing parameter semi-quantitative agreement is obtained between calculated and measured mass chain yields for six cases investigated, 233U(n/sub th/, f), 235U(n/sub th, f), 239Pu(n/sub th/, f), 235U(n+14, f), 238U(n+14, f), and 252Cf(sf). An indication of the source of mass asymmetry in fission is presented. The model developed predicts a mass and energy dependence of some of the parameters of models currently in use in data generation. A procedure for the estimation of the fission product yields for an arbitrary fissioning system is proposed. 63 references

  5. The Risoe Fission Gas Project. An overview

    The Risoe Fission Gas Project has provided experimental data on fission gas release from high-burnup water reactor fuel. The data are well-characterized with respect to pre-irradiation measurement, irradiation and post-irradiation examination, thus enabling their use in fuel performance code validation. The experimental data were obtained with 12 Zircaloy clad UO2 pellet fuel pins, irradiated in a test assembly to an average of 32,000 Mwd/tU. Most of the fuel pins were submitted to short-term reirradiation at increased power levels ('bump testing') in a test reactor, in order to simulate postulated power increases late in life. The bump tests covered a range of bump terminal levels of 320-462 U/cm (peak pellet), mostly with a hold time of 24 h. Extensive hot-cell examinations were performed of base-irradiated and bump-tested fuel pins. The fission gas release resulting from the bump testing was in the range 0-16%, increasing with peak pellet levels above 400 U/cm. Local fission gas releases were determined from retained gas measurements on pellet size samples. Release of fission product cesium as a function of local bump terminal level resembled the local fission gas release. The gas release measurements were corroborated by extensive ceramographic examinations and pore size analysis. (author)

  6. Space parity violation in nuclear fission

    Space parity violation in low energy fission was observed by the Soviet physicists in 1977 in the course of the angular distribution investigations of the light and heavy fragments in the polarized thermal neutron fission of 233,235U and 239Pu. Unexpected large values of the P-odd asymmetry coefficients (αnf ∼ 10-4) were obtained in the angular distribution W(0) = 1 + bar αnf (bar σn · pf). So large values of αnf looked very strange because of the existence of numerous different exit channels in fission process (∼108 - 1010) and a small relative value of nonconserving space parity potential of the weak NN-interaction (∼ 10-7). In addition to the P-violating asymmetry bar αnf P-conserving right-left asymmetry of the fission fragment angular distribution W (θ) = 1 + α RLnf pf · αn x pf was observed in 1979. The main goal of the new experimental investigations of P-odd and P-even effects in fission was a search of the possible relationships between the asymmetry coefficients and the characteristics of the entrance and exit channels in slow neutron fission. In this paper the brief review of the experimental results obtained by different groups is given. The main part of these results have been obtained at the WWR-M reactor of Leningrad Nuclear Physics Institute (LNPI)

  7. Biological effectiveness of fission neutrons

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  8. Fission product release and thermal behaviour

    Release of fission products from the fuel matrix is an important aspect in relation to performance and safety evaluations. Of particular importance amongst fission products are the isotopes of iodine for radiological considerations and the isotopes of xenon and krypton for fuel thermal behaviour. It is believed that the main mechanism for fission gas release is diffusion but the magnitudes of the relevant diffusion coefficients, which exhibit strong temperature dependences, are not well established. The conductivity of the main gaseous fission product, xenon, is much lower than that of the fill gas helium and hence fission gas release may lead to a deterioration of the fill gas conductivity resulting in higher fuel temperatures and consequently higher fission product release. The two effects, thermal response of fuel to fill gas composition and fission gas/product release are thus intimately connected and have been investigated in a number of instrumented fuel assemblies in the Halden reactor. In such an assembly, the instrumentation includes fuel centre thermocouples, pressure sensors and neutron detectors. In addition pins in the assembly may be swept, whilst at power, with various gases, for example Xe, He or Ar or mixtures thereof. A gamma spectrometer is incorporated into the gas circuit to facilitate the performance of on-line fission product release measurements. At various stages in the lifetime of the assembly thermal tests and fission product release measurements have been made. At low operating temperatures and up to moderate burn-ups, no major fuel restructuring phenomena have been observed and consequently the fission product release has remained at low level dictated by the exposed surfaces of the fuel. Axial gas flow measurements indicate that fuel cracking and irreversible relocation occurred as early as the first ramps to power. The processes have continued throughout life and an absence of any change in response pressurization tests indicates that

  9. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal

  10. The stunning nuclear fission of the mercury nucleus; La surprenante fission nucleaire du noyau de mercure

    Schaeffer, A.

    2011-02-15

    A fission experiment performed at CERN on mercury nuclei produced an unexpected asymmetric reaction. The study of the potential energy surface shows that this asymmetric reaction minimized the energy consumed in the reactions but led to 2 different elements (ruthenium-100 and krypton-80) far less stable than zirconium-90 that is the element expected in a symmetric fission. (A.C.)

  11. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  12. Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides

    McDonnell, J; Schunck, N; Nazarewicz, W.

    2013-01-01

    We evaluate the performance of modern nuclear energy density functionals for predicting inner and outer fission barrier heights and energies of fission isomers of even-even actinides. For isomer energies and outer barrier heights, we find that the self-consistent theory at the HFB level is capable of providing quantitative agreement with empirical data.

  13. Inclusive spectra of hadrons created by color tube fission 1. Probability of tube fission

    Gedalin, E. V.

    1997-01-01

    The probability of color tube fission that includes the tube surface small oscillation corrections is obtained with pre-exponential factor accuracy on the basis of previously constructed color tube model. Using these expressions the probability of the tube fission in $n$ point is obtained that is the basis for calculation of inclusive spectra of produced hadrons.

  14. Understanding of fission dynamics from fragment mass distribution studies

    Nuclear fission is a complex process involving large scale collective rearrangement of nuclear matter. The shape of the fissioning nucleus evolves in the multidimensional space of relative separation, neck opening, mass asymmetry and deformation of the fragments. Various types of nuclear shape deformation have been observed from the fission fragment spectroscopy studies, which provide crucial information in the understanding of the dynamics of the fission process. The fission fragment mass and charge distributions are decided during saddle to scission transition and are directly related to the scission configuration. Several nuclear models have been put forward to describe the fission fragment mass distribution as well as shape deformation of the fragments. The width of the fission fragment mass distribution is related to the fission process and provides information on the type of fission reactions

  15. Studies of exotic modes of fission in the lead region

    In a series of complementary experiments at the tandem of JAEA and at the mass-separator ISOLDE (CERN), new fission phenomena in the lead region of the chart of nuclei were investigated. At ISOLDE, the low-energy fission of 194,196Po was studied via the process of beta-delayed fission of the parent 194,196At nuclei. A multi-modal fission fragment mass split was observed for 194,196Po. At JAEA the higher-energy fusion-fission studies of 198Hg, 191,193Ir were performed in reactions with protons and 7Li. In the JAEA experiment, we observed a transition from mass-symmetric to mass asymmetric fission between 189Ir and 193Ir. By studying fission in these regions, we investigate the new evolution of shell structure to regulate fission (as far as fission is concerned) of the chart of nuclides. (author)

  16. Model Calculation of Fission Product Yields Data using GEF Code

    Fission yields data are classified with spontaneous fission data and neutron induced fission data. The fission product yields data at several energy points for the limited actinides are included in nuclear data libraries such as ENDF/B, JEFF and JENDL because production of those is based mainly on experimental results and it is very difficult to conduct experiments for all actinides and continuous energies. Therefore, in order to obtain fission yields data without experimental data, a theoretical fission model should be introduced to produce the yields data. GEneral Fission model (GEF) is developed to predict the properties for fissioning systems that have not been measured and that are not accessible to experiment. In this study, the fission yields data generated from GEF code are compared with the measured data and the recently available nuclear data libraries. The GEF code is very powerful tool to generate fission yields without measurements. Also, it can produce the distribution of fission product yields for continuous neutron energy while measured data are given only at several energies. The fission yields data of 235U have been tentatively generated with GEF code in this work. Comparing GEF results with measurements and recently released evaluated fission yields data, it is confirmed that GEF code can successfully predict the fission yields data. With its sophisticated model, GEF code is playing a significant role in nuclear industry

  17. Fission fragment angular momentum in the neutron induced fission of 232Th and 232U

    High spin fractions (HSF) of 130,132Sb and 131,133Te have been determined in the neutron induced fission of 232Th and 232U using off-line gamma ray spectrometric technique. From the HSF, fragment angular momenta (Jrms) were deduced using statistical model analysis. From the Jrms values, deformation parameter (β) were deduced and compared with the same in the even-even and odd-even fissioning systems to examine the effect of nuclear structure and the role of odd neutron spin. In all the fissioning systems the effect of shell closure proximity and odd-even effect on Jrms was clearly observed. However, the role of odd neutron spin was not seen in even-odd fissioning systems like the odd-proton spin effect in odd-odd fissioning systems. (author)

  18. Determination of fission cross-section and absolute fission yields using track-cum gamma-ray spectrometric technique

    The fission cross-section of 233Pa(2nth, f) using fission track technique has been determined for the first time using thermal neutron flux of the reactor APSARA. This is important from the point of view of advance heavy water reactor (AHWR), which is to be described. On the other hand, the yields of fission products in the fast neutron induced fission of minor actinides are important from the point accelerator driven sub critical system (ADSS). In view of that, absolute yields of fission products in the fast neutron induced fission of 238U, 237Np, 238,240Pu, 243Am and 244Cm have been determined using the fission track-cum gamma-ray spectrometric technique. The total number of fission occurring in the target was estimated by track technique, whereas the activities of the fission products have been determined using gamma-ray spectrometric technique. Detailed procedure and its importance are to be discussed. (author)

  19. Utilization of fission reactors for fusion engineering testing

    Deis, G.A.; Miller, L.G.

    1985-02-08

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful.

  20. Derivation of Energy Generated by Nuclear Fission-Fusion Reaction

    Kayano, Hideo; Teshigawara, Makoto; Konashi, Kenji; Yamamoto, Takuya

    1994-01-01

    In the solids which contain fissionable elements and deuterium, it is expected that the energy generated by nuclear fission contributes to the promotion of the D-D nuclear fusion in the solids. When nuclear fission occurs by neutrons in the solid, the fissionable elements divide into two fission product nuclei having the energy of 100MeV, respectively. It is expected that the hige energy fission products promote rapidly nuclear fision reaction by knocking out the D atoms in the solids and by ...

  1. Fission Surface Power Technology Development Update

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  2. Nuclear fission induced by heavy ions

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  3. Rupture of the neck in nuclear fission

    We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation

  4. Correlation of recent fission product release data

    For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS but which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab

  5. Heavy-ion-induced fission reactions

    Fission-cross-section excitation functions were measured from near threshold to approx. 10 MeV/nucleon using heavy-ion beams from the Brookhaven National Laboratory three-stage Tandem Accelerator Facility. The systems studied included 210Po formed in 12C and 18O induced reactions, 186Os formed in 9Be, 12C, 16O, and 26Mg reactions, 158Er formed in 16O, 24Mg, 32S, and 64Ni reactions. In addition the composite systems 204206, 208Po formed with 16O and 18O projectiles were studied. The measured fission excitation functions along with previous data from 4He and 11B bombardments for the 186Os and 210Po systems and recent data on the 200Pb system are compared to predictions from a statistical model using recent fission-barrier calculations from A. Sierk. Comparisons of calculated and measured fission excitation functions show good overall agreement between data and calculations and between calculations with two different level-density functions. It is concluded that the barriers from Sierk give a good description of both the mass and angular momentum dependence of fission barriers in this region

  6. Anatomy of neck configuration in fission decay

    Patra, S K; Satpathy, L

    2010-01-01

    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes $^{236}U$ and $^{232}Th$ in the valley of stability and exotic neutron rich isotopes $^{250}U$, $^{256}U$, $^{260}U$, $^{240}Th$, $^{250}Th$, $^{256}Th$ likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for $^{260}$U and $^{256}$Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay li...

  7. Some aspects of the nuclear fission process

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U233, U235, Pu239, U238 are described at the beginning of this work. It appears that for U233 there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U239 than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U235. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author)

  8. Fission product decay heat for thermal reactors

    Dickens, J. K.

    1979-01-01

    In the past five years there have been new experimental programs to measure decay heat (i.e., time dependent beta- plus gamma-ray energy release rates from the decay of fission products) following thermal-neutron fission of /sup 235/U, /sup 239/Pu, and /sup 241/Pu for times after fission between 1 and approx. 10/sup 5/ sec. Experimental results from the ORNL program stress the very short times following fission, particularly in the first few hundred sec. Complementing the experimental effort, computer codes have been developed for the computation of decay heat by summation of calculated individual energies released by each one of the fission products. By suitably combining the results of the summation calculations with the recent experimental results, a new Decay Heat Standard has been developed for application to safety analysis of operations of light water reactors. The new standard indicates somewhat smaller energy release rates than those being used at present, and the overall uncertainties assigned to the new standard are much smaller than those being used at present.

  9. An improved technique for fission track dating

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB1 and UB2. An established new method σ·Φ ρd/b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  10. Excitation-energy dependence of the nuclear fission characteristics

    Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others

    1996-03-01

    It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)

  11. Reactor with very low fission product inventory

    A fast converter with one zone and an internal breeding ratio of 1.00, with liquid fuel in the form of molten plutonium- uranium- and sodium chloride, with a thermal power of 3 GW (th) allows continuous extraction of the volatile fission products (Br, I, Kr, Xe, Te) by means of helium purging in the core. The non-volatile fission products e.g. Sr and Cs can continuously be extracted in a chemical reprocessing plant at the reactor site. The impact on an accidental release of fission products is rather significant; the amounts released are 50-100 times smaller than those in a reference reactor (LWR with oxide fuel). Because the heat sink is relatively large and after heat reduced, the temperature of the fuel does not exceed 5000C after an accident, which greatly reduces the consequences of an accident. (Auth.)

  12. Fission products in glasses. Pt. 2

    Glass ceramics of different composition with high leach and impact resistance can be produced for fission product solidification. In contrast to commercial glass products, they consist of a number of crystalline phases and a residual glass phase. The major crystalline phase allows a classification into celsian, diopside, encryptite, and perovskite ceramics. They all are of special importance as host phases for long-lived fission products. The paper reports on relations between product composition and melting properties, viscosity, crystallization properties, and fixation capability for fission products. Further investigations deal with dimensional stability, impact resistance, thermal expansion, and thermal conductivity. The properties of the ceramics are compared with those of the basic products. The problems still to be solved with regard to further improvement and application of these products are discussed. (RB)

  13. Dissipative dynamics in quasi-fission

    Oberacker, V E; Simenel, C

    2014-01-01

    Quasi-fission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach we study quasi-fission in the systems $^{40,48}$Ca+$^{238}$U. Results show that for $^{48}$Ca projectiles the quasi-fission is substantially reduced in comparison to the $^{40}$Ca case. This partly explains the success of superheavy element formation with $^{48}$Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The system is found in quasi-thermal equilibrium only for reactions with $^{40}$Ca. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.

  14. Prompt fission neutron emission: Problems and challenges

    Hambsch F.-J.

    2013-12-01

    Full Text Available This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code as well as prompt neutron and γ-ray emission to catch up with the improved experiments.

  15. Phase Transition Induced Fission in Lipid Vesicles

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (Tfission of the neck, while the mother vesicle remains intact. Pearling tubes which formed upon heating break-up and decay into multiple individual vesicles which then diffuse freely. Finally we demonstrate that mimicking the intracellular bulk viscosity by increasing the bulk viscosity to 40cP does not affect the overall fission process, but leads to a significant decrease in size of the released vesicles.

  16. Antiproton Induced Fission and Fragmentation of Nuclei

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  17. Solar vs. Fission Surface Power for Mars

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  18. Process for fine purification of fission molybdenum

    The invention deals with a method for the fine purification of fission molybdenum, dissolved in anionic form together with the anions of the fission products of J, Sn, Ce, Ru, and Zr in an aqueous mineral acid solution; in this process the fission molybdenum is a) fixed on a metal oxide in a sorption step and b) released again in a desorption step. By the invention, a method shall be created, which is, under less favourable working conditions, almost insusceptible to failure and can be safely carried out with low expenditure of operation time, working equipment and handling technique and which delivers a highly pure Mo-99 product with a decreased volume of radioactive waste at the same time. (orig./RB)

  19. Lunar surface fission power supplies: Radiation issues

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  20. Fission Enhanced diffusion of uranium in zirconia

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  1. Evaluation of covariance for fission neutron spectra

    Kawano, Toshihiko; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Ohsawa, Takaaki; Shibata, Keiichi

    1999-02-01

    A covariance evaluation system for the evaluated nuclear data library JENDL-3.2 was established, and the covariance data for fission neutron spectra of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu were evaluated. Two methods were employed to evaluate the covariance. One is based on the experimental data, and the other is based on a model calculation including some kinds of renormalizations. The latter technique was adopted for the covariance evaluation of the fission neutron spectra in JENDL-3.2. We performed an adjustment of the evaluated fission neutron spectrum of {sup 235}U using the spectrum averaged cross sections for the {sup 27}Al(n, p), {sup 46,47,48}Ti(n, p), {sup 54,56}Fe(n, p), {sup 58}Ni(n, p), {sup 90}Zr(n, 2n) reactions. The adjusted spectrum integrated over energy was found to be unity. (author)

  2. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  3. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  4. Solar Versus Fission Surface Power for Mars

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  5. True ternary fission of 252Cf

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252Cf. In this work, the possibilities of different true ternary fission modes of 252Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A1 ≥ A2 ≥ A3 in order to avoid repetition of combinations. Due to this condition, the values of Z3 vary from 0 to 36 and Z2 vary from 16 to 51. Of the different pairs having similar (Z2, Z3) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A1+A2+A3. i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z3=2 labelled as (Z2; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z2 around 46 to 48 is the least (shown by dashed (Z1 = 50) and dotted (Z1 = 52) lines indicating a constant Z1 value). The other notable minima in the PES are labelled and they correspond to the (Z2, Z3) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z3=20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z2=32, Z3=32 and Z1=34. The minimum potential energy path also goes through this true ternary mode. The PES calculation

  6. Chemistry of fission products for accident analysis

    Current knowledge concerning the chemical state of the fission product elements during the development of accidents in water reactor systems is reviewed in this paper. The fission product elements which have been considered are Cs, I, Te, Sr and Ba but aspects of the behavior of Mo, Ru and the lanthanides are also discussed. Some features of the reactions of the various species of these elements with other components of the reactor systems are described. The importance of having an adequate knowledge of thermodynamic data and phase equilibria of relatively simple systems in order to interpret experimental observations on complex multi-component systems is stressed

  7. Ex-vessel fission product release modeling

    Release of fission products from core debris after reactor vessel failure is of interest in current severe accident source term research. This paper focuses on significant physical phenomena, requirements, and feedbacks in the context of integrated accident analysis for modeling these releases after initial corium distribution outside the vessel. There are many assumptions made in integrated accident analyses to which ex-vessel fission product release is sensitive. One assumption internal to the release model, the allowed species list, has been demonstrated to significantly affect release of strontium and lanthanum

  8. Ternary fission induced by polarized neutrons

    Gönnenwein Friedrich

    2013-01-01

    Ternary fission of (e,e) U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perp...

  9. Influence of spin on fission fragments anisotropy

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  10. Dynamic properties of the Coulomb fission

    The heavy ion induced fission after quasi-elastic scattering was studied in the systems 208Pb -> 238U for central collision at energies below the Coulomb barrier and 238U -> 238U for peripheral collisions at scattering angles smaller than the grazing angle. The dynamical properties and the phase-space distributions of the reactions could be determined by the method of the kinematical coincidences where positions and time-of-flight of two fission fragments and a scattered projectile-like nucleus were measured at the same time in large-area gas-filled parallel plate counters. (orig./HSI)

  11. Actinide and fission product separation and transmutation

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  12. Heavy ion fusion and fission reactions

    Various methods of probing the partial wave distribution are reviewed and new results using fission fragment angular distributions are discussed. Evidence that existing models of fusion reactions near-barrier and sub-barrier energies underestimate the mean-square spin values are presented. The dynamics of fusion reactions at higher energies are also discussed. The controversy over the interpretation of fission fragment and angular distributions are reviewed. Both statistical scission models and dynamical models with incomplete K mixing are discussed. New developments related to the effective moment of inertia of the saddlepoint shape are presented

  13. Fission product release mechanisms and groupings

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author)

  14. A device for trapping fission products

    Description is given of a device for trapping the solid fission products carried by the coolant of a high temperature nuclear reactor, driven through the core, then through the reactor reflector through channels. This device is characterized in that it comprises stacks of balls or cylinders of an adsorbent substances, mounted in housings provided in the reflector. This device can adsorb 99% of the fission products carried by the coolant, without running the risk of re-cycling these products should be a depressurization occur

  15. Chemistry of actinides and fission products

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  16. Actinide and fission product separation and transmutation

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  17. Classical dynamical description of heavy ion sequential fission

    Sequential fission processes are investigated in a classical fragmentation model. Dissipative forces are included. In the fissioning process the recoupling of excitational degrees of freedom to kinetic degrees of freedom is found important. 6 figures

  18. Fission product measurement methods. Present state of knowledge

    Latest state of development of nuclear charge and mass distributions in fission products is presented. A global view (still incomplete) is given using distribution variations in function of number of mass, atomic number and excitation energy of the fissioning nucleus

  19. Fission cross section for 242Am.met

    The neutron-induced fission cross section for 242Am.met (152y) was measured at the Livermore 100-MeV electron linac in the neutron energy range of 0.01 eV to 20 MeV. Fission fragments were detected using a hemispherical fission chamber. The neutron flux was measured below 10 keV using lithium glass scintillators. Above 10 keV, the 242Am.met fission cross section was measured relative to the 235U fission cross section. Below 20 eV, the data were fit with a sum of single-level Breit-Wigner resonances. Results for the distribution of fission widths, the average fission width, and the average level spacing are presented. The fission cross section in the 100 keV to 20 MeV range is compared with previous measurements

  20. Energy Dependence of Plutonium Fission-Product Yields

    A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured 240Pu spontaneous fission and thermal-neutron-induced fission of 239Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + 239Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation.

  1. Energy Dependence of Plutonium Fission-Product Yields

    Lestone, J. P.

    2011-12-01

    A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured 240Pu spontaneous fission and thermal-neutron-induced fission of 239Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + 239Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation.

  2. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm2 of pure 238U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented

  3. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    Ethvignot, T; Giot, L; Casoli, P; Nelson, R O

    2002-01-01

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.

  4. New results on the spectroscopy and dynamics of fission

    The present status of Coulomb fission experiments is discussed. Probabilities for fission induced by the purely electromagnetic interaction between heavy ions are compared for the systems Sm + U, W + U, W + Cm, and W + Th. Experimental results on the moments of inertia, spins, and quadrupole moments of fission isomers are summarized. Data are presented that prove their large deformation and thereby justify their interpretation as shape isomers in the second minimum of a double-humped fission barrier. 21 figures, 2 tables

  5. Dynamical effects in fission investigated at high excitation energy

    Benlliure J.

    2016-01-01

    The experimental techniques used for the investigation of nuclear fission have progressed considerably during the last decade. Most of this progress is based on the use of the inverse kinematics technique allowing for the first time the complete isotopic and kinematic characterization of both fission fragments. These measurements make possible to characterize the fissioning system at saddle and at scission, and can be used to benchmark fission model calculations. One of the important ingredie...

  6. Fusion – fission dynamics: fragment mass distribution studies

    Bhattacharya S; Chaudhuri A.; Ghosh T. K.; Banerjee K; Bhattacharya C.; Kundu S.; Mukherjee G; Rana T. K.; Roy P; Pandey R; Bhattacharya P

    2015-01-01

    Using the major accelerator facilities available in India, detailed experimental studies have been made to understand the mechanism of quasi-fission and role of nuclear shell effect in heavy nuclei. Fission fragment mass distribution has been used as the probe to explore the role of entrance channel effects on fusion-fission and quasifission dynamics. Fission fragment mass distribution has also been demonstrated to be useful to identify the phenomenon of ‘washing out’ of nuclear shell effect ...

  7. Microscopic description of complex nuclear decay: multimodal fission

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-01-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fissi...

  8. Fission barriers in a macroscopic-microscopic model

    In the framework of the macroscopic-microscopic model, this study investigates fission barriers in the region of actinide nuclei. A very effective four-dimensional shape parametrization for fissioning nuclei is proposed. Taking, in particular, the left-right mass asymmetric and nonaxial shapes into account is demonstrated to have a substantial effect on fission barrier heights. The influence of proton versus neutron deformation differences on the potential energy landscape of fissioning nuclei is also discussed

  9. The measurement of extreme nuclear deformation of fission isomers

    Existence and properties of spontaneously fissioning isomers are discussed as consequences of a double fission barrier. The measurement of the quadrupole moment of the fission-isomeric state by the new developed method for the determination of lifetimes of excited states yields to a prolate shape of the the nucleus. The deformation ratio is 2:1 in the second minimum of the fission potential. (orig./WL)

  10. Basic physics of the fission process. Chapter 2

    A general description of the fission process is given with special emphasis on those aspects which are necessary for the understanding of the measurements and calculations of neutron-induced fission cross-sections. Having considered the various phases of the process, some typical properties of the low-energy fission of actinide nuclei are presented and the more specific features of neutron induced fission are examined. (U.K.)

  11. Optimally moderated nuclear fission reactor and fuel source therefor

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  12. Development and Utilization of Space Fission Power Systems

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  13. Applications of Event-by-Event Fission Modeling with FREYA

    Vogt R.; Randrup J.

    2012-01-01

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. C...

  14. Thermal annealing of fission tracks in synthetic apatites

    Carpena, J.; Lacout, Jean-Louis

    2010-01-01

    Synthetic analogues of poor-silicated natural apatites have been doped with uranium. These minerals have been irradiated with a thermal neutron dose in the aim to induce the 235U fission and to obtain a fission track population. Thermal annealing experiments have been performed on the fission track population and allow us to compare the ability of the synthetic minerals to anneal such nuclear damages with their natural analogues. The thermal of the fission tracks in the synthetic minerals nee...

  15. Delayed Neutrons and Photoneutrons from Fission Products

    Delayed neutrons: Most studies of the delayed neutrons from fission have involved analysis of the kinetic behaviour of fusion chain- reacting systems, analysis of the gross neutron decay (resolved into six groups with approximate half-lives of 0.2, 0.5, 2, 6, 22 and 55 s) and some measurements of the neutron spectra (the energies extendfrom 0.1 to 1.2 MeV, peaking in the range 0.2 to 0.5 MeV). Rapid separations of fission-produced halogens have indicated seven isotopes (Br87,88,89,90 and I137,138,139). and rare gas analysis has indicated 1.5-s Kr and 6-s Rb as definite delayed neutron precursors. These identified precursors account for some 80% of the total delayed neutron yields. Theoretical predictions of possible precursors point to a few tens of such nuclides to be found mainly in regions just above closed neutron shells. Total neutron yields are observed to increase with mass number and decrease with atomic number of the fissioning nuclide. Yields are nearly independent of the energy of the incident fissioning neutron at energies up to several MeV. In this range observed group yields,-especially of the long-lived precursors, ate in fairly good agreement with fission mass and charge distributions, and calculated neutron emission probabilities. . Further detailed studies of delayed neutron precursors (particularly in the difficult short half-life region) require development of ultra-fast radiochemical separation procedures (or on-line isotope separation) and fast neutron spectroscopy of high resolution and efficiency. Photoneutrons; A knowledge of the intensities and gamma-ray spectra of fission products is of practical importance in reactor technology particularly with respect to gamma heating, shielding and radiation effects. Gamma-rays of energies greater than 2.23 and 1.67 MeV cause emission of photoneutrons from deuterium and beryllium respectively, and are important in the kinetics of heavy water and beryllium-moderated reactors. The rate of photoneutron

  16. Fission Matrix Capability for MCNP Monte Carlo

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  17. Fission Product Sorptivity in Graphite

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  18. Cold fission studies using a double-ionization chamber

    An investigation on spontaneous fission of 252Cf is described. Both fission fragments are detected coincidentally with a double ionization chamber as a 4 π detector. Special techniques are demonstrated which allow the determination of nuclear masses and charges for cold fission fragments. Detector properties such as systematic errors and their correction are studied with the help of α particles. (orig.)

  19. Enabling the Use of Space Fission Propulsion Systems

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-06-04

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center.

  20. The effect of atomic electrons on nuclear fission

    Dzuba, V. A.; Flambaum, V. V.

    2008-01-01

    We calculate correction to the nuclear fission barrier produced by the atomic electrons. The result presented in analytical form is convenient to use in future nuclear calculations. The atomic electrons have a small stabilizing effect on nuclei, increasing lifetime in nuclear fission channel. This effect gives a new instrument to study the fission process.

  1. Fission barrier heights in the A ∼ 200 mass region

    K Mahata

    2015-08-01

    Statistical model analysis is carried out for - and -induced fission reactions using a consistent description for fission barrier and level density in A ∼ 200 mass region. A continuous damping of shell correction with excitation energy is considered. Extracted fission barriers agree well with the recent microscopic–macroscopic model. The shell corrections at the saddle point were found to be insignificant.

  2. Overview of research by the fission group in Trombay

    R K Chourdhury

    2015-08-01

    Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.

  3. Mass distribution in 19F induced fission of 232Th

    Formation cross sections of several fission products have been determined using the recoil catcher technique followed by γ-ray spectrometry in 19F induced fission of 232Th at Elab=95 and 112 MeV. The data show significant admixture of fission from compound nuclei formed by complete fusion as well as targetlike nuclei formed by transfer reactions. Mass distributions for both the fissioning systems have been obtained using the systematics of charge distribution in low and medium energy fission. Mass distribution for complete fusion fission is broad Gaussian whereas it is asymmetric for transfer induced fission. At 95 MeV the transfer fission constitutes about 28% of total fission cross section while at 112 MeV it is about 14%, showing that the transfer fission fraction decreases with increasing projectile energy across the barrier. The evaporation residue cross sections of the targetlike nucleus formed in the 232Th (19F, 18O) 233Pa reaction were also measured. The evaporation residue cross sections and the calculated decay probabilities of the targetlike nucleus 233Pa by PACE2 have been used to estimate the fraction of proton and α transfer fission in the total transfer fission cross section. copyright 1996 The American Physical Society

  4. Design and Simulation of High Radioactivity Fission Ionization Chamber

    WANG; Qi

    2012-01-01

    <正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,

  5. Fission fragment orientation and gamma ray emission anisotropy

    Barabanov, A. L.

    1994-01-01

    Experimental data on angular distributions of gamma rays emitted from binary and ternary spontaneous fission of $^{252}{\\rm Cf}$ are analyzed. Their difference indicates that the alignment of fragments is higher in ternary fission than in binary one. The consequences of possible relation between the mechanism of ternary fission and the excitation of collective modes during the saddle-to-scission stage are discussed.

  6. Fission Characteristics of Heavy Nuclei: Statics and Dynamics

    Back, Birger B.

    1999-01-01

    This paper presents a selective historical perspective of fission research over the last thirty-five years while Ray Nix has made central contributions to the field. The emphasis is placed on early studies of the shell stabilized secondary minimum in the static fission barrier and on the dynamic properties of fission of hot nuclei, which have recently been the focus of intense study.

  7. Enabling the Use of Space Fission Propulsion Systems

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center

  8. Search for β-delayed fission of 228Ac

    Radium was radiochemically separated from natural thorium. Thin 228Ra→β-228Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe γ-ray detector. The β-delayed fission events of 228Ac were observed and its β-delayed fission probability was found to be (5±2)x10-12

  9. Entrance channel dependence of fission fragment anisotropies - a direct experimental signature of fission before equilibration

    In several cases of heavy ion induced fusion-fission reactions, the fission fragment angular distributions exhibit much larger anisotropies than predicted by the standard Halpern-Strutinsky theory. Several explanations have been put forward to interpret these anomalous angular distributions. One of them is that a characteristic signature of fission before full K-equilibration will be an entrance channel dependence of the fragment anisotropies for target-projectile combinations across the Businaro-Gallone ridge in the mass/charge asymmetry degree of freedom. To look for any such entrance channel dependence of fragment anisotropies, we have carried out measurements of fragment angular distributions in fission induced by boron, carbon, oxygen ions on thorium and neptunium targets and by fluorine ions on neptunium target at above barrier energies. (author). 7 refs., 1 fig

  10. Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations

    Yavshits S.

    2010-03-01

    Full Text Available The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interaction potential. Fission fragment mass and charge distributions correspond approximately to isoscalar and isovector modes of vibrations and are defined by wave functions of oscillations. The preliminary calculation results have shown a rather good description of main integral fission yield observables.

  11. Fission fragment mass distribution from combined dynamical and statistical model of fission including evaporation

    An appropriate theoretical model for fission fragment mass distribution (FFMD) of a highly excited heavy nucleus involves multidimensional Langevin dynamical calculations. Though a full Langevin simulation provides a more accurate description of fission dynamics, it is often replaced by a combined dynamical and statistical model (CDSM). This is essentially done because the demand on computer time for a full Langevin calculation is very large. In CDSM, the Langevin dynamical computation is pursued for a time interval during which the initial transients are settled and the fission width has reached a stationary value. The decay of the compound nucleus in subsequent times is followed treating fission at par with other decay channels, such as particle and γ emission channels which are already included in the calculation from the beginning, and using statistical methods. Evidently, CDSM takes less computer time than full dynamical model simulation

  12. Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100

    Baran, A.; Kowal, M.; Reinhard, P.-G.; Robledo, L. M.; Staszczak, A.; Warda, M.

    2015-12-01

    This paper briefly reviews recent progress in theoretical studies on fission barriers and fission half-lives of even-even superheavy nuclei. We compare and discuss results obtained in the semi-classical macroscopic-microscopic approach, the self-consistent mean-field models with the Skyrme and Gogny energy density functionals and in the relativistic mean-field theory. A short part of the paper is devoted to the calculation of the mass parameters and nuclear fission dynamics. We also discuss the predictive power of Skyrme energy density functionals applied to key properties of the fission path of 266Hs. Standard techniques of error estimates in the framework of a χ2 analysis are applied.

  13. Behaviour of the radionuclides 125J, 85Sr, 134Cs and 144Ce in three typical sands of Northern Germany under conditions of water-unsaturated flow

    The investigations described in this study help to explain the migration of radionuclides, being in the seepage water, in the upper soil layers. We investigated the behaviour of the radionuclides of the elements J, Sr, Cs and Ce in three types of loose rocks taken from the C-horizon of characteristic soils existing in the surroundings of Gorleben (Lower Saxony). These loose rocks are medium- and fine-grained sands. In the laboratory we performed Batch and column experiments under the conditions of water-unsaturated flow. For these investigations we used an experimental rainwater, which we had prepared on the basis of the analytic mean values obtained for the rainwater of the Gorleben surroundings. (orig./RW)

  14. Brownian shape motion: Fission fragment mass distributions

    Sierk Arnold J.; Randrup Jørgen; Möller Peter

    2012-01-01

    It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  15. High grade power from fissioning gases

    Fissioning plasmas are the gaseous fuel in high-temperature cavity reactors that originally were conceived for nuclear rocket propulsion in space. For achieving a specific impulse up to 5000 sec, the nuclear fuel must burn at a temperature in excess of 10,000 K. For criticality, the uranium particle density must be not less than the molecular density of gases at standard conditions. In previous investigations it was, therefore, assumed that the fissioning plasma is optically thick. However, in gaseous matter the energy release of fissions can lead to ionization and excitation that deviate from Maxwell-Boltzmann distributions. This condition can be exploited for the direct conversion of fission fragment energy into coherent light. Recent research has culminated in the first experimental nuclear-pumped lasers. At about the same time, a program of gaseous fuel reactor experiments with enriched uranium hexafluoride was started. Criticality tests were conducted with uranium foils simulating the gaseous fuel. Gaseous uranium hexafluoride will be used in a series of forthcoming experiments. A variety of applications of gaseous fuel reactors and nuclear-pumped lasers is envisioned for benefits in space and on Earth. The use of nuclear energy at temperatures exceeding those of solid core reactors and laser radiation is called ''high grade power.'' (auth.)

  16. Fission fragment rockets - A new frontier

    A new reactor concept is described which would enable fission fragments to be continuously extracted from the reactor. Such a reactor has the potential of enabling extremely energetic and ambitious deep space missions. In this talk the basic physics issues involved in the operation of this type of reactor are outlined, and some possible applications to space exploration are described

  17. Angular-momentum-bearing modes in fission

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  18. Model for fission-product calculations

    Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined

  19. Gravitational Waves from a Fissioning White Hole

    Gomez, R.; Husa, S.; Lehner, L.; Winicour, J.

    2002-01-01

    We present a fully nonlinear calculation of the waveform of the gravitational radiation emitted in the fission of a vacuum white hole. At early times, the waveforms agree with close approximation perturbative calculations but they reveal dramatic time and angular dependence in the nonlinear regime. The results pave the way for a subsequent computation of the radiation emitted after a binary black hole merger.

  20. Energy Correlation of Prompt Fission Neutrons

    Elter, Zs.; Pázsit, I.

    2016-03-01

    In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  1. Energy Correlation of Prompt Fission Neutrons

    Elter Zs.

    2016-01-01

    Full Text Available In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  2. Actinide and fission product partitioning and transmutation

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  3. Fission--fusion systems: classification and critique

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  4. Subminiature fission chamber with gas tight penetration

    Fission chambers suffer from gas leaks at electric feed-trough. This micro chamber suppresses that defect thanks to an alumina plug and welded seal of the chamber sleeve. This device is easy to produce at industrial scale with reduced dimensions (1,5 mm diameter, 25 mm length). It can work with 30 m long feeding cables. (D.L.). 3 figs

  5. Actinide and fission product partitioning and transmutation

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  6. Development of fission Mo-99 production technology

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  7. Probing the time scale of asymmetric fission

    The author describes the measurement of the mass-energy distributions of fission fragments in the reactions 197Au(14N,X) at 34 A.MeV and 232Th(7Li,X) at 43 A.MeV. He presents results on the mass-asymmetry and excitation energy sharing. (HSI)

  8. Angular distribution of oriented nucleus fission neutrons

    Calculations of anisotropy of angular distribution of oriented 235U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  9. Dynamics of fission and heavy ion reactions

    Recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear motion such as occurs in fission and heavy ion reactions are discussed. With the goal of finding observable quantities that depend upon the magnitude and mechanism of nuclear dissipation, one-body dissipation and two-body viscosity within the framework of a generalized Fokker-Planck equation for the time dependence of the distribution function in phase space of collective coordinates and momenta are considered. Proceeding in two separate directions, the generalized Hamilton equations of motion for the first moments of the distribution function with a new shape parametrization and other technical innovations are first solved. This yields the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as the energy required for fusion in symmetric heavy-ion reactions and the mass transfer and capture cross section in asymmetric heavy-ion reactions. In a second direction, we specialize to an inverted-oscillator fission barrier and use Kramers' stationary solution to calculate the mean time from the saddle point to scission for a heavy-ion-induced fission reaction for which experimental information is becoming available. 25 references

  10. Numerical algorithms for intragranular fission gas release

    Complicated physical processes govern fission gas release in nuclear fuels. Besides the physical problem, there is a numerical problem since some solutions of the underlying diffusion equation have numerical errors that by far exceed the physical details. In this paper, the efficiency and the accuracy of some numerical solutions are analysed. Random operation histories were generated and the errors inherent in each algorithm evaluated over a wide range of up- and down-ramps by comparing the results with the quasi-exact ANS-5.4 algorithm. The URGAS algorithm can be considered as well balanced over the entire range of fission gas release. The new FORMAS algorithm is superior at fission gas release above f∼0.05 and may in a physical sense be considered as an exact solution in this range. Unfortunately, the deficiency of this most elegant and mathematically sound algorithm at low fission gas release could not be fully overcome. However, in view of the many inherent uncertainties, both algorithms are considered as sufficient to be used in a fuel rod performance code. All algorithms analysed in detail can be made available on request as FORTRAN subroutines

  11. The SINGAR fission gas evolution code

    We present a description of the fission gas evolution code SINGAR. A brief description is given of the various sub-models within the code and a program listing is appended. We also give an indication of the extent of validation of the code and examine in detail the application of SINGAR to PWR and AGR steady-state and transient irradiation. (author)

  12. Brownian shape motion: Fission fragment mass distributions

    Sierk Arnold J.

    2012-02-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  13. Density Functional Theory Approach to Nuclear Fission

    Schunck, N

    2012-01-01

    The Skyrme nuclear energy density functional theory (DFT) is used to model neutron-induced fission in actinides. This paper focuses on the numerical implementation of the theory. In particular, it reports recent advances in DFT code development on leadership class computers, and presents a detailed analysis of the numerical accuracy of DFT solvers for near-scission calculations.

  14. Otto Hahn (1944). Discovery of nuclear fission

    Hahn, Otto

    2003-01-01

    Otto Hahn (Frankfurt-on-Main, 1879-Gotinga, 1968) is the discoverer of nuclear fission, which awarded him the Nobel Prize for Chemistry in 1944. After leaving Germany during the Second World War to settle in the United Kingdom, he returned to this country as a renown figure.

  15. Sharp change over from compound nuclear fission to shape dependent quasi fission

    Ghosh, T.K.; Banerjee, K.; C. Bhattacharya; Bhattacharya, S.(Brown University, Providence, USA); Kundu, S.; Mali, P.; Meena, J. K.; Mukherjee, G.; Mukhopadhyay, S.; Rana, T. K.; Bhattacharya, P; Golda, K. S.

    2008-01-01

    Fission fragment mass distribution has been measured from the decay of $^{246}$Bk nucleus populating via two entrance channels with slight difference in mass asymmetries but belonging on either side of the Businaro Gallone mass asymmetry parameter. Both the target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies the width of the fission fragment mass distribution was found to be drastically different for the $^{14}$N + $^{232}$Th reaction compared to the $^{11}$B...

  16. Isotopic fission fragment distributions as a deep probe to fusion-fission dynamics

    Farget, F.; Caamano, M.; Delaune, O.; Tarasov, O.B.; Derkx, X.; Schmidt, K. -H.; Amthor, A.M.; Audouin, L.; Bacri, C.-O.; Barreau, G.; Bastin, B.; Bazin, D.; Blank, B.; Benlliure, J.; Caceres, L.

    2012-01-01

    During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experiment...

  17. Calculation of fission fragment angular anisotropy in heavy-ion induced fission

    Fission fragment angular anisotropies from 16O + 232Th, 12C + 236U, 11B + 237Np, 14N + 232Th, 11B + 235U and 12C + 232Th systems were calculated by means of the standard saddle point statistical model (SSPSM). The results were obtained with and without neutron emission correction in the reactions, and comparisons were made with the corresponding experimental data. The normal and anomalous behaviors of fission fragment anisotropies are extensively discussed. (author)

  18. Neutron induced fission of 234U

    Hambsch, F.-J.; Al-Adili, A.; Oberstedt, S.; Pomp, S.

    2012-02-01

    The fission fragment properties of 234U(n,f) were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f) is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE) as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f). The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1) mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean TKE is dropping

  19. Neutron induced fission of 234U

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  20. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  1. Improved calculation of the prompt fission neutron spectrum from the spontaneous fission of 252Cf

    An improved calculation is presented for the prompt fission neutron spectrum N(E) from the spontaneous fission of 252Cf. In this calculation the fission-spectrum model of Madland and Nix is used, but with several improvements leading to a physically more accurate representation of the spectrum. Specifically, the contributions to N(E) from the entire fission-fragment mass and charge distributions will be calculated instead of calculating on the basis of a seven-point approximation to the peaks of these distributions as has been done in the past. Therefore, values of the energy release in fission, fission-fragment kinetic energy, nuclear level density, and compound nucleus cross section for the inverse process will be considered on a point-by-point basis over the fragment yield distributions instead of considering averages of these quantities over the peaks of the distributions. Particular attention will be given to the energy-dependent compound nucleus cross sections and to the nuclear level density model. Other refinements to the calculation of N(E) will also be discussed. Results will be presented and compared with earlier calculations of the spectrum and with recent experimental measurements of the spectrum. 9 figs

  2. Transition States at the Fission Barrier

    The current knowledge of the transition states that a nucleus traverses en route to fission is reviewed, together with the relevant theory of fission-fragment anisotropy. Theoretical progress in understanding this kind of data in terms of nuclear superfluidity is summarized. The evidence indicates that nuclear pairing effects play an important role in determining the transition state spectrum. Recent (d, pf) experimental data are noted, and their statistical analysis in terms of a pairing Hamiltonian considered in the fixed-energy ensemble appropriate for finite nuclei is presented. The results indicate that such pairing effects lead in Pu240 to an energy gap in the transition spectrum nearly twice that which occurs at the ground state shape of the same nucleus. Such a result is quite significant from the point of view of nuclear many-body physics, suggesting that the nuclear surface plays an important role in the pairing of nucleons in the finite nuclei. The significance for nuclear fission is also broad. Such a large energy gap forces reassessment of certain detailed conjectures that have been put forward concerning fission widths and mass asymmetry associated with capture resonances of specific spin and parity. The new situation suggests that the even-even and odd-odd spin-parity correlation that rules in the low energy spectra of deformed even-even nuclei does not prevail in the transition state spectrum. A possible explanation in terms of low energy mass- asymmetric and bending vibrations of the fissioning nucleus is discussed. Possible experimental studies that could support or negate the validity of this viewpoint are mentioned. (author)

  3. Fission Product Inventory in CANDU Fuel

    When the reactor is operated at power, fuel composition changes continuously. The fission reaction produces a large variety of fission fragments which are radioactive and decay into other isotopic species. For different accident analyses or operational events, detailed calculations of the fuel radioactive inventory (fission products and actinides) are needed. The present paper reviews two types of radioactive inventory calculations performed at Cernavoda NPP: one for determining the whole core inventory and one for determining the evolution of the inventory within fuel bundles stored in the Spent Fuel Bay. Two computer codes are currently used for radioactive inventory calculations: ORIGEN-S and ELESTRES-IST. The whole core inventory calculation was performed with both codes, the comparison showing that ELESTRES-IST gives a more conservative result. One of the challenges met during the analysis was to set a credible, yet conservative “image” of the in core fuel power/burnup distribution. Consequently, a statistical analysis was performed to find the best estimate plus uncertainties map for the power/burnup distribution of all in core fuel elements. For each power/burnup in the map, the fission product inventory was computed using a scaled irradiation history based on the Limiting Overpower Envelope. After the Fukushima accident, the problem of assessing the consequences of a loss of cooling event at the Spent Fuel Bay was raised. In order to estimate its impact, a calculation for determining the fission products inventory and decay heat evolution within the spent fuel bundles stored in the bay was performed. The calculation was done for a bay filled with fuel bundles up to its maximum capacity. The results obtained have provided a conservative estimation of the decay heat released and the expected evolution of the water temperature in the bay. This provided a technical basis for selecting the emergency actions required to cope with such events. (author)

  4. Evolution of isotopic fission-fragment yields with excitation energy

    Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism. (authors)

  5. Role of the zero-point corrections in fission dynamics

    The way of evaluating spontaneous fission half-lives of nuclei in a multidimensional deformation space is discussed. The cranking as well as the generator coordinate method were used to obtain the collective inertia tensor and the 'zero-point' corrections to the fission barriers. The fission probability was evaluated within the WKB approximation along the least-action trajectory to fission. The influence on the fission life-times of the dynamics in the pairing degrees of freedom as well as the effect of the higher even-multipolarity shape parameters and the role of the reflection asymmetry is examined. (author)

  6. Two-lump fission product model for fast reactor analysis

    As a part of the Fast-Mixed Spectrum Reactor (FMSR) Project, a study was made on the adequacy of the conventional fission product lump models for the analysis of the different FMSR core concepts. A two-lump fission product model consisting of an odd-A fission product lump and an even-A fission product lump with transmutation between the odd- and even-A lumps was developed. This two-lump model is capable of predicting the exact burnup-dependent behavior of the fission products within a few percent over a wide range of spectra and is therefore also applicable to the conventional fast breeder reactor

  7. Evolution of isotopic fission-fragment yields with excitation energy

    Bazin D.

    2012-07-01

    Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.

  8. About total kinetic energy distribution between fragments of binary fission

    At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures

  9. 14. International workshop on nuclear fission physics. Proceedings

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed

  10. Application of the dinuclear system model to fission process

    Andreev A. V.

    2016-01-01

    Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.

  11. Geometrical and statistical factors in fission of small metal clusters

    Obolensky, O. I.; Lyalin, A. G.; Solov'yov, A. V.; Greiner, W.

    2005-01-01

    Fission of metastable charged univalent metal clusters has been studied on example of Na_{10}^{2+} and Na_{18}^{2+} clusters by means of density functional theory methods. Energetics of the process, i.e. dissociation energies and fission barriers, as well as its dynamics, i.e. fission pathways, have been analyzed. The dissociation energies and fission barriers have been calculated for the full range of fission channels for the Na_{10}^{2+} cluster. The impact of cluster structure on the fissi...

  12. Application of the dinuclear system model to fission process

    Andreev, A. V.; Shneidman, T. M.; Ventura, A.

    2016-01-01

    A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron-induced fission of 239Pu.

  13. Prompt and Delayed Gamma-Rays from Fission

    The following data about gamma-rays from fission are reported and discussed; Total prompt gamma-ray spectrum, and average number and energy of gamma-rays; X-rays in prompt fission, and excitation of X-rays in matter; gamma-ray spectra as a function of the mass ratio in fission, gamma-lines in those spectra, and Doppler effect-, anisotropy in gamma-emission relative to the direction of fragments; average gamma-energy and gamma-spectra as a function of mass of the fission products; delayed gamma-rays; delayed gamma-rays as a function of fission product mass. (author)

  14. Measurements of fission cross-sections. Chapter 4

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  15. Bimodal fission in the Skyrme-Hartree-Fock approach

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, W.

    2006-01-01

    Spontaneous-fission properties of 256Fm, 258Fm, and 260Fm isotopes are studied within the Skyrme-Hartree-Fock+BCS framework. In the particle-hole channel we take the Skyrme SkM* effective force, while in the particle-particle channel we employ the seniority pairing interaction. Three static fission paths for all investigated heavy fermium isotopes are found. The analysis of these fission modes allows to describe observed asymmetric fission of 256Fm, as well as bimodal fission of 258Fm and sym...

  16. Innovative Fission Measurements with a Time Projection Chamber

    Heffner, M D; Barnes, P D; Klay, J L

    2005-11-16

    This study explores a pioneering idea to utilize a Time Projection Chamber (TPC) to measure fission cross sections and other fission quantities. The TPC is inherently capable of measuring fragments from fission events, decay alphas, and beam-material scatters. This document explores whether the TPC can improve the precision of the {sup 239}Pu(n,f) cross section and measure other new and significant fission quantities simultaneously. This work shows that the TPC can in fact deliver sub-1% cross section measurements and should provide breakthroughs in both the quality and quantity of information available from neutron-induced fission experiments.

  17. Observation of β-delayed fission from 230Ac

    β-delayed fission for 230Ac was searched. 230Ra was produced via multinucleon transfer reaction by 60 MeV/u 18O ion irradiation of 232Th target. Thin 230Ra→230Ac sources of 108 atoms were acquired through radiochemical separations. The mica track detectors were used to record the fission events. The β-delayed fission nucleus 230Ac was identified via the observed two fission events and the measured γ-ray spectra. Its β-delayed fission probability was obtained to be (1.19 +- 0.85) x 10-8

  18. Fast Neutron Induced Fission neutron Spectra Below the Incident Energy

    Woodring, Mitchell L.; Egan, James J.; Kegel, Gunter H.; DeSimone, David J.

    2008-06-15

    Fission neutron spectra from neutron induced fission in 235U and 239Pu for energies below that of the neutron inducing fission have been measured. The spectra were obtained for 1.5 MeV and 2.5 MeV incident neutrons. Previous accelerator-based fission neutron spectra measurements have been seriously complicated by time-correlated gamma rays and scattered neutrons from the fission sample. Three barium fluoride detectors were placed near the sample undergoing induced fission and used to identify fission gamma rays. A coincidence of fission gamma rays was used to gate a liquid scintillator neutron detector to distinguish fission events from other events. The fission neutron spectral shape and average energy measured in this experiment compare well to both previous measurements and prior theory and also suggest a dependence on incident neutron energy and mass of the fissioning nucleus. An overview of the experiment, a discussion of the results, and the importance of this work to homeland security are given.

  19. A transferable model for singlet-fission kinetics.

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications. PMID:24848234

  20. Progress in fission product nuclear data. No. 13

    This is the 13th issue of a report series published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission), neutron reaction cross-sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and bumped fission product data (decay heat, absorption, etc.). The first part of the report consists of unaltered original data which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. Part 3 contains requirements for further measurements