WorldWideScience

Sample records for 13c nuclear magnetic

  1. 13C nuclear magnetic resonance study of the complexation of calcium by taurine

    13C Nuclear magnetic resonance chemical shifts, 1J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-[1, 2 13C] and a taurine-[1 13C] and taurine-[2 13C] mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their 13C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex

  2. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance.

    Ekiel, I; Smith, I C; Sprott, G D

    1983-01-01

    The main metabolic pathways in Methanospirillum hungatei GP1 were followed by using 13C nuclear magnetic resonance, with 13C-labeled acetate and CO2 as carbon sources. The labeling patterns found in carbohydrates, amino acids, lipids, and nucleosides were consistent with the formation of pyruvate from acetate and CO2 as the first step in biosynthesis. Carbohydrates are formed by the glucogenic pathway, and no scrambling of label was observed, indicating that the oxidative or reductive pentose...

  3. Citrate and Sugar Cofermentation in Leuconostoc oenos, a (sup13)C Nuclear Magnetic Resonance Study

    Ramos, A.; Santos, H.

    1996-01-01

    (sup13)C nuclear magnetic resonance spectroscopy was used to investigate citrate-glucose cometabolism in nongrowing cell suspensions of the wine lactic acid bacterium Leuconostoc oenos. The use of isotopically enriched substrates allowed us to identify and quantify in the end products the carbon atoms derived from each of the substrates supplied; furthermore, it was possible to differentiate between products derived from the metabolism of endogenous carbon reserves and those derived from exte...

  4. 13C nuclear magnetic resonance spectroscopy in the studies of biosynthetic routes of natural products

    During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies. (author)

  5. Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance.

    Novotny, Etelvino H; Hayes, Michael H B; Deazevedo, Eduardo R; Bonagamba, Tito J

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins. PMID:16688435

  6. Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance

    Novotny, Etelvino H.; Hayes, Michael H. B.; Deazevedo, Eduardo R.; Bonagamba, Tito J.

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Índio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. 13C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, 1H-13C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the π pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp—variable amplitude CP (VACP)—VACP/MAS pulse sequence, and composite π pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.

  7. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules.

    Aursand, Marit; Standal, Inger B; Axelson, David E

    2007-01-10

    13C NMR (nuclear magnetic resonance) spectroscopy, in conjunction with multivariate analysis of commercial fish oil-related health food products, have been used to provide discrimination concerning the nature, composition, refinement, and/or adulteration or authentication of the products. Supervised (probabilistic neural networks, PNN) and unsupervised (principal component analysis, PCA; Kohonen neural networks; generative topographic mapping, GTM) pattern recognition techniques were used to visualize and classify samples. Simple PCA score plots demonstrated excellent, but not totally unambiguous, class distinctions, whereas Kohonen and GTM visualization provided better results. Quantitative class predictions with accuracies >95% were achieved with PNN analysis. Trout, salmon, and cod oils were completely and correctly classified. Samples reported to be salmon oils and cod liver oils did not cluster with true salmon and cod liver oil samples, indicating mislabeling or adulteration. PMID:17199311

  8. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  9. Quantitative analysis of carbon--carbon coupling in the 13C nuclear magnetic resonance spectra of molecules biosynthesized from 13C enriched precursors

    The quantitative dependence of the intensities of the various multiplet lines arising from 13C-13C nuclear spin coupling as a function of 13C enrichment is considered. Two cases are distinguished, depending on whether or not the enrichment of the interacting carbons is statistically independent. For statistically independent labeling, the splitting is simply related to the enrichment of the various carbons. For cases in which this condition does not hold, the splitting provides a measure of the correlation in the enrichment of interacting carbons. The quantitative analysis of 13C-13C coupling is shown to provide additional information in biosynthetic experiments in which a correlation in the labeling of the substrates is introduced. In contrast to the information which is obtained by looking for the incorporation of a label into a specific position of a biosynthesized molecule, a quantitative analysis of the correlation in the labeling of the product can give information about the direct incorporation of more complex structural units. Three examples are discussed: the glycolysis of glucose to lactate, the biosynthesis of galactosylglycerol by species of red algae, and the use of doubly labeled acetate to study the biosynthetic incorporation of acetate units into more complex molecules. (U.S.)

  10. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    Epand, Richard M.; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidy...

  11. Cellular applications of 31P and 13C nuclear magnetic resonance

    High-resolution nuclear magnetic resonance (NMR) studies of cells and purified mitochondria are discussed to show the kind of information that can be obtained in vivo. In suspensions of Escherichia coli both phosphorus-31 and carbon-13 NMR studies of glycolysis of bioenergetics are presented. In rat liver cells the pathways of gluconeogenesis from carbon-13-labeled glycerol are followed by carbon-13 NMR. In the intact liver cells cytosolic and mitochondrial pH's were separately measured by phosphorus-31 NMR. In purified mitochondria the internal and external concentrations of inorganic phosphate, adenosine diphosphate, and adenosine triphosphate were determined by phosphorus-31 while the pH difference across the membrane was measured simultaneously

  12. 13C and 31P NMR [Nuclear Magnetic Resonance] studies of prostate tumor metabolism

    The current research on prostate cancer by NMR spectroscopy and microscopy will most significantly contribute to tumor diagnosis and characterization only if sound biochemical models of tumor metabolism are established and tested. Prior searches focused on universal markers of malignancy, have to date, revealed no universal markers by any method. It is unlikely that NMRS will succeed where other methods have failed, however, NMR spectroscopy does provide a non-invasive means to analyze multiple compounds simultaneously in vivo. In order to fully evaluate the ability of NMRS to differentiate non-malignant from malignant tissues it is necessary to determine sufficient multiple parameters from specific, well-diagnosed, histological tumor types that, in comparison to normal tissue and non-neoplastic, non-normal pathologies from which the given neoplasm must be differentiated, one has enough degrees of freedom to make a mathematically and statistically significant determination. Confounding factors may consist of tumor heterogeneity arising from regional variations in differentiation, ischemia, necrosis, hemorrhage, inflammation and the presence of intermingled normal tissue. One related aspect of our work is the development of {13C}-1H metabolic imaging of 13C for metabolic characterization, with enhanced spatial localization (46). This should markedly extend the range of potential clinical NMR uses because the spatial variation in prostate metabolism may prove to be just as important in tumor diagnoses as bulk (volume-averaged) properties themselves. It is our hope that NMRS and spectroscopic imaging will reveal a sound correlation between prostate metabolism and tumor properties that will be clinically straightforward and useful for diagnosis

  13. Conditions to obtain precise and true measurements of the intramolecular {sup 13}C distribution in organic molecules by isotopic {sup 13}C nuclear magnetic resonance spectrometry

    Bayle, Kevin [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Gilbert, Alexis [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Julien, Maxime [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Silvestre, Virginie; Robins, Richard J.; Akoka, Serge [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France)

    2014-10-10

    Highlights: • Evaluation of the trueness and precision criteria of isotopic {sup 13}C NMR spectrometry. • Use of bi-labelled [1,2-{sup 13}C{sub 2}]acetic acid to determine the performance of the instrumental response. • Inter-calibration of the {sup 13}C intramolecular composition of acetic acid using the technique GC-Py–irm-MS. - Abstract: Intramolecular {sup 13}C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic {sup 13}C NMR spectrometry provides a general tool for measuring the position-specific {sup 13}C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal {sup 13}C distribution, and (ii) an approach to determining the “absolute” position-specific {sup 13}C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the {sup 13}C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the {sup 13}C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH{sub 3} by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was

  14. Conditions to obtain precise and true measurements of the intramolecular 13C distribution in organic molecules by isotopic 13C nuclear magnetic resonance spectrometry

    Highlights: • Evaluation of the trueness and precision criteria of isotopic 13C NMR spectrometry. • Use of bi-labelled [1,2-13C2]acetic acid to determine the performance of the instrumental response. • Inter-calibration of the 13C intramolecular composition of acetic acid using the technique GC-Py–irm-MS. - Abstract: Intramolecular 13C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic 13C NMR spectrometry provides a general tool for measuring the position-specific 13C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal 13C distribution, and (ii) an approach to determining the “absolute” position-specific 13C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the 13C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the 13C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the

  15. Site-specific {sup 13}C content by quantitative isotopic {sup 13}C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst [Firmenich SA, Corporate R and D Division, P.O. Box 239, 1211 Geneva 8 (Switzerland); Gilbert, Alexis; Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Pagelot, Alain [Bruker Biospin SAS, 34 rue de l‘Industrie, 67166 Wissembourg Cedex (France); Moskau, Detlef; Moreno, Aitor [Bruker Biospin AG, Industriestrasse 26, 8117 Fällanden (Switzerland); Schleucher, Jürgen [Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå (Sweden); Reniero, Fabiano; Holland, Margaret; Guillou, Claude [European Commission, Joint Research Centre – Institute for Health and Consumer Protection, via E. Fermi 2749, I-21027 Ispra (Italy); Silvestre, Virginie; Akoka, Serge [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France)

    2013-07-25

    Graphical abstract: -- Highlights: •First ring test on isotopic {sup 13}C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic {sup 13}C NMR spectrometry, which is able to measure intra-molecular {sup 13}C composition, is of emerging demand because of the new information provided by the {sup 13}C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic {sup 13}C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular {sup 13}C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic {sup 13}C NMR was then assessed on vanillin from three different origins associated with specific δ{sup 13}C{sub i} profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ{sup 13}C{sub i} in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  16. In Situ Determination of Fructose Isomer Concentrations in Wine Using (13)C Quantitative Nuclear Magnetic Resonance Spectroscopy.

    Colombo, Cinzia; Aupic, Clara; Lewis, Andrew R; Pinto, B Mario

    2015-09-30

    A practical method for simultaneously quantifying fructose and ethanol contents in wines using (13)C quantitative nuclear magnetic resonance (qNMR) spectroscopy is reported. Less than 0.6 mL of wine is needed, and the method leaves an unmodified sample available for subsequent testing or additional analyses. The relative ratios of the five known fructose isomers in ethanolic solutions at different pH and their variations with the temperature are also reported. The data are correlated with the sweetness of wines. The technique was applied to commercially available wines, and the results are compared to other methods. Sugar levels above 0.6 g/L can also be measured. A simple adaptation of the method permits measurement of different carbohydrates using integration of single peaks for each compound, in combination with an external reference (13)C qNMR spectrum of a sample with a known concentration. The method can be applied at all stages of wine production, including grape must, during fermentation, and before and after bottling. PMID:26350157

  17. Espectroscopia de Ressonância Magnética Nuclear de 13C no estudo de rotas biossintéticas de produtos naturais 13C Nuclear Magnetic Resonance spectroscopy in the studies of biosythetic routes of natural products

    Fernando César de Macedo Júnior

    2007-02-01

    Full Text Available During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies.

  18. Site-specific 13C content by quantitative isotopic 13C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    Graphical abstract: -- Highlights: •First ring test on isotopic 13C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic 13C NMR spectrometry, which is able to measure intra-molecular 13C composition, is of emerging demand because of the new information provided by the 13C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic 13C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular 13C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic 13C NMR was then assessed on vanillin from three different origins associated with specific δ13Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ13Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results

  19. Evidence of 13C non-covalent isotope effects obtained by quantitative 13C nuclear magnetic resonance spectroscopy at natural abundance during normal phase liquid chromatography.

    Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Rojas, Jose Manuel Moreno; Guillou, Claude; Remaud, Gérald S

    2009-10-16

    Quantitative isotopic (13)C NMR at natural abundance has been used to determine the site-by-site (13)C/(12)C ratios in vanillin and a number of related compounds eluted from silica gel chromatography columns under similar conditions. Head-to-tail isotope fractionation is observed in all compounds at the majority of carbon positions. Furthermore, the site-specific isotope deviations show signatures characteristic of the position and functionality of the substituents present. The observed effects are more complex than would be obtained by simply summing the individual effects. Such detail is hidden when only the global (13)C content is measured by mass spectrometry. In particular, carbon positions within the aromatic ring are found to show site-specific isotope fractionation between the solute and the stationary phase. These interactions, defined as non-covalent isotope effects, can be normal or inverse and vary with the substitution pattern present. PMID:19748628

  20. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae

    The metabolism of leucine to isoamyl alcohol in yeast was examined by 13C nuclear magnetic resonance spectroscopy. The product of leucine transamination, alpha-ketoisocaproate had four potential routes to isoamyl alcohol. The first, via branched-chain alpha-keto acid dehydrogenase to isovaleryl-CoA with subsequent conversion to isovalerate by acyl-CoA hydrolase operates in wild-type cells where isovalerate appears to be an end product. This pathway is not required for the synthesis of isoamyl alcohol because abolition of branched-chain alpha-keto acid dehydrogenase activity in an lpd1 disruption mutant did not prevent the formation of isoamyl alcohol. A second possible route was via pyruvate decarboxylase; however, elimination of pyruvate decarboxylase activity in a pdc1 pdc5 pdc6 triple mutant did not decrease the levels of isoamyl alcohol produced. A third route utilizes alpha-ketoisocaproate reductase (a novel activity in Saccharomyces cerevisiae) but with no role in the formation of isoamyl alcohol from alpha-hydroxyisocaproate because cell homogenates could not convert alpha-hydroxyisocaproate to isoamyl alcohol. The final possibility was that a pyruvate decarboxylase-like enzyme encoded by YDL080c appears to be the major route of decarboxylation of alpha-ketoisocaproate to isoamyl alcohol although disruption of this gene reveals that at least one other unidentified decarboxylase can substitute to a minor extent. (author)

  1. Quantitative solid-state 13C nuclear magnetic resonance spectrometric analyses of wood xylen: effect of increasing carbohydrate content

    Bates, A.L.; Hatcher, P.G.

    1992-01-01

    Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.

  2. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  3. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance

    Wilson, M.A.; Hatcher, P.G.

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.

  4. Determination of refractory organic matter in marine sediments by chemical oxidation, analytical pyrolysis and solid-state 13C nuclear magnetic resonance spectroscopy

    Rosa Arranz, José M. de la; González-Pérez, José Antonio; Hatcher, Patrick G; Knicker, Heike; González-Vila, Francisco Javier

    2008-01-01

    Seeking to quantify the amount of refractory organic matter (ROM), which includes black carbon-like material (BC), in marine sediments, we have applied a two-step procedure that consists of a chemical oxidation with sodium chlorite of the demineralized sediments followed by integration of the aromatic C region in the remaining residues by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The efficacy for lignin removal was tested by analytical pyrolysis in the presence of tetrame...

  5. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to {sup 13}C nuclear magnetic resonance pattern recognition

    Oettl, Sarah K. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Hubert, Jane, E-mail: jane.hubert@univ-reims.fr [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Nuzillard, Jean-Marc [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Stuppner, Hermann [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Renault, Jean-Hugues [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Rollinger, Judith M. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria)

    2014-10-10

    Highlights: • The major depsides of a lichen extract were directly identified within mixtures. • The initial extract was rapidly fractionated by CPC in the pH-zone refining mode. • Hierarchical clustering of {sup 13}C NMR signals resulted in the identification of depside molecular skeletons. • {sup 13}C chemical shift clusters were assigned to structures using a {sup 13}C NMR database. • Six depsides were unambiguously identified by this approach. - Abstract: Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or C-C-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After {sup 13}C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of {sup 13}C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house {sup 13}C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5

  6. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition

    Highlights: • The major depsides of a lichen extract were directly identified within mixtures. • The initial extract was rapidly fractionated by CPC in the pH-zone refining mode. • Hierarchical clustering of 13C NMR signals resulted in the identification of depside molecular skeletons. • 13C chemical shift clusters were assigned to structures using a 13C NMR database. • Six depsides were unambiguously identified by this approach. - Abstract: Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or C-C-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After 13C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of 13C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house 13C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5), and olivetonide (6)

  7. Applications of the 18O-isotope shift on 13C and 15N nuclear magnetic resonance spectroscopy to the study of bioorganic reaction mechanisms

    The study of reactions involving the formation and cleavage of carbon-oxygen or nitrogen-oxygen bonds has been significantly aided by recent demonstrations of the generality and characteristics of the 18O-isotope shift in 13C and 15N nuclear magnetic resonance spectroscopy. In many instances, the magnitudes of the 18O-induced isotopic shifts are sufficiently large as to permit the use of even modest NMR instrumentation and natural abundance 13C. Studies involving less soluble compounds, higher molecular weight materials or relatively rapid reactions may often be carried out using 13C enrichment. Because NMR spectroscopy is non-destructive, it has proven to be extremely useful in the study of natural product biosynthetic pathways. Another area where important applications are being made is in the study of enzymatic and non-enzymatic reaction mechanisms. The characteristics of the 18O isotope shift in 13C NMR spectroscopy are reviewed. Several examples from the work of other groups in the area of natural product biosynthesis are briefly mentioned. This is followed by a number of illustrative applications in the area of bioorganic and enzymatic reaction mechanism that have been examined in our laboratory. The enzymatic examples include acid phosphatases, epoxide hydratase, acetylcholinesterase and asparaginase. 20 refs.; 1 figure

  8. Post-mortem changes in porcine M. longissimus studied by solid-state 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy.

    Bertram, Hanne Christine; Jakobsen, Hans Jørgen; Andersen, Henrik Jørgen; Karlsson, Anders Hans; Engelsen, Søren Balling

    2003-03-26

    Solid-state (13)C cross-polarization (CP) magic-angle spinning (MAS) nuclear magnetic resonance (NMR) experiments are carried out for the first time on rapidly frozen muscle biopsies taken in M. longissimus in vivo and at 1 min, 45 min, and 24 h post-mortem from three pigs. Two of the pigs were CO(2)-stunned (control animals), and one was pre-slaughter-stressed (treadmill exercise) followed by electrical stunning to induce difference in metabolism post-mortem. (13)C resonance signals from saturated and unsaturated carbons in fatty acids, carboxylic carbons, and carbons in lactate and glycogen are identified in the solid-state NMR spectra. The (13)C CP MAS spectra obtained for post-mortem samples of the stressed, electrically stunned pig differ significantly from the post-mortem control samples, as the intensity of a resonance line appearing at 30 ppm, assigned to carbons of the methylene chains, is reduced for the stressed pig. This spectral difference is probably due to changes in lipid mobility and indicates altered membrane properties in the muscle of the stressed/electrically stunned animal when compared with the control animals already 1 min post-mortem. In addition, the post-mortem period changes in glycogen carbons can be estimated from the (13)C CP MAS spectra, yielding a correlation of r = 0.74 to subsequent biochemical determination of the glycogen content. PMID:12643674

  9. Alteration of interaction between astrocytes and neurons in different stages of diabetes: a nuclear magnetic resonance study using [1-(13)C]glucose and [2-(13)C]acetate.

    Wang, Na; Zhao, Liang-Cai; Zheng, Yong-Quan; Dong, Min-Jian; Su, Yongchao; Chen, Wei-Jian; Hu, Zi-Long; Yang, Yun-Jun; Gao, Hong-Chang

    2015-01-01

    Increasing evidence has shown that the brain is a site of diabetic end-organ damage. This study investigates cerebral metabolism and the interactions between astrocytes and neurons at different stages of diabetes to identify the potential pathogenesis of diabetic encephalopathy. [1-(13)C]glucose or [2-(13)C]acetate is infused into 1- and 15-week diabetic rats, the brain extracts of which are analyzed by using (1)H and (13)C magnetic resonance spectroscopy. The (13)C-labeling pattern and enrichment of cerebral metabolites are also investigated. The increased (13)C incorporation in the glutamine, glutamate, and γ-aminobutyric acid carbons from [2-(13)C]acetate suggests that the astrocytic mitochondrial metabolism is enhanced in 1-week diabetic rats. By contrast, the decreased labeling from [1-(13)C]glucose reflected that the neuronal mitochondrial metabolism is impaired. As diabetes developed to 15 weeks, glutamine and glutamate concentrations significantly decreased. The increased labeling of glutamine C4 but unchanged labeling of glutamate C4 from [2-(13)C]acetate suggests decreased astrocyte supply to the neurons. In addition, the enhanced pyruvate recycling pathway manifested by the increased lactate C2 enrichment in 1-week diabetic rats is weakened in 15-week diabetic rats. Our study demonstrates the overall metabolism disturbances, changes in specific metabolic pathways, and interaction between astrocytes and neurons during the onset and development of diabetes. These results contribute to the mechanistic understanding of diabetes pathogenesis and evolution. PMID:25048983

  10. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  11. High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    Bouhrara, M.

    2011-09-06

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  12. Analysis of Changes in Biochemical Composition Under Free-Air CO2 enrichment by 13C Nuclear Magnetic Resonance: Leaf Litter, Roots, and Soils From Oak Ridge

    Hockaday, W. C.; Masiello, C. A.; Baldock, J. A.; Iversen, C. M.; Norby, R. J.

    2007-12-01

    Changes in plant biochemistry as a result of increasing atmospheric carbon dioxide concentration [CO2] influence the cycling of the terrestrial carbon pool and thereby constitute a climate feedback. We have investigated molecular-level changes in the chemical composition of the organic carbon pool of a deciduous forest in Oak Ridge, Tennessee, after 9 years of free-air CO2 enrichment. We employ a novel approach based upon solid-state 13C nuclear magnetic resonance (NMR) analysis and application of a molecular mixing model. This method generates quantitative estimates of total lipids, proteins, carbohydrates, and lignin. 13C NMR spectra were acquired for acid-insoluble soil organic matter from depths of 0 - 5 cm and 5 - 15 cm in two ambient and two elevated [CO2] treatments. In the upper 5 cm, elevated [CO2] soils show a 7% increase in lignin, while lipids and proteins decrease by approximately 10%. Below 5 cm, soil lipid content decreased by 15% relative to ambient [CO2] soils. Changes in the composition of the SOM pool may be attributed to changes in plant biochemistry under elevated [CO2]. Therefore we have performed 13C NMR analysis of major aboveground and belowground biomass inputs: senesced leaves and fine roots (<1 mm diameter). Significant [CO2] effects on root chemistry are observed. Based upon these data, we are able to make a preliminary assessment of the contributions of leaf C and root C to changes in the molecular composition of the SOM pool.

  13. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.

    Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits. PMID:26374002

  14. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits

  15. /sup 13/C nuclear magnetic resonance study of the CO/sub 2/ activation of ribulosebisphosphate carboxylase from Rhodospirillum rubrum

    O' Leary, M.H. (Univ. of Wisconsin, Madison); Joworski, R.J.; Hartman, F.C.

    1979-02-01

    Ribulosebisphosphate carboxylase (3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39) from Rhodospirillum rubrum is activated by CO/sub 2/ and Mg/sup 2 +/. /sup 13/C NMR spectra were determined for the unactivated enzyme and for enzyme that had been activated by /sup 13/CO/sub 2/ and Mg/sup 2 +/. In addition to the expected resonance for H/sup 13/CO/sub 3//sup -//CO/sub 3//sup 2 -/ at 161.8 ppM downfield from tetramethylsilane, the spectrum of the activated enzyme shows a broad resonance at 164.9 ppM. Analogy with previous NMR studies of /sup 13/CO/sub 2/ binding to hemoglobin suggests that the CO/sub 2/ activation of ribulosebisphosphate carboxylase involves formation of a carbamate between an enzyme amino group and CO/sub 2/.

  16. The structure of teichoic acid from Bacillus subtilis var. niger WM as determined by 13C nuclear-magnetic-resonance spectroscopy

    The walls of Bacillus subtilis var. niger WM, grown in a Mg2+-limited chemostat culture (carbon source glucose, dilution rate = 0.2 h-1, 370C, pH 7) contained 45% (w/w) teichoic acid, a polymer composed of glycerol, phosphate and glucose in the molar ratio 1.00 : 1.00 : 0.88. Alkaline hydrolysis of this teichoic acid yielded 1-O-β-glucosylglycerol phosphate (together with small amounts of glycerol phosphate), and 13C nuclear magnetic resonance spectra of this hydrolysis product, and its derivative after alkaline phosphatase treatment, confirmed that the monomeric unit was 1-O-β-glucosylglycerol-3-phosphate. Assignment of the resonances in the spectrum of undegraded teichoic acid revealed that the polymer was a poly[(2,3)glycerol phosphate], glucosidically substituted on C-1 of glycerol with β-glucose. (orig.)

  17. Comparative Analysis of the Chemical Composition of Mixed and Pure Cultures of Green Algae and Their Decomposed Residues by 13C Nuclear Magnetic Resonance Spectroscopy

    Zelibor, J. L.; Romankiw, L.; Hatcher, P. G.; Colwell, R. R.

    1988-01-01

    It is known that macromolecular organic matter in aquatic environments, i.e., humic substances, is highly aliphatic. These aliphatic macromolecules, predominantly paraffinic in structure, are prevalent in marine and lacustrine sediments and are believed to originate from algae or bacteria. A comparative study of mixed and pure cultures of green algae and their decomposed residues was performed by using solid-state 13C nuclear magnetic resonance spectroscopy as the primary analytical method. Results obtained in this study confirm the presence of components that are chemically refractory and that are defined as alghumin and hydrolyzed alghumin. These were detected in heterogeneous, homogeneous, and axenic biomasses composed of several genera of Chlorophyta. Although the chemical composition of algal biomass varied with culture conditions, the chemical structure of the alghumin and hydrolyzed alghumin, demonstrated by 13C nuclear magnetic resonance spectroscopy appeared to be constant for members of the Chlorophyta examined in this study. The alghumin was dominated by carbohydrate-carbon, with minor amounts of amide or carboxyl carbon and paraffinic carbon, the latter surviving strong hydrolysis by 6 N HCI (hydrolyzed alghumin). Bacterial decomposition of heterogeneous algal biomass labeled with 13C was conducted under both aerobic and anaerobic conditions to determine chemical structure and stability of the refractory material. The refractory fraction ranged from 33% in aerobic to 44% in anaerobic cultures. The refractory fraction recovered from either aerobic or anaerobic degradation comprised 40% alghumin, which represented an enrichment by 10% relative to the proportion of alghumin derived from whole cells of algae. The paraffinic component in the hydrolyzed alghumin of whole algal cells was found to be 1.8% and increased to 5.1 and 6.9% after aerobic and anaerobic bacterial degradation, respectively. It is concluded that members of the Chlorophyta contain a

  18. Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.

    Radoš, Dušica; Turner, David L; Fonseca, Luís L; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J; Neves, Ana Rute; Santos, Helena

    2014-05-01

    Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation. PMID:24610842

  19. 18O isotope effect in 13C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    The 18O isotope-induced shifts in 13C and 31P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the 18O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, [α-13C,ester-18O]benzyl phosphate and [ester-18O]benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 750C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 2H]Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables

  20. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  1. Effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-01-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labelled DMSO glassing solution is twice as fast as the unenriched DMSO while the NMR enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of d...

  2. Magnetic Resonance Imaging with Hyperpolarized 13C Contrast Agents

    Gordon, Jeremy W.

    Hyperpolarized 13C substrates offer the potential to non-invasively image metabolism and enzymatic activity. However, hyperpolarization introduces a number of difficulties, and imaging is hampered by non-equilibrium magnetization and the need for spectral encoding. There is therefore a need for fast and RF efficient spectral imaging techniques. This work presents a number of new methods that can be used to improve polarization, increase RF efficiency and improve modeling accuracy in hyperpolarized 13C experiments. In particular, a novel encoding and reconstruction algorithm is presented that can generate spatially and spectrally resolved images with a single RF excitation and echo time. This reconstruction framework increases data acquisition efficiency, enabling accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Overall, the methods enumerated in this dissertation have the potential to improve modeling accuracy and to mitigate the conventional tradeoffs between SNR, spatial resolution, and temporal resolution that govern image quality in hyperpolarized 13C experiments.

  3. Possibilities and limitations of sup 1 H and sup 13 C nuclear magnetic resonance spectroscopy for the identification and the quantitative determination of some naturally occurring carcinogenic risk factors. [Senecio vulgaris; Senecio vernalis; Senecio jacobaea; Euphorbia ingens

    Pieters, L.

    1988-01-01

    The aim of this work was to develop a phytochemical screening method for some selected carcinogenic or tumor-promoting principles in higher plants. The pyrrolizidine alkaloids from some Senecio species (Compositae or Asteraceae), and the diterpene ester from Croton tiglium L. and Euphorbia ingens E. Mey (Euphorbiaceae) were chosen as representatives of both groups. The possibilities and limitations of {sup 1}H and {sup 13}C nuclear magnetic resonance spectroscopy ({sup 1}H and {sup 13}C NMR) for the analysis of mixtures of carcinogenic pyrrolizidine alkaloids were compared with high performance liquid chromatography, and gas chromatography with high performance liquid chromatography, and gas chromatography was well as gas chromatography - mass spectrometry. Senecio vulgaris L., Senecio vernalis Waldst. and Kit. and Senecio jacobaea L. were investigated.

  4. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    Vinding, Mads Sloth; Laustsen, Christoffer; Maximov, Ivan I.;

    2013-01-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is ach......Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction....... This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region...

  5. Metabolism of D-glucose in a wall-less mutant of Neurospora crassa examined by 13C and 31P nuclear magnetic resonances: effects of insulin

    13C NMR and 31P NMR have been used to investigate the metabolism of glucose by a wall-less strain of Neurospora crassa (slime), grown in a supplemented nutritionally defined medium and harvested in the early stationary stage of growth. With D-[1-13C]- or D-[6-13C]glucose as substrates, the major metabolic products identified from 13C NMR spectra were [2-13C]ethanol, [3-13C]alanine, and C1- and C6-labeled trehalose. Several observations suggested the existence of a substantial hexose monophosphate (HMP) shunt: (i) a 70% greater yield of ethanol from C6- than from C1-labeled glucose; (ii) C1-labeled glucose yielded 19% C6-labeled trehalose, while C6-labeled glucose yielded only 4% C1-labeled trehalose; (iii) a substantial transfer of 13C from C2-labeled glucose to the C2-position of ethanol. 31P NMR spectra showed millimolar levels of intracellular inorganic phosphate (Pi), phosphodiesters, and diphosphates including sugar diphosphates and polyphosphate. Addition of glucose resulted in a decrease in cytoplasmic Pi and an increase in sugar monophosphates, which continued for at least 30 min. Phosphate resonances corresponding to metabolic intermediates of both the glycolytic and HMP pathways were identified in cell extracts. Addition of insulin (100 nM) with the glucose had the following effects relative to glucose alone: (i) a 24% increase (P less than 0.01) in the rate of ethanol production; (ii) a 38% increase (P less than 0.05) in the rate of alanine production; (iii) a 27% increase (P less than 0.05) in the rate of glucose disappearance. Insulin thus increases the rates of production of ethanol and alanine in these cells, in addition to increasing production of CO2 and glycogen, as previously shown. (author)

  6. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13C NMR (irm-13C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements

  7. Four-dimensional 13C/13C-edited nuclear Overhauser Enhancement Spectroscopy of a protein in solution: Application to interleukin 1β

    A four-dimensional 13C/13C-edited NOESY experiment is described which dramatically improves the resolution of protein NMR spectra and enables the straightforward assignment of nuclear Overhauser effects involving aliphatic and/or aromatic protons in larger proteins. The experiment is demonstrated for uniformly (>95%) 13C-labeled interleukin 1β, a protein of 153 residues and 17.4 kDa, which plays a key role in the immune response. NOEs between aliphatic and/or aromatic protons are first spread out into a third dimension by the 13C chemical shift of the carbon atom attached to the originating proton and subsequently into a fourth dimension by the 13C chemical shift of the carbon atom attached to the destination proton. Thus, each NOE cross peak is labeled by four chemical shifts. By this means, ambiguities in the assignment of NOEs that arise from chemical shift overlap and degeneracy are completely removed. Further, NOEs between protons with the same chemical shifts can readily be detected providing their attached carbon atoms have different 13C chemical shifts. The design of the pulse sequence requires special care to minimize the level of artifacts arising from undesired coherence transfer pathways, and in particular those associated with diagonal peaks which correspond to magnetization that has not been transferred from one proton to another. The 4D 13C/13C-edited NOESY experiment is characterized by high sensitivity as the through-bond transfer steps involve the large 1JCH (130 Hz) couplings, and it is possible to obtain high-quality spectra on 1-2 mM samples of 13C-labeled protein in as little as 3 days. This experiment should open up the application of protein structure determination by NMR to a large number of medium-sized proteins (150-300 residues) of biological interest

  8. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization

    Hurd, Ralph E.; Yen, Yi‐Fen; Chen, Albert;

    2012-01-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this techn......This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation...

  9. Studies on molecular motion in lyotropic mesophases of hexaethylene glycol dodecyl ether-D2O system by 13C nuclear magnetic resonance

    The 13C spin-lattice relaxation time(T1) and the resonance line width corresponding to T2 * were measured for each of the carbons in hexaethylene glycol dodecyl ether-water(D2O) system, which exists as two distinct lyotropic mesophases(neat and middle phase). The line width is very narrow in the isotropic state, such as in organic solvents and in a lower concentration aqueous solution, whereas in a mesophase and in a higher concentration aqueous solution, the line width of the alkyl chain was broadened. Here the line widths for glycol carbons were about an order of magnitude smaller than for an alkyl chain, demonstrating the difference of molecular motion. The chemical shifts of the alkyl chain in the middle phase were different from those in the isotropic state; this difference was clearly shown in the spectrum of the middle/isotropic coexistent phase. 13C-T1 was not sensitive enough to differentiate between the isotropic and the lyotropic phase at room temperature. It was found that T1 did not equal T2 * for any of the methylene carbons, the difference being most marked for the terminal methyl carbon in the alkyl chain. The orientational order in the phases had an influence on the T2 * values. (author)

  10. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study

    Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13C- and 31P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homo-spermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells. (authors)

  11. Detection of kestoses and kestose-related oligosaccharides in extracts of Festuca arundinacea, Dactylis glomerate L. , and Asparagus officinalis L. root cultures and invertase by sup 13 C and sup 1 H nuclear magnetic resonance spectroscopy

    Forsythe, K.L.; Feather, M.S.; Gracz, H.; Wong, T.C. (Univ. of Missouri, Columbia (USA))

    1990-04-01

    Previous studies show that {sup 13}C nuclear magnetic resonance spectroscopy can be used to detect and identify mixtures of 1-kestose and neokestose after conversion to the acetate derivatives. In this study, unequivocal assignments are made for the anomeric carbon and proton signals for the above two trisaccharide acetates as well as for 6-kestose hendecaacetate and for nystose tetradecaacetate (a 1-kestose-derived tetrasaccharide). A number of oligosaccharide fractions were isolated from several plant species, converted to the acetates, and nuclear magnetic resonance spectra obtained. Using the above reference data, the following information was obtained. The trisaccharide fraction from Dactylis gomerata L. stem tissue and Asparagus officinalis L. roots contain both 1-kestose and neokestose, and the tetrasaccharide fractions contain three components, one of which is nystose. Penta- and hexasaccharide acetates were also isolated from A. officinalis L. roots and were found to contain, respectively, four and at least five components. All components of both of the above species appear to contain a kestose residue and to be produced by the sequential addition of fructofuranosyl units to these. The trisaccharide fraction from Festuca arundinacea is complex, and contains at least five different components, two of which appear to be 1-kestose and neokestose.

  12. High-field dissolution dynamic nuclear polarization of [1-13C]pyruvic acid

    Yoshihara, Hikari A. I.; Can, Emine; Karlsson, Magnus;

    2016-01-01

    [1-13C]pyruvate is the most widely used hyperpolarized metabolic magnetic resonance imaging agent. Using a custom-built 7.0 T polarizer operating at 1.0 K and trityl radical-doped [1-13C]pyruvic acid, unextrapolated solution-state 13C polarization greater than 60% was measured after dissolution a...

  13. Spectral editing for in vivo 13C magnetic resonance spectroscopy

    Xiang, Yun; Shen, Jun

    2012-01-01

    In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.

  14. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The δ 13C parameter was not significant for characterizing an origin, while the (D/H)I ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C4 syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C4 syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying

  15. Study and validity of {sup 13}C stable carbon isotopic ratio analysis by mass spectrometry and {sup 2}H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    Cotte, J.F. [Cooperative France Miel, BP 5, 330 Mouchard (France); Casabianca, H. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Lheritier, J. [Cooperative France Miel, BP 5, 330 Mouchard (France); Perrucchietti, C. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Sanglar, C. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Waton, H. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Grenier-Loustalot, M.F. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France)]. E-mail: mf.grenier-loustalot@sca.cnrs.fr

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The {delta} {sup 13}C parameter was not significant for characterizing an origin, while the (D/H){sub I} ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C{sub 4} syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C{sub 4} syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying.

  16. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying. PMID:17386484

  17. Carbonyl 13C NMR spectrum of basin pancreatic trypsin inhibitor: resonance assignments by selective amide hydrogen isotope labeling and detection of isotope effects on 13C nuclear shielding

    The carbonyl region of the natural abundance 13C nuclear magnetic resonance (NMR) spectrum of basic pancreatic trypsin inhibitor is examined, and 65 of the 66 expected signals are characterized at varying pH and temperature. Assignments are reported for over two-thirds of the signals, including those of all buried backbone amide groups with slow proton exchange and all side-chain carbonyl groups. This is the first extensively assigned carbonyl spectrum for any protein. A method for carbonyl resonance assignments utilizing amide proton exchange and isotope effects on nuclear shielding is described in detail. The assignments are made by establishing kinetic correlation between effects of amide proton exchange observed in the carbonyl 13C region with development of isotope effects and in the amide proton region with disappearance of preassigned resonances. Several aspects of protein structure and dynamics in solution may be investigated by carbonyl 13C NMR spectroscopy. Some effects of side-chain primary amide group hydrolysis are described. The main interest is on information about intramolecular hydrogen-bond energies and changes in the protein due to amino acid replacements by chemical modification or genetic engineering

  18. Electron-nuclear interaction in 13C nanotube double quantum dots

    Churchill, H O H; Bestwick, A J; Harlow, J W;

    2009-01-01

    For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear...... environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe...... strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 ¿µeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information...

  19. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of {sup 1} H and {sup 13} C of monoterpenes using computational methods; Asignacion inequivoca de las senales del espectro de resonancia magnetica nuclear de {sup 1} H y {sup 13} C de monoterpenos empleando metodos computacionales

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L. [Universidad Nacional Autonoma de Mexico, Instituto de Quimica, A.P. 70213, 04510 Mexico D.F. (Mexico)

    2000-07-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and {alpha}-pinene. The {sup 1} H and {sup 13} C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of {sup 1} H nuclei and qualitatively in the case of {sup 13} C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  20. The use of dynamic nuclear polarization in 1H and 13C solid state NMR

    The Dynamic Nuclear Polarization (DNP) effect is used at room temperature in combination with 13C NMR. Due to the low natural abundance of 13C spins (1%) the signal is very weak, but when the DNP effect is used the 13C signal can be enhanced and therefore the number of scans and the measuring time considerably reduced. The theory is presented and the experimental set-up is described. Experiments on polystyrene, artificially doped with free radicals are described and it is examined whether the theory of the DNP effect can be used in a quantitative way. Applications of the use of the DNP effect in 13C NMR are shown. Excellent spectra are presented of artificial and natural diamonds, possibly to be used for diamond characterization purposes. 161 refs.; 61 figs.; 3 tabs

  1. Imaging cerebral 2-ketoisocaproate metabolism with hyperpolarized (13)C Magnetic Resonance Spectroscopic Imaging

    Butt, Sadia Asghar; Søgaard, Lise Vejby-Christensen; Magnusson, Peter O.; Lauritzen, Mette Hauge; Laustsen, Christoffer; Akeson, Per; Ardenkjær-Larsen, Jan H

    2012-01-01

    The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnetic...

  2. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona;

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables cardiac metabolism assessment and provides a powerful tool for heart physiology studies, although the low molar concentration of derivate metabolites gives rise to technological limitations in terms of data quality. The design...... coil throughout the volume of interest for cardiac imaging in pig. Experimental SNR-vs-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), permitted to highlight the performance of the proposed coils configuration. © 2013 Elsevier Ltd. All rights reserved....

  3. Astroglial Contribution to Brain Energy Metabolism in Humans Revealed by 13C Nuclear Magnetic Resonance Spectroscopy: Elucidation of the Dominant Pathway for Neurotransmitter Glutamate Repletion and Measurement of Astrocytic Oxidative Metabolism

    Lebon, Vincent; Petersen, Kitt F.; Cline, Gary W.; Shen, Jun; Mason, Graeme F.; Dufour, Sylvie; Behar, Kevin L.; Shulman, Gerald I.; Rothman, Douglas L.

    2002-01-01

    Increasing evidence supports a crucial role for glial metabolism in maintaining proper synaptic function and in the etiology of neurological disease. However, the study of glial metabolism in humans has been hampered by the lack of noninvasive methods. To specifically measure the contribution of astroglia to brain energy metabolism in humans, we used a novel noninvasive nuclear magnetic resonance spectroscopic approach. We measured carbon 13 incorporation into brain glutamate and glutamine in...

  4. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose

    Lefort, Ronan; Bordat, Patrice; Cesaro, Attilio; Descamps, Marc

    2007-01-01

    This paper uses chemical shift surfaces to simulate experimental C13 cross polarization magic angle spinning spectra for amorphous solid state disaccharides, paying particular attention to the glycosidic linkage atoms in trehalose, sucrose, and lactose. The combination of molecular mechanics with density functional theory/gauge invariant atomic orbital ab initio methods provides reliable structural information on the conformational distribution in the glass. The results are interpreted in terms of an enhanced flexibility that trehalose possesses in the amorphous solid state, at least on the time scale of C13 nuclear magnetic resonance measurements. Implications of these findings for the fragility of trehalose glass and bioprotectant action are discussed.

  5. Solution (sup13)C Nuclear Magnetic Resonance Spectroscopic Analysis of the Amino Acids of Methanosphaera stadtmanae: Biosynthesis and Origin of One-Carbon Units from Acetate and Carbon Dioxide

    Miller, T L; Chen, X; B. Yan; Bank, S.

    1995-01-01

    We found that general pathways for amino acid synthesis of Methanosphaera stadtmanae, a methanogen that forms CH(inf4) from H(inf2) and methanol, resembled those of methanogens that form CH(inf4) from CO(inf2) or from the methyl group of acetate. We determined the incorporation of (sup14)C-labeled CO(inf2), formate, methanol, methionine, serine, and acetate into cell macromolecules. Labeling of amino acid carbons was determined by solution nuclear magnetic resonance spectroscopy after growth ...

  6. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  7. Carbon-13 nuclear magnetic resonance spectroscopy of [1-13C] enriched monosaccharides. Signal assignments and orientational dependence of geminal and vicinal carbon--carbon and carbon--hydrogen spin--spin coupling constants

    Early assignments of the 13C resonances in the natural abundance 13C NMR spectra of monosaccharides have been reevaluated in light of recent coupling data from the spectra of 13C-1 labeled sugars. The technique of specific 13C enrichment not only identifies the labeled carbon unambiguously but can be used to assign more remote carbon resonances due to scalar carbon-carbon coupling. The pattern of carbon-carbon coupling observed in all of the sugars thus far studied is remarkably constant. In addition to the large (approximately 46 Hz) one-bond coupling between C-1 and C-2, C-3 exhibits a coupling to C-1 only in the β anomer (approximately 4 Hz) while C-5 is coupled to C-1 only in the α anomer (approximately 2 Hz). In addition, C-6 is coupled to C-1 in both anomers and C-4 shows no evidence of coupling to C-1 in any of the sugars examined. These couplings have been used to reassign several resonances and the original assignments are discussed in terms of the predictive rules used for resonance assignments in carbohydrates. The vicinal couplings of C-6 and C-4 to C-1 appear to obey a Karplus-type relationship. The geminal 2J/sub CCC/ and 2J/sub COC/ couplings are discussed in terms of a dihedral angle dependence where the angle is defined by the relative orientations of C-3 or C-5 and the electronegative oxygen substituents on C-1. Additional data on 2J/sub CCH/ couplings involving C-1 and H-2 are also readily obtained with the C-1 labeled sugars

  8. A polymer-based magnetic resonance tracer for visualization of solid tumors by 13C spectroscopic imaging.

    Yoshikazu Suzuki

    Full Text Available Morphological imaging precedes lesion-specific visualization in magnetic resonance imaging (MRI because of the superior ability of this technique to depict tissue morphology with excellent spatial and temporal resolutions. To achieve lesion-specific visualization of tumors by MRI, we investigated the availability of a novel polymer-based tracer. Although the 13C nucleus is a candidate for a detection nucleus because of its low background signal in the body, the low magnetic resonance sensitivity of the nucleus needs to be resolved before developing a 13C-based tracer. In order to overcome this problem, we enriched polyethylene glycol (PEG, a biocompatible polymer, with 13C atoms. 13C-PEG40,000 (13C-PEG with an average molecular weight of 40 kDa emitted a single 13C signal with a high signal-to-noise ratio due to its ability to maintain signal sharpness, as was confirmed by in vivo investigation, and displayed a chemical shift sufficiently distinct from that of endogenous fat. 13C-PEG40,000 intravenously injected into mice showed long retention in circulation, leading to its effective accumulation in tumors reflecting the well-known phenomenon that macromolecules accumulate in tumors because of leaky tumor capillaries. These properties of 13C-PEG40,000 allowed visualization of tumors in mice by 13C spectroscopic imaging. These findings suggest that a technique based on 13C-PEG is a promising strategy for tumor detection.

  9. Intermolecular interactions in nuclear magnetic resonance: medium shifts of the 1H and 13C nuclei in methane in the gas phase and in solution and of gaseous 3He

    An analysis has been carried out of the continuum and the binary collision models used in the description of NMR solvent shifts caused by Van der Waals intermolecular interactions. The basic assumption underlying the models, i.e. σ sub(w)= -BE2 (I) is examined. The possible effects on I of such phenomena as B anisotropy and field gradients are discussed, as well as the inadequacy of I in representing the true intermolecular shielding. A new expression for E2 is proposed, which in connection with I forms the bais of a modified binary collision model. The new E2 expression takes into account the dynamic character of the interaction. The major obstacle to the binary collision model, the requirement for accurate parameters for the intermolecular potential employed in the statistical-mechanical averaging, is alleviated by the establishment of priority rules to be used in the selection of these paramters. The proposed binary collision model and a collision model are used to interpret the 1H and 13C medium shifts of methane in the gas phase and in solution. The proton shift data conform equally well to either model; the 13C data indicate that a large solvent-dependent term contributes to the observed medium shifts in addition to I. Proton and 13C B parameters of methane in the gas phase and in solution are discussed. Preliminary results of 3He medium shifts as a function of gas density are presented. An extracted B parameter based on the proposed binary collision model appears to agree well with the result of a quantum-mechanical calculation of B for a 3He atom in a uniform static electric field. (LL)

  10. A conformational study of the adducts of 2'-deoxythymidine and 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl by sup(1)H and sup(13)C nuclear magnetic resonance

    γ-Irradiation of oxygen-free, aqueous solutions of 2'-deoxythymidine in the presence of the organic nitroxide free radical, 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl (TAN) leads to a complex mixture of products in which the TAN moiety is linked to the C5 or C6 position of a 5,6-saturated thymine ring. Extensive sup(1)H and sup(13)C nmr data are provided for the eight TAN-dT adducts which are produced in the largest amounts. The results show that the conformational properties of the sugar moiety are dependent on the point of attachment of the TAN group and the configuration of the standard thymine ring

  11. Magnetic shielding tensors of 13C and 15N in organic solids

    Magnetic shielding tensors delta have become accessible by Fourier transform NMR in high magnetic fields. Measurements were performed on 13C and 15N in powders and single crystals at frequencies of 61 and 32 MHz, respectively. Some of the general features of the shielding tensors have been established regarding the size of the anisotropy as well as the orientation of the principal axes system of delta relative to the molecule. This holds in particular for carbons involved sp2 bonds, where the direction of the largest shielding is found to be perpendicular to the sp2 plane. This can be understood theoretically showing that the shielding is dominated by the paramagnetic contribution. For 13C and 15N shielding tensors can be studied for isoelectronic systems, e.g. benzoation and nitrobenzene. Comparison of the shielding anisotropies Δdelta for a number of isoelectronic pairs shows that Δdelta generally seems to be substantially larger for 15N. The powder spectra are affected in a characteristic way by molecular motions in the solid. By analysis of the lineshapes observed it is therefore possible to get reliable information about molecular reorientation in solids. As an example the motion of the P4 tetrahedra in solid white phosphorus is discussed. (orig.)

  12. Impact of Ho(3+)-doping on (13)C dynamic nuclear polarization using trityl OX063 free radical.

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kaur, Pavanjeet; Martins, André; Fidelino, Leila; Khemtong, Chalermchai; Song, Likai; Sherry, A Dean; Lumata, Lloyd

    2016-08-21

    We have investigated the effects of Ho-DOTA doping on the dynamic nuclear polarization (DNP) of [1-(13)C] sodium acetate using trityl OX063 free radical at 3.35 T and 1.2 K. Our results indicate that addition of 2 mM Ho-DOTA on 3 M [1-(13)C] sodium acetate sample in 1 : 1 v/v glycerol : water with 15 mM trityl OX063 improves the DNP-enhanced (13)C solid-state nuclear polarization by a factor of around 2.7-fold. Similar to the Gd(3+) doping effect on (13)C DNP, the locations of the positive and negative (13)C maximum polarization peaks in the (13)C microwave DNP sweep are shifted towards each other with the addition of Ho-DOTA on the DNP sample. W-band electron spin resonance (ESR) studies have revealed that while the shape and linewidth of the trityl OX063 ESR spectrum was not affected by Ho(3+)-doping, the electron spin-lattice relaxation time T1 of trityl OX063 was prominently reduced at cryogenic temperatures. The reduction of trityl OX063 electron T1 by Ho-doping is linked to the (13)C DNP improvement in light of the thermodynamic picture of DNP. Moreover, the presence of Ho-DOTA in the dissolution liquid at room temperature has negligible reduction effect on liquid-state (13)C T1, in contrast to Gd(3+)-doping which drastically reduces the (13)C T1. The results here suggest that Ho(3+)-doping is advantageous over Gd(3+) in terms of preservation of hyperpolarized state-an important aspect to consider for in vitro and in vivo NMR or imaging (MRI) experiments where a considerable preparation time is needed to administer the hyperpolarized (13)C liquid. PMID:27424954

  13. Detection of Reduced GABA Synthesis Following Inhibition of GABA Transaminase Using in Vivo Magnetic Resonance Signal of [13C]GABA C1

    Yang, Jehoon; Johnson, Christopher; Shen, Jun

    2009-01-01

    Previous in vivo magnetic resonance spectroscopy (MRS) studies of gamma-aminobutyric acid (GABA) synthesis have relied on 13C label incorporation into GABA C2 from [1-13C] or [1,6-13C2]glucose. In this study, the [13C]GABA C1 signal at 182.3 ppm in the carboxylic/amide spectral region of localized in vivo 13C spectra was detected. GABA-transaminase of rat brain was inhibited by administration of gabaculine after pre-labeling of GABA C1 and its metabolic precursors with exogenous [2,5-13C2]glu...

  14. Simultaneous PET/MRI with 13C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification

    Hansen, Adam E.; Andersen, Flemming L.; Henriksen, Sarah T.;

    2016-01-01

    Background: Integrated PET/MRI with hyperpolarized 13C magnetic resonance spectroscopic imaging (13C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for...... and 13C-MRSI phantoms including a NEMA [18F]-FDG phantom, 13C-acetate and 13C-urea sources, and hyperpolarized 13C-pyruvate were imaged repeatedly with PET and/or 13C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total...... number of PET trues; and 13C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. Results: PET and 13C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in...

  15. Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data.

    Deborah K Hill

    Full Text Available Real-time detection of the rates of metabolic flux, or exchange rates of endogenous enzymatic reactions, is now feasible in biological systems using Dynamic Nuclear Polarization Magnetic Resonance. Derivation of reaction rate kinetics from this technique typically requires multi-compartmental modeling of dynamic data, and results are therefore model-dependent and prone to misinterpretation. We present a model-free formulism based on the ratio of total areas under the curve (AUC of the injected and product metabolite, for example pyruvate and lactate. A theoretical framework to support this novel analysis approach is described, and demonstrates that the AUC ratio is proportional to the forward rate constant k. We show that the model-free approach strongly correlates with k for whole cell in vitro experiments across a range of cancer cell lines, and detects response in cells treated with the pan-class I PI3K inhibitor GDC-0941 with comparable or greater sensitivity. The same result is seen in vivo with tumor xenograft-bearing mice, in control tumors and following drug treatment with dichloroacetate. An important finding is that the area under the curve is independent of both the input function and of any other metabolic pathways arising from the injected metabolite. This model-free approach provides a robust and clinically relevant alternative to kinetic model-based rate measurements in the clinical translation of hyperpolarized (13C metabolic imaging in humans, where measurement of the input function can be problematic.

  16. Applications of the nuclear Techniques in medicine: 13C or 14C respiration tests

    The 14C or 13C respiration tests have been applied to the study of metabolic and infectious processes, but most of them have not entered yet the clinical practice stage. In this paper, it is offered an overview of the present and future of respiration tests and how they are taking part and will take part in a future in the non-invasive diagnosis of diverse pathologies

  17. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291

  18. Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond

    Rao, K. Rama Koteswara; Suter, Dieter

    2016-08-01

    The nitrogen-vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the 13C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.

  19. In vivo measurement of ethanol metabolism in the rat liver using magnetic resonance spectroscopy of hyperpolarized [1-13C]pyruvate

    Spielman, Daniel M; Mayer, Dirk; Yen, Yi-Fen; Tropp, James; Hurd, Ralph E.; Pfefferbaum, Adolf

    2009-01-01

    [1-13C]pyruvate is readily polarizable substrate that has been the subject of numerous magnetic resonance spectroscopy (MRS) studies of in vivo metabolism. In this work, 13C-MRS of hyperpolarized [1-13C]pyruvate is used to interrogate a metabolic pathway involved in neither aerobic nor anaerobic metabolism. In particular, ethanol consumption leads to altered liver metabolism, which when excessive is associated with adverse medical conditions including fatty liver disease, hepatitis, cirrhosis...

  20. Tricarboxylic acid cycle activity measured by 13C magnetic resonance spectroscopy in rats subjected to the kaolin model of obstructed hydrocephalus

    Melø, Torun M; Håberg, Asta K; Risa, Øystein;

    2011-01-01

    weeks after rats were subjected to kaolin-induced progressive hydrocephalus. In vivo and ex vivo magnetic resonance spectroscopy (MRS), combined with the infusion of [1,6-(13)C]glucose, was used to monitor the time courses of (13)C label incorporation into the different carbon positions of glutamate in...

  1. Characterization of Biochar by X-Ray Photoelectron Spectroscopy and 13 C Nuclear Magnetic Resonance%X射线光电子能谱与13 C核磁共振在生物质碳表征中的应用

    徐东昱; 金洁; 颜钰; 韩兰芳; 康明洁; 王子莹; 赵烨; 孙可

    2014-01-01

    近年来,生物质碳(biochar)作为新型吸附剂被广泛研究。但由于制备biochar的生物质原料和热解温度的不同,使biochar的结构和组成存在差异,从而影响其对污染物的吸附。目前关于biochar的结构和组成的研究还不够全面。因此,结合了能谱与光谱分析的手段,对biochar的结构和组成进行了深入的分析。选取木质类(柳树枝条)和草类(水稻秸秆)作为原料,分别在不同热解温度(300,450和600℃)下制得bio-chars,并对biochars样品进行元素分析、X射线光电子能谱分析(XPS)和固态13C核磁共振(13CNMR)研究,以阐明不同热解温度和生物质来源的biochars的结构和组成。结果显示:biochar的H/C,O/C和(O+N)/C的比值随着热解温度的升高而降低;草类biochar比木质类biochar具有更高的灰分含量和表面极性;木质类biochar的矿物主要分布在样品颗粒内部,其表面被有机质覆盖,而草类biochar部分矿物暴露在样品颗粒表面;13CNMR显示低温制得的biochar主要由芳香碳、脂肪碳、羧基和羰基碳组成,高温制得的biochar主要由芳香碳组成,且低温制得biochars中,木质类biochars比草类biochars含有更高的木质素的残留碳结构,这是由于木质类biochars原材料中含有更高的木质素。%The wood (willow branch) and grass (rice straw ) materials were pyrolyzed at different temperatures (300 ,450 and 600 ℃) to obtain the biochars used in the present study .The biochars were characterized using elementary analysis ,X-ray pho-toelectron spectroscopy (XPS) and solid state 13 C cross-polarization and magic angle spinning nuclear magnetic resonance spec-troscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass .The results showed that the H/C ,O/C and (O+N)/C ratios of the biochars decreased with

  2. 13C-NMR of diterpenes with pimarane skeleton

    The effect of substituent groups on the chemical shift of carbons using nuclear magnetic resonance spectra of carbon 13 (13C-NMR) is discussed. Diterpenes having pimarane skeleton, isolated from plants of Velloziaceae family are analysed. (ARHC)

  3. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth;

    2015-01-01

    (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real......-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range...

  4. Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin.

    Walker, Shamon A; Edwards, Devin T; Siaw, Ting Ann; Armstrong, Brandon D; Han, Songi

    2013-09-28

    In order to facilitate versatile applications with high field dynamic nuclear polarization (DNP), it is important to be able to optimize the DNP performance, i.e. reach high nuclear hyperpolarization within a short signal build up time. Given that the solid-state DNP process is strongly temperature-dependent, it is important to benchmark the temperature dependence of various DNP and electron paramagnetic resonance (EPR) parameters that can then be used to test and develop theories and models for high field DNP mechanisms. However, DNP and EPR experiments at high fields and cryogenic temperatures below 20 Kelvin usually require home built instrumentation, and therefore even basic experimental observations are lacking in the literature. DNP and EPR experiments at 7 T (197 GHz) and 8.5 T (240 GHz), respectively, were conducted at temperatures between 35 K and 3.7 K where the electron thermal polarization changes from 13.4% to 85.6%, respectively. The samples are frozen solutions of 15 mM OX063Me trityl radicals in various mixtures of [1-(13)C]pyruvic acid, glycerol, and Gd(3+)-chelates. For all sample mixtures, the trityl EPR lines are found to be inhomogeneously broadened and the dominant DNP mechanism is shown to be the cross effect (CE). A 20%, 11%, and 6.77% (13)C polarization is achieved at 3.7 K with a [1-(13)C]pyruvic-glycerol-H2O sample, the addition of 2 mM of Gd(3+)-chelates, and pure [1-(13)C]pyruvic acid, respectively. When T1n is sufficiently long, our results seem to suggest T1e is a key variable in the DNP process, where longer T1e values correlate with larger DNP enhancements (εDNP). The experimental data reported here on the temperature dependence of T1n, T1e, Tm (electron phase memory time), the EPR linewidth, TDNP and ε(DNP) at high fields will be helpful for testing the mechanism and theory of DNP processes. PMID:23925724

  5. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.

    Naito, A.; T. Nagao; Norisada, K; Mizuno, T; Tuzi, S.; Saitô, H.

    2000-01-01

    The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, ...

  6. Dissolution Dynamic Nuclear Polarization of Non-Self-Glassing Agents: Spectroscopy and Relaxation of Hyperpolarized [1-13C]Acetate

    Flori, Alessandra; Liserani, Matteo; Bowen, Sean;

    2015-01-01

    The intrinsic physicochemical properties of the sample formulation are the key factors for efficient hyperpolarization through dissolution dynamic nuclear polarization (dissolution-DNP). We provide a comprehensive characterization of the DNP process for Na-[1-13C]acetate selected as a model for non...

  7. Magnetic resonance spectroscopy and metabolism. Applications of proton and sup 13 C NMR to the study of glutamate metabolism in cultured glial cells and human brain in vivo

    Portais, J.C.; Pianet, I.; Merle, M.; Raffard, G.; Biran, M.; Labouesse, J.; Canioni, P. (Bordeaux-2 Univ., 33 (FR)); Allard, M.; Kien, P.; Caille, J.M. (Centre Hospitalier Universitaire, 33 Bordeaux (FR))

    1991-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of cells from the central nervous system both in vitro on perchloric acid extracts obtained either from cultured tumoral cells (C6 rat glioma) or rat astrocytes in primary culture, and in vivo within the human brain. Analysis of carbon 13 NMR spectra of perchloric acid extracts prepared from cultured cells in the presence of NMR (1-{sup 13}C) glucose as substrate allowed determination of the glutamate and glutamine enrichments in both normal and tumoral cells. Preliminary results indicated large changes in the metabolism of these amino acids (and also of aspartate and alanine) in the C6 cell as compared to its normal counterpart. Localized proton NMR spectra of the human brain in vivo were obtained at 1.5 T, in order to evaluate the content of various metabolites, including glutamate, in peritumoral edema from a selected volume of 2 x 2 x 2 cm{sup 3}. N-acetyl aspartate, glutamate, phosphocreatine, creatine, choline and inositol derivative resonances were observed in 15 min spectra. N-acetyl-aspartate was found to be at a lower level in contrast to glutamate which was detected at a higher level in the injured area as compared to the controlateral unaffected side.

  8. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples.

    Yang, Zhi; Wu, Youqian; Wu, Shihua

    2016-01-29

    Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very

  9. The Decoherence of the Electron Spin and Meta-Stability of 13C Nuclear Spins in Diamond

    Peter Crompton

    2011-01-01

    Following the recent successful experimental manipulation of entangled 13C atoms on the surface of Diamond, we calculate the decoherence of the electron spin in Nitrogen Vacancy NV centers of Diamond via a nonperturbative treatment of the time-dependent Greens function of a Central-Spin model in order to identify the Replica Symmetry Breaking mechanism associated with intersystem mixing between the ms = 0 sublevel of the 3A2 and 1A1 states of the NV− centers, which we identify as mediated via...

  10. The Decoherence of the Electron Spin and Meta-Stability of 13C Nuclear Spins in Diamond

    Peter Crompton

    2011-05-01

    Full Text Available Following the recent successful experimental manipulation of entangled 13C atoms on the surface of Diamond, we calculate the decoherence of the electron spin in Nitrogen Vacancy NV centers of Diamond via a nonperturbative treatment of the time-dependent Greens function of a Central-Spin model in order to identify the Replica Symmetry Breaking mechanism associated with intersystem mixing between the ms = 0 sublevel of the 3A2 and 1A1 states of the NV− centers, which we identify as mediated via the meta-stability of 13C nuclei bath processes in our calculations. Rather than the standard exciton-based calculation scheme used for quantum dots, we argue that a new scheme is needed to formally treat the Replica Symmetry Breaking of the 3A2 → 3E excitations of the NV− centers, which we define by extending the existing Generalized Master Equation formalism via the use of fractional time derivatives. Our calculations allow us to accurately quantify the dangerously irrelevant scaling associated with the Replica Symmetry Breaking and provide an explanation for the experimentally observed room temperature stability of Diamond for Quantum Computing applications.

  11. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  12. The 1H and 13C dynamic nuclear polarization (DNP) enhancement for novel silica phase immobilized nitroxide (SPIN) samples

    Gitti, Rossitza K.

    1991-01-01

    The solid/liquid intermolecular transfer (SLIT) flow dynamic nuclear polarization (DNP) experiment potentially provides new methodology for studying interfacial phenomena (e.g., weak hydrogen bonding). In addition, the high efficiency of the transfer also ensures dramatically enhanced NMR signals. These large DNP enhancements could alleviate sensitivity limitations in various flow NMR experiments. Previous studies have established that silica phase immobilized nitroxide (SPIN) ...

  13. Solid state 13C NMR analysis of Brazilian cretaceous ambers

    13C cross polarization with magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of Δ8(17) and Δ12(13) unsaturations, were obtained by 13C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  14. 13C-NMR of forest soil lipids

    Almendros Martín, Gonzalo; Tinoco, Pilar; González-Vila, Francisco Javier; Lüdemann, H.-D.; Sanz Perucha, Jesús; Velasco de Pedro, F.

    2001-01-01

    Molecular characterization of soil lipids often provides valuable biogeochemical information about the impact of vegetation, microorganisms, and abiotic factors on the soil C sequestration process. The total lipid extracted with petroleum ether from nine soils developed under three types of Mediterranean forest (stone pine (Pinus pinea L.), evergreen oak (Quercus rotundifolia L.), and Spanish juniper (Juniperus thurifera L)) has been analyzed by high-resolution 13C nuclear magnetic resonance ...

  15. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-(13)C]pyruvate magnetic resonance imaging.

    Laustsen, Christoffer; Lycke, Sara; Palm, Fredrik; Østergaard, Jakob A; Bibby, Bo M; Nørregaard, Rikke; Flyvbjerg, Allan; Pedersen, Michael; Ardenkjaer-Larsen, Jan H

    2014-07-01

    The kidneys account for about 10% of the whole body oxygen consumption, whereas only 0.5% of the total body mass. It is known that intrarenal hypoxia is present in several diseases associated with development of kidney disease, including diabetes, and when renal blood flow is unaffected. The importance of deranged oxygen metabolism is further supported by deterioration of kidney function in patients with diabetes living at high altitude. Thus, we argue that reduced oxygen availability alters renal energy metabolism. Here, we introduce a novel magnetic resonance imaging (MRI) approach to monitor metabolic changes associated with diabetes and oxygen availability. Streptozotocin diabetic and control rats were given reduced, normal, or increased inspired oxygen in order to alter tissue oxygenation. The effects on kidney oxygen metabolism were studied using hyperpolarized [1-(13)C]pyruvate MRI. Reduced inspired oxygen did not alter renal metabolism in the control group. Reduced oxygen availability in the diabetic kidney altered energy metabolism by increasing lactate and alanine formation by 23% and 34%, respectively, whereas the bicarbonate flux was unchanged. Thus, the increased prevalence and severity of nephropathy in patients with diabetes at high altitudes may originate from the increased sensitivity toward inspired oxygen. This increased lactate production shifts the metabolic routs toward hypoxic pathways. PMID:24352155

  16. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.

  17. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T.

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T. PMID:27078089

  18. Mapping metabolic changes associated with early Radiation Induced Lung Injury post conformal radiotherapy using hyperpolarized 13C-pyruvate Magnetic Resonance Spectroscopic Imaging

    Purpose: Radiation Pneumonitis (RP) limits radiotherapy. Detection of early metabolic changes in the lungs associated with RP may provide an opportunity to adjust treatment before substantial toxicities occur. In this work, regional lactate-to-pyruvate signal ratio (lac/pyr) was quantified in rat lungs and heart following administration of hyperpolarized 13C-pyruvate magnetic resonance imaging (MRI) at day 5, 10, 15 and 25-post conformal radiotherapy. These results were also compared to histology and blood analyses. Methods: The lower right lungs of 12 Sprague Dawley rats were irradiated in 2 fractions with a total dose of 18.5 Gy using a modified micro-CT system. Regional lactate and pyruvate data were acquired from three irradiated and three age-matched healthy rats at each time point on days 5, 10, 15 and 25-post radiotherapy. Arterial blood was collected from each animal prior to the 13C-pyruvate injection and was analyzed for blood lactate concentration and arterial oxygen concentration (paO2). Macrophage count was computed from the histology of all rat lungs. Results: A significant increase in lac/pyr was observed in both right and left lungs of the irradiated cohort compared to the healthy cohort for all time points. No increase in lac/pyr was observed in the hearts of the irradiated cohort compared to the hearts of the healthy cohorts. Blood lactate concentration and paO2 did not show a significant change between the irradiated and the healthy cohorts. Macrophage count in both right and left lungs was elevated for the irradiated cohort compared to the healthy cohort. Conclusions: Metabolic changes associated with RP may be mapped as early as five days post conformal radiotherapy. Over the small sample size in each cohort, elevated macrophage count, consistent with early phase of inflammation was highly correlated to increases in lac/pyr in both the irradiated and unirradiated lungs. Further experiments with larger sample size may improve the confidence of

  19. Sensitive Magnetic Control of Ensemble Nuclear Spin Hyperpolarisation in Diamond

    Wang, Hai-Jing; Avalos, Claudia E; Seltzer, Scott J; Budker, Dmitry; Pines, Alexander; Bajaj, Vikram S

    2012-01-01

    Dynamic nuclear polarisation, which transfers the spin polarisation of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance; it is also critical in spintronics, particularly when spin hyperpolarisation can be produced and controlled optically or electrically. Here we show the complete polarisation of nuclei located near the optically-polarised nitrogen-vacancy (NV) centre in diamond. When approaching the ground-state level anti-crossing condition of the NV electron spins, 13C nuclei in the first-shell are polarised in a pattern that depends sensitively and sharply upon the magnetic field. Based on the anisotropy of the hyperfine coupling and of the optical polarisation mechanism, we predict and observe a complete reversal of the nuclear spin polarisation with a few-mT change in the magnetic field. The demonstrated sensitive magnetic control of nuclear polarisation at room temperature will be useful for sensitivity-enhanced NMR, nuclear-based spintronics, and quant...

  20. Nuclear magnetic resonance studies of the regulation of the pentose phosphate pathway

    The goal of this work is to investigate the potential for and limitations of in vivo nuclear magnetic resonance (NMR) spectroscopy for quantitation of glucose flux through the pentose phosphate pathway (shunt). Interest in the shunt is motivated by the possibility that its activity may be greatly increased in cancer and in the pathological states of cardiac and cerebral ischemia. The ability to dynamically monitor flux through the pentose shunt can give new knowledge about metabolism in pathological states. 13C NMR spectroscopy was used to monitor shunt activity by determination of the ratios of [13C-4] to [13C-5]-glutamate, [13C-3] to [13C-2]-alanine or [13C-3] to [13C-2]-lactate produced when [13C-2]-glucose is infused. These methods provide measures of the effect of oxidative stresses on shunt activity in systems ranging from cell free enzyme-substrate preparations to cell suspensions and whole animals. In anaerobic cell free preparations, the fraction of glucose flux through the shunt was monitored with a time resolution of 3 minutes. This work predicts the potential for in vivo human studies of pentose phosphate pathway activity based on the mathematical simulation of the 13C fractional enrichments of C4 and C5-glutamate as a function of shunt activity and on the signal-to- noise ratio acquired in 13C NMR human studies from the current literature

  1. Nuclear magnetic resonance studies of the regulation of the pentose phosphate pathway

    Bolo, N.R.

    1991-11-01

    The goal of this work is to investigate the potential for and limitations of in vivo nuclear magnetic resonance (NMR) spectroscopy for quantitation of glucose flux through the pentose phosphate pathway (shunt). Interest in the shunt is motivated by the possibility that its activity may be greatly increased in cancer and in the pathological states of cardiac and cerebral ischemia. The ability to dynamically monitor flux through the pentose shunt can give new knowledge about metabolism in pathological states. {sup 13}C NMR spectroscopy was used to monitor shunt activity by determination of the ratios of ({sup 13}C-4) to ({sup 13}C-5)-glutamate, ({sup 13}C-3) to ({sup 13}C-2)-alanine or ({sup 13}C-3) to ({sup 13}C-2)-lactate produced when ({sup 13}C-2)-glucose is infused. These methods provide measures of the effect of oxidative stresses on shunt activity in systems ranging from cell free enzyme-substrate preparations to cell suspensions and whole animals. In anaerobic cell free preparations, the fraction of glucose flux through the shunt was monitored with a time resolution of 3 minutes. This work predicts the potential for in vivo human studies of pentose phosphate pathway activity based on the mathematical simulation of the {sup 13}C fractional enrichments of C4 and C5-glutamate as a function of shunt activity and on the signal-to- noise ratio acquired in {sup 13}C NMR human studies from the current literature.

  2. Nuclear magnetic resonance studies of the regulation of the pentose phosphate pathway

    Bolo, N.R.

    1991-11-01

    The goal of this work is to investigate the potential for and limitations of in vivo nuclear magnetic resonance (NMR) spectroscopy for quantitation of glucose flux through the pentose phosphate pathway (shunt). Interest in the shunt is motivated by the possibility that its activity may be greatly increased in cancer and in the pathological states of cardiac and cerebral ischemia. The ability to dynamically monitor flux through the pentose shunt can give new knowledge about metabolism in pathological states. {sup 13}C NMR spectroscopy was used to monitor shunt activity by determination of the ratios of [{sup 13}C-4] to [{sup 13}C-5]-glutamate, [{sup 13}C-3] to [{sup 13}C-2]-alanine or [{sup 13}C-3] to [{sup 13}C-2]-lactate produced when [{sup 13}C-2]-glucose is infused. These methods provide measures of the effect of oxidative stresses on shunt activity in systems ranging from cell free enzyme-substrate preparations to cell suspensions and whole animals. In anaerobic cell free preparations, the fraction of glucose flux through the shunt was monitored with a time resolution of 3 minutes. This work predicts the potential for in vivo human studies of pentose phosphate pathway activity based on the mathematical simulation of the {sup 13}C fractional enrichments of C4 and C5-glutamate as a function of shunt activity and on the signal-to- noise ratio acquired in {sup 13}C NMR human studies from the current literature.

  3. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  4. Study of the fusion reaction 13C+13C

    The fusion reaction 13C+13C has been studied, it must allow, by comparisons with the system 12C+13C already studied to determine how the presence of a supplementary nucleon in the interaction nuclei of the entrance channel affects the energy dependence of the reaction cross section. The reaction 13C+13C has been studied for incident energies E(CM)=3.05 - 6.88 MeV and no resonant structure seems to appear in the coulombian energies. The reaction products are identified by the energy of their gamma transition using a germanium detector situated at zero degree with respect to the incident beam at approximately 1 cm from the target

  5. Computer Assisted Instruction (Cain) For Nuclear Magnetic Resonance Spectroscopy

    A computer assisted instruction program for nuclear magnetic resonance spectroscopy was developed by using Author ware 5.0, Adobe Image Styler 1.0, Adobe Photo shop 7.0 and Flash MX. The contents included the basic theory of 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, the instrumentation of NMR spectroscopy, the two dimensional (2D) NMR spectroscopy and the interpretation of NMR spectra. The program was also provided examples, and exercises, with emphasis on NMR spectra interpretation to determine the structure of unknown compounds and solutions for self study. The questionnaire from students showed that they were very satisfied with the software

  6. LAMPF polarized 13C targets

    Ethylene glycol, 1-butanol, and toluene highly enriched in 13C have been used at LAMPF to produce dynamically polarized 13C targets for scattering experiments with protons and pions. Preparation of the materials and characteristic properties of these targets are described. 17 refs., 1 fig

  7. Resolving the sources of plasma glucose excursions following a glucose tolerance test in the rat with deuterated water and [U-13C]glucose

    Delgado, T.C.; Barosa, C.; Nunes, P.M.; Cerdán, S.; Geraldes, C.F.G.C.; Jones, J.G.

    2012-01-01

    Sources of plasma glucose excursions (PGE) following a glucose tolerance test enriched with [U-(13)C]glucose and deuterated water were directly resolved by (13)C and (2)H Nuclear Magnetic Resonance spectroscopy analysis of plasma glucose and water enrichments in rat. Plasma water (2)H-enrichment att

  8. Synthesis of 13C-labelled lactose for metabolic studies in subjects with gastrointestinal disorders

    The long-range goals included development of a 13C-labelled lactose method for measuring lactose malabsorption in patients with diarrhea. The short-term goals included assembling a nuclear magnetic resonance system and a computer system for spectra analysis. The latter results are the subject of the report. (author)

  9. 13 C signal attribution of 5-bromine-2(2'-thienyl)thiophene

    This work has carried out a study of C-H coupling constants in oligothiophenes, through 1 H and 13 C NMR spectra analysis. Nuclear magnetic resonance spectroscopy have been used in order to characterize the molecular structure of them. Chemical shifts were also studied and spectral data have been shown and analysed

  10. Science and history explored by nuclear magnetic resonance

    Baias, Maria Antoaneta

    2009-01-01

    Nuclear Magnetic Resonance was chosen as the main tool for investigating different biological and chemical systems, as it is unique in providing the information details about the morphology and molecular structures and conformations by which the fundamental properties of these biological and chemical systems can be understood. Proton spin-diffusion experiments combined with 13C CPMAS spectroscopy were successfully applied to characterize the changes that occur during the thermal denaturation ...

  11. Parahydrogen enhanced zero-field nuclear magnetic resonance

    Theis, Thomas; Kervern, Gwendal; Knappe, Svenja; Kitching, John; Ledbetter, Micah; Budker, Dmitry; Pines, Alex

    2011-01-01

    Nuclear magnetic resonance (NMR), conventionally detected in multi-tesla magnetic fields, is a powerful analytical tool for the determination of molecular identity, structure, and function. With the advent of prepolarization methods and alternative detection schemes using atomic magnetometers or superconducting quantum interference devices (SQUIDs), NMR in very low- (~earth's field), and even zero-field, has recently attracted considerable attention. Despite the use of SQUIDs or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared to conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated via parahydrogen induced polarization (PHIP), enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H J-couplings in compounds with 13C in natural abundance in a single transient. The resulting spectra display distinct features that have straightforward interpretation and can be...

  12. The electric dipole moment of $^{13}$C

    Yamanaka, Nodoka; Hiyama, Emiko; Funaki, Yasuro

    2016-01-01

    We calculate for the first time the electric dipole moment (EDM) of $^{13}$C generated by the isovector CP-odd pion exchange nuclear force in the $\\alpha$-cluster model, which describes well the structures of low lying states of the $^{13}$C nucleus. The linear dependence of the EDM of $^{13}$C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be $d_{^{13}{\\rm C}} = -0.33 d_n - 0.0012 \\bar G_\\pi^{(1)}$. The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the $1/2^-_1$ state and the opposite parity ($1/2^+$) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of $^{13}$C in determining the new physics beyond the standard model.

  13. Magnetic catalysis in nuclear matter

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2014-01-01

    A strong magnetic field enhances the chiral condensate at low temperatures. This so-called magnetic catalysis thus seeks to increase the vacuum mass of nucleons. We employ two relativistic field-theoretical models for nuclear matter, the Walecka model and an extended linear sigma model, to discuss the resulting effect on the transition between vacuum and nuclear matter at zero temperature. In both models we find that the creation of nuclear matter in a sufficiently strong magnetic field becom...

  14. Valence neutrons' role in the collisions 13C+12C and 13C+13C

    The resonant behaviour is not limited to collisions between α-like nuclei: resonance structures have been observed in the direct channels for the 13C+12C and 13C+13C collisions; in the contrary, the resonances observed in the fusion channels are not so pronounced as in the 12C+12C case: the valence neutrons increase the number of reaction channels and the density of states in the states in the compound nuclei, the resonances are therefore 'washed out' and it is difficult to observe them experimentally

  15. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  16. Nuclear magnetic resonance of D(-)-{alpha}-amino-benzyl penicillin; Ressonancia magnetica nuclear da D(-)-{alpha}-amino-benzil penicilina

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1995-12-31

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-{alpha}-amino-benzyl penicillin were analysed using {sup 13} C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed 7 figs., 4 tabs.

  17. 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation

    Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denaturated by raising the temperature of the sample to 67degC for 5 minutes. Line-broadening of 13C-NMR resonances arising from the 1st (carbonyl), 7th, 9th and 12th carbon atom of fatty-acyl chains at these locations, obviously caused by changes in interactions between membrane lipids and proteins upon heat denaturation of membrane proteins. (author). 7 refs.; 1 fig

  18. Efficient Synthesis of Molecular Precursors for Para-Hydrogen-Induced Polarization of Ethyl Acetate-1-(13) C and Beyond.

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Manzanera Esteve, Isaac V; Chekmenev, Eduard Y

    2016-05-10

    A scalable and versatile methodology for production of vinylated carboxylic compounds with (13) C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate-1-(13) C, which is a precursor for preparation of (13) C hyperpolarized ethyl acetate-1-(13) C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para-hydrogen to (13) C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH ) of ca. 3.3 % and carbon-13 polarization (%P13C ) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para-hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para-hydrogen and the improvements of %PH of para-hydrogen-nascent protons may enable production of (13) C hyperpolarized contrast agents with %P13C of 20-50 % in seconds using this chemistry. PMID:27061815

  19. Alpha Resonant States in 13C

    The 9Be(6Li,d)13C reaction was used to investigate alpha resonant states in 13C up to 15 MeV of excitation. The reaction was measured at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. An energy resolution of 50 keV was obtained. Several narrow alpha resonant states not previously measured were detected, in particular the one at the (3α+n) threshold populated by an L = 2 transfer, revealing a 9Be+α component for the 1/2- cluster state candidate at this threshold. Experimental angular distributions are presented in comparison with DWBA predictions.

  20. Nuclear Current and Magnetic Rotation

    PENG Jing; XING Li-Feng

    2009-01-01

    The magnetic rotational bands based on the configuration πh211/2 ⊕Vh-211/2 in 142 Gd are investigated with the newly developed tilted axis cranking relativistic mean field (RMF) theory with and without nuclear current.The effect of the nuclear current is discussed by comparing the total Routhians,single particle levels,electromagnetic transition probabilities B(M1) and B(E2) in self-consistent tilted axis cranking RMF calculation with those obtained without the nuclear current.The nuclear currents are found to play an important role in the magnetic rotation of nuclei.

  1. Integrated Magnetic Susceptibility and Geochemical Record of d13C Anomalies in the Berriasian and Valanginian Sections from the Tethyan Domain (Western Carpathians, Poland)

    Grabowski, J.; Krzemiński, L.; Schnyder, J.; Sobien, K.; Hejnar, J.; Koptíková, Leona; Pszcólkowski, A.; Schnabl, Petr

    Cham: Springer International Publishing, 2014 - (Rocha, R.; Pais, J.; Finney, S.; Kullberg, J.), s. 847-851 ISBN 978-3-319-04363-0. [STRATI 2013 : International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. Lisboa (PT), 01.07.2013-07.07.2013] Institutional support: RVO:67985831 Keywords : Berriasian * Valanginian * magnetic susceptibility * major and trace elements Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Solid state {sup 13}C NMR analysis of Brazilian cretaceous ambers

    Pereira, Ricardo; Azevedo, Debora A., E-mail: ricardopereira@iq.ufrj.b, E-mail: debora@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Lab. de Geoquimica Organica Molecular e Ambiental; San Gil, Rosane A.S. [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Lab. de RMN de Solidos; Carvalho, Ismar S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Fernandes, Antonio Carlos S. [Museu Nacional (MN/UFRJ), RJ (Brazil). Dept. de Geologia e Paleontologia

    2011-07-01

    {sup 13}C cross polarization with magic angle spinning nuclear magnetic resonance ({sup 13}C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of {Delta}{sup 8(17)} and {Delta}{sup 12(13)} unsaturations, were obtained by {sup 13}C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  3. Direct detection of solanesol in tobacco by 1H and 13C magic angle spinning NMR

    1H and 13C NMR have been used to detect solanesol directly in tobacco without destroying or modifying the sample. Magic angle sample spinning was employed to remove the resonance line broadening due to variations of magnetic susceptibility within the sample. 13C line widths of ca . 10 Hz were obtained. The 1H MAS spectrum of tobacco allows the solanesol signals to be resolved from the broad signal of exchangeable protons. 13C spin-lattice relaxation times (T3) and nuclear Overhauser enhancements (NOE) of solanesol in chloroform solution, in intact tobacco, and as nest oil indicate that the polyisoprene chain motion in tobacco is restricted relative to the motion in solution but still sufficient to average out the dipolar couplings between protons and carbons. (author)

  4. Nuclear Bag Model and Nuclear Magnetic Moments

    Liu, Liang-Gang

    1999-01-01

    In 1991, we proposed a model in which nucleus is treated as a spherical symmetric MIT bag and nucleon satisfies the MIT bag model boundary condition. The model was employed to calculate nuclear magnetic moments. The results are in good agreement with experiment data. Now, we found this model is still interesting and illuminating.

  5. GHz nuclear magnetic resonance

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  6. Selective carbon 13 enrichment of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic resonance

    Although carbon 13 nuclear magnetic resonance spectroscopy (13C-NMR) is widely used in lignin structural studies, serious difficulties are encountered in the assignments of 13C signals because of their extensive overlaps resulting from the complex structure of lignin and of delicate detection of minor structures. To overcome these difficulties, specifically 13C-enriched precursors of lignin biosynthesis, coniferin-[side chain-β-13C] and coniferin-[side chain-γ-13C], were administered to growing stems of ginkgo (Ginkgo biloba). The NMR analysis of the milled wood lignins isolated from the newly formed xylem showed that selective enrichment of specific carbons of protolignin in the cell wall was achieved without seriously disturbing the lignin biosynthesis. The presence of saturated methylene side chains in the protolignin was shown for the first time by this selective enrichment technique in combination with NMR analysis. (authors). 23 refs., 3 figs., 1 tab

  7. Selective carbon 13 enrichment of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic resonance

    Xie, Y. (Nagoya Univ. (Japan). Faculty of Agriculture); Robert, D.R. (CEA Centre d' Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee); Terashima, N. (Forest Products Lab., Madison, WI (United States))

    Although carbon 13 nuclear magnetic resonance spectroscopy ([sup 13]C-NMR) is widely used in lignin structural studies, serious difficulties are encountered in the assignments of [sup 13]C signals because of their extensive overlaps resulting from the complex structure of lignin and of delicate detection of minor structures. To overcome these difficulties, specifically [sup 13]C-enriched precursors of lignin biosynthesis, coniferin-[side chain-[beta]-[sup 13]C] and coniferin-[side chain-[gamma]-[sup 13]C], were administered to growing stems of ginkgo (Ginkgo biloba). The NMR analysis of the milled wood lignins isolated from the newly formed xylem showed that selective enrichment of specific carbons of protolignin in the cell wall was achieved without seriously disturbing the lignin biosynthesis. The presence of saturated methylene side chains in the protolignin was shown for the first time by this selective enrichment technique in combination with NMR analysis. (authors). 23 refs., 3 figs., 1 tab.

  8. {sup 13}C hyperfine interactions in the nitrogen-vacancy centre in diamond

    Smeltzer, Benjamin; Childress, Lilian [Department of Physics and Astronomy, Bates College, Lewiston, ME (United States); Gali, Adam, E-mail: lchildre@bates.edu [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest (Hungary)

    2011-02-15

    The electronic spin associated with the nitrogen-vacancy (NV) centre in diamond interacts with an environment formed by isotopic impurities and paramagnetic defects; the strength of these interactions depends on the location of each impurity relative to the NV centre. From the electron spin resonance spectra of individual NV centres we infer the possible values and signs of hyperfine splittings from nearby {sup 13}C nuclear spins at different lattice sites. Moreover, single-defect-centre nuclear magnetic resonance allows the examination of some of the inhomogeneities associated with the mesoscopic environment of NV-{sup 13}C systems. These measurements provide a check on ab initio calculations of electron spin density and have relevance for potential applications in nuclear spin quantum registers.

  9. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET)

    Gutte Borgwardt, Henrik; Hansen, Adam E; Henriksen, Sarah T;

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We...... have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization...... local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of...

  10. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    Wu, R.; Unkefer, C.J.; Silks, L.A. III [Los Alamos National Lab., NM (United States)

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source, D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.

  11. Hyperpolarized 13C MR for Molecular Imaging of Prostate Cancer

    Wilson, David M.; Kurhanewicz, John

    2014-01-01

    Hyperpolarization using dissolution dynamic nuclear polarization has emerged as a versatile method to dramatically improve the MR signal of low-sensitivity nuclei. This technique facilitates the study of real-time metabolism in vitro and in vivo using 13C-enriched substrates and has been applied to numerous models of human disease. In particular, several mechanisms underlying prostate cancer have been interrogated using hyperpolarized 13C MR spectroscopy. This review highlights key metabolic ...

  12. Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L.

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    In the present study, we applied nuclear magnetic resonance (NMR), as well as near-infrared (NIR) spectroscopy, to Jatropha curcas to fulfill two objectives: (1) to qualitatively examine the seeds stored at different conditions, and (2) to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding). NIR spectra could non-invasively distinguish differences in storage conditions. NMR metabolic analysis of water-soluble metabolites identified sucrose and raffinose family oligosaccharides as positive markers and gluconic acid as a negative marker of seed germination. Isotopic labeling patteren of metabolites in germinated seedlings cultured in agar-plate containg 13C-glucose and 15N-nitrate was analyzed by zero-quantum-filtered-total correlation spectroscopy (ZQF-TOCSY) and 13C-detected 1H-13C heteronuclear correlation spectroscopy (HETCOR). 13C-detected HETOCR with 13C-optimized cryogenic probe provided high-resolution 13C-NMR spectra of each metabolite in molecular crowd. The 13C-13C/12C bondmer estimated from 1H-13C HETCOR spectra indicated that glutamine and arginine were the major organic compounds for nitrogen and carbon transfer from roots to leaves. PMID:25401292

  13. Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L.

    Takanori Komatsu

    2014-11-01

    Full Text Available In the present study, we applied nuclear magnetic resonance (NMR, as well as near-infrared (NIR spectroscopy, to Jatropha curcas to fulfill two objectives: (1 to qualitatively examine the seeds stored at different conditions, and (2 to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding. NIR spectra could non-invasively distinguish differences in storage conditions. NMR metabolic analysis of water-soluble metabolites identified sucrose and raffinose family oligosaccharides as positive markers and gluconic acid as a negative marker of seed germination. Isotopic labeling patteren of metabolites in germinated seedlings cultured in agar-plate containg 13C-glucose and 15N-nitrate was analyzed by zero-quantum-filtered-total correlation spectroscopy (ZQF-TOCSY and 13C-detected 1H-13C heteronuclear correlation spectroscopy (HETCOR. 13C-detected HETOCR with 13C-optimized cryogenic probe provided high-resolution 13C-NMR spectra of each metabolite in molecular crowd. The 13C-13C/12C bondmer estimated from 1H-13C HETCOR spectra indicated that glutamine and arginine were the major organic compounds for nitrogen and carbon transfer from roots to leaves.

  14. Nuclear magnetic resonance studies of metabolic regulation

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/106 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/106 cells as monitored by free-glycerol appearance in the medium. 13C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  15. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. PMID:26372719

  16. Nuclear magnetic gamma double resonance

    A number of problems corresponding to different variants of experiments using nuclear magnetic-gamma double resonance (NMGDR) are theoretically investigated. Calculation is carried out and its results are compared to experimental ones concerning NMGDR for tantalum. Time dynamics of the source or scatterer nucleus sublevel populations under double resonance conditions with non-uniform initial population of this nucleus sublevels is studied

  17. Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia

    Eyjolfsson, Elvar M; Nilsen, Linn Hege; Kondziella, Daniel;

    2011-01-01

    on day 6, they also received an injection of [1-(13)C]glucose. Extracts of frontal cortex (FCX), parietal and temporal cortex (PTCX), thalamus, striatum, nucleus accumbens (NAc), and hippocampus were analyzed using (13)C nuclear magnetic resonance spectroscopy, high-performance liquid chromatography......, and gas chromatography-mass spectrometry. A pronounced reduction in glycolysis was found only in PTCX, in which (13)C labeling of glucose, lactate, and alanine was decreased. (13)C enrichment in lactate, however, was reduced in all areas investigated. The largest reductions in glutamate labeling were...... detected in FCX and PTCX, whereas in hippocampus, striatum, and Nac, (13)C labeling of glutamate was only slightly but significantly reduced. The thalamus was the only region with unaffected glutamate labeling. ¿-Aminobutyric acid (GABA) labeling was reduced in all areas, but most significantly in FCX...

  18. Magnetometer of nuclear magnetic resonance

    We present a nuclear magnetic resonance magnetometer that measures magnetic fields, between 2,500 gauss and 5,000 gauss, with an accuracy of a few parts per million. The circuit of the magnetometer, based on a marginal oscillator, permits a continuous tunning in the frequency range comprised between 10.0 MHz, with a signal to noise ratio of about 20. The radiofrequency amplifier is of the cascode type in integrated circuit and it operates with two 9V batteries. The modulation is at 35 Hz and it is provided by an external oscillator. The instrument is compact, inexpensive and easy to operate; it can also be used for didactic purposes to show the phenomenon of magnetic nuclear resonance and its main characteristics. (author)

  19. Metabolic origin of the {delta}{sup 13}C of respired CO{sub 2} in roots of Phaseolus vulgaris

    Bathellier, C.; Tcherkez, G.; Cornic, G.; Ghashghaie, J. [Laboratoire d' Ecologie, Systematique et Evolution - ESE, CNRS-UMR 8079 - IFR 87, Batiment 362, Universite Paris-Sud, 91405-Orsay Cedex (France); Tcherkez, G. [Plateforme Metabolisme-Metabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Batiment 630, Universite Paris-Sud, 91405-Orsay Cedex (France); Bligny, R.; Gout, E. [Laboratoire de Physiologie Cellulaire Vegetale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2009-07-01

    - Root respiration is a major contributor to soil CO{sub 2} efflux, and thus an important component of ecosystem respiration. But its metabolic origin, in relation to the carbon isotope composition ({delta}{sup 13}C), remains poorly understood. - Here, {sup 13}C analysis was conducted on CO{sub 2} and metabolites under typical conditions or under continuous darkness in French bean (Phaseolus vulgaris) roots. {sup 13}C contents were measured either under natural abundance or following pulse-chase labeling with {sup 13}C-enriched glucose or pyruvate, using isotope ratio mass spectrometer (IRMS) and nuclear magnetic resonance (NMR) techniques. - In contrast to leaves, no relationship was found between the respiratory quotient and the {delta}{sup 13}C of respired CO{sub 2}, which stayed constant at a low value (c. -27.5 per thousand) under continuous darkness. With labeling experiments, it is shown that such a pattern is explained by the {sup 13}C-depleting effect of the pentose phosphate pathway; and the involvement of the Krebs cycle fueled by either the glycolytic input or the lipid/protein recycling. The anaplerotic phosphoenolpyruvate carboxylase (PEPc) activity sustained glutamic acid (Glu) synthesis, with no net effect on respired CO{sub 2}. - These results indicate that the root {delta}{sup 13}C signal does not depend on the availability of root respiratory substrates and it is thus plausible that, unless the {sup 13}C photosynthetic fractionation varies at the leaf level, the root {delta}{sup 13}C signal hardly changes under a range of natural environmental conditions. (authors)

  20. Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model

    Flori, Alessandra; Liserani, Matteo; Frijia, Francesca;

    2015-01-01

    Dissolution-dynamic nuclear polarization (dissolution-DNP) for magnetic resonance (MR) spectroscopic imaging has recently emerged as a novel technique for noninvasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intracellular short-chain fatty...... acid, we focused on [1-13C]acetate as a promising candidate for a chemical probe to study the myocardial metabolism of a beating heart. The dissolution-DNP procedure of Na[1-13C]acetate for in vivo cardiac applications with a 3 T MR scanner was optimized in pigs during bolus injection of doses of up to...

  1. Characterization of a Mixture of CO2 Adsorption Products in Hyperbranched Aminosilica Adsorbents by (13)C Solid-State NMR.

    Moore, Jeremy K; Sakwa-Novak, Miles A; Chaikittisilp, Watcharop; Mehta, Anil K; Conradi, Mark S; Jones, Christopher W; Hayes, Sophia E

    2015-11-17

    Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates. PMID:26477882

  2. (13) C-TmDOTA as versatile thermometer compound for solid-state NMR of hydrated lipid bilayer membranes.

    Umegawa, Yuichi; Tanaka, Yuya; Nobuaki, Matsumori; Murata, Michio

    2016-03-01

    Recent advances in solid-state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high-power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTA) was synthesized and labeled with (13) C (i.e., (13) C-TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid-state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of (13) C-TmDOTA, and the (13) C chemical shift of the complex exhibited a large-temperature dependence. The results demonstrated that (13) C-TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by (1) H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, (13) C-TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26460094

  3. Evanescent Waves Nuclear Magnetic Resonance

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad;

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to char...... a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging....

  4. Tomography by nuclear magnetic resonance

    Imaging methods based on nuclear magnetic resonance allow the production of sectional images of the human body without ionizing radiation. It is possible to measure the density and relaxation times of the water protons in body fluids or tissue. This allows not only to obtain morphological information but also to get some insight into the spatial distribution of physiological data. Starting with a review of the principles of nuclear magnetic resonance it is explained how the measured signal can be associated with an image point; it is also explained what type of apparatus is necessary and what the physical limitations are. Possible risks the patient may be exposed to in an examination using nuclear magnetic resonance are discussed. The present state of the technical development enables the production of whole-body sectional images of a living person within about one minute. By means of some typical examples the nature and properties of these images are explained. Although extensive clinical studies will be necessary before a more general assessment can be made of this method, an outlook is provided on expected further developments and possible future fields of application. (orig.)

  5. Synthesis of /sup 13/C-labelled medroxyprogesterone acetate with three /sup 13/C isotopes (1)

    Rao, P.N.; Damodaran, K.M. (Southwest Foundation for Research and Education, San Antonio, TX (USA))

    1982-03-01

    17..cap alpha..-hydroxyprogesterone was condensed with phenyl acetate /sup 13/C/sub 2/ in the presence of sodium hydride. Treatment with acetic and hydrochloric acids and acetylation gave 17..cap alpha..-acetoxyprogesterone /sup 13/C/sub 2/. Treatment with tetrabromomethane /sup 13/C and hydrogenation yielded medroxyprogesterone acetate with three /sup 13/C isotopes.

  6. Synthesis of 13C-labelled medroxyprogesterone acetate with three 13C isotopes [1

    17α-hydroxyprogesterone was condensed with phenyl acetate 13C2 in the presence of sodium hydride. Treatment with acetic and hydrochloric acids and acetylation gave 17α-acetoxyprogesterone 13C2. Treatment with tetrabromomethane 13C and hydrogenation yielded medroxyprogesterone acetate with three 13C isotopes. (U.K.)

  7. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids.

  8. Hyperpolarized 13C MR angiography

    Lipsø, Hans Kasper Wigh; Magnusson, Peter; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    Magnetic resonance angiography (MRA) is a non-invasive technology that can be used for diagnosis and monitoring of cardiovascular disease; the number one cause of mortality worldwide. Hyperpolarized imaging agents provide signal enhancement of more than 10, 000 times, which implies large reduction...... angiography in the rat, and compare the performance of two standard angiographic pulse sequences, the gradient echo (GRE) sequence and the balanced steady-state free precession (bSSFP). 2D coronal cerebral angiographies using intra-arterial injections were acquired with a GRE sequence with in-plane resolution...

  9. Wide-range nuclear magnetic resonance detector

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  10. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate.

    Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) (13)C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-(13)C]pyruvate and [1-(13)C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [(13)C]bicarbonate (-48%), [1-(13)C]acetylcarnitine (+113%), and [5-(13)C]glutamate (-63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-(13)C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-(13)C]acetoacetate and [1-(13)C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-(13)C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (-82%). Combining HP (13)C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  11. Evanescent Waves Nuclear Magnetic Resonance.

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  12. Nuclear magnetic ordering in silver

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of 109Ag. The critical temperature is found to 700 pK, and the critical field is 100 μT. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs

  13. Nuclear magnetic ordering in silver

    Lefmann, K.

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of {sup 109}Ag. The critical temperature is found to 700 pK, and the critical field is 100 {mu}T. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs.

  14. Protein dynamics from nuclear magnetic relaxation.

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations. PMID:26932314

  15. Evaluating pyrolysis-GC/MS and 13C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain

    Kaal, J.; Baldock, J.A.; Buurman, P.; Nierop, K.G.J.; Pontevedra-Pombal, X.; Martínez-Cortizas, A.

    2007-01-01

    We performed solid state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy and pyrolysis¿gas chromatography/mass spectrometry (Py¿GC/MS) on the Penido Vello peat deposit located in Galicia, NW Spain. Often regarded as complementary techniques, solid st

  16. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand 13C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO2+ correlated positively with uronic acid-type hydrophilic organic structures, determined from the 13C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  17. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  18. Synthesis of 13C-labeled methanol

    A novel convenient method for the synthesis of 13C-methanol was described. 13C- methanol was prepared by means of catalytic hydrogenation, and then as-synthesized methanol solution was further purified in a microscale high-efficient rectification column. The chemical purity of 13C-methanol was more than 99.5%. The synthetic route was featured by mild conditions and high yields of more than 90% based on isotopic substrate consumed. The product was characterized by GC-MS and 1H NMR, and the 13C abundance of 13C- methanol was more than 97%. Compared with the raw materials, the reduction of relative isotopic abundance of product was less than 1%. (authors)

  19. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom. PMID:26670708

  20. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m-3. Solid state CP/MAS 13C n.m.r. (cross polarization/magic angle spinning 13C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  1. Solid-state NMR determination of sugar ring pucker in (13)C-labeled 2'-deoxynucleosides.

    van Dam, Lorens; Ouwerkerk, Niels; Brinkmann, Andreas; Raap, Jan; Levitt, Malcolm H.

    2002-01-01

    The H3'-C3'-C4'-H4' torsional angles of two microcrystalline 2'-deoxynucleosides, thymidine and 2'-deoxycytidine.HCl, doubly (13)C-labeled at the C3' and C4' positions of the sugar ring, have been measured by solid-state magic-angle-spinning nuclear magnetic resonance (NMR). A double-quantum heteronuclear local field experiment with frequency-switched Lee-Goldberg homonuclear decoupling was used. The H3'-C3'-C4'-H4' torsional angles were obtained by comparing the experimental curves with nume...

  2. {sup 13}C NMR investigation of re-entrant antiferromagnetic states of (TMTTF){sub 2}SbF{sub 6}

    Nakamura, Toshikazu; Iwase, Fumitatsu; Furukawa, Ko [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Satsukawa, Hidetaka; Takahashi, Toshihiro, E-mail: t-nk@ims.ac.j [Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)

    2009-03-01

    {sup 13}C nuclear magnetic resonance (NMR) investigations were performed on the one-dimensional organic conductor (TMTTF){sub 2}SbF{sub 6} to clarify its electronic properties in the proximity of the ground states. An abrupt broadening of {sup 13}C NMR absorption lines below 8 K (T{sub N} = 8 K), confirmed a long-range antiferromagnetic phase transition. Below T{sub N}, the absorption lines are composed of four distinct broad lines, indicating a commensurate magnetic structure. The amplitude of staggered magnetization, rho, is comparable to (TMTTF){sub 2}Br, and on the order of 0.1 mu{sub B} according to the splitting of {sup 13}C NMR lines at 3 K.

  3. Nuclear magnetic resonance studies of cytochromes c in solution

    Cytochromes c are small soluble proteins, which have been extensively studied by nuclear magnetic resonance spectroscopy. The specific NMR features of paramagnetic proteins are discussed for the oxidized form (paramagnetic shift and line broadening). Early NMR studies have focused on the electronic structure of the heme and its direct environment. The conformations of cytochromes c are now investigated by two-dimensional 1H NMR spectroscopy combined with restrained molecular dynamics. 15N and 13C NMR, which greatly benefit from isotopic enrichment, may help in obtaining reliable 1H assignments and thus high quality solution structure. Finally, hydrogen exchange rates provide insight in the rigidity (and stability) of cytochromes c in both redox states at the atomic level. (author). 50 refs., 1 fig., 1 tab

  4. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  5. Solid-, Solution-, and Gas-state NMR Monitoring of 13C-Cellulose Degradation in an Anaerobic Microbial Ecosystem

    Yasuhiro Date

    2013-07-01

    Full Text Available Anaerobic digestion of biomacromolecules in various microbial ecosystems is influenced by the variations in types, qualities, and quantities of chemical components. Nuclear magnetic resonance (NMR spectroscopy is a powerful tool for characterizing the degradation of solids to gases in anaerobic digestion processes. Here we describe a characterization strategy using NMR spectroscopy for targeting the input solid insoluble biomass, catabolized soluble metabolites, and produced gases. 13C-labeled cellulose produced by Gluconacetobacter xylinus was added as a substrate to stirred tank reactors and gradually degraded for 120 h. The time-course variations in structural heterogeneity of cellulose catabolism were determined using solid-state NMR, and soluble metabolites produced by cellulose degradation were monitored using solution-state NMR. In particular, cooperative changes between the solid NMR signal and 13C-13C/13C-12C isotopomers in the microbial degradation of 13C-cellulose were revealed by a correlation heat map. The triple phase NMR measurements demonstrated that cellulose was anaerobically degraded, fermented, and converted to methane gas from organic acids such as acetic acid and butyric acid.

  6. Synthesis of encainide-13C hydrochloride from 2-nitrobenzaldehyde-formyl-13C

    A facile synthesis of 2-nitrobenzaldehyde-formyl-13C was developed. This compound was converted to the labelled antiarrhythmic agent, encainide-13C hydrochloride, 4-methoxy-N-[2-(1-methyl-2-piperidinyl)ethyl-1-13C]phenyl]benzamide hydrochloride. (author)

  7. Nuclear magnetic resonance studies of erythrocyte membranes

    Chapman, D.; Kamat, V.B.; Gier, J. de; Penkett, S.A.

    1968-01-01

    The use of nuclear magnetic resonance spectroscopy for studying molecular interactions in biological membranes has been investigated using erythrocyte membrane fragments. Sonic dispersion of these fragments produces a sharp and well-defined high-resolution nuclear magnetic resonance spectrum. The sp

  8. Contribution to nuclear magnetic resonance imager using permanent magnets

    After some recalls of nuclear magnetic resonance, ways to get a stable and homogeneous magnetic field are studied with permanent magnets. Development of correction coils on integrated circuits has been particularly stressed. Gradient coil specific systems have been studied taking in account ferromagnetic material presence. Antenna system has been improved and possibility of image obtention with the prototype realized has been shown

  9. The Branchings of the Main s-process: Their Sensitivity to alpha-induced Reactions on 13C and 22Ne and to the Uncertainties of the Nuclear Network

    Bisterzo, Sara; Kaeppeler, Franz; Wiescher, Michael; Imbriani, Gianluca; Straniero, Oscar; Cristallo, Sergio; Goerres, Joachim; deBoer, Richard

    2015-01-01

    This paper provides a detailed analysis of the main component of the slow neutron capture process (the s-process), which accounts for the solar abundances of half of the nuclei with 90 <~ A <~ 208. We examine the impact of the uncertainties of the two neutron sources operating in low-mass asymptotic giant branch (AGB) stars: the 13C(alpha, n)16O reaction, which releases neutrons radiatively during interpulse periods (kT ~ 8 keV), and the 22Ne(alpha, n)25Mg reaction, partially activated during the convective thermal pulses (TPs). We focus our attention on the branching points that mainly influence the abundance of s-only isotopes. In our AGB models, the 13C is fully consumed radiatively during interpulse. In this case, we find that the present uncertainty associated to the 13C(alpha, n)16O reaction has marginal effects on s-only nuclei. On the other hand, a reduction of this rate may increase the amount of residual (or unburned) 13C at the end of the interpulse: in this condition, the residual 13C is bur...

  10. Neutron halo state of 13C

    2001-01-01

    Angular distributions for the 12C(d, p)13C transfer reactionshave been measured at Ed = 11.8 MeV, and compared with those of the DWBA calculations. By means of this comparison, density distributions of the last neutron in the ground state and the first 1/2+ state of 13C are extracted. The properties of these states in 13C have also been studied in the framework of the nonlinear relativistic mean-field theory with NL-SH parameters. It is found that the first 1/2+ state in 13C is a neutron halo state shown by both the experimental and theoretical density distributions of the last neutron.

  11. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    Bouhrara, M.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  12. Electromagnetic Properties of Inner Double Walled Carbon Nanotubes Investigated by Nuclear Magnetic Resonance

    M. Bouhrara

    2013-01-01

    Full Text Available The nuclear magnetic resonance (NMR analytical technique was used to investigate the double walled carbon nanotubes (DWNTs electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  13. Impact of Gd3+ doping and glassing solvent deuteration on 13C DNP at 5 Tesla

    Kiswandhi, Andhika; Lama, Bimala; Niedbalski, Peter; Goderya, Mudrekh; Long, Joanna; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a technique which can be used to amplify signals in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) by several thousand-fold. The most commonly available DNP system typically operates at the W-band field or 3.35 T, at which it has been shown that 13C NMR signal can be enhanced by deuteration and Gd3+ doping. In this work, we have investigated the applicability of these procedures at 5 T. Our results indicate that the deuteration of the glassing matrix still yields an enhancement of 13C DNP when 4-oxo-TEMPO free radical is used. The effect is attributed to the lower heat load of the deuterons compared to protons. An addition of a trace amount of Gd3+ gives a modest enhancement of the signal when trityl OX063 is used, albeit with a less pronounced relative enhancement compared to the results obtained at 3.35 T. The results suggest that the enhancement obtained via Gd3+ doping may become saturated at higher field. These results will be discussed using a thermodynamic model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  14. Synthesis and applications of 13C glycerol

    The authors are currently developing new synthetic routes to the various isotopomers of glycerol. Labeled glycerol is useful for 13C enrichment of biomolecules. However, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment or have poor overall yields (12-15%). In addition, the use of glycerol for enrichment can be prohibitively expensive and its availability depends on the level of demand. The authors have developed a short de novo synthesis of [U-13C]glycerol from carbon dioxide (∼53% overall yield for four steps) and are currently examining the feasibility of synthesizing site-specific 13C labeled glycerol and dihydroxyacetone (DHA) from methanol and carbon dioxide. The authors have examined the enzymatic conversion of [U-13C]glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25-50% (as determined by NMR spectroscopy). The authors are also pursuing the chemical conversion of 13C labeled DHA to DHAP and the results are presented. Labeled DHAP is a possible enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  15. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    ., van Lagen, B., Buurman, P. & de Jager, P.A., 1997. Quantitative Aspects of Solid-State 13C-NMR Spectra of Humic Substances from Soils of Volcanic Systems. Geoderma, 80, 327-338. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & Hemminga, M.A., 2002. Elemental quantitation of natural organic matter by CPMAS C-13 NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 21, 158-170. Conte, P., Spaccini, R. & Piccolo, A., 2004. State of the art of CPMAS C-13-NMR spectroscopy applied to natural organic matter. Progress in Nuclear Magnetic Resonance Spectroscopy, 44, 215-223. Dria, K.J., Sachleben, J.R. & Hatcher, P.G., 2002. Solid-state carbon-13 nuclear magnetic resonance of humic acids at high magnetic field strengths. Journal of Environmental Quality, 31, 393-401. Kiem, R., Knicker, H., Korschens, M. & Kogel-Knabner, I., 2000. Refractory organic carbon in C-depleted arable soils, as studied by C-13 NMR spectroscopy and carbohydrate analysis. Organic Geochemistry, 31, 655-668. Kögel-Knabner, I., 2000. Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31, 609-625. Mao, J.D., Hu, W.G., Schmidt-Rohr, K., Davies, G., Ghabbour, E.A. & Xing, B., 2000. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Science Society of America Journal, 64, 873-884. Metz, G., Ziliox, M. & Smith, S.O., 1996. Towards quantitative CP-MAS NMR. Solid State Nuclear Magnetic Resonance, 7, 155-160. Preston, C.M., 2001. Carbon-13 solid-state NMR of soil organic matter - using the technique effectively. Canadian Journal of Soil Science, 81, 255-270. Smernik, R.J. & Oades, J.M., 2000a. The use of spin counting for determining quantitation in solid state C-13 NMR spectra of natural organic matter 1. Model systems and the effects of paramagnetic impurities. Geoderma, 96, 101-129. Smernik, R.J. & Oades, J.M., 2000b. The use of spin counting for determining quantitation in solid state C-13 NMR spectra of natural

  16. Nuclear reactions in ultra-magnetized supernovae

    The statistical model is employed to investigate nuclear reactions in ultrastrong magnetic fields relevant for supernovae and neutron stars. For radiative capture processes the predominant mechanisms are argued to correspond to modifications of nuclear level densities, and γ-transition energies due to interactions of the field with magnetic moments of nuclei. The density of states reflects the nuclear structure and results in oscillations of reaction cross sections as a function of field strength, while magnetic interaction energy enhances radiative neutron capture process. Implications in the synthesis of r-process nuclei in supernova site are discussed. (author)

  17. Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements.

    Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge

    2010-07-01

    (2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737

  18. Nuclear magnetic (ratio-frequency) tomography

    Physical foundations of nuclear magnetic tomography and factors limiting its spatial, contrast and time precision are considered. On the basis of analysis of literature data, it is established that using peculiarities of nuclear magnetic resonance (NMR) it is possible to detect malignant tumors and edemas, to investigate metabolic processes, to determine blood flow rate and to solve a number of other problems. The classification of methods of NMR - tomography is given

  19. Nuclear magnetic (radio-frequency) tomography

    Pavlov, A.S.; Gurvich, A.M.; Karyakina, N.F.; Revokatov, O.P.; Chikirdin, Eh.G. (Nauchno-Issledovatel' skij Inst. Rentgenologii i Radiologii, Moscow (USSR))

    Physical foundations of nuclear magnetic tomography and factors limiting its spatial, contrast and time precision are considered. On the basis of analysis of literature data, it is established that using peculiarities of nuclear magnetic resonance (NMR) it is possible to detect malignant tumors and edemas, to investigate metabolic processes, to determine blood flow rate and to solve a number of other problems. The classification of methods of NMR - tomography is given.

  20. Nuclear Magnetic Resonance Imaging: Current Capabilities

    Davis, Peter L.; Crooks, Lawrence E.; Margulis, Alexander R.; Kaufman, Leon

    1982-01-01

    Nuclear magnetic resonance imaging can produce tomographic images of the body without ionizing radiation. Images of the head, chest, abdomen, pelvis and extremities have been obtained and normal structures and pathology have been identified. Soft tissue contrast with this method is superior to that with x-ray computerized tomography and its spatial resolution is approaching that of x-ray computerized tomography. In addition, nuclear magnetic resonance imaging enables us to image along the sag...

  1. Comparative study of ¹³C composition in ethanol and bulk dry wine using isotope ratio monitoring by mass spectrometry and by nuclear magnetic resonance as an indicator of vine water status.

    Guyon, Francois; van Leeuwen, Cornelis; Gaillard, Laetitia; Grand, Mathilde; Akoka, Serge; Remaud, Gérald S; Sabathié, Nathalie; Salagoïty, Marie-Hélène

    2015-12-01

    The potential of wine (13)C isotope composition (δ(13)C) is presented to assess vine water status during grape ripening. Measurements of δ(13)C have been performed on a set of 32 authentic wines and their ethanol recovered after distillation. The data, obtained by isotope ratio monitoring by mass spectrometry coupled to an elemental analyser (irm-EA/MS), show a high correlation between δ(13)C of the bulk wine and its ethanol, indicating that the distillation step is not necessary when the wine has not been submitted to any oenological treatment. Therefore, the ethanol/wine δ(13)C correlation can be used as an indicator of possible enrichment of the grape must or the wine with exogenous organic compounds. Wine ethanol δ(13)C is correlated to predawn leaf water potential (R(2) = 0.69), indicating that this parameter can be used as an indicator of vine water status. Position-specific (13)C analysis (PSIA) of ethanol extracted from wine, performed by isotope ratio monitoring by nuclear magnetic resonance (irm-(13)C NMR), confirmed the non-homogenous repartition of (13)C on ethanol skeleton. It is the δ(13)C of the methylene group of ethanol, compared to the methyl moiety, which is the most correlated to predawn leaf water potential, indicating that a phase of photorespiration of the vine during water stress period is most probably occurring due to stomata closure. However, position-specific (13)C analysis by irm-(13)C NMR does not offer a greater precision in the assessment of vine water status compared to direct measurement of δ(13)C on bulk wine by irm-EA/MS. PMID:26438472

  2. A novel method for coil efficiency estimation: Validation with a 13C birdcage

    Giovannetti, Giulio; Frijia, Francesca; Hartwig, Valentina;

    2012-01-01

    Coil efficiency, defined as the B1 magnetic field induced at a given point on the square root of supplied power P, is an important parameter that characterizes both the transmit and receive performance of the radiofrequency (RF) coil. Maximizing coil efficiency will maximize also the signal......-to-noise ratio. In this work, we propose a novel method for RF coil efficiency estimation based on the use of a perturbing loop. The proposed method consists of loading the coil with a known resistor by inductive coupling and measuring the quality factor with and without the load. We tested the method by...... measuring the efficiency of a 13C birdcage coil tuned at 32.13 MHz and verified its accuracy by comparing the results with the nuclear magnetic resonance nutation experiment. The method allows coil performance characterization in a short time and with great accuracy, and it can be used both on the bench and...

  3. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  4. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions.

    Lohmeier-Vogel, E M; Hahn-Hägerdal, B.; Vogel, H J

    1995-01-01

    The metabolism of glucose and xylose was studied as a function of oxygenation in suspensions of Candida tropicalis by 31P and 13C nuclear magnetic resonance spectroscopy. Both the rate of carbohydrate metabolism and the cytoplasmic pH were independent of the rate of oxygenation in cells metabolizing glucose. However, these two parameters were markedly dependent on the rate of oxygenation in C. tropicalis cells metabolizing xylose. For example, the cytoplasmic pH in fully oxygenated xylose-met...

  5. Generation of nuclear magnetic resonance images

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  6. A preliminary investigation of 13C background in 13C-urea breath test

    During the 13C-urea breath test which is used for diagnosis of the helicobacter pylori infection (HP), the 13C background values are measured in 495 normal donors in Beijing, Shandong, Jiangsu and Guizhou. The fluctuation is less than 0.2% for these areas and is about 0.1% within the same area. Through replacing of the individual 13C background values by the averaged values from local areas, the coincident rate for diagnosis of HP is higher than 98%

  7. Nuclear magnetic resonance (NMR): principles and applications

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  8. Theory of nuclear magnetic moments - LT-35

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  9. In vivo 13C MRS studies of carbohydrate metabolism

    The work described in this thesis was performed by the author, except where indicated, within the Magnetic Resonance Centre at the University of Nottingham during the period between October 1999 and October 2002. Although much is known about the major pathways of carbohydrate metabolism, there is still much to be learnt about the exact mechanisms of many of these pathways. Of particular interest is how these pathways are modified under different physiological conditions and in diseased states. 13C NMR spectroscopy provides a non-invasive means for studying carbohydrate metabolism in vivo, and the work presented within this thesis gives two such examples of this in human subjects. Natural abundance 13C NMR spectroscopy was used to measure glycogen levels in gastrocnemius muscle. The diurnal changes in response to mixed meals were measured in both type 2 diabetic subjects and age and weight matched controls. Metabolic studies were performed to complement the NMR measurements. The data obtained in these studies show the effect of the failure of muscle glucose storage upon post-prandial hyperglycaemia despite a supra-normal increase in plasma insulin in type 2 diabetes. 13C NMR spectroscopy was also used to study cerebral metabolism. Accumulation of 13C label into glutamate and glutamine following infusion of [113C] glucose allows the determination of the rates of the TCA cycle (FTCA) and neurotransmitter cycling (Fcyc). These rates were measured in the visual cortex under control and activated conditions. The increases seen in FTCA upon activation, together with the lack of label accumulation in lactate, suggest that cerebral glucose metabolism is oxidative, even during strong activation. No conclusion can be made as to whether or not a similar increase is seen in Fcyc due to the large associated errors in these values. (author)

  10. Alpha-resonant states in {sup 13}C

    Borello-Lewin, T.; Rodrigues, M.R.D.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A.; Miyake, H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Cunsolo, A.; Cappuzzello, F. [Universita di Catania (Italy); Istituto Nazionali di Fisica Nucleare (INFN), Catania (Italy). Lab. Nazionali del Sud; Ukita, G.M. [Universidade de Santo Amaro (UNISA), Sao Paulo, SP (Brazil). Faculty of Psychology

    2010-07-01

    Full text: The research program in progress aims to achieve a better understanding of the alpha-clustering phenomenon in light (x{alpha} + {nu}) nuclei. The {sup 9}Be({sup 6}Li,d){sup 13}C reaction was used in the present work to investigate alpha resonant states in {sup 13}C up to 15 MeV of excitation. The data have been taken at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. The plates covered 100 cm along the focal surface and spectra were measured at seven scattering angles, between 3 deg and 20 degrees in the laboratory frame. The resolution of 50 keV allowed for the separation of the resonant contributions to the known 7/2{sup -} at 10.753 MeV and (5/2{sup -}) at 10.818 MeV {sup 13}C states. Particularly interesting is the the narrow alpha resonance seen at E{sub x} = 12.3 MeV close the (3{alpha} + n) threshold, not previously measured, populated by an L = 2 transfer. Detected, near this threshold by alpha inelastic scattering, a large E0 isoscalar transition, the signature of a spatially developed 1/2{sup -} cluster-state, was reported by T. Kawabata. The L = 2 transfer agrees with the 1/2{sup -} attribution. The present work is underway. Taking the benefit of the use of the emulsion plates and applying the track selective reading methodology, at least other three narrow alpha resonances in {sup 13}C up to 15 MeV of excitation, not previously measured, were detected. (author)

  11. Pulsed nuclear-electronic magnetic resonance

    Morley, Gavin W; Mohammady, M Hamed; Aeppli, Gabriel; Kay, Christopher W M; Jeschke, Gunnar; Monteiro, Tania S

    2011-01-01

    Pulsed magnetic resonance is a wide-reaching technology allowing the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip either dilute electronic or nuclear spins is orders of magnitude shorter than their decoherence times, leading to several schemes for quantum information processing with spin qubits. We investigate instead the novel regime where the eigenstates approximate 50:50 superpositions of the electronic and nuclear spin states forming "nuclear-electronic" qubits. Here we demonstrate quantum control of these states, using bismuth-doped silicon, in just 32 ns: orders of magnitude shorter than previous experiments where pure nuclear states were used. The coherence times of our states are over four orders of magnitude longer, being 1 ms or more at 8 K, and are limited by the naturally-occurring 29Si nuclear spin impurities. There is quantitative agreement between our experiments and no-free-parameter anal...

  12. Progress in nuclear magnetic resonance spectroscopy

    Emsley, J W; Sutcliffe, L H

    2013-01-01

    Progress in Nuclear Magnetic Resonance Spectroscopy, Part 1 is a two-chapter text that reviews significant developments in nuclear magnetic resonance (NMR) applications.The first chapter discusses NMR studies of molecules physisorbed on homogeneous surfaces. This chapter also describes the phase changes in the adsorbed layer detected by following the variation in the NMR parameters. The second chapter examines the process to obtain a plotted, data reduced Fourier transform NMR spectrum. This chapter highlights the pitfalls that can cause a decrease in information content in a NMR spectrum. The

  13. Nuclear magnetic resonance of thermally oriented nuclei

    The more recent developments in the spectroscopy of Nuclear Magnetic Resonance on Oriented Nuclei (NMRON) are reviewed; both theoretical and experimental advances are summarised with applications to On-Line and Off-Line determination of magnetic dipole and electric quadrupole hyperfine parameters. Some emphasis is provided on solid state considerations with indications of where likely enhancements in technique will lead in conventional hyperfine studies. (orig.)

  14. A comparative study of the 13C(p,p')13C and 13C(p,n)13N reactions at Ep = 35 MeV

    Differential cross sections were measured at Ep = 35 MeV for the 13C(p,n) and 13C(p,p') reactions leading to the four low-lying states in the mirror nuclei 13N and 13C. In addition, the analyzing powers were measured for the 13C(p,p') reaction. The data are generally well accounted for by DWBA calculations except for the 13C(p,p')13C(3.09 MeV, 1/2+) reaction, for which the calculations can not even reproduce the qualitative features of the data. A comparison of the (p,n) and the (p,p') results suggests that the isoscalar part of the 13C(g.s., 1/2-) → 13C(3.09 MeV, 1/2+) transition is not correctly described by currently available shell-model wave functions. (author)

  15. Nuclear magnetic resonance in Kondo lattice systems

    Curro, Nicholas J.

    2016-06-01

    Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

  16. Alpha-cluster structure in 13C

    We study the structure of low-lying states of 13C with a microscopic cluster model. In addition to the 3α-n model space, the breaking effect of one of the α-clusters due to the spin-orbit interaction is also taken into account. The iso-scalar E0 transition probabilities from the ground 1/2- state to the excited 1/2- states have been shown to be large associated with the cluster structure of these states. However the values are small due to the effect of one additional valence neutron compared to the case of the second 0+ state in 12C. (author)

  17. Structural Characterization of Amadori Rearrangement Product of Glucosylated Nα-Acetyl-Lysine by Nuclear Magnetic Resonance Spectroscopy

    Chuanjiang Li

    2014-01-01

    Full Text Available Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135 and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY and 2D nuclear overhauser enhancement spectroscopy (NOESY. The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.

  18. magnetic order studied by nuclear methods

    Reichl, C

    2001-01-01

    investigated within the frame of this work. The studies on the highly concentrated deuterides revealed a gradual loss in local field due to a distribution of 'local Curie temperatures' depending on the number of Fe neighbours and their distances from the Moessbauer nucleus. On rising the temperature, during a magnetic transition, an increasing number of Fe sites with different local environment loose their hyperfine fields, whereas bulk measurements showed a relatively sharp, however, incomplete transition. By using a combination of neutron diffraction- and muon spin relaxation studies the complex magnetic phase diagram of the system Ce(Rh,Ru) sub 3 B sub 2 , where weak magnetic moments exist, could be studied. There, transitions from para- to ferromagnetism, and more complicated magnetic structures could be observed. Due to the existence of several isotopes of B and Ru, each carrying different nuclear spins and magnetic moment, particularly complicated second moment simulations for interpreting the muon data...

  19. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  20. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Pedro A. Gómez Damián

    2014-01-01

    Full Text Available Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

  1. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues

  2. Nuclear magnetic resonance study of the effect of the addition of clay on polypropylene

    Polypropylene (PP) samples and polypropylene (PP)/clay (M) composite prepared by melting mixing have been characterized by solution and solid state nuclear magnetic resonance spectroscopy (NMR). The monomer sequences distribution and the influence of time and temperature of mechanical mix on the modifications in the PP structure were investigated by 13C solution NMR. The solid state NMR investigation showed that the 13C routine spectra such as MAS and CPMAS allowed obtaining information on the molecular domains of chains, and also permits to evaluate the domains mobility. 29Si and 27Al solid state NMR were used to characterize the clay and the PP/M composite samples. The results showed that the heating and friction in the range of temperature and time used in the sample preparation did not affect the distribution of configurational sequence in the PP chains. The effect of clay in the PP/M composite structure could be detected, using both 13C solution and in 29Si solid state NMR spectra. (author)

  3. Nuclear magnetic resonance study of the conformation and dynamics of beta-casein at the oil/water interface in emulsions.

    ter Beek, L C; Ketelaars, M; McCain, D C; Smulders, P E; Walstra, P.; Hemminga, M.A.

    1996-01-01

    A (13)C and (31)P nuclear magnetic resonance (NMR) study has been carried out on beta-casein adsorbed at the interface of a tetradecane/water emulsion. (13)C NMR spectra show signals from the carbonyl, carboxyl, aromatic, and C alpha carbons in beta-casein, well resolved from solvent resonances. Only a small fraction of all carbon atoms in beta-casein contribute to detectable signals; intensity measurements show that the observable spectrum is derived from about 30 to 40 amino acid residues.(...

  4. Hypermetabolic state in the 7-month-old triple transgenic mouse model of Alzheimer's disease and the effect of lipoic acid: a 13C-NMR study.

    Sancheti, Harsh; Patil, Ishan; Kanamori, Keiko; Díaz Brinton, Roberta; Zhang, Wei; Lin, Ai-Ling; Cadenas, Enrique

    2014-11-01

    Alzheimer's disease (AD) is characterized by age-dependent biochemical, metabolic, and physiologic changes. These age-dependent changes ultimately converge to impair cognitive functions. This study was carried out to examine the metabolic changes by probing glucose and tricarboxylic acid cycle metabolism in a 7-month-old triple transgenic mouse model of AD (3xTg-AD). The effect of lipoic acid, an insulin-mimetic agent, was also investigated to examine its ability in modulating age-dependent metabolic changes. Seven-month-old 3xTg-AD mice were given intravenous infusion of [1-(13)C]glucose followed by an ex vivo (13)C nuclear magnetic resonance to determine the concentrations of (13)C-labeled isotopomers of glutamate, glutamine, aspartate, gamma aminobutyric acid, and N-acetylaspartate. An intravenous infusion of [1-(13)C]glucose+[1,2-(13)C]acetate was given for different periods of time to distinguish neuronal and astrocytic metabolism. Enrichments of glutamate, glutamine, and aspartate were calculated after quantifying the total ((12)C+(13)C) concentrations by high-performance liquid chromatography. A hypermetabolic state was clearly evident in 7-month-old 3xTg-AD mice in contrast to the hypometabolic state reported earlier in 13-month-old mice. Hypermetabolism was evidenced by prominent increase of (13)C labeling and enrichment in the 3xTg-AD mice. Lipoic acid feeding to the hypermetabolic 3xTg-AD mice brought the metabolic parameters to the levels of nonTg mice. PMID:25099753

  5. Phosphonate Based High Nuclearity Magnetic Cages.

    Sheikh, Javeed Ahmad; Jena, Himanshu Sekhar; Clearfield, Abraham; Konar, Sanjit

    2016-06-21

    Transition metal based high nuclearity molecular magnetic cages are a very important class of compounds owing to their potential applications in fabricating new generation molecular magnets such as single molecular magnets, magnetic refrigerants, etc. Most of the reported polynuclear cages contain carboxylates or alkoxides as ligands. However, the binding ability of phosphonates with transition metal ions is stronger than the carboxylates or alkoxides. The presence of three oxygen donor sites enables phosphonates to bridge up to nine metal centers simultaneously. But very few phosphonate based transition metal cages were reported in the literature until recently, mainly because of synthetic difficulties, propensity to result in layered compounds, and also their poor crystalline properties. Accordingly, various synthetic strategies have been followed by several groups in order to overcome such synthetic difficulties. These strategies mainly include use of small preformed metal precursors, proper choice of coligands along with the phosphonate ligands, and use of sterically hindered bulky phosphonate ligands. Currently, the phosphonate system offers a library of high nuclearity transition metal and mixed metal (3d-4f) cages with aesthetically pleasing structures and interesting magnetic properties. This Account is in the form of a research landscape on our efforts to synthesize and characterize new types of phosphonate based high nuclearity paramagnetic transition metal cages. We quite often experienced synthetic difficulties with such versatile systems in assembling high nuclearity metal cages. Few methods have been emphasized for the self-assembly of phosphonate systems with suitable transition metal ions in achieving high nuclearity. We highlighted our journey from 2005 until today for phosphonate based high nuclearity transition metal cages with V(IV/V), Mn(II/III), Fe(III), Co(II), Ni(II), and Cu(II) metal ions and their magnetic properties. We observed that

  6. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  7. Measuring Long-Lived ^{13}C-Singlet State Lifetimes at Natural Abundance

    Claytor, Kevin E; Feng, Yesu; Warren, Warren

    2013-01-01

    Long-lived singlet states hold the potential to drastically extend the lifetime of hyperpolarization in molecular tracers for in-vivo magnetic resonance imaging (MRI). Such long lived hyperpolarization can be used for elucidation of fundamental metabolic pathways, early diagnosis, and optimization of clinical tests for new medication. All previous measurements of 13C singlet state lifetimes rely on costly and time consuming syntheses of 13C labeled compounds. Here we show that it is possible to determine 13C singlet state lifetimes by detecting the naturally abundant doubly-labeled species. This approach allows for rapid and low cost screening of potential molecular biomarkers bearing long-lived singlet states.

  8. Carbon Flux Analysis by 13C Nuclear Magnetic Resonance To Determine the Effect of CO2 on Anaerobic Succinate Production by Corynebacterium glutamicum

    Radoš, Dušica; David L Turner; Fonseca, Luís L.; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J.; Neves, Ana Rute; Santos, Helena

    2014-01-01

    Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase i...

  9. Identification of Flavonoid Glycosides in Rosa chinensis Flowers by Liquid Chromatography-tandem Mass Spectrometry in Combination with 13C Nuclear Magnetic Resonance

    Qing, Lin-Sen; Xue, Ying; Zhang, Jian-Guang; Zhang, Zhi-Feng; Liang, Jian; Jiang, Yan; Liu, Yi-Ming; Liao, Xun

    2012-01-01

    Flowers of Rosa chinensis are widely used in traditional Chinese medicine as well as in food industry. Flavonoid glycosides are believed to be the major components in R. chinensis that are responsible for its antioxidant activities. In this work, a liquid chromatography-tandem mass spectrometry (HPLC- MS/MS) method was developed for analysis of flavonoid glycosides presented in ethyl acetate extract of dried R. chinensis flowers. Twelve flavonoid glycosides were separated and detected. By com...

  10. 13C NMR spectroscopy of methane adsorbed in SAPO-11 molecular sieve

    Koskela, Tuomas; Ylihautala, Mika; Vaara, Juha; Jokisaari, Jukka

    1996-10-01

    Static 13C and 13C-{ 1H} NMR spectra of carbon-13 enriched methane ( 13CH 4) adsorbed into SAPO-11 molecular sieve were recorded at variable temperatures. Moreover, the corresponding MAS NMR spectra were measured. These experiments reveal a temperature-dependent, anisotropic and asymmetric 13C nuclear shielding tensor. Ab initio model calculations of methane in the field of a positive point charge suggest that the deformation of the shielding tensor may be related to the interaction between the methane molecule and the charge-compensating protons. A comparison with existing Xe data is made.

  11. Stereoselective synthesis of L-[4-13C]carnitine

    The stereoselective synthesis of L-[4-13C]carnitine was achieved in 5 steps. The label was introduced from K13CN into an easily separated diastereomeric pair of 3-deoxy-D-[1-13C]aldohexoses. Reductive amination of the labeled aldohexose yielded the corresponding D-1-(dimethylamino)[1-13C]alditol which was oxidized in two steps and alkylated with iodomethane to yield L-[4-13C]carnitine. The stereochemical integrity at C-2 of the 3-deoxy-D-[1-13C]glucose precursor was maintained throughout the synthesis of L-[4-13C]carnitine. (author)

  12. Novel nuclear magnetic resonance techniques for studying biological molecules

    Laws, David D.

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

  13. 31P and 13C-NMR studies of the phosphorus and carbon metabolites in the halotolerant alga, Dunaliella salina

    The intracellular phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina adapted to different salinities were monitored in living cells by 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy. The 13C-NMR studies showed that the composition of the visible intracellular carbon metabolites other than glycerol is not significantly affected by the salinity of the growth medium. The T1 relaxation rates of the 13C-glycerol signals in intact cells were enhanced with increasing salinity of the growth medium, in parallel to the expected increase in the intracellular viscosity due to the increase in intracellular glycerol. The 31P-NMR studies showed that cells adapted to the various salinities contained inorganic phosphate, phosphomonoesters, high energy phosphate compounds, and long chain polyphosphates. In addition, cells grown in media containing up to 1 molar NaCl contained tripolyphosphates. The tripolyphosphate content was also controlled by the availability of inorganic phosphate during cell growth. Phosphate-depleted D. salina contained no detectable tripolyphosphate signal. Excess phosphate, however, did not result in the appearance of tripolyphosphate in 31P-NMR spectra of cells adapted to high (>1.5 molar NaCl) salinities

  14. Tetrapropylammonium Occlusion in Nanoaggregates of Precursor of Silicalite-1 Zeolite Studied by 1H and 13C NMR

    Mohamed Haouas

    2016-06-01

    Full Text Available The dynamic behavior of tetrapropylammonium (TPA cations in the clear precursor sols for silicalite synthesis has been investigated by 1H diffusion ordered spectroscopy (DOSY, T1, T2, and T1ρ 1H relaxation, as well as 1H→13C cross polarization (CP nuclear magnetic resonance. The DOSY NMR experiments showed the presence of strong solute–solvent interactions in concentrated sols, which are decreasing upon dilution. Similarities in dependence of diffusion coefficients with fractional power of the viscosity constant observed for nanoparticles, TPA cations and water led to the conclusion that they aggregate as anisotropic silicate-TPA particles. Relaxation studies as well as 1H→13C CP experiments provide information on dynamic properties of ethanol, water and TPA cations, which are function of silicate aggregates. The general tendency showed that the presence of silicate as oligomers and particles decreases the relaxation times, in particular T2 and T1ρH, as a consequence of involvement of these latter in ion-pairing interactions with water-solvated TPA molecules slowing down their mobility. Furthermore, from the 1H→13C CP dynamics curve profiles a change in the CP transfer regime was observed from fast (TCH << T1ρH for solutions without silicates to moderate (TCH~T1ρH when silicates are interacting with the TPA cations that may reflect the occlusion of TPA into flexible silicate hydrate aggregates.

  15. Thin layer and nuclear magnetic resonance magnetometers

    In the first part of this text, magnetometers with sensitive elements in the form of thin cylindrical ferromagnetic layers are described. These layers are anisotropic, uniaxial, C orientated and single domains. In the second part of the text, the principles of the nuclear magnetic resonance magnetometer realized at the LETI are presented. This instrument is accurate, of high efficiency, and isotropic. Very small variations in magnetic field intensity (10-7 oersteds) can be detected with a 1Hz pass band at zero frequency

  16. Nuclear magnetic resonance as a petrophysical measurement

    Nuclear magnetic resonance (NMR) of hydrogen nuclei in fluids which saturate porous rocks is important in oil exploration and production, since NMR logs can provide good estimates of permeability and fluid flow. This paper reviews developments which connect the NMR properties of rocks with petrophysical properties, and particularly those relating to fluid flow. The recent advances in the use of NMR in boreholes which have spurred these developments are also discussed. The relevance of other NMR measurements on geological samples, including magnetic resonance imaging, is briefly referred to. (author)

  17. Nuclear magnetic ordering ''avant toute chose''

    We give an overview of the research initiated at Saclay to study cooperative phenomena between nuclear spins in the presence of a high magnetic field. These systems exhibit a wealth of different orderings including antiferromagnetism, ferromagnetism with domains and transverse structures rotating about the static magnetic field. These states have been characterized by NMR of the ordered nuclei, NMR of dilute probe nuclei, double resonance methods and neutron diffraction. Some related phenomena involving the coupling of spins with the lattice are reported. Finally we outline future experiments which will benefit of the insight brought by the study of dipolar ordering. (authors). 30 refs., 11 figs

  18. Nuclear magnetic resonance and relaxation studies of the structure and segmental motions of 4-vinyl-pyridinic polymers in solution

    The poly 4-vinylpyridine, its quaternized products from HBr and n-alkyl-bromides, and its N-oxide form have been investigated by nuclear magnetic resonance of proton at 100 and 250 MHz and carbon-13 at 25.15 MHz, The 1H and 13C relaxation data of poly-vinylpyridine and its ionized form have been correlated with conformational calculations. They have been interpreted in terms of an isotropic motion of the macromolecular segments introducing a correlation times distribution and of an oscillation motion of the pyridyl groups. The same treatment have been used for the 13C relaxation data of the poly 4- vinyl-pyridines quaternized at various rates by n-alkyl-bromides. The 13C relaxation times in the side-chains have been interpreted first by semi-empirical equations assuming an exponential gradient of the diffusion coefficients along them, and also by a Monte Carlo simulation of the motions. The results have shown that the quaternization induces a strong rigidity of the macromolecular backbone and that the dominant effect is the electrostatic interactions. On the other hand it seems that the motion of pyridyl rings is not affected. Moreover we have found a range of oscillation amplitudes in agreement with conformational energy calculations and the results obtained from a conformational study of the poly 4-vinylpyridine N-oxide by 1H and 13C NMR contact shifts induced by Ni II paramagnetic ions. (author)

  19. Synthesis and structural analysis of 13C-fatty acids

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  20. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  1. Glutamatergic and GABAergic energy metabolism measured in the rat brain by (13) C NMR spectroscopy at 14.1 T.

    Duarte, João M N; Gruetter, Rolf

    2013-09-01

    Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13)C incorporation into brain metabolites by dynamic (13)C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13)C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. PMID:23745684

  2. Sup(13)C NMR studies of glucose disposal in normal and non-insulin-dependent diabetic humans

    To examine the extent to which the defect in insulin action in subjects with non-insulin-dependent diabetes mellitus (NIDDM) can be accounted for by impairment of muscle glycogen synthesis, we performed combined hyperglycemic-hyperinsulinemic clamp studies with [13C]glucose in five subjects with NIDDM and in six age- and weight-matched healthy subjects. The rate of incorporation of intravenously infused [1-13C]glucose into muscle glycogen was measured directly in the gastrocnemius muscle by means of a nuclear magnetic resonance (NMR) spectrometer with a 15.5 min time resolution and a 13C surface coil. The steady-state plasma concentrations of insulin and glucose were similar in both study groups. The mean (±SE) rate of glycogen synthesis, as determined by 13C NMR, was 78±28 and 183±39 μmol-glucosyl units (kg muscle tissue (wet mass))-1 min-1 in the diabetic and normal subjects, respectively. The mean glucose uptake was markedly reduced in the diabetic as compared with the normal subjects. The mean rate of non-oxidative glucose metabolism was 22±4 μmol kg-1 min-1 in the diabetic subjects and 42±4 μmol kg-1 min-1 in the normal subjects. When these rates are extrapolated to apply to the whole body, the synthesis of muscle glycogen would account for most of the total-body glucose uptake and all of the non-oxidative glucose metabolism in both normal and diabetic subjects. We conclude that muscle glycogen synthesis is the principal pathway of glucose disposal in both normal and diabetic subjects and that defects in muscle glycogen synthesis have a dominant role in the insulin resistance that occurs in persons with NIDDM. (author)

  3. Nuclear magnetic resonance studies of biological systems: Applications to liver preservation and metabolism in cultured pituitary tumor cells

    This study centers on applications of both 31P and 13C nuclear magnetic resonance spectroscopy to two different biological systems. The first application utilizes 31P NMR to study mobile phospholipids in the MMQ cell line, a pituitary tumor cell line. These measurements characterize membrane phospholipids thought to be part of a RNA-proteolipid complex unique to cellular transformation. The second application utilizes both 31P and 13C spectroscopy to study liver preservation and transplantation an a rat model. In this work, several questions were addressed: (1) to what extent do successful preservation solutions slow ATP breakdown? (2) can clinically successful preservation conditions ameliorate total nucleotide breakdown? (3) to what extent is energy reconstitution following cold storage correlated with transport success? and (4) can any spectroscopic parameter be used as a diagnostic indicator of tissue viability?

  4. Study of the reinforcement of rubber styrene-butadiene with mesoporous silices by solid-state nuclear magnetic resonance

    The knowledge about the interaction rubber/filler for the rubber reinforced with carbon black of silica is important to understand the physical properties, which determine the reinforcement. This paper presents a comparative study of the interactions between styrene butadiene rubber (SBR) and silica for a silica Ultrasil type and mesoporous silica MCM-41 type prepared by different procedures, based on solid state nuclear magnetic resonance: 1H MAS NMR; 13C MAS NMR, 13C CP/MAS, 29Si MAS and 29Si CP/MAS NMR. Mesoporous silica synthesized under certain specific conditions showed better interaction with the rubber than the ultrasil VN3 silica, commonly used as a reinforcement load. Mechanical tests for the SBR vulcanised with this silica indicate an important increase for values of elongation and tearing resistance, but an increase in the vulcanization time in it is compared with the SBR vulcanise with Ultrasil

  5. 16-Channel surface coil for 13C-hyperpolarized spectroscopic imaging of cardiac metabolism in pig heart

    Frijia, Francesca; Santarelli, Maria Filomena; Koellisch, Ulrich;

    2016-01-01

    Magnetic resonance spectroscopy (MRS) of hyperpolarized 13C pyruvate and its metabolites in large animal models is a powerful tool for assessing cardiac metabolism in patho-physiological conditions. In 13C studies, a high signal-to-noise ratio (SNR) is crucial to overcome the intrinsic data quality...

  6. Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe

    Sailasuta, Napapon; Robertson, Larry W.; Harris, Kent C.; Gropman, Andrea L.; Allen, Peter S.; Ross, Brian D.

    2008-12-01

    In this communication, a scheme is described whereby in vivo 13C MRS can safely be performed in the frontal lobe, a human brain region hitherto precluded on grounds of SAR, but important in being the seat of impaired cognitive function in many neuropsychiatric and developmental disorders. By combining two well known features of 13C NMR—the use of low power NOE and the focus on 13C carbon atoms which are only minimally coupled to protons, we are able to overcome the obstacle of SAR and develop means of monitoring the 13C fluxes of critically important metabolic pathways in frontal brain structures of normal volunteers and patients. Using a combination of low-power WALTZ decoupling, variants of random noise for nuclear overhauser effect enhancement it was possible to reduce power deposition to 20% of the advised maximum specific absorption rate (SAR). In model solutions 13C signal enhancement achieved with this scheme were comparable to that obtained with WALTZ-4. In human brain, the low power procedure effectively determined glutamine, glutamate and bicarbonate in the posterior parietal brain after [1- 13C] glucose infusion. The same 13C enriched metabolites were defined in frontal brain of human volunteers after administration of [1- 13C] acetate, a recognized probe of glial metabolism. Time courses of incorporation of 13C into cerebral glutamate, glutamine and bicarbonate were constructed. The results suggest efficacy for measurement of in vivo cerebral metabolic rates of the glutamate-glutamine and tricarboxylic acid cycles in 20 min MR scans in previously inaccessible brain regions in humans at 1.5T. We predict these will be clinically useful biomarkers in many human neuropsychiatric and genetic conditions.

  7. 13C NMR studies of the molecular flexibility of antidepressants

    The solution dynamics of a series of clinically potent antidepressants have been investigated by measuring 13C NMR relaxation parameters. Correlation times and internal motional rates were calculated from spin-lattice relaxation times and nuclear Overhauser effects for the protonated carbons in mianserin, imipramine-like antidepressants, and amitriptyline-like antidepressants. These data were interpreted in terms of overall molecular tumbling, internal rotations, and inherent flexibility of these structures. Of particular interest was the conformational variability of the tricyclic nucleus of the tricyclic antidepressants, where the data indicated a fivefold difference in mobility of the dimethylene bridge of imipramine-like antidepressants relative to amitriptyline-like compounds. The implications of such a difference in internal motions is discussed in relation to previous NMR studies and to the reported differences in pharmacological activity of these antidepressants

  8. Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea

    von Morze, Cornelius; Larson, Peder E.Z.; Hu, Simon;

    2012-01-01

    compound HP001 (T1=95 s ex vivo, 32 s in vivo at 3 T) using a pulse sequence with balanced steady-state free precession and ramped flip angle over time for efficient utilization of the hyperpolarized magnetization and three-dimensional echo-planar spectroscopic imaging of urea copolarized with [1-13C......The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-13C]cyclopropane-d8) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained...

  9. Experimental test of nuclear magnetization distribution and nuclear structure models

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  10. Nuclear magnetic moments measured by nuclear magnetic resonance on oriented nuclei

    The configurations of nuclei near the shell closures N=40 and Z=40 were studied. The nuclear magnetic moments have been measured by nuclear magnetic resonance on oriented nuclei (NMR/ON). We have determined the ground state spin of 73Se and magnetic moments of isotopes 73Se(9/2+), 77Br3/2-) and 74Brm(4). The 9/2+ spin and parity assignment to the parent state of 73Se is perfectly compatible with the systematics of N + 39 and N = 41 isotones. The bromine moments around the shell closure N = 40, show a change in protonic configuration. In the second part of this work a precise hyperfine field value of zinc in iron has been determined. The relaxation constant of Zn in iron is established. The new hyperfine field value of zinc in iron allows a more precise reevaluation of the magnetic moments of 69Znm and 71Znm measured with NMR/ON

  11. Science and history explored by nuclear magnetic resonance

    Nuclear Magnetic Resonance was chosen as the main tool for investigating different biological and chemical systems, as it is unique in providing the information details about the morphology and molecular structures and conformations by which the fundamental properties of these biological and chemical systems can be understood. Proton spin-diffusion experiments combined with 13C CPMAS spectroscopy were successfully applied to characterize the changes that occur during the thermal denaturation of keratin fibers from wool and hair. A model describing both the effect of thermal denaturation and the effect of different chemical treatments on keratin fibers is presented. Proton NMR spectroscopy was used for studying the proton exchange in Sulfonated Polyether Ether Ketone proton exchange membranes revealing that the water exchange processes in hydrated SPEEK-silica membranes are more efficient when low concentrations of polyethoxysiloxane (PEOS) are used for the membrane preparation. Proton 1D exchange spectroscopy combined with transverse relaxation measurements offered good insight in the state of water in hydrated SPEEK/SiO2 membranes revealing that concentrations of 5%-10% wt. PEOS could enhance the electrical conductivity of PEM. Hyperpolarized 129Xe NMR spectroscopy was successfully applied for monitoring the free radical polymerization reactions of methyl methacrylate, methyl acrylate and the copolymerization of methyl methacrylate and methyl acrylate. The observation of Xe chemical shift and linewidths during the reactions reveal information about the polymer chain growths during the polymerizations. The successful application of the NMR-MOUSE to visualise the different anatomical layers with varying proton densities opens the possibility of its use in clinical studies such as osteoporosis for bone density measurements. The NMR-MOUSE was also successfully applied for the analysis of violins and bows and a classification of the violins and bows as a function of

  12. Nuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amonio acid and in crystallne sperm whale (Physeter catodon) myoglobin

    Deuterium (2H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T1) were obtained of L-[epsilon-2H3]methionine, L-[epsilon-2H3]methionine in a D,L lattice, and [S-methyl-2H3]methionine in the crystalline solid state, as a function of temperature, in addition to obtaining 2H T1 and line-width results as a function of temperature on [epsilon-2H3]methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering. Also recorded were 13C cross-polarization ''magic-angle'' sample-spinning NMR spectra of [epsilon-13C]methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T) and of the same protein in aqueous solution

  13. Characterization of organic matter in sediment cores of the Todos os Santos Bay, Bahia, Brazil, by elemental analysis and 13C NMR

    Highlights: → The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by EA and 13C NMR. → This article reports a study of six sediment cores collected at different depths and regions. → The elemental profiles of cores suggest an abrupt change in the sedimentation regime, corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects. → The results presented illustrate several important aspects of environmental impact of human activity on this bay. - Abstract: The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and 13C Nuclear Magnetic Resonance (13C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Autoregressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the 13C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay.

  14. Nuclear magnetic resonance common laboratory, quadrennial report

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  15. Nuclear Magnetic Resonance in Liquids and Solids

    The paper outlines the basic principles of nuclear magnetic resonance, trying wherever possible to compare and contrast the method with that of slow neutron scattering as a technique for studying the properties of condensed phases and especially of molecular and atomic motions. It is emphasized that this is not a review of nmr for an expert audience but has a pedagogical aim. It is hoped to give persons with a main interest in neutron scattering some appreciation of the scope and limitations of the nmr method. This is illustrated by recent results on one substance which covers many but by no means all of the important points. (author)

  16. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C′) and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C′-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment

  17. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  18. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  19. Acetylcholinesterase-catalyzed acetate - water oxygen exchange studied by 13C-NMR

    The kinetics of the oxygen exchange reaction between [l-13C,18O2]acetate and H216O catalyzed by homogeneous acetyl-cholinesterase from the electric eel, Electrophorus electricus, was studied using the 18O-isotope-induced shift on 13C-nuclear magnetic resonance spectra. Pseudo-first-order rate constants for the exchange reactions were determined at pH values from 4.5 to 8. The exchange reaction exhibits a maximum at pH 5.8. The apparent catalytic rate constant for the exchange reaction is 102 to 104 times smaller than that for the deacylation of the acetyl-enzyme intermediate over the pH range tested. Oxygen exchange occurs by a random sequential pathway rather than by multiple (coupled) exchange. The inhibition of acetylcholinesterase by sodium acetate showed a sigmoidal dependence on pH, with K/sub i/ increasing 2.5 orders of magnitude over the pH range. Protonation of an active site residue having an apparent pKa of 6.8 is associated with an increase in acetate binding. Deacylation also exhibits a sigmoidal dependence on [H+]. The experimental data fits titration curves with inflection points at 5.0 +/- 0.3 and 6.7 +/-0.1. Results support the role of histidine in acetylation of the active site serine, but the conjugate base of another active site residue with a pKa of 5.0 appears necessary for maximal catalytic activity in both the deacylation and exchange reactions

  20. Connection of nuclear magnetic and infiltration parameters of porous rocks

    The infiltration parameters of porous rocks are determined among others by the specific pore surface. In the case of the sandostones the nuclear magnetic behaviour of the water influx is also influenced by the specific surface of the pores. On this basis the nuclear magnetic and the infiltration parameters of the rocks can be brought into connection with each other. The paper deals with the rock-physics of the nuclear magnetic logging. (author)

  1. Nuclear magnetic resonance in hexaferrite/maghemite composite nanoparticles

    Kříšťan, P.; Hondlík, O.; Štěpánková, H.; Chlan, V.; Kouřil, K.; Řezníček, R.; Pollert, Emil; Veverka, Pavel

    Warszawa: Polish Academy of Sciences, 2015, s. 514-516. ISSN 0587-4246. [The European Conference PHYSICS OF MAGNETISM 2014/PM'14/. Poznań (PL), 23.06.2014-27.06.2014] Institutional support: RVO:68378271 Keywords : nuclear magnetic resonance and relaxation * ferrimagnetics * fine-particle systems * nanocrystalline materials * magnetic oxides * inorganic compounds Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Biosynthesis and identification of 13C-labeled starch

    Biosynthesis of 13C-labeled starch was examined by using a small-scale apparatus. Tobacco leaves were placed in the cylindric photosynthesis chamber (14φx50 cm). After preincubation for 30 h in the dark, incubation with 13C-labeled CO2 was carried out for 48 h under irradiation with fluorescent lights. Labeled starch was extracted from the leaves and was purified. About 500 mg of 13C-labeled starch can be obtained from 50 g of the leaves. The 13C-abundance of the starch formed by the incubation was determined to be 82.0-92.0 atom % by mass spectrometry. (author)

  3. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET)

    Borgwardt, Henrik Gutte; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjær-Larsen, Jan Henrik; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly...... have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization...... local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of...

  4. Carbon-13 nuclear magnetic resonance studies of trans-diacido(tetraamine)cobalt(III)

    Brubaker, G.R.; Johnson, D.W.

    1982-06-01

    Carbon-13 nuclear magnetic resonance spectra of a series of trans-diacido(1,10-diamino-4,7-diazadecane)cobalt(III) complexes (trans-Co(3,2,3-tet)X/sub 2/, X = Br/sup -/, Cl/sup -/, N/sub 3//sup -/, NO/sub 2//sup -/, OAc) and trans-diacido(1,9-diamino-3,7-diazononane)cobalt(III) complexes (trans-Co(2,3,2-tet)X/sub 2/, X = Cl/sup -/, GlyH, /sup -/OAc, NH/sub 3/, NO/sub 2//sup -/) will be discussed. The /sup 13/C chemical shift is found to be linearly dependent on the ligand field strength (estimated from the electronic spectrum) of the axial ligands (X). The shielding of selected carbon atoms within the tetraamine ligand, which has been attributed to the central metal ion, increases with increasing axial ligand field strength.

  5. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    Magnetic Resonance Imaging (MRI) of nuclei other than 1H (e.g. 13C) allows for characterisation of metabolic processes. Imaging of such nuclei, however, requires development of sensitive MRI coils. This paper describes the design of surface receive coils for 13C imaging in small animals. The design...... is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented...

  6. Use of 13C measurements in humus dynamics studies

    The humic substances of the Ol and Ah horizons of a Spodo-Dystric Cambisol were characterized by exclusion chromatography on controlled pore glass followed by determination of the natural 13C/12C ratios by mass spectrometry. A significant correlation of the molecular weight of the humic substances and the δ13C values was observed. Fractions with higher molecular weight have less negative δ13C values. This relationship holds only for the humic and fulvic acids. In both horizons the non-humic substances and the very small humic substances (Kd > 0.80) were isotopically heavier than the humic substances of the second maximum (brown humic and fulvic acids). The low molecular weight organic substances of the Ol horizon showed a higher δ13C value than all other fractions. These results indicate that the non-humic substances are easily attacked by microorganismus and are therefore richer in 13C. (authors)

  7. 13C-NMR assignment, structure, and dynamics of deoxyoligonucleotides

    The unique spectral properties of 13C-NMR for studying nucleic acids and some of the important features of 13C-NMR in oligonucleotide studies are demostrated. The main difficulty in studying oligonucleotides by 13C-NMR and recent improvements in NMR instrumentation and advances in oligonucleotide synthesis are presented. The high resolution 13C-NMR spectra, T1 relaxation times and NOEs were measured for duplex of the self-complementary oligo-DNAs: d(CG)3 and d(GGTATACC) are studied. The target of this study is to developed a systematic 13C-NMR spectral assignment and to investigate the structure and dynamics of these two sequences by this techniques. (M.J.C.)

  8. Nuclear magnetic resonance spectrometer and method

    A nuclear magnetic resonance techniis described that allows simultaneous temperature determination and spectral acquisition. The technique employs a modification of the lock circuit of a varian xl-100 spectrometer which permits accurate measurement of the difference in resonance frequency between a primary lock nucleus and another , secondary, nucleus. The field stabilization function of the main lock circuit is not compromised. A feedback signal having a frequency equal to the frequency difference is substituted for the normal power supply in the spectrometer's existing radio frequency transmitter to modulate that transmitter. Thus, the transmitter's radio frequency signal is enhanced in a frequency corresponding to the resonance peak of the secondary nucleus. Determination of the frequency difference allows the determination of temperature without interference with the observed spectrum. The feedback character of the circuit and the presence of noise make the circuit self-activating

  9. Two-dimensional nuclear magnetic resonance petrophysics.

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  10. Identification, synthesis and characterization of an unknown process related impurity in eslicarbazepine acetate active pharmaceutical ingredient by LC/ESI–IT/MS, 1H, 13C and 1H–1H COSY NMR

    Saji Thomas; Saroj Kumar Paul; Subhash Chandra Joshi; Vineet Kumar; Ashutosh Agarwal; Dharam Vir

    2014-01-01

    A new impurity was detected during high performance liquid chromatographic (HPLC) analysis of eslicarbazepine acetate active pharmaceutical ingredient. The structure of unknown impurity was postulated based on liquid chromatography mass spectrometry using electrospray ionization and ion trap analyzer (LC/ESI–IT/MS) analysis. Proposed structure of impurity was unambiguously confirmed by synthesis followed by characterization using 1H, 13C nuclear magnetic resonance spectrometry (NMR), 1H–1H co...