WorldWideScience

Sample records for 120-kd surface protein

  1. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line.

    Ball, R K; Friis, R R; Schoenenberger, C A; Doppler, W; Groner, B

    1988-01-01

    In order to study the hormonal regulation of gene expression in mammary epithelial cells, we isolated a prolactin-responsive cell clone, HC11, from the COMMA-1D mouse mammary epithelial cell line. Clone HC11 was selected as a unique example of a cloned mouse mammary epithelial cell which has no requirement for complex, exogenously added, extracellular matrix or co-cultivation with other cell types for the prolactin-dependent in vitro induction of the endogenous beta-casein gene by lactogenic ...

  2. Surface Mediated Protein Disaggregation

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  3. Histophilus somni Surface Proteins.

    Corbeil, Lynette B

    2016-01-01

    The pathogen surface is usually the first site of interaction with the host. Histophilus somni was earlier thought to only have an outer membrane on its surface. Now it is known that the surface is composed of many virulence factors, including outer membrane proteins, lipooligosaccharide or endotoxin, a fibrillar network, and an exopolysaccharide. Outer membrane blebs, endotoxin, the fibrillar network, and the exopolysaccharide are also shed from the surface. This review will focus on the surface proteins of this pathogen that may colonize the mucosal surface of ruminants as a commensal or may cause pneumonia, septicemia, myocarditis, thrombotic meningoencephalitis, arthritis, and/or abortion. The major outer membrane protein has been well studied. Since its size and epitopes vary from strain to strain, it may be useful for typing strains. Iron-regulated OMPs have also received much attention because of their role in iron uptake for in vivo growth of H. somni. Other OMPs may be protective, based on passive immunization with monospecific antibodies and active immunization experiments. The surface and shed fibrillar network has been shown to be an immunoglobulin-binding protein in that it binds bovine IgG2 by the Fc portion. Two repeat domains (DR1 and DR2) have cytotoxic Fic motifs. Vaccine studies with recombinant DR2 are promising. Studies of the bacterial genome as well as comparison of surface proteins of different strains from the various H. somni syndromes and carrier states will be discussed and have provided much insight into pathogenesis and protection. PMID:26728061

  4. SURFACE: a database of protein surface regions for functional annotation

    Ferrè, Fabrizio; Ausiello, Gabriele; Zanzoni, Andreas; Helmer-Citterich, Manuela

    2004-01-01

    The SURFACE (SUrface Residues and Functions Annotated, Compared and Evaluated, URL http://cbm.bio.uniroma2.it/surface/) database is a repository of annotated and compared protein surface regions. SURFACE contains the results of a large-scale protein annotation and local structural comparison project. A non-redundant set of protein chains is used to build a database of protein surface patches, defined as putative surface functional sites. Each patch is annotated with sequence and structure-der...

  5. Ice nucleation protein as a bacterial surface display protein

    Sarhan Mohammed A.A.

    2011-01-01

    Surface display technology can be defined as that phenotype (protein or peptide) which is linked to a genotype (DNA or RNA) through an appropriate anchoring motif. A bacterial surface display system is based on expressing recombinant proteins fused to sorting signals (anchoring motifs) that direct their incorporation on the cell surface.

  6. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces......In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces is...... and that the outcome of IgG adsorption is much more sensitive to surface characteristics than the outcome of albumin adsorption. Using high concentrations of protein solution and hydrophobic polymer surfaces during adsorption can induce IgG aggregation, which is observed as extremely high Ig...

  7. Interactions between whey proteins and kaolinite surfaces

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  8. Antibody sensed protein surface conformation

    Scott R. Schricker

    2011-12-01

    Full Text Available An antibody-modified atomic force microscope (AFM tip was used to detect conformational changes of fibronectin deposited on a poly(methyl methacrylate/poly(acrylic acid block copolymer compared to PMMA and a random poly(methyl methacrylate/poly(acrylic acid copolymer with an identical chemical composition. Based on the antibody-protein adhesive force maps and phase imaging, it was found that the nanomorphology of the triblock copolymer induces the desired conformation of fibronectin. This finding demonstrates that block copolymer nanomorphology can be used to regulate protein conformation and potentially cellular response.

  9. Metabolic behavior of cell surface biotinylated proteins

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  10. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase 125I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to 125I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein

  11. Functional dynamics of cell surface membrane proteins

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  12. Proteins in solution: Fractal surfaces in solutions

    R. Tscheliessnig

    2016-02-01

    Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.

  13. Protein-mediated surface structuring in biomembranes

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  14. Denaturation of proteins near polar surfaces

    Starzyk, Anna; Cieplak, Marek

    2011-12-01

    All-atom molecular dynamics simulations for proteins placed near a model mica surface indicate existence of two types of evolution. One type leads to the surface-induced unfolding and the other just to a deformation. The two behaviors are characterized by distinct properties of the radius of gyration and of a novel distortion parameter that distinguishes between elongated, globular, and planar shapes. They also differ in the nature of their single site diffusion and two-site distance fluctuations. The four proteins chosen for the studies, the tryptophan cage, protein G, hydrophobin and lyzozyme, are small to allow for a fair determination of the forces generated by the surface as the effects of finite cutoffs in the Coulombic interactions are thus minimized. When the net charge on the surface is set to zero artificially, infliction of deformation is seen to persists but no unfolding takes place. Unfolding may also be prevented by a cluster of disulfide bonds, as we observe in simulations of hydrophobin.

  15. Surface immobilized protein multilayers for cell seeding

    Brynda, Eduard; Pacherník, J.; Houska, Milan; Pientka, Zbyněk; Dvořák, P.

    2005-01-01

    Roč. 21, č. 17 (2005), s. 7877. ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA203/02/1326; GA ČR GA102/03/0633; GA MŠk(CZ) LN00A065 Keywords : surface modification * layer-by-layer deposition * protein multilayers Subject RIV: CE - Biochemistry Impact factor: 3.705, year: 2005

  16. Computational Protein Design with Explicit Consideration of Surface Hydrophobic Patches

    Jacak, Ron; Leaver-Fay, Andrew; Kuhlman, Brian

    2011-01-01

    De novo protein design requires the identification of amino-acid sequences that favor the target folded conformation and are soluble in water. One strategy for promoting solubility is to disallow hydrophobic residues on the protein surface during design. However, naturally occurring proteins often have hydrophobic amino acids on their surface that contribute to protein stability via the partial burial of hydrophobic surface area or play a key role in the formation of protein-protein interacti...

  17. Identification and characterization of the surface proteins of Clostridium difficile

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated

  18. Identification and characterization of the surface proteins of Clostridium difficile

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  19. Protein adsorption on materials surfaces with nano-topography

    2007-01-01

    Protein adsorption behavior on the surfaces of biomedical materials is highly related to the biocompatibility of the materials. In the past, numerous research reports were mainly focused on the effect of chemical components of a material's surface on protein adsorption. The effect of surface topography on protein adsorption, the topic of this review, has recently receuvedkeen interest. The influence of surface nano-topographic factors, including roughness, curvature and geometry, on protein adsorption as well as the protein adsorption behavior, such as the amount of protein adsorbed, the activity and morphology of adsorbed protein, is introduced.

  20. Role of sperm surface proteins in reproduction

    Jonáková, Věra; Postlerová, Pavla; Davidová, Nina; Tichá, M.; Pěknicová, Jana

    Barcelona : The American Society, 2009. s. 1-155 ISSN 0196-3635. [9th International Congress of Andrology. 07.03.2009-10.03.2009, Barcelona] R&D Projects: GA MŠk(CZ) 1M06011; GA ČR(CZ) GA303/06/0895; GA ČR(CZ) GD523/08/H064 Institutional research plan: CEZ:AV0Z50520701 Keywords : sperm surface protein * spermadhesin * reproduction Subject RIV: DN - Health Impact of the Environment Quality

  1. Screening protein refolding using surface plasmon resonance.

    Jones, Daniel B; Hutchinson, Matthew H; Middelberg, Anton P J

    2004-04-01

    Surface plasmon resonance (SPR) measurements were used to screen refolding conditions to identify a physicochemical environment which gives an acceptable refolding yield for samples of glutathione-S-transferase (GST) denatured in 6 M guanidine hydrochloride and 32 mM dithiothreitol. The SPR measurements were performed on carboxymethylcellulose coated chips that could accommodate two separate flow paths. One side of the chip was derivatized with immobilized glutathione and the other with goat anti-GST antibody. This created a dual-derivatized chip capable of showing both the presence of GST and providing a measure of enzyme activity. The dual-derivatized chip could be regenerated using a two-step washing procedure and reused to analyze multiple samples from a screening study of protein refolding conditions. SPR measurements have been shown to be suitable for screening protein refolding conditions due to the high sensitivity, ease of chip regeneration and the ability to incorporate a control in the experimental design. The combination of such advantages with the high-throughput automated SPR systems currently available may be a valuable approach to determine conditions suitable for protein refolding following insoluble expression in a bacterial host. PMID:15048982

  2. Calreticulin: Roles in Cell-Surface Protein Expression

    Yue Jiang

    2014-09-01

    Full Text Available In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.

  3. POLY(N-VINYLPYRROLIDONE)-MODIFIED SURFACES REPEL PLASMA PROTEIN ADSORPTION

    Xiao-li Liu; Zhao-qiang Wu; Dan Li; Hong Chen

    2012-01-01

    The present work aimed to study the interaction between plasma proteins and PVP-modified surfaces under more complex protein conditions.In the competitive adsorption of fibrinogen (Fg) and human serum albumin (HSA),the modified surfaces showed preferential adsorption of HSA.In 100% plasma,the amount of Fg adsorbed onto PVP-modified surfaces was as low as 10 ng/cm2,suggesting the excellent protein resistance properties of the modified surfaces.In addition,immunoblots of proteins eluted from the modified surfaces after plasma contact confirmed that PVP-modified surfaces can repel most plasma proteins,especially proteins that play important roles in the process of blood coagulation.

  4. Identification of surface proteins in Enterococcus faecalis V583

    Eijsink Vincent GH

    2011-03-01

    Full Text Available Abstract Background Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design. Results Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in Enterococcus faecalis V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31 or to be secreted (5. Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species. Conclusions The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium E. faecalis. The 36 identified secreted (5 and surface (31 proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between E. faecalis and its environment.

  5. RPE cell surface proteins in normal and dystrophic rats

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  6. Evolutionary analysis of circumsporozoite surface protein and merozoite surface protein-1 (CSP and MSP-1) sequences of malaria parasites

    Tripathi, Vijay; Gupta, Dwijendra

    2011-01-01

    Malaria, one of the world's most common diseases, is caused by the intracellular protozoan parasite known as Plasmodium. In this study, we have determined the evolutionary relationship of two single-copy proteins, circumsporozoite protein (CSP) and merozoite surface protein-1 (MSP-1), among Plasmodium species using various bioinformatics tools and softwares. These two proteins are major blood stage antigens of Plasmodium species. This study demonstrates that the circumsporozoite protein of Pl...

  7. Identification of Major Outer Surface Proteins of Streptococcus agalactiae

    Hughes, Martin J. G.; Moore, Joanne C.; Lane, Jonathan D.; Wilson, Rebecca; Pribul, Philippa K.; Younes, Zabin N.; Dobson, Richard J; Everest, Paul; Reason, Andrew J.; Redfern, Joanne M.; Greer, Fiona M.; Paxton, Thanai; Panico, Maria; Morris, Howard R; Feldman, Robert G.

    2002-01-01

    To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were ...

  8. VASCo: computation and visualization of annotated protein surface contacts

    Thallinger Gerhard G

    2009-01-01

    Full Text Available Abstract Background Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. Results VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. Conclusion VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.

  9. Acetylene plasma coated surfaces for covalent immobilization of proteins

    A modified plasma enhanced chemical vapor method was used for acetylene plasma polymerization of biocompatible surfaces on a range of substrates. Smooth polymerized surfaces with excellent mechanical properties were achieved suitable for a wide range of biochemical and biomedical applications. Horseradish peroxidase activity analysis showed that the proteins immobilized on the plasma polymerized surfaces maintained their biological function for a much longer period of time compared to untreated surfaces. The plasma polymerized surfaces and the protein immobilization were also analyzed using quartz crystal microbalance with dissipation analysis, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and tensile strength analysis. The results indicate that the plasma polymerized surfaces provide covalent bonding sites and immobilize a dense monolayer of proteins after incubation in protein containing solution.

  10. Surface Functionalization for Protein and Cell Patterning

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  11. SURF'S UP! – Protein classification by surface comparisons

    Joanna M Sasin; Adam Godzik; Janusz M Bujnicki

    2007-01-01

    Large-scale genome sequencing and structural genomics projects generate numerous sequences and structures for ‘hypothetical’ proteins without functional characterizations. Detection of homology to experimentally characterized proteins can provide functional clues, but the accuracy of homology-based predictions is limited by the paucity of tools for quantitative comparison of diverging residues responsible for the functional divergence. SURF’S UP! is a web server for analysis of functional relationships in protein families, as inferred from protein surface maps comparison according to the algorithm. It assigns a numerical score to the similarity between patterns of physicochemical features (charge, hydrophobicity) on compared protein surfaces. It allows recognizing clusters of proteins that have similar surfaces, hence presumably similar functions. The server takes as an input a set of protein coordinates and returns files with ``spherical coordinates” of proteins in a PDB format and their graphical presentation, a matrix with values of mutual similarities between the surfaces, and the unrooted tree that represents the clustering of similar surfaces, calculated by the neighbor-joining method. SURF’S UP! facilitates the comparative analysis of physicochemical features of the surface, which are the key determinants of the protein function. By concentrating on coarse surface features, SURF’S UP! can work with models obtained from comparative modelling. Although it is designed to analyse the conservation among homologs, it can also be used to compare surfaces of non-homologous proteins with different three-dimensional folds, as long as a functionally meaningful structural superposition is supplied by the user. Another valuable characteristic of our method is the lack of initial assumptions about the functional features to be compared. SURF’S UP! is freely available for academic researchers at http://asia.genesilico.pl/surfs_up/.

  12. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    Claudio Peri; Giulia Morra; Giorgio Colombo

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifi...

  13. Hydration dynamics near a model protein surface

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces

  14. Cleaning of biomaterial surfaces: protein removal by different solvents.

    Kratz, Fabian; Grass, Simone; Umanskaya, Natalia; Scheibe, Christian; Müller-Renno, Christine; Davoudi, Neda; Hannig, Matthias; Ziegler, Christiane

    2015-04-01

    The removal of biofilms or protein films from biomaterials is still a challenging task. In particular, for research investigations on real (applied) surfaces the reuse of samples is of high importance, because reuse allows the comparison of the same sample in different experiments. The aim of the present study was to evaluate the cleaning efficiency of different solvents (SDS, water, acetone, isopropanol, RIPA-buffer and Tween-20) on five different biomaterials (titanium, gold, PMMA (no acetone used), ceramic, and PTFE) with different wettability which were covered by layers of two different adsorbed proteins (BSA and lysozyme). The presence of a protein film after adsorption was confirmed by transmission electron microscopy (TEM). After treatment of the surfaces with the different solvents, the residual proteins on the surface were determined by BCA-assay (bicinchoninic acid assay). Data of the present study indicate that SDS is an effective solvent, but for several protein-substrate combinations it does not show the cleaning efficiency often mentioned in literature. RIPA-buffer and Tween-20 were more effective. They showed very low residual protein amounts after cleaning on all examined material surfaces and for both proteins, however, with small differences for the respective substrate-protein combinations. RIPA-buffer in combination with ultrasonication completely removed the protein layer as confirmed by TEM. PMID:25725311

  15. Identification of Renibacterium salmoninarum surface proteins by radioiodination.

    Fredriksen, A; Bakken, V

    1994-09-01

    Surface exposed proteins of Renibacterium salmoninarum were identified by radiolabelling whole bacterial cells with 125I, followed by SDS-PAGE and autoradiography. The most prominent bands had molecular masses of approximately 57 kDa and 22 kDa; in addition, some less intensively labelled bands were detected. Polyclonal sera raised against the 22 kDa protein did not react with the 57 kDa protein. N-terminal amino acid sequence analysis of the purified 22 kDa protein showed no similarity with the sequence of the 57 kDa protein. PMID:7926685

  16. Expression of surface hydrophobic proteins by Candida albicans in vivo.

    Glee, P M; Sundstrom, P; Hazen, K C

    1995-01-01

    Candida albicans modulates cell surface hydrophobicity during growth and morphogenesis in vitro. To determine if surface hydrophobicity is expressed during pathogenesis, we generated a polyclonal antiserum against yeast hydrophobic proteins. The antiserum was then used for indirect immunofluorescence analysis of tissues from mice colonized and chronically infected with C. albicans. Results demonstrated that yeast hydrophobic proteins are exposed on fungal cells present in host tissues. The po...

  17. Controlled release of proteins from polymer-modified surfaces

    Fang, Fang; Szleifer, I.

    2006-01-01

    The ability to control the rate of adsorption and desorption of proteins from surfaces is studied by using a molecular theory. We show how changing the chemical structure and charge of short linear and branched grafted polymers to an electrode surface can be used to promote fast adsorption of charged proteins on a time scale of seconds and control the desorption in a time scale ranging from milliseconds to hours. The optimal controlled release is found from the interplay of electrostatic attr...

  18. Conferring Thermostability to Mesophilic Proteins through Optimized Electrostatic Surfaces

    Torrez, Michael; Schultehenrich, Michael; Livesay, Dennis R.

    2003-01-01

    Recently, there have been several experimental reports of proteins displaying appreciable stability gains through mutation of one or two amino acid residues. Here, we employ a simple theoretical model to quickly screen mutant structures for increased thermostability through optimization of the protein's electrostatic surface. Our results are able to reproduce the experimental observation that elimination of like-charge repulsions and creation of opposite-charge attractions on the protein surf...

  19. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  20. Intrinsic surface-drying properties of bioadhesive proteins.

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W; Miller, Dusty R; Martinez Rodriguez, Nadine R; Waite, J Herbert; Han, Songi

    2014-10-13

    Sessile marine mussels must "dry" underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bioinspired adhesion have largely been performed under applied compressive forces, but such studies are poor predictors of the ability of an adhesive to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction through surface-water diffusivity, different mussel foot proteins were found to have different abilities to evict hydration layers from surfaces-a necessary step for adsorption and adhesion. It was anticipated that DOPA would mediate dehydration owing to its efficacy in bioinspired wet adhesion. Instead, hydrophobic side chains were found to be a critical component for protein-surface intimacy. This direct measurement of interfacial water dynamics during force-free adsorptive interactions at solid surfaces offers guidance for the engineering of wet adhesives and coatings. PMID:25168789

  1. Identification and characterization of Vibrio cholerae surface proteins by radioiodination

    Whole cells and isolated outer membrane from Vibrio cholerae (Classical, Inaba) were radiolabeled with Iodogen or Iodo-beads as catalyst. Radiolabeling of whole cells was shown to be surface specific by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis of whole cells and cell fractions. Surface-labeled whole cells regularly showed 16 distinguishable protein species, of which nine were found in radiolabeled outer membrane preparations obtained by a lithium chloride- lithium acetate procedure. Eight of these proteins were found in outer membranes prepared by sucrose density gradient centrifugation and Triton X-100 extraction of radiolabeled whole cells. The mobility of several proteins was shown to be affected by temperature, and the major protein species exposed on the cell surface was shown to consist of at least two different peptides

  2. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.; Han, Songi

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were f...

  3. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption.

    Kang, Chan-Koo; Lee, Yoon-Sik

    2007-07-01

    Protein adsorption on a biomaterial surface is of great importance as it usually induces unfavorable biological cascades, with the result that much surface modification research has had to be performed in an effort to prevent this. In this study, we developed surface modification methods for stainless steel, which is a representative metal for biomedical device. The stainless steels were first smoothened to different extents by electropolishing, in order to obtain a rough or smooth surface. On these two kinds of substrates, we introduced epoxide groups to the metal surface by silanization with 3-glycidoxypropyltrimethoxysilane (GPTS). Then, various polymers such as poly(ethylene glycol) (PEG), poly(tetrahydrofuran glycol) (PTG), poly(propylene glycol) (PPG) and poly(dimethylsiloxane) (PDMS) were grafted on the silanized stainless steels. Each surface modification step was confirmed by various analytical methods. Contact angle measurement revealed that the surface hydrophilicity was controllable by polymer grafting. Root-mean-square (RMS) data of atomic force microscopy showed that surface roughness was dramatically changed by electropolishing. Based on these results, the correlation between surface properties and protein adsorption was investigated. In the protein adsorption study, we observed that all of the polymer-grafted stainless steels exhibited lower protein adsorption, when compared with bare stainless steel. Moreover, a hydrophilic and smooth surface was found to be the best of choice for decreasing the protein adsorption. PMID:17277988

  4. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug. PMID:26450150

  5. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    Ryo Jimbo

    2010-07-01

    Full Text Available Objectives: To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models.Material and Methods: Commercially pure titanium discs were blasted with titanium dioxide (TiO2 particles (control, and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test. Surface morphology was investigated by scanning electron microscopy, surface topography by optic interferometry, characterization by X-ray photoelectron spectroscopy (XPS, and by X-ray diffraction (XRD analysis. The adsorption of 3 different proteins (fibronectin, albumin, and collagen type I was investigated by an immunoblotting technique.Results: The test surface showed a porous structure, whereas the control surface showed a typical TiO2 blasted structure. XPS data revealed magnesium-incorporation to the anodic oxide film of the surface. There was no difference in surface roughness between the control and test surfaces. For the protein adsorption test, the amount of albumin was significantly higher on the control surface whereas the amount of fibronectin was significantly higher on the test surface. Although there was no significant difference, the test surface had a tendency to adsorb more collagen type I.Conclusions: The magnesium-incorporated anodized surface showed significantly higher fibronectin adsorption and lower albumin adsorption than the blasted surface. These results may be one of the reasons for the excellent bone response previously observed in animal studies.

  6. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters. PMID:26371748

  7. A global optimization algorithm for protein surface alignment

    Guerra Concettina

    2010-09-01

    Full Text Available Abstract Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP method for three-dimensional (3D shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites.

  8. Interaction of Serum Proteins with Surface of Hemodialysis Fiber Membranes

    Afrin, Rehana; Shirako, Yuji; Kishimoto, Kikuo; Ikai, Atsushi

    2012-08-01

    The poly(vinyl pyrrolidone)-covered hydrophilic surface of hollow-fiber membranes (fiber membrane, hereafter) for hemodialysis was mechanically probed using modified tips on an atomic force microscope (AFM) with covalent crosslinkers and several types of serum protein. The retraction part of many of the force extension (F-E) curves obtained with AFM tips coated with serum albumin had a long and smooth extension up to 200-300 nm indicating forced elongation of poly(vinyl pyrrolidone) chains. When fibrinogen-coated tips were used, long extension F-E curves up to 500 nm with multiple peaks were obtained in addition to smooth curves most likely reflecting the unfolding of fibrinogen molecules. The results indicated that individual polymer chains had a significant affinity toward serum proteins. The adhesion frequency of tips coated with serum proteins was lower on the poly(vinyl pyrrolidone) surface than on the uncoated hydrophobic polysulfone surface.

  9. Antigenicity and Immunogenicity of Plasmodium vivax Merozoite Surface Protein-3

    Amanda R Bitencourt; Elaine C Vicentin; Jimenez, Maria C.; Ricardo Ricci; Leite, Juliana A.; Fabio T Costa; Luis C Ferreira; Bruce Russell; François Nosten; Laurent Rénia; Galinski, Mary R.; Barnwell, John W.; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated...

  10. Selectivity by small-molecule inhibitors of protein interactions can be driven by protein surface fluctuations.

    David K Johnson

    2015-02-01

    Full Text Available Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these "distinct" pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions.

  11. Surface energetics and protein-protein interactions: analysis and mechanistic implications.

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions. PMID:27050828

  12. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2005-01-01

    The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we...

  13. Switchable surface coatings for control over protein adsorption

    Cole, Martin A.; Jasieniak, Marek; Voelcker, Nicolas H.; Thissen, Helmut; Horn, Roger; Griesser, Hans J.

    2007-12-01

    Control over biomolecule interactions at interfaces is becoming an increasingly important goal for a range of scientific fields and is being intensively studied in areas of biotechnological, biomedical and materials science. Improvement in the control over materials and biomolecules is particularly important to applications such as arrays, biosensors, tissue engineering, drug delivery and 'lab on a chip' devices. Further development of these devices is expected to be achieved with thin coatings of stimuli responsive materials that can have their chemical properties 'switched' or tuned to stimulate a certain biological response such as adsorption/desorption of proteins. Switchable coatings show great potential for the realisation of spatial and temporal immobilisation of cells and biomolecules such as DNA and proteins. This study focuses on protein adsorption onto coatings of the thermosensitive polymer poly(N-isopropylacrylamide) (pNIPAM) which can exhibit low and high protein adsorption properties based on its temperature dependent conformation. At temperatures above its lower critical solution temperature (LCST) pNIPAM polymer chains are collapsed and protein adsorbing whilst below the LCST they are hydrated and protein repellent. Coatings of pNIPAM on silicon wafers were prepared by free radical polymerisation in the presence of surface bound polymerisable groups. Surface analysis and protein adsorption was carried out using X-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry and contact angle measurements. This study is expected to aid the development of stimuli-responsive coatings for biochips and biodevices.

  14. Hepatitis B virus large surface protein: function and fame

    Churin, Yuri; Roderfeld, Martin; Roeb, Elke

    2015-01-01

    Chronic infection with hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. HBV life cycle begins with viral attachment to hepatocytes, mediated by the large HBV surface protein (LHBs). Identification of the sodium-taurocholate cotransporting polypeptide (NTCP) as a HBV receptor has revealed a suitable target for viral entry inhibition. Analysis of serum hepatitis B surface antigen (HBsAg) level is a non-invasive diagnostic parameter that imp...

  15. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release.

    Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall

    2013-04-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed. PMID:23378148

  16. Silica surface characterization as a function of formation and surface treatment using traditional methods and proteins as surface probes

    Korwin-Edson, Michelle Lynn

    Previous works have shown that cells proliferate differently depending on the chemistry of the glass on which they are growing. Since proteins form the bonds between cells and glass, the hypothesis of this study is that proteins can distinguish between surface chemical variations of glass. This theory was examined through the use of various silica forms, a few select proteins, four surface treatment procedures, and a variety of characterization techniques. The silica forms include amorphous slides, cane, fiber, microspheres, fumed silica and quartz crystal terminals. The proteins selected were human serum albumin, mouse Immunoglobulin G, streptavidin, antimouse IgG, and biotin. The surface treatments utilized to bring about chemical variation on the silica surface were HF acid etching, ethanol cleaning, water plasma treatments, and 1000°C heat treatments. The characterization techniques encompassed both traditional material techniques and biological methods. The techniques studied were atomic force microscopy (AFM), chemical force microscopy (CFM), glancing incidence X-ray analysis (GIXA), fluorescence spectrometry, polyacrylamide gel electrophoresis (SDS-PAGE), and bicinchoninic acid (BCA) assay. It was the main goal of this project to determine the feasibility of these techniques in utilizing proteins as glass surface probes. Proteins were adsorbed to all of the various forms and the binding ability was studied by either stripping off the protein and quantifying them, or by deductive reasoning through the use of "depleted" protein solutions. Fluorimetry and BCA assay both utilized the depleted solutions, but the high error associated with this protocol was prohibitive. SDS-PAGE with streptavidin was very difficult due to staining problems, however the IgG proteins were able to be quantified with some success. GIXA showed that the protein layer thickness is monolayer in nature, which agrees well with the AFM fluid tapping data on protein height, but in addition

  17. Organic bioelectronics probing conformational changes in surface confined proteins

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-06-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results.

  18. Organic bioelectronics probing conformational changes in surface confined proteins.

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-01-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768

  19. Antigenic characterization of dimorphic surface protein in Mycobacterium tuberculosis.

    Matsuba, Takashi; Siddiqi, Umme Ruman; Hattori, Toshio; Nakajima, Chie; Fujii, Jun; Suzuki, Yasuhiko

    2016-05-01

    The Mycobacterium tuberculosis Rv0679c protein is a surface protein that contributes to host cell invasion. We previously showed that a single nucleotide transition of the Rv0679c gene leads to a single amino acid substitution from asparagine to lysine at codon 142 in the Beijing genotype family. In this study, we examined the immunological effect of this substitution. Several recombinant proteins were expressed in Escherichia coli and Mycobacterium smegmatis and characterized with antisera and two monoclonal antibodies named 5D4-C2 and 8G10-H2. A significant reduction of antibody binding was detected by enzyme-linked immunosorbent assay (ELISA) and western blot analysis in the Lys142-type protein. This reduction of 8G10-H2 binding was more significant, with the disappearance of a signal in the proteins expressed by recombinant mycobacteria in western blot analysis. In addition, epitope mapping analysis of the recombinant proteins showed a linear epitope by 5D4-C2 and a discontinuous epitope by 8G10-H2. The antibody recognizing the conformational epitope detected only mycobacterial Asn142-type recombinant protein. Our results suggest that a single amino acid substitution of Rv0679c has potency for antigenic change in Beijing genotype strains. PMID:27190237

  20. Surface display of proteins by Gram-negative bacterial autotransporters

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  1. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development. GLIA 2016;64:1021-1033. PMID:26988125

  2. Protein immobilization and detection on laser processed polystyrene surfaces

    The bovine serum albumin (BSA)-polystyrene (PS) interface layer is laser photo activated at 157 nm for site selective multiple target-protein immobilization. The 5-15 nm photon induced interface layer has different chemical, wetting, and stiffness properties than the PS photon processed surface. The irradiated areas exhibit target-protein binding, followed by localized probe-target protein detection. The photon induced chemical modification of the BSA-PS interface layer is identified by: (1) Morphological, imaging, and analysis of surface parameters with atomic force microscopy, (2) spectroscopic shift (4 cm-1), of the amide I group and formation of new C=N, NH2, C-O, C=O, and O-C=O groups following irradiation, identified with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and (3) the different hydrophilic/hydrophobic and force-distance response of the bare PS and BSA-PS surfaces. Near field edge diffraction (Fresnel) fluorescence imaging specifies the threshold photon energy and the fluence required to optically detect the protein binding on the photon induced BSA-PS interface layer. By approximating the Fresnel integrals with analytical functions, the threshold photon energy and the fluence are expressed as the sum of zero, first, and second order harmonic terms of two characteristic diffracted modes and they are specified to be 8.73x10-9 Jand623 J m-2, respectively. Furthermore, a bioarray of three probe-target proteins is fabricated with 1.5 μm spatial resolution using a 157 nm laser microstepper. The methodology eliminates the use of intermediate polymer layers between the blocking BSA protein and the PS substrate in bioarray fabrication.

  3. Protein immobilization and detection on laser processed polystyrene surfaces

    Sarantopoulou, Evangelia; Petrou, Panagiota S.; Kollia, Zoe; Palles, Dimitrios; Spyropoulos-Antonakakis, Nikolaos; Kakabakos, Sotirios; Cefalas, Alkiviadis-Constantinos

    2011-09-01

    The bovine serum albumin (BSA)-polystyrene (PS) interface layer is laser photo activated at 157 nm for site selective multiple target-protein immobilization. The 5-15 nm photon induced interface layer has different chemical, wetting, and stiffness properties than the PS photon processed surface. The irradiated areas exhibit target-protein binding, followed by localized probe-target protein detection. The photon induced chemical modification of the BSA-PS interface layer is identified by: (1) Morphological, imaging, and analysis of surface parameters with atomic force microscopy, (2) spectroscopic shift (4 cm-1), of the amide I group and formation of new C=N, NH2, C-O, C=O, and O-C=O groups following irradiation, identified with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and (3) the different hydrophilic/hydrophobic and force-distance response of the bare PS and BSA-PS surfaces. Near field edge diffraction (Fresnel) fluorescence imaging specifies the threshold photon energy and the fluence required to optically detect the protein binding on the photon induced BSA-PS interface layer. By approximating the Fresnel integrals with analytical functions, the threshold photon energy and the fluence are expressed as the sum of zero, first, and second order harmonic terms of two characteristic diffracted modes and they are specified to be 8.73×10-9Jand623 J m-2, respectively. Furthermore, a bioarray of three probe-target proteins is fabricated with 1.5 μm spatial resolution using a 157 nm laser microstepper. The methodology eliminates the use of intermediate polymer layers between the blocking BSA protein and the PS substrate in bioarray fabrication.

  4. Electrochemistry of heparin binding to tau protein on Au surfaces

    Highlights: • Anionic heparin binds tau protein film on Au • N-terminal of tau protein is critical for heparin binding • Negatively charged heparin binds positively charged tau domains • Heparin binding to tau increases charge transfer resistance - ABSTRACT: The tau protein is a neurodegenerative disease biomarker. The in vitro aggregation of tau is triggered by electrostatic charge imbalance induced by an anionic inducing agent, such as heparin. The binding of the tau-heparin complex is based on electrostatic interactions, but the exact binding mode of heparin to the tau protein has not been fully identified. In this work, the effects of the tau protein orientation on gold (Au) electrode to heparin were explored by the cyclic voltammetry and electrochemical impedance spectroscopy. To modulate the accessibility of N-terminal of the tau to heparin, the tau films on Au surfaces were fabricated in two ways: immobilization of tau via the N-terminal of tau protein (N-tau-Au) or by the Cys291/Cys322 residues, located in the R-repeat domains of the tau protein (Cys-tau-Au). The sulfur-Au bonding was characterized by X-ray photoelectron spectroscopy. The charge transfer resistance was measured for N-tau-Au and Cys-tau-Au as a function of heparin concentration. The heparin concentration range was varied from 0.2 pM to 216 μM with the optimal binding concentration at 21 nM (the highest charge transfer resistance value). The heparin binding to tau films was investigated in the presence of [Fe(CN)6]3−/4− or benzoquinone redox probes. The tau-heparin binding was greater for the Cys-tau-Au surface over N-tau-Au, indicating specific tau domains may be required for optimal heparin binding

  5. Cytosolic Proteins Contribute to Surface Plasminogen Recruitment of Neisseria meningitidis

    Knaust, Andreas; Weber, Martin V. R.; Hammerschmidt, Sven; Bergmann, Simone; Frosch, Matthias; Kurzai, Oliver

    2007-01-01

    Plasminogen recruitment is a common strategy of pathogenic bacteria and results in a broad-spectrum surface-associated protease activity. Neisseria meningitidis has previously been shown to bind plasminogen. In this study, we show by several complementary approaches that endolase, DnaK, and peroxiredoxin, which are usually intracellular proteins, can also be located in the outer membrane and act as plasminogen receptors. Internal binding motifs, rather than C-terminal lysine residues, are res...

  6. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    Vol. 7356. Bellingham, Washington : SPIE, 2009 - (Baldini, F.; Homola, J.; Lieberman, R.), 73560D1-73560D8 ISBN 9780819476302. ISSN 0277-786X. - (Proceedings of SPIE. 7356). [Optical Sensors 2009. Praha (CZ), 20.04.2009-22.04.2009] R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * Biosensor * Protein detection Subject RIV: JB - Sensors, Measurment, Regulation

  7. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    Ryo Jimbo; Mikael Ivarsson; Anita Koskela; Young-Taeg Sul; Johansson, Carina B.

    2010-01-01

    ABSTRACT Objectives To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models. Material and Methods Commercially pure titanium discs were blasted with titanium dioxide (TiO2) particles (control), and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test). Surface morphology was investigated by scanning electron micro...

  8. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    Boyd, A. R.; Burke, G. A.; Duffy, H.;

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation ...

  9. Characterization of the Eimeria maxima sporozoite surface protein IMP1.

    Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P

    2015-07-30

    The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection. PMID:26012860

  10. Biointerface: protein enhanced stem cells binding to implant surface.

    Chrzanowski, W; Kondyurin, A; Lee, Jae Ho; Lord, Megan S; Bilek, M M M; Kim, Hae-Won

    2012-09-01

    The number of metallic implantable devices placed every year is estimated at 3.7 million. This number has been steadily increasing over last decades at a rate of around 8 %. In spite of the many successes of the devices the implantation of biomaterial into tissues almost universally leads to the development of an avascular sac, which consists of fibrous tissue around the device and walls off the implant from the body. This reaction can be detrimental to the function of implant, reduces its lifetime, and necessitates repeated surgery. Clearly, to reduce the number of revision surgeries and improve long-term implant function it is necessary to enhance device integration by modulating cell adhesion and function. In this paper we have demonstrated that it is possible to enhance stem cell attachment using engineered biointerfaces. To create this functional interface, samples were coated with polymer (as a precursor) and then ion implanted to create a reactive interface that aids the binding of biomolecules--fibronectin. Both AFM and XPS analyses confirmed the presence of protein layers on the samples. The amount of protein was significant greater for the ion implanted surfaces and was not disrupted upon washing with detergent, hence the formation of strong bonds with the interface was confirmed. While, for non ion implanted surfaces, a decrease of protein was observed after washing with detergent. Finally, the number of stem cells attached to the surface was enhanced for ion implanted surfaces. The studies presented confirm that the developed bionterface with immobilised fibronectin is an effective means to modulate stem cell attachment. PMID:22714559

  11. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions

  12. Seminal plasma and sperm surface proteins in reproduction

    Jonáková, Věra; Postlerová, Pavla; Davidová, Nina; Tichá, M.; Šutovský, P.; Pěknicová, Jana

    Praha: BTO-N, 2009. s. 31-32. [XV. Symposium českých reprodukčních imunologů s mezinárodní účastí. 29.05.2009-31.05.2009, Žďár nad Sázavou] R&D Projects: GA MŠk(CZ) 1M06011; GA ČR GA303/09/1285; GA ČR GD523/08/H064 Institutional research plan: CEZ:AV0Z50520701 Keywords : sperm surface protein * ubiqutin C-terminal hydrolase * boar spermadhesin * AQN 1 * boar seminal plasma Subject RIV: EC - Immunology

  13. Hepatitis B virus large surface protein: function and fame.

    Churin, Yuri; Roderfeld, Martin; Roeb, Elke

    2015-02-01

    Chronic infection with hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. HBV life cycle begins with viral attachment to hepatocytes, mediated by the large HBV surface protein (LHBs). Identification of the sodium-taurocholate cotransporting polypeptide (NTCP) as a HBV receptor has revealed a suitable target for viral entry inhibition. Analysis of serum hepatitis B surface antigen (HBsAg) level is a non-invasive diagnostic parameter that improves HBV treatment opportunities. Furthermore, HBsAg plays an important role in manipulation of host immune response by HBV. However, observations in patients with chronic hepatitis B under conditions of immune suppression and in transgenic mouse models of HBV infection suggest, that in absence of adaptive immune responses cellular mechanisms induced by HBV may also lead to the development of liver diseases. Thus, the multifaceted pathological aspects of HBsAg predetermine the design of new therapeutical options modulating associated biological implications. PMID:25713800

  14. Surface peptide mapping of protein I and protein III of four strains of Neisseria gonorrhoeae

    Judd, R.C.

    1982-08-01

    Whole cells and isolated outer membranes (OMs) of four strains of gonococci were surface radioiodinated with either lactoperoxidase or Iodogen (Pierce Chemical Co., Rockford, Ill.). These preparations were solubilized in sodium dodecyl sulfate and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Surface-radioiodinated protein I (PI) and PIII bands were excised from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and digested with alpha-chymotrypsin, and the resultant /sup 125/I-peptide fragments were resolved by high-voltage electrophoresis and thin-layer chromatography (i.e., surface peptide mapping). Radioemitting peptidic fragments were visualized by autoradiography. Results demonstrated that the PI molecule of each gonococcal strain studied had unique iodinatable peptides exposed on the surface of whole cells and OMs, whereas PIIIs appeared to have the same portion of the molecule exposed on the surface of bacteria or OMs, regardless of the gonococcal strain from which they were isolated. Many more radiolabeled peptides were seen in surface peptide maps of PIs from radiolabeled OMs than in those from radioiodinated whole cells, whereas different peptidic fragments were seen in the surface peptide maps of PIIIs from radiolabeled OMs than were seen in those from radiolabeled whole cells. These data suggest that PI may contribute strain-specific antigenic determinants and PIII may contribute cross-reactive determinants and that the surface exposure of PI and PIII is different in isolated OMs than in the OM of intact gonococci.

  15. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    Bitencourt, Amanda R; Vicentin, Elaine C; Jimenez, Maria C; Ricci, Ricardo; Leite, Juliana A; Costa, Fabio T; Ferreira, Luis C; Russell, Bruce; Nosten, François; Rénia, Laurent; Galinski, Mary R; Barnwell, John W; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential. PMID:23457498

  16. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    Amanda R Bitencourt

    Full Text Available A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3 as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2% and at least 1 recombinant protein representing PvMSP-3β (79.1%. In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin. Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential.

  17. Surface Analyses and Immune Reactivities of Major Cell Wall-Associated Proteins of Group A Streptococcus

    Cole, Jason N; Ramirez, Ruben D.; Currie, Bart J.; Cordwell, Stuart J.; Djordjevic, Steven P.; Mark J Walker

    2005-01-01

    A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.

  18. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future. PMID:25211708

  19. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens.

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  20. Surface proteins of bacteria of the genus Bifidobacterium 

    Ewa Dylus

    2013-05-01

    Full Text Available Beneficial effects due to the presence of probiotic bacteria of the genus Bifidobacterium in the human intestinal tract are still an interesting object of study. So far activities have been confirmed of bifidobacteria in stimulation of the host immune system, stimulation of tumor cell apoptosis, improvement of bowel motility, alleviation of symptoms of lactose intolerance, cholesterol lowering capacity, prevention and treatment of diarrhea and irritable bowel syndrome, alleviation of allergy or atopic dermatitis, maintenance of homeostasis of the intestine, and stimulation of the development of normal intestinal microflora in infants. A multitude of therapeutic properties encourages researchers to investigate the possibility of using the potential of Bifidobacterium in the prevention and treatment of other conditions such as rheumatoid arthritis and depression. Although it is known that the beneficial effects are due to intestinal mucosal colonization by these bacteria, the cell components responsible for the colonization are still not determined. In addition to the beneficial effects of probiotic administration, there were also negative effects including sepsis. Therefore research has been directed to identify specific components of Bifidobacterium responsible for probiotic effects. Currently researchers are focused on identifying, isolating and evaluating the properties of surface proteins that are probably involved in the adhesion of bacterial cells to the intestinal epithelium, improving colonization. This paper is an overview of current knowledge on Bifidobacterium surface proteins. The ways of transport and anchoring proteins in Gram-positive bacterial cells, the assembly of cell wall, and a description of the genus Bifidobacterium are presented.

  1. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  2. Proteins in the electric field near the surface of mica

    Starzyk, Anna; Cieplak, Marek

    2013-07-01

    We elucidate the nature of the electric field produced by a model mica surface and show that above some 0.4 nm it is nearly uniform and of order 12 V/nm. The presence of ions in the solvent above the surface, up to the concentration of about 300 mM, does not modify the nature of the field much. We study the conformational changes of a small protein, the tryptophan cage, as induced by (a) uniform electric field and (b) the electric field near mica. We use all-atom molecular dynamics simulations and provide evidence for the existence of unfolded and deformed conformations in each of these cases. The two behaviors are characterized by distinct properties of the radius of gyration and of the distortion parameter that distinguishes between elongated and globular shapes. The overall geometry of the conformations shifts with the strengths of the uniform field in a manner that depends on the nature of the simulation box — whether it is bounded by neutral walls or not — and on the ionic concentration. Near the mica surface, on the other hand, the fraction of unfolded conformations is close to 1/6 at the ionic strength of 350 mM compared to 1/2 at 20 mM. When the electric charge on the mica is fully neutralized by bringing more ions of the opposite charge then unfolded conformations stay unfolded but an evolution from the native state does not lead to any unfolding.

  3. Development of a strategy for the identification of surface proteins in the pathogenic microsporidian Nosema bombycis.

    Zhao, Weixi; Hao, Youjin; Wang, Linglin; Zhou, Zeyang; Li, Zhi

    2015-06-01

    Parasite-host interactions mediated by cell surface proteins have been implicated as a critical step in infections caused by the microsporidian Nosema bombycis. Such cell surface proteins are considered as promising diagnostic markers and targets for drug development. However, little research has specifically addressed surface proteome identification in microsporidia due to technical barriers. Here, a combined strategy was developed to separate and identify the surface proteins of N. bombycis. Briefly, following (1) biotinylation of the spore surface, (2) extraction of total proteins with an optimized method and (3) streptavidin affinity purification of biotinylated proteins, 22 proteins were identified based on LC-MS/MS analysis. Among them, 5 proteins were confirmed to be localized on the surface of N. bombycis. A total of 8 proteins were identified as hypothetical extracellular proteins, whereas 7 other hypothetical proteins had no available function annotation. Furthermore, a protein with a molecular weight of 18·5 kDa was localized on the spore surface by western blotting and immunofluorescence analysis, even though it was predicted to be a nuclear protein by bioinformatics. Collectively, our work provides an effective strategy for isolating microsporidian surface protein components for both drug target identification and further diagnostic research on microsporidian disease control. PMID:25811320

  4. SURFACE MODIFICATION OF TITANIUM FILMS WITH SODIUM ION IMPLANTATION: SURFACE PROPERTIES AND PROTEIN ADSORPTION

    K. Y. Cai

    2007-01-01

    Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techniques of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and light microscopy (LM). The surface presented increased sodium concentration on treated titanium films with ion dose increasing, except for the group with the highest ion dose of 4× 1017 ions/cm2. XPS depth profiling displayed that sodium entered titanium film around 25-50 nm depth depending on its implantation ion dose. AFM characterization showed that sodium ion implantation treatment changed the surface morphology from a relatively smooth titanium film to rough surfaces corresponding to different implantation doses.After sodium implantation, implanted titanium films presented big particles with island structure morphology. The surface morphology and particle growth displayed the corresponding trend.Fibrinogen adsorption on these titanium films was performed to correlate with the surface properties of treated titanium films. The results show that protein adsorption on ion-implanted samples with dose of 2 × 1017 and 4 × 1017 are statistically higher (p < 0. 01) than samples treated with dose of 5×1016 and 1 ×1017, as well as the control samples.

  5. Lacritin and other autophagy associated proteins in ocular surface health.

    Karnati, Roy; Talla, Venu; Peterson, Katherine; Laurie, Gordon W

    2016-03-01

    Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin. PMID:26318608

  6. Anaplasma marginale major surface protein 1a directs cell surface display of tick BM95 immunogenic peptides on Escherichia coli.

    Canales, Mario; Almazán, Consuelo; Pérez de la Lastra, José M; de la Fuente, José

    2008-07-31

    The surface display of heterologous proteins on live Escherichia coli using anchoring motifs from outer membranes proteins has impacted on many areas of biochemistry, molecular biology and biotechnology. The Anaplasma marginale major surface protein 1a (MSP1a) contains N-terminal surface-exposed repeated peptides (28-289 amino acids) that are involved in pathogen interaction with host cell receptors and is surface-displayed when the recombinant protein is expressed in E. coli. Therefore, it was predicted that MSP1a would surface display on E. coli peptides inserted in the N-terminal repeats region of the protein. The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that a recombinant protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region is displayed on the E. coli surface and is recognized by anti-BM86 and anti-MSP1a antibodies. This system provides a novel approach to the surface display of heterologous antigenic proteins on live E. coli and suggests the possibility to use the recombinant bacteria for immunization studies against cattle tick infestations. PMID:18582976

  7. Effect of Biofilm Growth on Expression of Surface Proteins of Actinomyces naeslundii Genospecies 2

    Paddick, James S.; Brailsford, Susan R; Rao, Susmitha; Soares, Renata F.; Kidd, Edwina A. M.; Beighton, David; Homer, Karen A.

    2006-01-01

    The predominant surface proteins of biofilm and planktonic Actinomyces naeslundii, a primary colonizer of the tooth surface, were examined. Seventy-nine proteins (the products of 52 genes) were identified in biofilm cells, and 30 of these, including adhesins, chaperones, and stress-response proteins, were significantly up-regulated relative to planktonic cells.

  8. Surface Display of Domain Ⅲ of Japanese Encephalitis Virus E Protein on Salmonella Typhimurium by Using an Ice Nucleation Protein

    Jian-lin Dou; Tao Jing; Jing-jing Fan; Zhi-ming Yuan

    2011-01-01

    A bacterial cell surface display technique based on an ice nucleation protein has been employed for the development of live vaccine against viral infection.Due to its ubiquitous ability to invade host cells,Salmonella typhimurium might be a good candidate for displaying viral antigens.We demonstrated the surface display of domain III of Japanese encephalitis virus E protein and the enhanced green fluorescent protein on S.typhimurium BRD509 using the ice nucleation protein.The effects of the motif in the ice nucleation protein on the effective display of integral protein were also investigated.The results showed that display motifs in the protein can target integral foreign protein on the surface of S.typhimurium BRD509.Moreover,recombinant strains with surface displayed viral proteins retained their invasiveness,suggesting that the recombinant S.typhimurium can be used as live vaccine vector for eliciting complete immunogenicity.The data may yield better understanding of the mechanism by which ice nucleation protein displays foreign proteins in the Salmonella strain.

  9. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia. PMID:25386928

  10. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  11. Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration.

    Hladílková, Jana; Callisen, Thomas H; Lund, Mikael

    2016-04-01

    Surface adsorption of Thermomyces lanuginosus lipase (TLL)-a widely used industrial biocatalyst-is studied experimentally and theoretically at different pH and salt concentrations. The maximum achievable surface coverage on a hydrophobic surface occurs around the protein isoelectric point and adsorption is reduced when either increasing or decreasing pH, indicating that electrostatic protein-protein interactions in the adsorbed layer play an important role. Using Metropolis Monte Carlo (MC) simulations, where proteins are coarse grained to the amino acid level, we estimate the protein isoelectric point in the vicinity of charged surfaces as well as the lateral osmotic pressure in the adsorbed monolayer. Good agreement with available experimental data is achieved and we further make predictions of the protein orientation at hydrophobic and charged surfaces. Finally, we present a perturbation theory for predicting shifts in the protein isoelectric point due to close proximity to charged surfaces. Although this approximate model requires only single protein properties (mean charge and its variance), excellent agreement is found with MC simulations. PMID:26815664

  12. Facile Photoimmobilization of Proteins onto Low-Binding PEG-Coated Polymer Surfaces

    Larsen, Esben Kjær Unmack; Mikkelsen, Morten Bo Lindholm; Larsen, Niels Bent

    2014-01-01

    Immobilization of proteins onto polymer surfaces usually requires specific reactive functional groups. Here, we show an easy one-step method to conjugate protein covalently onto almost any polymer surface, including low protein-binding poly(ethylene glycol) (PEG), without the requirement for the...... surface areas, showing ng/mL sensitivity to a cytokine antigen target. Moreover, spatially patterned attachment of fluorescently labeled protein onto the low-binding PEG-coated surface was achieved with a projection lithography system that enabled the creation of micrometer-sized protein features....... presence of specific functional groups. Several types of proteins, including alkaline phosphatase, bovine serum albumin, and polyclonal antibodies, were photoimmobilized onto a PEG-coated polymer surface using a water-soluble benzophenone as photosensitizer. Protein functionality after immobilization was...

  13. 3D structural analysis of proteins using electrostatic surfaces based on image segmentation

    Vlachakis, Dimitrios; Champeris Tsaniras, Spyridon; Tsiliki, Georgia; Megalooikonomou, Vasileios; Kossida, Sophia

    2016-01-01

    Herein, we present a novel strategy to analyse and characterize proteins using protein molecular electro-static surfaces. Our approach starts by calculating a series of distinct molecular surfaces for each protein that are subsequently flattened out, thus reducing 3D information noise. RGB images are appropriately scaled by means of standard image processing techniques whilst retaining the weight information of each protein’s molecular electrostatic surface. Then homogeneous areas in the protein surface are estimated based on unsupervised clustering of the 3D images, while performing similarity searches. This is a computationally fast approach, which efficiently highlights interesting structural areas among a group of proteins. Multiple protein electrostatic surfaces can be combined together and in conjunction with their processed images, they can provide the starting material for protein structural similarity and molecular docking experiments.

  14. Adsorption of a model protein, the GroEL chaperonin, on surfaces

    Leung, Carl; Palmer, Richard E [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: carl.leung@kcl.ac.uk

    2008-09-03

    Understanding and controlling protein adsorption on surfaces is fundamental to many biological processes ranging from cell adhesion to the fabrication of protein biochips. In general, proteins need to retain their 3D conformation to perform their intended functions. However, when they are presented with a solid surface, complex interactions ranging from weak non-covalent binding to strong covalent bonding may occur, which can potentially induce conformational changes within the adsorbed protein. To investigate the surface adsorption process and its effects on a model protein, the chaperonin GroEL, we have applied contact mode atomic force microscopy, in buffer solution to probe the interactions between single proteins and surfaces in real space. We will discuss the adsorption of GroEL molecules on planar surfaces (mica, graphite and gold) and specifically tailored nanostructured surfaces, which present structural features on the size scale of individual biological molecules. (topical review)

  15. Adsorption of a model protein, the GroEL chaperonin, on surfaces

    Understanding and controlling protein adsorption on surfaces is fundamental to many biological processes ranging from cell adhesion to the fabrication of protein biochips. In general, proteins need to retain their 3D conformation to perform their intended functions. However, when they are presented with a solid surface, complex interactions ranging from weak non-covalent binding to strong covalent bonding may occur, which can potentially induce conformational changes within the adsorbed protein. To investigate the surface adsorption process and its effects on a model protein, the chaperonin GroEL, we have applied contact mode atomic force microscopy, in buffer solution to probe the interactions between single proteins and surfaces in real space. We will discuss the adsorption of GroEL molecules on planar surfaces (mica, graphite and gold) and specifically tailored nanostructured surfaces, which present structural features on the size scale of individual biological molecules. (topical review)

  16. Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among...

  17. AFM study of adsorption of protein A on a poly(dimethylsiloxane) surface

    In this paper, the morphology and kinetics of adsorption of protein A on a PDMS surface is studied by AFM. The results of effects of pH, protein concentration and contact time of the adsorption reveal that the morphology of adsorbed protein A is significantly affected by pH and adsorbed surface concentration, in which the pH away from the isoelectric point (IEP) of protein A could produce electrical repulsion to change the protein conformation, while the high adsorbed surface protein volume results in molecular networks. Protein A can form an adsorbed protein film on PDMS with a maximum volume of 2.45 x 10-3 μm3. This work enhances our fundamental understanding of protein A adsorption on PDMS, a frequently used substrate component in miniaturized immunoassay devices.

  18. Variant cysteine-rich surface proteins of Giardia isolates from human and animal sources.

    Bruderer, T; Papanastasiou, P; Castro, R; P. Köhler

    1993-01-01

    Cloned Giardia isolates obtained from a sheep, a calf, and a human possessed a major membrane protein that showed marked intraspecific variations in size as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis following surface biotinylation and radioiodination. Metabolic labeling with [35S] cysteine and electrophoretic analysis also revealed for each cloned isolate a predominant protein that corresponded in size to the major surface protein demonstrated by surface labeli...

  19. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide

    Ma, Yuhao; Cai, Mengtan; He, Liu; Luo, Xianglin

    2016-01-01

    To enhance the biocompatibility or extend the biomedical application of poly(caprolactone) (PCL), protein retention on PCL surface is often required. In this study, poly(acrylamide) (PAAm) brushes were grown from PCL surface via surface-initiated atom transfer radical polymerization (SI-ATRP) and served as a protein-capturing platform. Grafted PAAm was densely packed on surface and exhibited superior protein retention ability. Captured protein was found to be resistant to washing under detergent environment. Furthermore, protein structure after being captured was investigated by circular dichroism (CD) spectroscopy, and the CD spectra verified that secondary structure of captured proteins was maintained, indicating no denaturation of protein happened for retention process.

  20. Proteomic analysis and identification of cell surface-associated proteins of Clostridium chauvoei.

    Jayaramaiah, Usharani; Singh, Neetu; Thankappan, Sabarinath; Mohanty, Ashok Kumar; Chaudhuri, Pallab; Singh, Vijendra Pal; Nagaleekar, Viswas Konasagara

    2016-06-01

    Blackleg is a highly fatal disease of cattle and sheep, caused by Clostridium chauvoei, a Gram positive, anaerobic, spore forming bacteria. Cell surface-associated proteins play a major role in inducing the protective immunity. However, the identity of a majority of cell surface-associated proteins of C. chauvoei is not known. In the present investigation, we have used SDS-PAGE, 2D-gel electrophoresis and Western blotting followed by mass spectrometry to identify cell surface-associated proteins of C. chauvoei. Among the identified proteins, which have shown to offer protective antigencity in other bacteria, Enolase, Chaperonin, Ribosomal protein L10, Glycosyl Hydrolase and Flavoprotein were characterized by sequencing and their overexpression in Escherichia coli. In conclusion, cell surface-associated proteins were identified using proteomic approach and the genes for the immunoreactive proteins were expressed, which may prove to be potential diagnostic or vaccine candidates. PMID:26971466

  1. Scanning electron microscopy study of protein immobilized on SIO2 Sol-gel surfaces

    Assis O.B.G.

    2003-01-01

    Full Text Available Uniform attachment of enzymes to solid surfaces is essential in the development of bio and optical sensor devices. Immobilization by adsorption according to hydrophilic or hydrophobic nature is dependent on the charges and defects of the support surfaces. Sol-gel SiO2 densified glass surfaces, frequently used as supports for protein immobilization, are evaluated via scanning electron microscopy. The model protein is globular enzyme lysozyme, deposited by adsorption on functionalized surfaces. Formation of a protein layer is confirmed by FTIR spectroscopy, and the SEM images suggest discontinuous adsorption in areas where cracks predominate on the glass surface.

  2. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei

    Linder, Markus; Szilvay, Geza R.; Nakari-Setälä, Tiina; Söderlund, Hans; Penttilä, Merja

    2002-01-01

    Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and...

  3. The role of surfactant proteins in DPPC enrichment of surface films.

    Veldhuizen, E J; Batenburg, J.J.; van Golde, L M; Haagsman, H.P.

    2000-01-01

    A pressure-driven captive bubble surfactometer was used to determine the role of surfactant proteins in refinement of the surface film. The advantage of this apparatus is that surface films can be spread at the interface of an air bubble with a different lipid/protein composition than the subphase vesicles. Using different combinations of subphase vesicles and spread surface films a clear correlation between dipalmitoylphosphatidylcholine (DPPC) content and minimum surface tension was observe...

  4. Flagellin and outer surface proteins from Borrelia burgdorferi are not glycosylated

    ŠTĚRBA, Ján

    2012-01-01

    Glycosylation of four proteins from Borrelia burgdorferi s.s. was investigated ? flagellins FlaA, FlaB, and outer surface proteins OspA and OspB. Glycosylation of these four proteins was not proved by any of the used techniques. However, other glycan-staining positive proteins were present in the borrelia samples. These proteins were suggested to originate in the culture medium.

  5. Cloning and surface expression in Escherichia coli of a structural gene encoding a surface protein of Haemophilus influenzae type b.

    Holmans, P L; Loftus, T A; Hansen, E J

    1985-01-01

    Recombinant DNA technology was used to clone a gene coding for a surface protein of Haemophilus influenzae type b (Hib) into Escherichia coli. Chromosomal DNA from a clinical isolate of Hib was cleaved with EcoRI and ligated into plasmid vectors containing three different translational reading frames. E. coli carrying recombinant plasmids were screened in a colony blot-radioimmunoassay system by using murine monoclonal antibodies (mabs) directed against cell surface-exposed proteins of Hib. m...

  6. Sampling the conformation of protein surface residues for flexible protein docking

    Amenta Nina

    2010-11-01

    Full Text Available Abstract Background The problem of determining the physical conformation of a protein dimer, given the structures of the two interacting proteins in their unbound state, is a difficult one. The location of the docking interface is determined largely by geometric complementarity, but finding complementary geometry is complicated by the flexibility of the backbone and side-chains of both proteins. We seek to generate candidates for docking that approximate the bound state well, even in cases where there is backbone and/or side-chain difference from unbound to bound states. Results We divide the surfaces of each protein into local patches and describe the effect of side-chain flexibility on each patch by sampling the space of conformations of its side-chains. Likely positions of individual side-chains are given by a rotamer library; this library is used to derive a sample of possible mutual conformations within the patch. We enforce broad coverage of torsion space. We control the size of the sample by using energy criteria to eliminate unlikely configurations, and by clustering similar configurations, resulting in 50 candidates for a patch, a manageable number for docking. Conclusions Using a database of protein dimers for which the bound and unbound structures of the monomers are known, we show that from the unbound patch we are able to generate candidates for docking that approximate the bound structure. In patches where backbone change is small (within 1 Å RMSD of bound, we are able to account for flexibility and generate candidates that are good approximations of the bound state (82% are within 1 Å and 98% are within 1.4 Å RMSD of the bound conformation. We also find that even in cases of moderate backbone flexibility our candidates are able to capture some of the overall shape change. Overall, in 650 of 700 test patches we produce a candidate that is either within 1 Å RMSD of the bound conformation or is closer to the bound state than the

  7. Protein analysis in dissolved organic matter: what free proteins from soil leachate and surface water can tell us a perspective

    Schulze, W.

    2004-12-01

    Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOM protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from DOM and organism-free surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  8. Structural insights into the evolution of a non-biological protein: importance of surface residues in protein fold optimization.

    Matthew D Smith

    Full Text Available Phylogenetic profiling of amino acid substitution patterns in proteins has led many to conclude that most structural information is carried by interior core residues that are solvent inaccessible. This conclusion is based on the observation that buried residues generally tolerate only conserved sequence changes, while surface residues allow more diverse chemical substitutions. This notion is now changing as it has become apparent that both core and surface residues play important roles in protein folding and stability. Unfortunately, the ability to identify specific mutations that will lead to enhanced stability remains a challenging problem. Here we discuss two mutations that emerged from an in vitro selection experiment designed to improve the folding stability of a non-biological ATP binding protein. These mutations alter two solvent accessible residues, and dramatically enhance the expression, solubility, thermal stability, and ligand binding affinity of the protein. The significance of both mutations was investigated individually and together, and the X-ray crystal structures of the parent sequence and double mutant protein were solved to a resolution limit of 2.8 and 1.65 A, respectively. Comparative structural analysis of the evolved protein to proteins found in nature reveals that our non-biological protein evolved certain structural features shared by many thermophilic proteins. This experimental result suggests that protein fold optimization by in vitro selection offers a viable approach to generating stable variants of many naturally occurring proteins whose structures and functions are otherwise difficult to study.

  9. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  10. Pre-absorbed immunoproteomics: a novel method for the detection of Streptococcus suis surface proteins.

    Wei Zhang

    Full Text Available Streptococcus suis serotype 2 (SS2 is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics.

  11. Label-free detection of proteins in ternary mixtures using surface-enhanced Raman scattering and protein melting profiles

    Keskin, Sercan; Efeoğlu, Esen; Keçeci, Kaan; Çulha, Mustafa

    2013-03-01

    The multiplex detection of biologically important molecules such as proteins in complex mixtures has critical importance not only in disease diagnosis but also in other fields such as proteomics and biotechnology. Surface-enhanced Raman scattering (SERS) is a powerful technique for multiplex identification of molecular components in a mixture. We combined the multiplexing power of SERS and heat denaturation of proteins to identify proteins in ternary protein mixtures. The heat denaturation profiles of four model blood proteins, transferrin, human serum albumin, fibrinogen, and hemoglobin, were studied with SERS. Then, two ternary mixtures of these four proteins were used to test the feasibility of the approach. It was demonstrated that unique denaturation profiles of each protein could be used for their identification in the mixture.

  12. Effect of mechanical denaturation on surface free energy of protein powders.

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. PMID:27434157

  13. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  14. Systematic studies of protein immobilization by surface plasmon field-enhanced fluorescence spectroscopy

    Liu, Jing

    2005-01-01

    The research interest of this study is to investigate surface immobilization strategies for proteins and other biomolecules by the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) technique. The recrystallization features of the S-layer proteins and the possibility of combining the S-layer lattice arrays with other functional molecules make this protein a prime candidate for supramolecular architectures. The recrystallization behavior on gold or on the secondary cell wall po...

  15. In Silico Study of Variable Surface Proteins in Plasmodium Species: Perspectives in Drug Design.

    Yadav, Manoj Kumar; Swati, D

    2016-09-01

    The variable surface proteins expressed by P. falciparum and P. vivax are transported to the surface of infected erythrocyte and are exposed to the host immune system. The possibility of using variable surface proteins as a common drug target has been analyzed in both the Plasmodium species. Sequence analysis of variable surface proteins showed a low-level conservation within as well as between the species. Amino acid composition analysis revealed higher frequency of hydrophilic amino acids as compared with that of hydrophobic residues. In order to gain more insight into their diverse functional role, the three-dimensional structure was predicted using comparative modeling approach. These models were evaluated and validated by checking stereochemistry of underlying amino acids. Structural alignment of variable surface proteins by superimposing them shows less conservation. Due to differences at sequence as well as structural level, the variable surface proteins are expected to show difference in their degree of invasiveness. These differences were also cross-examined by evolutionary study, and the results obtained were in accordance with the aforesaid study. The existence of structural differences noticed in the present study showed that the variable surface proteins could not be used as a common drug target in both the malarial species. Therefore, species-specific strategy may be followed for drug targeting against variable surface proteins of P. falciparum and P. vivax. PMID:26253721

  16. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface 125I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with [35S] methionine, 14C-amino acids, or [3H] palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11

  17. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    Wise K.S.; Kim, M.F.

    1987-12-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface /sup 125/I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with (/sup 35/S) methionine, /sup 14/C-amino acids, or (/sup 3/H) palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11.

  18. Structural determinants for protein adsorption/non-adsorption to silica surface

    The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nano-technology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many p-p interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption. (authors)

  19. Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins

    Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.

    2007-02-01

    Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.

  20. Interaction of blood plasma with protein resistant surfaces

    Brynda, Eduard; Riedel, Tomáš; Rodriguez-Emmenegger, Cesar; Reicheltová, Z.; Májek, P.

    Strasbourg: European Materials Research Society, 2013. RP.1-13. [E- MRS 2013 Spring Meeting. 27.05.2013-31.05.2013, Strasbourg] Institutional support: RVO:61389013 Keywords : blood plasma * protein adsorption Subject RIV: CD - Macromolecular Chemistry

  1. Identification of Uropathogenic Escherichia coli Surface Proteins by Shotgun Proteomics

    Walters, Matthew S.; Mobley, Harry L. T.

    2009-01-01

    Uropathogenic Escherichia coli (UPEC) cause the majority of uncomplicated urinary tract infections in humans. In the process of identifying candidate antigens for a vaccine, two methods for the identification of the UPEC surface proteome during growth in human urine were investigated. The first approach utilized a protease to ‘shave’ surface-exposed peptides from the bacterial cell surface and identify them by mass spectrometry. Although this approach has been successfully applied to a Gram-p...

  2. Intrinsic surface-drying properties of bioadhesive proteins

    Akdogan, Y; Wei, W.; Huang, KY; Kageyama, Y.; Danner, EW; Miller, DR; Martinez Rodriguez, NR; Waite, JH; Han, S.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Sessile marine mussels must "dry" underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bioinspired adhesion have largely been performed under applied compressive forces, but such studies are poor predictors of the ability of an adhesive to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction through surface-wat...

  3. Intrinsic surface-drying properties of bioadhesive proteins

    Akdogan, Y; Wei, W.; Huang, KY; Kageyama, Y.; Danner, EW; Miller, DR; Martinez Rodriguez, NR; Waite, JH; Han, S.

    2014-01-01

    Sessile marine mussels must "dry" underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bioinspired adhesion have largely been performed under applied compressive forces, but such studies are poor predictors of the ability of an adhesive to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction through surface-water diffusivity, different mussel foot pro...

  4. Identification of protein functions from a molecular surface database, eF-site.

    Kinoshita, Kengo; Furui, Jun'ichi; Nakamura, Haruki

    2002-01-01

    A bioinformatics method was developed to identify the protein surface around the functional site and to estimate the biochemical function, using a newly constructed molecular surface database named the eF-site (electrostatic surface of Functional site. Molecular surfaces of protein molecules were computed based on the atom coordinates, and the eF-site database was prepared by adding the physical properties on the constructed molecular surfaces. The electrostatic potential on each molecular surface was individually calculated solving the Poisson-Boltzmann equation numerically for the precise continuum model, and the hydrophobicity information of each residue was also included. The eF-site database is accessed by the internet (http://pi.protein.osaka-u.ac.jp/eF-site/). We have prepared four different databases, eF-site/antibody, eF-site/prosite, eF-site/P-site, and eF-site/ActiveSite, corresponding to the antigen binding sites of antibodies with the same orientations, the molecular surfaces for the individual motifs in PROSITE database, the phosphate binding sites, and the active site surfaces for the representatives of the individual protein family, respectively. An algorithm using the clique detection method as an applied graph theory was developed to search of the eF-site database, so as to recognize and discriminate the characteristic molecular surfaces of the proteins. The method identifies the active site having the similar function to those of the known proteins. PMID:12836670

  5. Direct observation of interaction between proteins and blood-compatible polymer surfaces.

    Hayashi, Tomohiro; Tanaka, Masaru; Yamamoto, Sadaaki; Shimomura, Masatsugu; Hara, Masahiko

    2007-12-01

    The adhesion force between blood-compatible polymer (poly(2-methoxyethyl acrylate: PMEA) and proteins (fibrinogen and bovine serum albumin (BSA)) were measured by atomic force microscopy. The PMEA surface showed almost no adhesion to native protein molecules, whereas non-blood-compatible poly(n-butyl acrylate): PBA strongly adhered to proteins. Interestingly, adhesion did appear between PMEA and proteins when the proteins were denatured. In all cases, these trends were not affected by the conditions of the solution. Combining the results with previous reports, the authors conclude that interfacial water molecules play a critical role in the protein resistance of PMEA. PMID:20408647

  6. Silica as a Matrix for Encapsulating Proteins: Surface Effects on Protein Structure Assessed by Circular Dichroism Spectroscopy

    Genet H. Zemede

    2012-08-01

    Full Text Available The encapsulation of biomolecules in solid materials that retain the native properties of the molecule is a desired feature for the development of biosensors and biocatalysts. In the current study, protein entrapment in silica-based materials is explored using the sol-gel technique. This work surveys the effects of silica confinement on the structure of several model polypeptides, including apomyoglobin, copper-zinc superoxide dismutase, polyglutamine, polylysine, and type I antifreeze protein. Changes in the secondary structure of each protein following encapsulation are monitored by circular dichroism spectroscopy. In many cases, silica confinement reduces the fraction of properly-folded protein relative to solution, but addition of a secondary solute or modification of the silica surface leads to an increase in structure. Refinement of the glass surface by addition of a monosubstituted alkoxysilane during sol-gel processing is shown to be a valuable tool for testing the effects of surface chemistry on protein structure. Because silica entrapment prevents protein aggregation by isolating individual protein molecules in the pores of the glass material, one may monitor aggregation-prone polypeptides under solvent conditions that are prohibited in solution, as demonstrated with polyglutamine and a disease-related variant of superoxide dismutase.

  7. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology. PMID:26060076

  8. New developments for the site-specific attachment of protein to surfaces

    Camarero, J A

    2005-05-12

    Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site-specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.

  9. Protein immobilization capacity and covalent binding coverage of pulsed plasma polymer surfaces

    Three carbon surfaces were deposited using pulsed plasma enhanced chemical vapour deposition method: a low and a high nitrogen-containing plasma polymer surfaces and a diamond-like carbon surface. The surfaces were analysed using both X-ray photoelectron spectroscopy (XPS) technique and the enzyme-linked immunosorbent assay (ELISA) method combining with sodium dodecyl sulphate (SDS) cleaning to investigate the capacity and covalent binding of the immobilized proteins. A good correlation was found on quantification of remaining protein after SDS cleaning using the ELISA method and the XPS technique. All surfaces had similar initial capacity of protein attachment but with large different resistance to SDS cleaning. The analysis showed that the high nitrogen-containing plasma polymer was the best biocompatible material due to its highest resistance to SDS cleaning, i.e. with the highest quantity (∼80%) of proteins bound covalently.

  10. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 [35S]methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of [3H]palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from 125I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of [3H]palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins

  11. Multidimensional profiling of cell surface proteins and nuclear markers

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  12. Lipidation Effect on Surface Adsorption and Associated Fibrillation of the Model Protein Insulin.

    Hedegaard, Sofie Fogh; Cárdenas, Marité; Barker, Robert; Jorgensen, Lene; van de Weert, Marco

    2016-07-19

    Lipidation of proteins is used in the pharmaceutical field to increase the therapeutic efficacy of proteins. In this study, we investigate the effect of a 14-carbon fatty acid modification on the adsorption behavior of human insulin to a hydrophobic solid surface and the subsequent fibrillation development under highly acidic conditions and elevated temperature by comparing to the fibrillation of human insulin. At these stressed conditions, the lipid modification accelerates the rate of fibrillation in bulk solution. With the use of several complementary surface-sensitive techniques, including quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and neutron reflectivity (NR), we show that there are two levels of structurally different protein organization at a hydrophobic surface for both human insulin and the lipidated analogue: a dense protein layer formed within minutes on the surface and a diffuse outer layer of fibrillar structures which took hours to form. The two layers may only be weakly connected, and proteins from both layers are able to desorb from the surface. The lipid modification increases the protein surface coverage and the thickness of both layer organizations. Upon lipidation not only the fibrillation extent but also the morphology of the fibrillar structures changes from fibril clusters on the surface to a more homogeneous network of fibrils covering the entire hydrophobic surface. PMID:27348237

  13. DARC: Mapping Surface Topography by Ray-Casting for Effective Virtual Screening at Protein Interaction Sites.

    Gowthaman, Ragul; Miller, Sven A; Rogers, Steven; Khowsathit, Jittasak; Lan, Lan; Bai, Nan; Johnson, David K; Liu, Chunjing; Xu, Liang; Anbanandam, Asokan; Aubé, Jeffrey; Roy, Anuradha; Karanicolas, John

    2016-05-12

    Protein-protein interactions represent an exciting and challenging target class for therapeutic intervention using small molecules. Protein interaction sites are often devoid of the deep surface pockets presented by "traditional" drug targets, and crystal structures reveal that inhibitors typically engage these sites using very shallow binding modes. As a consequence, modern virtual screening tools developed to identify inhibitors of traditional drug targets do not perform as well when they are instead deployed at protein interaction sites. To address the need for novel inhibitors of important protein interactions, here we introduce an alternate docking strategy specifically designed for this regime. Our method, termed DARC (Docking Approach using Ray-Casting), matches the topography of a surface pocket "observed" from within the protein to the topography "observed" when viewing a potential ligand from the same vantage point. We applied DARC to carry out a virtual screen against the protein interaction site of human antiapoptotic protein Mcl-1 and found that four of the top-scoring 21 compounds showed clear inhibition in a biochemical assay. The Ki values for these compounds ranged from 1.2 to 21 μM, and each had ligand efficiency comparable to promising small-molecule inhibitors of other protein-protein interactions. These hit compounds do not resemble the natural (protein) binding partner of Mcl-1, nor do they resemble any known inhibitors of Mcl-1. Our results thus demonstrate the utility of DARC for identifying novel inhibitors of protein-protein interactions. PMID:26126123

  14. Evaluation of Protein Adsorption on Chitosan Surfaces with Reflectometry Interference Spectroscopy

    Chao Qun Ma

    2001-10-01

    Full Text Available Using a biomedical sensor setup RIfS we have investigated the kinetic behavior of human albumin (Alb, human fibrinogen (Fib, and human immunoglobulin G (IgG adsorbed onto surfaces of chitosan. Polystyrene (PS was used as the control material in this study. The optical thickness of three kinds of proteins measured by RIfS was related to their molecular dimensions and potential orientations on a film surface. According to the operation principle of RIfS and the molecular dimensions of three kinds of proteins, the adsorbed layers of proteins onto the surface of chitosan and PS was calculated by using a newly introduced equation. The microstructure of the chitosan and polystyrene film and the surfaces with adsorbed proteins were imaged by atomic force microscopy (AFM. With AFM analyses the lateral distribution of the protein molecules on surfaces have been recognized. The results show that the number of adsorbed layers of the three proteins on the surface of chitosan are 0.635 for Alb, 0.158 for Fib and 0.0967 for IgG, and of polystyrene are: 0.577 for IgG, 0.399 for Fib, 0.336 for Alb. This study confirmed that RIfS is a useful tool for the analysis of plasma proteins adsorbed on a surface of biomaterials. Results show that at first on the surface of chitosan film much more Alb than Fib was adsorbed which demonstrated that chitosan has a antithrombus function. Secondly, on the surface of chitosan film more Alb and less Fib were adsorbed than on the surface of PS film, which demonstrated that chitosan has a better blood compatibility than polystyrene. Thirdly, the calculated layer number of the three proteins indicated that on both chitosan and PS substrates monolayer coatings form.

  15. Interactions between segmented polyurethane surfaces and the plasma protein fibrinogen.

    Stupp, S I; Kauffman, J W; Carr, S H

    1977-03-01

    Surfaces of a segmented polyurethane were varied by casting on poly(ethylene terephthalate) (PET) and glass substrates, and were characterized through infrared-attenuated total-reflection spectroscopy (ATR). Surfaces cast on glass substrates showed a higher content of polyether segments, whereas those cast on PET contained a higher relative concentration of aromatic segments. Adsorption, and possible conformational changes of fibrinogen, were found to be more substantial on polymer surfaces having a higher content of polyether segments. It is concluded that the relatively good blood compatibility of segmented polyurethanes is partly due to the presence of peptide-like bonds on aromatic segments. PMID:140169

  16. Surface modification of diamond-like carbon films with protein via polydopamine inspired coatings

    In this paper, we report a facile two-step approach to immobilize proteins onto DLC surfaces. The first step was a simple immersion of DLC in a solution of dopamine. Polydopamine was deposited on DLC as a stable anchor to present protein molecules. Then the protein ad-layer was deposited on it. The chemical components of the modified DLC surfaces were characterized by Fourier transform infrared spectra and X-ray photoelectron spectroscopy. The biocompatibility of it was evaluated in vitro by the tetrazolium salt method. And it was indicated that the BSA modified surface had good haemocompatibility properties, and was cytocompatible to PC-12 cells.

  17. Surface modification of diamond-like carbon films with protein via polydopamine inspired coatings

    Tao Caihong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); China and Graduate University of Chinese Academy of Sciences, Beijing 100080 (China); Yang Shengrong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); Zhang Junyan, E-mail: zhangjunyan@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); Wang Jinqing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China)

    2009-10-15

    In this paper, we report a facile two-step approach to immobilize proteins onto DLC surfaces. The first step was a simple immersion of DLC in a solution of dopamine. Polydopamine was deposited on DLC as a stable anchor to present protein molecules. Then the protein ad-layer was deposited on it. The chemical components of the modified DLC surfaces were characterized by Fourier transform infrared spectra and X-ray photoelectron spectroscopy. The biocompatibility of it was evaluated in vitro by the tetrazolium salt method. And it was indicated that the BSA modified surface had good haemocompatibility properties, and was cytocompatible to PC-12 cells.

  18. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  19. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    Capriotti, Anna Laura

    2011-07-02

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. © 2011 Springer-Verlag.

  20. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-03-17

    The molecular interaction forces generated during the adsorption of proteins to surfaces were examined by the force-versus-distance (f-d) curve measurements of atomic force microscopy using probes modified with appropriate molecules. Various substrates with polymer brush layers bearing zwitterionic, cationic, anionic, and hydrophobic groups were systematically prepared by surface-initiated atom transfer radical polymerization. Surface interaction forces on these substrates were analyzed by the f-d curve measurements using probes with the same polymer brush layer as the substrate. Repulsive forces, which decreased depending on the ionic strength, were generated between cationic or anionic polyelectrolyte brush layers; these were considered to be electrostatic interaction forces. A strong adhesive force was detected between hydrophobic polymer brush layers during retraction; this corresponded to the hydrophobic interaction between two hydrophobic polymer layers. In contrast, no significant interaction forces were detected between zwitterionic polymer brush layers. Direct interaction forces between proteins and polymer brush layers were then quantitatively evaluated by the f-d curve measurements using protein-immobilized probes consisting of negatively charged albumin and positively charged lysozyme under physiological conditions. In addition, the amount of protein adsorbed on the polymer brush layer was quantified by surface plasmon resonance measurements. Relatively large amounts of protein adsorbed to the polyelectrolyte brush layers with opposite charges. It was considered that the detachment of the protein after contact with the polymer brush layer hardly occurred due to salt formation at the interface. Both proteins adsorbed significantly on the hydrophobic polymer brush layer, which was due to hydrophobic interactions at the interface. In contrast, the zwitterionic polymer brush layer exhibited no significant interaction force with proteins and suppressed

  1. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces

    Hanna Trzeciakiewicz

    2015-08-01

    Full Text Available The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine and diluents (hexanethiol or 2-mercaptoethanol was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides.

  2. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces.

    Trzeciakiewicz, Hanna; Esteves-Villanueva, Jose; Soudy, Rania; Kaur, Kamaljit; Martic-Milne, Sanela

    2015-01-01

    The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6](3-/4-). The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers) in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides. PMID:26262621

  3. Water organization between oppositely charged surfaces: implications for protein sliding along DNA.

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-28

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein. PMID:25725757

  4. Water organization between oppositely charged surfaces: Implications for protein sliding along DNA a)

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-01

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.

  5. Protein diffusion and long-term adsorption states at charged solid surfaces.

    Kubiak-Ossowska, Karina; Mulheran, Paul A

    2012-11-01

    The diffusion pathways of lysozyme adsorbed to a model charged ionic surface are studied using fully atomistic steered molecular dynamics simulation. The simulations start from existing protein adsorption trajectories, where it has been found that one particular residue, Arg128 at the N,C-terminal face, plays a crucial role in anchoring the lysozyme to the surface [Langmuir 2010 , 26 , 15954 - 15965]. We first investigate the desorption pathway for the protein by pulling the Arg128 side chain away from the surface in the normal direction, and its subsequent readsorption, before studying diffusion pathways by pulling the Arg128 side chain parallel to the surface. We find that the orientation of this side chain plays a decisive role in the diffusion process. Initially, it is oriented normal to the surface, aligning in the electrostatic field of the surface during the adsorption process, but after resorption it lies parallel to the surface, being unable to return to its original orientation due to geometric constraints arising from structured water layers at the surface. Diffusion from this alternative adsorption state has a lower energy barrier of ∼0.9 eV, associated with breaking hydrogen bonds along the pathway, in reasonable agreement with the barrier inferred from previous experimental observation of lysozyme surface clustering. These results show the importance of studying protein diffusion alongside adsorption to gain full insight into the formation of protein clusters and films, essential steps in the future development of functionalized surfaces. PMID:23062108

  6. Modeling and simulation of protein-surface interactions: achievements and challenges.

    Ozboyaci, Musa; Kokh, Daria B; Corni, Stefano; Wade, Rebecca C

    2016-01-01

    Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse

  7. Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts

    The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane

  8. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  9. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion.

    Hammad, Moamen; Rao, Wei; Smith, James G W; Anderson, Daniel G; Langer, Robert; Young, Lorraine E; Barrett, David A; Davies, Martyn C; Denning, Chris; Alexander, Morgan R

    2016-08-16

    Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture 'hits' that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment. PMID:27466628

  10. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie;

    2004-01-01

    constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell......The ADAM (a disintegrin and metalloprotease) family consists of multidomain cell-surface proteins that have a major impact on cell behavior. These transmembrane-anchored proteins are synthesized as proforms that have (from the N terminus): a prodomain; a metalloprotease-, disintegrin......-immunoprecipitated from membrane-enriched fractions of PMA-treated cells, 3) RD cells transfected with EGFP-tagged, myristoylated PKCepsilon expressed more ADAM12 at the cell surface than did non-transfected cells, and 4) RD cells transfected with a kinase-inactive PKCepsilon mutant did not exhibit ADAM12 cell...

  11. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release

    Hedberg, Y; Wang, X.; Hedberg, J; Lundin, M.; Blomberg, E.; Odnevall Wallinder, I.

    2013-01-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a sig...

  12. Surface Plasmon Resonance for Rapid Screening of Uranyl Affine Proteins

    A sensitive immunoassay based on SPR analysis was developed to measure uranyl cation (UO22+) affinity for any protein in a free state under physiological conditions. The technique involves immobilization of a specific monoclonal antibody (mAb) raised against UO22+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid (DCP) used as a probe of UO22+ captured by the mAb. Calibration curves were established for accurate determination of UO22+ concentrations with a detection limit of 7 nM. The remaining free UO22+ could be accurately quantified from the different protein-metal equilibrium and a dose-response curve established for KD determination. This generic method was applied not only to proteins such as transferrin and albumin but also to small phosphonated ligands. Its robustness allows the fast UO22+ KD determination of any kind of macromolecules and small ligands using very few amount of compounds, thus opening new prospects in the field of uranium toxicity. (authors)

  13. Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum

    Beck, Hans Christian; Madsen, Søren M; Glenting, Jacob;

    2009-01-01

    In the present study, we used a proteomic approach to identify surface-associated proteins from the probiotic bacterium Lactobacillus plantarum 299v. Proteins were extracted from the cell surface using a mild wash in phosphate buffer and analysed by sodium dodecyl sulphate-polyacrylamide gel...... probiotics in the gastrointestinal tract. The results provide the basis for future studies on the molecular mechanisms of probiotics....

  14. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells. PMID:20835432

  15. Surface modification by using of immobilized electrostatic self-assembly of bacteriorhodopsin as protein memory

    Ashkan Zare Karizak

    2014-11-01

    Full Text Available Bacteriorhodopsin (BR is the light harvesting and photoactive proton pump found in the membrane of a salt marsh bacteria. This protein has significant potential to use in optical computing and memory devices due to unique intrinsic physical properties of photo and bioelectric. All these features make BR one of the most promising protein candidates in protein memories. Protein memory is a kind of optical memory with a large storage capacity and high speed processing features. BR protein was used with the polymer film in order to create better stability. In order to investigate immobilization of electrostatic self-assembly of BR on glass and polycarbonate as protein memories was used. Polycarbonate is a layer of compact disc (CD structure which considered dye immobilized on its surface and have reading and writing abilities of information via 0,1 bites. In this study, surfaces of polycarbonate modified by the mixture of 5% sulfuric acid and 20% acetic acid; furthermore, by using of PEI as cationic resin the surface of polycarbonate was charged and BR immobilized on it electrostatically. The modified surfaces were characterized by AFM technique. Also, light activity for reading data is retained. This is an appropriate method for optimal stability and activity assay of the protein and also is suitable for preparation of protein memories.

  16. Surface-tethered polymers to influence protein adsorption and microbial adhesion

    Norde, Willem

    2007-01-01

    In various applications it is desired that biological cells or protein molecules are immobilized at surfaces. Examples are enzymes or cells in bioreactors and biosensors, immuno-proteins in solid-state diagnostics and proteinaceous farmacons in drug delivery systems. In order to retain biological ac

  17. Perspectives for in situ Scanning Tunnel Microscopic Imaging of Proteins at HOPG surfaces

    Andersen, Jens Enevold Thaulov; Thuesen, Marianne Hallberg; Møller, Per; Ulstrup, Jens

    1996-01-01

    We have investigated the behaviour of the four-copper fungal metalloenzyme laccase (MW~68kDa) at highly oriented pyrolytic graphite (HOPG) surfaces by ex situ and in situ STM. The four copper atoms ar suited to stimulate long-range inelastic tunnel modes through the protein. The proteins forms...

  18. Cell wall sorting signals in surface proteins of gram-positive bacteria.

    Schneewind, O; Mihaylova-Petkov, D; Model, P

    1993-01-01

    Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphyl...

  19. Atomic force microscopy study of chromosome surface structure changed by protein extraction

    We applied atomic force microscopy (AFM) to investigate the surface structure of barley chromosome in combination with a chemical treatment method. As a result, we have obtained high-resolution topographic images of granular structures with a diameter of ca. 50 nm on the surface of critical-point dried metaphase chromosomes. Treatment with 2 M NaCl significantly modified the chromosome surface structure: surface roughness was increased and chromosome thickness was decreased. The NaCl treatment extracted two major proteins with molecular weights of 4000 and 20,000 Da. These proteins might be belonging to non-histone protein families that do not contain any aromatic amino acid. The results demonstrate the advantage of the combined method of high-resolution AFM imaging and chemical treatments for understanding nano-scale surface structures of the chromosome

  20. Excitation energy migration in yellow fluorescent protein (citrine) layers adsorbed on modified gold surfaces

    Yusoff, Hanis Mohd; Rzeźnicka, Izabela I.; Hoshi, Hirotaka; Kajimoto, Shinji; Horimoto, Noriko Nishizawa; Sogawa, Kazuhiro; Fukumura, Hiroshi

    2013-09-01

    The nature of functional proteins adsorbed on solid surfaces is interesting from the perspective of developing of bioelectronics and biomaterials. Here we present evidence that citrine (one of yellow fluorescent protein variants) adsorbed on modified gold surfaces would not undergo denaturation and energy transfer among the adsorbed citrine molecules would occur. Gold substrates were chemically modified with 3-mercaptopropionic acid and tert-butyl mercaptan for the preparation of hydrophilic and hydrophobic surfaces, respectively. A pure solution of citrine was dropped and dried on the modified gold substrates and their surface morphology was studied with scanning tunnelling microscopy (STM). The obtained STM images showed multilayers of citrine adsorbed on the modified surfaces. On hydrophobic surfaces, citrine was adsorbed more randomly, formed various non-uniform aggregates, while on hydrophilic surfaces, citrine appeared more aligned and isolated uniform protein clusters were observed. Fluorescence lifetime and anisotropy decay of these dried citrine layers were also measured using the time correlated single photon counting method. Fluorescence anisotropy of citrine on the hydrophobic surface decayed faster than citrine on the hydrophilic surface. From these results we concluded that fluorescence energy migration occurred faster among citrine molecules which were randomly adsorbed on the hydrophobic surface to compare with the hydrophilic surface.

  1. Gold nanoparticles: role of size and surface chemistry on blood protein adsorption

    Material interaction with blood proteins is a critical issue, since it could influence the biological processes taking place in the body following implantation/injection. This is particularly important in the case of nanoparticles, where innovative properties, such as size and high surface to volume ratio can lead to a behavioral change with respect to bulk macroscopic materials and could be responsible for a potential risk for human health. The aim of this work was to compare gold nanoparticles (AuNP) and planar surfaces to study the role of surface curvature moving from the macro- to the nano-size in the process of blood protein adsorption. In the course of the study, different protocols were tested to optimize the analysis of protein adsorption on gold nanoparticles. AuNP with different size (10, 60 and 200 nm diameter) and surface coatings (citrate and polyethylene glycol) were carefully characterized. The stabilizing action of blood proteins adsorbed on AuNP was studied measuring the variation of size and solubility of the nanoparticles following incubation with single protein solutions (human serum albumin and fibrinogen) and whole blood plasma. In addition, we developed a method to elute proteins from AuNP to study the propensity of gold materials to adsorb plasma proteins in function of dimensional characteristics and surface chemistry. We showed a different efficacy of the various eluting media tested, proving that even the most aggressive agent cannot provide a complete detachment of the protein corona. Enhanced protein adsorption was evidenced on AuNP if compared to gold laminae (bare and PEGylated) used as macroscopic control, probably due to the superior AuNP surface reactivity.

  2. Competitive Protein Adsorption of Albumin and Immunoglobulin G from Human Serum onto Polymer Surfaces

    Holmberg, Maria; Hou, Xiaolin

    2010-01-01

    Competitive protein adsorption from human serum onto unmodified polyethylene terephthalate (PET) surfaces and plasma-polymerized PET surfaces, using the monomer diethylene glycol vinyl ether (DEGVE), has been investigated using radioactive labeling. Albumin and immunoglobulin G (IgG) labeled with...

  3. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  4. Isolation of two biologically active cell surface proteins from Brucella abortus by chromatofocusing

    Brucella abortus contains a group of immunogenic cell surface proteins which have potential value as a vaccine or as a diagnostic reagent for the prevention and diagnosis of bovine brucellosis. Under nondenaturing conditions, these proteins range in molecular weight from 10,000-124,000, as determined by high performance liquid chromatography (HPLC) on TSK 3000sw. By analytical isoelectrofocusing, 6 major protein bands could be distinguished with pI's ranging from 4.0 to 6.0 and 3 additional major proteins with pI's of 7.5, 9.5, and 10. By chromatofocusing on Polybuffer Exchanger 94 with a pH gradient from 6-4, two of the six proteins from pI 4-6 were separated, a pI 4.9 and a pI 4.7 protein; a third fraction contained the high pI proteins. The former two proteins were homogeneous by analytical isoelectrofocusing, and a molecular weight of 54,000 daltons was found for both protein species by HPLC on TSK 3000sw. The pI 4-6 and not the pI 9.5 and 10 proteins, could be radiolabeled when intact cells were radioiodinated with diazotized (125I)-iodosulfanilic acid. Biological activity of the proteins as assessed in lemmings indicated that immunization with the pI 4.7 and 4.9 proteins afforded better protection against experimental brucellosis than immunization with the high pI proteins. These results support our view that a single surface protein may be sufficient for the prevention of experimental brucellosis

  5. Isolation of two biologically active cell surface proteins from Brucella abortus by chromatofocusing

    Tabatabai, L.B.; Deyoe, B.L.

    1983-01-01

    Brucella abortus contains a group of immunogenic cell surface proteins which have potential value as a vaccine or as a diagnostic reagent for the prevention and diagnosis of bovine brucellosis. Under nondenaturing conditions, these proteins range in molecular weight from 10,000-124,000, as determined by high performance liquid chromatography (HPLC) on TSK 3000sw. By analytical isoelectrofocusing, 6 major protein bands could be distinguished with pI's ranging from 4.0 to 6.0 and 3 additional major proteins with pI's of 7.5, 9.5, and 10. By chromatofocusing on Polybuffer Exchanger 94 with a pH gradient from 6-4, two of the six proteins from pI 4-6 were separated, a pI 4.9 and a pI 4.7 protein; a third fraction contained the high pI proteins. The former two proteins were homogeneous by analytical isoelectrofocusing, and a molecular weight of 54,000 daltons was found for both protein species by HPLC on TSK 3000sw. The pI 4-6 and not the pI 9.5 and 10 proteins, could be radiolabeled when intact cells were radioiodinated with diazotized (/sup 125/I)-iodosulfanilic acid. Biological activity of the proteins as assessed in lemmings indicated that immunization with the pI 4.7 and 4.9 proteins afforded better protection against experimental brucellosis than immunization with the high pI proteins. These results support our view that a single surface protein may be sufficient for the prevention of experimental brucellosis.

  6. Microscopic Investigation of Reversible Nanoscale Surface Size Dependent Protein Conjugation

    Michael A. Carpenter

    2009-05-01

    Full Text Available Aβ1-40 coated 20 nm gold colloidal nanoparticles exhibit a reversible color change as pH is externally altered between pH 4 and 10. This reversible process may contain important information on the initial reversible step reported for the fibrillogenesis of Aβ (a hallmark of Alzheimer’s disease. We examined this reversible color change by microscopic investigations. AFM images on graphite surfaces revealed the morphology of Aβ aggregates with gold colloids. TEM images clearly demonstrate the correspondence between spectroscopic features and conformational changes of the gold colloid.

  7. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  8. Improved protein surface comparison and application to low-resolution protein structure data

    Kihara Daisuke; Sael Lee

    2010-01-01

    Abstract Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has ar...

  9. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  10. SurfaceomeDB: a cancer-orientated database for genes encoding cell surface proteins.

    de Souza, Jorge Estefano Santana; Galante, Pedro Alexandre Favoretto; de Almeida, Renan Valieris Bueno; da Cunha, Julia Pinheiro Chagas; Ohara, Daniel Takatori; Ohno-Machado, Lucila; Old, Lloyd J; de Souza, Sandro José

    2012-01-01

    Cell surface proteins (CSPs) are excellent targets for the development of diagnostic and therapeutic reagents, and it is estimated that 10-20% of all genes in the human genome encode CSPs. In an effort to integrate all data publicly available for genes encoding cell surface proteins, a database (SurfaceomeDB) was developed. SurfaceomeDB is a gene-centered portal containing different types of information, including annotation for gene expression, protein domains, somatic mutations in cancer, and protein-protein interactions for all human genes encoding CSPs. SurfaceomeDB was implemented as an integrative and relational database in a user-friendly web interface, where users can search for gene name, gene annotation, or keywords. There is also a streamlined graphical representation of all data provided and links to the most important data repositories and databases, such as NCBI, UCSC Genome Browser, and EBI. PMID:23390370

  11. Immobilization of multivalent glycoprobes on gold surfaces for sensing proteins and macrophages.

    Gade, Madhuri; Khandelwal, Puneet; Sangabathuni, Sivakoti; Bavireddi, Harikrishna; Murthy, Raghavendra Vasudeva; Poddar, Pankaj; Kikkeri, Raghavendra

    2016-04-01

    The multivalent display of carbohydrates on the cell surface provides cooperative binding to improve the specific biological events. In addition to multivalency, the spatial arrangement and orientation of sugars with respect to external stimuli also trigger carbohydrate-protein interactions. Herein, we report a non-covalent host-guest strategy to immobilize heptavalent glyco-β-cyclodextrin on gold-coated glass slides to study multivalent carbohydrate-protein interactions. We have found that the localization of sugar entities on surfaces using β-cyclodextrin (β-CD) chemistry increased the avidity of carbohydrate-protein and carbohydrate-macrophage interactions compared to monovalent-β-CD sugar coated surfaces. This platform is expected to be a promising tool to amplify the avidity of sugar-mediated interactions on surfaces and contribute to the development of next generation bio-medical products. PMID:26934683

  12. Water-wettable polypropylene fibers by facile surface treatment based on soy proteins.

    Salas, Carlos; Genzer, Jan; Lucia, Lucian A; Hubbe, Martin A; Rojas, Orlando J

    2013-07-24

    Modification of the wetting behavior of hydrophobic surfaces is essential in a variety of materials, including textiles and membranes that require control of fluid interactions, adhesion, transport processes, sensing, etc. This investigation examines the enhancement of wettability of an important class of textile materials, viz., polypropylene (PP) fibers, by surface adsorption of different proteins from soybeans, including soy flour, isolate,glycinin, and β-conglycinin. Detailed investigations of soy adsorption from aqueous solution (pH 7.4, 25 °C) on polypropylene thin films is carried out using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). A significant amount of protein adsorbs onto the PP surfaces primarily due to hydrophobic interactions. We establish that adsorption of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) onto PP surfaces prior to the protein deposition dramatically enhances its adsorption. The adsorption of proteins from native (PBS buffer, pH 7.4, 25 °C) and denatured conditions (PBS buffer, pH 7.4, 95 °C) onto DODA-treated PP leads to a high coverage of the proteins on the PP surface as confirmed by a significant improvement in water wettability. A shift in the contact angle from 128° to completely wettable surfaces (≈0°) is observed and confirmed by imaging experiments conducted with fluorescence tags. Furthermore, the results from wicking tests indicate that hydrophobic PP nonwovens absorb a significant amount of water after protein treatment, i.e., the PP-modified surfaces become completely hydrophilic. PMID:23789986

  13. Investigation of cellular and protein interactions with model self-assembled monolayer surfaces

    Tegoulia, Vassiliki Apostolou

    Self-assembled monolayers (SAMs) of alkanethiolates on gold have been used to investigate the effect of substrate surface properties on bacterial and blood cell adhesion in the presence and absence of blood proteins. Protein adsorption and binding strength on SAMs as well as complement activation by these model surfaces were also studied. It is hoped that information gained, regarding factors that influence biological processes, will lead to strategies for designing materials and surfaces that specifically inhibit cell adhesion and protein adsorption. Single component SAMs of the general formula HS(CH2) 10X, where X = CH3, CH2OH. COOH and CH2(OCH 2CH2)3OH, and two component mixed SAMs created from binary solutions of HS(CH2), OCH3 and HS(CH 2)10CH2OH, were used. Adhesion was investigated under well-defined flow conditions. Adhesion was found to be higher for the hydrophobic methyl and minimal for the tri(ethyleneoxide) terminated SAM. Preincubation of the SAMs with fibrinogen led to an increase in cell adhesion for bacteria and a decrease for leukocyte adhesion. The effect of surface chemistry on protein adsorption was studied for three blood proteins, fibrinogen, fibronectin and albumin. Adsorption was found to be higher on the hydrophobic CH3 surface and lower but comparable for the other surfaces while proteins adsorbed strongly on all surfaces. SAMs were also used to evaluate complement activation by foreign surfaces. The hydroxyl rich SAMs were found to activate complement more significantly than the anionic carboxyl and the hydrophobic methyl terminated SAMs. A surface modification was introduced to incorporate a zwitterionic phosphorylcholine (PC) group on a hydroxyl monolayer in an effort to create a biomimetic surface that could minimize cell adhesion and protein adsorption. The good antifouling properties of the phosphorylcholine modified surface led to the synthesis of a novel phosphorylcholine functionalized thiol. Single component and two component

  14. Influence of protein bulk properties on membrane surface coverage during immobilization.

    Militano, Francesca; Poerio, Teresa; Mazzei, Rosalinda; Piacentini, Emma; Gugliuzza, Annarosa; Giorno, Lidietta

    2016-07-01

    Biomolecules immobilization is a key factor for many biotechnological applications. For this purpose, the covalent immobilization of bovine serum albumin (BSA), lipase from Candida rugosa and protein G on differently functionalized regenerated cellulose membranes was investigated. Dynamic light scattering and electrophoresis measurements carried out on biomolecules in solution indicated the presence of monomers, dimers and trimers for both BSA and protein G, while large aggregates were observed for lipase. The immobilization rate and the surface coverage on functionalized regenerated cellulose membranes were studied as a function of biomolecule concentration. Results indicated that the saturation coverage of BSA and protein G was concentration independent (immobilized protein amount of 2.40±0.03mg/g and 2.65±0.07mg/g, respectively). Otherwise, a different immobilization kinetics trend was obtained for lipase, for which the immobilized amount increases as a function of time without reaching a saturation value. Atomic force microscopy (AFM) micrographs showed the formation of monolayers for both BSA and protein G on the membrane surface, while a multilayer structure is found for lipase, in agreement with the trends observed in the related immobilization kinetics. As a result, the morphology of the proteins layer on the membrane surface seems to be strictly dependent on the proteins behavior in solution. Besides, the surface coverage has been described for BSA and protein G by the pseudo second order models, the results indicating the surface reaction as the controlling step of immobilization kinetics. Finally, enzyme activity and binding capacity studies indicated the preservation of the biomolecule functional properties. PMID:27022871

  15. Interaction of Moringa oleifera seed protein with a mineral surface and the influence of surfactants.

    Kwaambwa, Habauka M; Hellsing, Maja S; Rennie, Adrian R; Barker, Robert

    2015-06-15

    The paper describes the adsorption of purified protein from seeds of Moringa oleifera to a sapphire interface and the effects of addition of the anionic surfactant sodium dodecylsulfate (SDS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB). Neutron reflection was used to determine the structure and composition of interfacial layers adsorbed at the solid/solution interface. The maximum surface excess of protein was found to be about 5.3 mg m(-2). The protein does not desorb from the solid/liquid interface when rinsed with water. Addition of SDS increases the reflectivity indicating co-adsorption. It was observed that CTAB is able to remove the protein from the interface. The distinct differences to the behavior observed previously for the protein at the silica/water interface are identified. The adsorption of the protein to alumina in addition to other surfaces has shown why it is an effective flocculating agent for the range of impurities found in water supplies. The ability to tailor different surface layers in combination with various surfactants also offers the potential for adsorbed protein to be used in separation technologies. PMID:25746187

  16. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  17. Wang-Landau sampling of the interplay between surface adsorption and folding of HP lattice proteins

    Li, Ying Wai [ORNL; Wuest, Thomas [Swiss Federal Research Institute, Switzerland; Landau, David P [University of Georgia, Athens, GA

    2014-01-01

    Generic features associated with the adsorption of proteins on solid surfaces are reviewed within the framework of the hydrophobic-polar (HP) lattice protein model. The thermodynamic behavior and structural properties of various HP protein sequences interacting with attractive surfaces have been studied using extensive Wang-Landau sampling with different types of surfaces, each of which attracts either: all monomers, only hydrophobic (H) monomers, or only polar (P) monomers, respectively. Consequently, different types of folding behavior occur for varied surface strengths. Analysis of the combined patterns of various structural observables, e.g., the derivatives of the numbers of interaction contacts, together with the specific heat, leads to the identification of fundamental categories of folding and transition hierarchies. We also inferred a connection between the transition categories and the relative surface strengths, i.e., the ratios of the surface attractive strengths to the intra-chain attraction among H monomers. We thus believe that the folding hierarchies and identification scheme are generic for different HP sequences interacting with attractive surfaces, regardless of the chain length, sequence, or surface attraction.

  18. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae.

    Liu, Ruo Dan; Cui, Jing; Liu, Xiao Lin; Jiang, Peng; Sun, Ge Ge; Zhang, Xi; Long, Shao Rong; Wang, Li; Wang, Zhong Quan

    2015-10-01

    The critical step for Trichinella spiralis infection is that muscle larvae (ML) are activated to intestinal infective larvae (IIL) and invade intestinal epithelium to further develop. The IIL is its first invasive stage, surface proteins are directly exposed to host environment and are crucial for larval invasion and development. In this study, shotgun LC-MS/MS was used to analyze surface protein profiles of ML and IIL. Totally, 41 proteins common to both larvae, and 85 ML biased and 113 IIL biased proteins. Some proteins (e.g., putative scavenger receptor cysteine-rich domain protein and putative onchocystatin) were involved in host-parasite interactions. Gene ontology analysis revealed that proteins involved in generation of precursor metabolites and energy; and nucleobase, nucleoside, nucleotide and nucleic acid metabolic process were enriched in IIL at level 4. Some IIL biased proteins might play important role in larval invasion and development. qPCR results confirmed the high expression of some genes in IIL. Our study provides new insights into larval invasion, host-Trichinella interaction and for screening vaccine candidate antigens. PMID:26184560

  19. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona. PMID:25961528

  20. Two cell surface proteins bind the sponge Microciona prolifera aggregation factor.

    Varner, J A; Burger, M M; Kaufman, J F

    1988-06-15

    Two extracellular matrix cell surface proteins which bind the proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) and which may function as physiological receptors for MAF were identified and characterized for the first time. By probing nitrocellulose blots of nonreducing sodium dodecyl sulfate gels containing whole sponge cell protein with iodinated MAF, a 210- and a 68-kDa protein, which have native molecular masses of approximately 200-400 and 70 kDa, were identified. MAF binding to blots is species-specific. It is also sensitive to reduction and is completely abolished by pretreatment of live cells with proteases, as was cellular aggregation, indicating that the 210- and 68-kDa proteins may be located on the cell surface. The additional observations that the 68 kDa is an endoglycosidase F-sensitive glycoprotein and that antisera against whole sponge cells or membranes can immunoprecipitate the 210 kDa when prebound to intact cells are consistent with a cell surface location. Both proteins can be isolated from sponge cell membranes and from the sponge skeleton (insoluble extracellular matrix), but the 210-kDa MAF-binding protein can also be found in the soluble extracellular matrix (buffer washes of cells and skeleton) as well. A third MAF-binding protein of molecular mass 95 kDa was also found in the sponge extracellular matrix but rarely on cells. Both of the cell-associated 210- and 68-kDa proteins are nonintegral membrane proteins, based on Triton X-114 phase separation, flotation of liposomes containing sponge membrane lysates, and their extraction from membranes by buffer washes. Both proteins bind MAF affinity resins, indicating that they each exhibit a moderate affinity for MAF under native conditions. They can also be separated from each other and from the bulk of the protein in an octylpolyoxyethylene extract of membranes by fast protein liquid chromatography Mono Q anion exchange chromatography, as assessed by native

  1. Expression, purification, crystallization and preliminary crystallographic analysis of a putative Clostridium difficile surface protein Cwp19

    Cwp19 is a putatively surface-located protein from Clostridium difficile. A recombinant N-terminal protein (residues 27–401) lacking the signal peptide and the C-terminal cell-wall-binding repeats (PFam04122) was crystallized using the sitting-drop vapour-diffusion method and diffracted to 2 Å resolution. Cwp19 is a putatively surface-located protein from Clostridium difficile. A recombinant N-terminal protein (residues 27–401) lacking the signal peptide and the C-terminal cell-wall-binding repeats (PFam04122) was crystallized using the sitting-drop vapour-diffusion method and diffracted to 2 Å resolution. The crystal appeared to belong to the primitive monoclinic space group P21, with unit-cell parameters a = 109.1, b = 61.2, c = 109.2 Å, β = 111.85°, and is estimated to contain two molecules of Cwp19 per asymmetric unit

  2. Identification of Pneumococcal Surface Protein A as a Lactoferrin-Binding Protein of Streptococcus pneumoniae

    Hammerschmidt, Sven; Bethe, Gesina; H. Remane, Petra; Chhatwal, Gursharan S.

    1999-01-01

    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10−18 M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hL...

  3. Study of antioxidant activity of sheep visceral protein hydrolysate: Optimization using response surface methodology

    Meshginfar, Nasim; Sadeghi-Mahoonak, Alireza; Ziaiifar, Aman Mohammad; Ghorbani, Mohammad; Kashaninejad, Mahdi

    2014-01-01

    BACKGROUND The main objective of this experiment was optimal use of none edible protein source to increase nutritional value of production with high biological function, including antioxidant activity. METHODS Sheep visceral (stomach and intestine) was used as substrate. Response surface methodology (RSM) was used to optimize hydrolysis conditions for preparing protein hydrolysate from the sheep visceral, using alcalase 2.4 l enzyme. The investigated factors were temperature (43-52 °C), time ...

  4. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  5. Mycoplasma pneumoniae Infection: Role of a Surface Protein in the Attachment Organelle

    Hu, P. C.; Cole, R. M.; Huang, Y. S.; Graham, J. A.; Gardner, D. E.; Collier, A. M.; Clyde, W. A.

    1982-04-01

    Attachment of Mycoplasma pneumoniae to host cells by means of a specialized terminus initiates infection. Monoclonal antibodies to a surface protein (P1) inhibit this process, and react with a region of the tip covered with peplomer-like particles. Since antibodies against the P1 protein are generated by natural and experimental infection and by immunization, the substance may be an important determinant of protective immunity.

  6. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density

    Černocká, Hana; Ostatná, Veronika; Paleček, Emil

    2015-01-01

    Roč. 174, AUG 2015 (2015), s. 356-360. ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA15-15479S; GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : Bovine serum albumin * sensing of surface-attached protein stability * protein structural transition at Hg Subject RIV: BO - Biophysics Impact factor: 4.504, year: 2014

  7. The impact of a carbon nanotube on the cholesterol domain localized on a protein surface

    Gburski, Zygmunt; Raczynski, Przemyslaw; 10.1016/j.ssc.2009.12.005

    2011-01-01

    The influence of a single walled carbon nanotube on the structure of a cholesterol cluster (domain) developed over the surface of the endothelial protein 1LQV has been investigated using the classical molecular dynamics (MD) simulation technique. We have observed a substantial impact of carbon nanotube on the arrangement of the cholesterol domain. The carbon nanotube can drag out cholesterol molecules, remarkable reducing the volume of the domain settled down on the protein.

  8. Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush.

    Li, Lifu; Nakaji-Hirabayashi, Tadashi; Kitano, Hiromi; Ohno, Kohji; Kishioka, Takahiro; Usui, Yuki

    2016-08-01

    A self-assembled monolayer (SAM) of a 2-bromoisobutyryl end group-carrying initiator for atom transfer radical polymerization (ATRP) was constructed on the surface of silicon wafer or glass substrates via a silane-coupling reaction. When the initiator SAM was irradiated with UV light at 254nm, the surface density of bromine atoms was reduced by the scission of CBr bonds as observed by XPS. With the surface-initiated ATRP of the zwitterionic vinyl monomer, carboxymethyl betaine (CMB), the surface density of PCMB brushes could be easily varied by changing the irradiation period of UV light prior to the polymerization. Furthermore, by using a UV-cut shutter sliding above the initiator SAM-modified substrate at a constant speed, the degree of bromine atom removal could be linearly varied along the direction of movement of the shutter. Consequently, the amount of both proteins adsorbed and cells adhered to the PCMB brush-covered substrate could easily be controlled by the gradation of the surface density of PCMB brushes, which suppressed protein adsorption and cell adhesion. Such a technique is very simple and useful for the regulation of the surface density of adsorbed proteins and adhered cells on an originally bio-inert surface. PMID:27085477

  9. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications.

    Michon, C; Langella, P; Eijsink, V G H; Mathiesen, G; Chatel, J M

    2016-01-01

    Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine delivery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the displayed proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant proteins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-display technologies have other potential applications, such as degradation of biomass, which is of importance for some potential industrial applications of LAB. PMID:27142045

  10. Optimising the Use of TRIzol-extracted Proteins in Surface Enhanced Laser Desorption/ Ionization (SELDI Analysis

    Perlaky Laszlo

    2006-03-01

    Full Text Available Abstract Background Research with clinical specimens is always hampered by the limited availability of relevant samples, necessitating the use of a single sample for multiple assays. TRIzol is a common reagent for RNA extraction, but DNA and protein fractions can also be used for other studies. However, little is known about using TRIzol-extracted proteins in proteomic research, partly because proteins extracted from TRIzol are very resistant to solubilization. Results To facilitate the use of TRIzol-extracted proteins, we first compared the ability of four different common solubilizing reagents to solubilize the TRIzol-extracted proteins from an osteosarcoma cell line, U2-OS. Then we analyzed the solubilized proteins by Surface Enhanced Laser Desorption/ Ionization technique (SELDI. The results showed that solubilization of TRIzol-extracted proteins with 9.5 M Urea and 2% CHAPS ([3-[(3-cholamidopropyl-dimethylammonio]propanesulfonate] (UREA-CHAPS was significantly better than the standard 1% SDS in terms of solubilization efficiency and the number of detectable ion peaks. Using three different types of SELDI arrays (CM10, H50, and IMAC-Cu, we demonstrated that peak detection with proteins solubilized by UREA-CHAPS was reproducible (r > 0.9. Further SELDI analysis indicated that the number of ion peaks detected in TRIzol-extracted proteins was comparable to a direct extraction method, suggesting many proteins still remain in the TRIzol protein fraction. Conclusion Our results suggest that UREA-CHAPS performed very well in solubilizing TRIzol-extracted proteins for SELDI applications. Protein fractions left over after TRIzol RNA extraction could be a valuable but neglected source for proteomic or biochemical analysis when additional samples are not available.

  11. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics.

    Wenping Gong

    Full Text Available Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs, which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens.

  12. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  13. Aquifex aeolicus PilT, Homologue of a Surface Motility Protein, Is a Thermostable Oligomeric NTPase

    Herdendorf, Timothy J.; McCaslin, Darrell R.; Forest, Katrina T.

    2002-01-01

    Bacterial surface motility works by retraction of surface-attached type IV pili. This retraction requires the PilT protein, a member of a large family of putative NTPases from type II and IV secretion systems. In this study, the PilT homologue from the thermophilic eubacterium Aquifex aeolicus was cloned, overexpressed, and purified. A. aeolicus PilT was shown to be a thermostable ATPase with a specific activity of 15.7 nmol of ATP hydrolyzed/min/mg of protein. This activity was abolished whe...

  14. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces

    Hanna Trzeciakiewicz; Jose Esteves-Villanueva; Rania Soudy; Kamaljit Kaur; Sanela Martic-Milne

    2015-01-01

    The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto t...

  15. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-01

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity. PMID:18991420

  16. Origin of cell surface proteins released from Micrococcus radiodurans by ionizing radiation

    The exposure of Micrococcus radiodurans to sublethal doses of ionizing radiation causes the release of certain proteins into the surrounding medium. As estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these proteins range from approximately 20,000 to 125,000 daltons. At least some of the proteins, including an exonuclease, have a surface location and appear to originate from the lipid-rich midwall layer. The exonuclease has two functionally distinct locations, one with its active site available to external substrate and a second with the active site masked from the exterior. Ionizing radiation releases both the masked and unmasked activity into the surrounding medium

  17. Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.

    Tiemeyer, Sebastian; Paulus, Michael; Tolan, Metin

    2010-09-01

    The adsorption orientation of the proteins lysozyme and ribonuclease A (RNase A) to a neutral 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a negatively charged stearic acid lipid film was investigated by means of X-ray reflectivity. Both proteins adsorbed to the negatively charged lipid monolayer, whereas at the neutral monolayer, no adsorption was observed. For acquiring comprehensive information on the proteins' adsorption, X-ray reflectivity data were combined with electron densities obtained from crystallographic data. With this method, it is possible to determine the orientation of adsorbed proteins in solution underneath lipid monolayers. While RNase A specifically coupled with its positively charged active site to the negatively charged lipid monolayer, lysozyme prefers an orientation with its long axis parallel to the Langmuir film. In comparison to the electrostatic maps of the proteins, our results can be explained by the discriminative surface charge distribution of lysozyme and RNase A. PMID:20707324

  18. Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans.

    Hazen, K C; Hazen, B W

    1992-01-01

    Ultrastructural and biochemical analyses of hydrophobic and hydrophilic yeast cell surface proteins of Candida albicans were performed. Hydrophobic and hydrophilic yeast cells were obtained by growth at 23 and 37 degrees C, respectively. In addition, hydrophilic yeast cells were converted to surface hydrophobicity by treatment with tunicamycin and dithiothreitol. When freeze-etched cells were examined, the temperature-induced hydrophilic cells had long (0.198 micron), compact, evenly distribu...

  19. Detection of vitamin D binding protein on the surface of cytotrophoblasts isolated from human placentae

    Vitamin D binding protein (DBP), a Mr 56,000-58,000 alpha 2-glycoprotein, is the major serum protein involved in the transport of vitamin D sterols. Recently it has been suggested that DBP may also be involved in immunoglobulin G binding to cells. Because the trophoblast is involved in the transport of molecules such as vitamin D and immunoglobulin G to the fetus, we asked whether DBP could be detected on the surface of human placental trophoblast cells. Cytotrophoblasts purified from human term placentae were fixed and made permeant with Triton X-100 and examined by indirect immunofluorescence after incubation with a monoclonal antibody to DBP. Greater than 90% of these cells stained positively, whereas no staining was observed with nonimmune antiserum. The presence of DBP on/in the surface of cytotrophoblasts could also be demonstrated by fluorescent cytometry. When cell surface-associated proteins of cytotrophoblasts were radioiodinated, a Mr 57,000 radiolabeled protein could be immunoisolated from the cell lysate with a purified monospecific polyclonal antibody to DBP. Immunoisolation of this radiolabeled protein was prevented by the addition of excess unlabeled human DBP to the cell lysate before incubation with antibody. This Mr 57,000 radiolabeled protein could also be isolated by affinity chromatography selecting for proteins that bind to globular actin. When cytotrophoblasts were incubated with [35S]methionine for 3 or 18 h, active synthesis of DBP could not be demonstrated by immunoisolation techniques. These studies demonstrate the presence of DBP on the surface of well washed, human cytotrophoblasts. This DBP may be maternally derived, since active synthesis of DBP could not be demonstrated

  20. Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO₂ sequestration.

    Fan, Li-Hai; Liu, Ning; Yu, Ming-Rui; Yang, Shang-Tian; Chen, Huan-Lin

    2011-12-01

    Carbonic anhydrase (CA) has recently gained renewed interests for its potential as a mass-transfer facilitator for CO(2) sequestration. However, the low stability and high price severely limit its applications. In this work, the expression of α-CA from Helicobacter pylori on the outer membrane of Escherichia coli using a surface-anchoring system derived from ice nucleation protein (INP) from Pseudomonas syringae was developed. To find the best surface anchoring motif, full-length INP (114 kDa), truncated INP (INP-NC, 33 kDa), and INP's N-domain with first two subunits (INP-N, 22 kDa) were evaluated. Two vectors, pKK223-3 and pET22b(+), with different promoters (T7 and Tac) were used to construct the fusion genes, and for each vector, three recombinant strains, each expressing a different length of the fusion protein, were obtained. SDS-PAGE, Western blot, immunofluorescence microscopy, FACS, and whole-cell ELISA confirmed the expression of fusion proteins on the surface of E. coli. The smallest fusion protein with INP-N as the anchoring motif had the highest expression level and CA activity, suggesting that INP-N is the best carrying protein due to its smaller size. Also, the T7 promoter in pET22b(+) induced with 0.2 mM IPTG gave high protein expression levels, whereas the Tac promoter in pKK223-3 gave low expression levels. The surface displayed CA was at least twofold more stable than that of the free form, and did not show any adverse effect on cell growth and outer membrane integrity. Cells with surface displayed CA were successfully used to facilitate CO(2) sequestration in contained liquid membrane (CLM). PMID:21732326

  1. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  2. Mapping hydrophobicity on the protein molecular surface at atom-level resolution.

    Dan V Nicolau

    Full Text Available A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i the surface hydrophobicity; (ii their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i present an approximately two times more hydrophilic areas; with (ii less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37. These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric

  3. Label-free Raman mapping of surface distribution of protein a and IgG biomolecules.

    Combs, Zachary A; Chang, Sehoon; Clark, Tolecia; Singamaneni, Srikanth; Anderson, Kyle D; Tsukruk, Vladimir V

    2011-03-15

    We have demonstrated a nanoengineered substrate composed of micropatterned silver nanoparticles to be used for the label-free mapping of adsorbed biomolecules. We utilized surface-enhanced Raman scattering (SERS) phenomenon to monitor the known bioanalytes, protein A and human immunoglobulin G (IgG). The SERS substrate was composed of a poly(alylamine hydrochloride) (PAH)/poly(styrenesulfonate) (PSS) layer-by-layer (LbL) nanocoating micropatterned with silver nanoparticles confined to microscopic stripes. Selective adsorption of biomacromolecules is facilitated by the amine-terminated LbL nanocoating, which prevents the surface adsorption of positively charged protein A across the surface except on the patterned regions containing negatively charged silver nanoparticles. Furthermore, adsorption of IgG on predetermined regions is facilitated by the selective binding of the Fc region of IgG to protein A. This label-free SERS approach provides accurate, selective, and fast detection of protein A and IgG solutions with a nanomolar concentration, down to below 1 nM for IgG in solution. This method could also be utilized for the facile detection of proteins in field conditions as well as in clinical, forensic, industrial, and environmental laboratories. PMID:21294559

  4. Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins

    Sahu, Sumanta Kumar [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Chakrabarty, Arindam [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Bhattacharya, Dipsikha [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Ghosh, Sudip K. [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Pramanik, Panchanan, E-mail: chandrasourov@gmail.com [Indian Institute of Technology Kharagpur, Department of Chemistry (India)

    2011-06-15

    The aim of this study was to develop a simple, cheap, and rapid method for purification of His-tag recombinant proteins with high yields. The new immobilized metal ion affinity adsorbent containing superparamagnetic nanoparticles and hydrophilic resins are proposed here to improve the purification of His-tagged recombinant proteins. In this report, we have described the preparation of nanosized superparamagnetic nanoparticles (Fe{sub 3}O{sub 4}) which were prepared by chemical precipitation method followed by surface modification using phosphonomethyl iminodiacetic acid. The stable surface functionalized nanoparticles were further linked with Ni{sup 2+} for purification of 6 Multiplication-Sign His-tagged proteins. The phosphonate group of the N-phosphonomethyl iminodiacetic acid ligand acts as a surface anchoring agent on magnetite nanoparticles and the remaining free -COOH groups outside for binding with Ni{sup 2+} ions. The nanoparticles were approximately 6-8 nm in size and were stable and had negligible non-specific binding for protein. The proteins were purified within 1 h and observed on sodium dodecyl sulfate-polyacrylamide electrophoresis gel.

  5. Evaluation of the Effectiveness of Surfactants and Denaturants to Elute and Denature Adsorbed Protein on Different Surface Chemistries.

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-11-01

    The elution and/or denaturation of proteins from material surfaces by chemical excipients such as surfactants and denaturants is important for numerous applications including medical implant reprocessing, bioanalyses, and biodefense. The objective of this study was to develop and apply methods to quantitatively assess how surface chemistry and adsorption conditions influence the effectiveness of three commonly used surfactants (sodium dodecyl sulfate, n-octyl-β-d-glucoside, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and two denaturants (guanidium hydrochloride and urea) to elute protein (hen egg white lysozyme and bovine pancreatic ribonuclease A) from three different surface chemistries (silica glass, poly(methyl methacrylate), and high-density polyethylene). The structure and bioactivity of residual protein on the surface following elution were characterized using circular dichroism spectropolarimetry and enzyme assays to assess the extent of protein denaturation. Our results indicate that the denaturants were generally more effective than the surfactants in removing the adsorbed proteins from each type of surface. Also, the denaturing capacity of these excipients on the residual proteins on the surfaces was distinctly different from their influence on the proteins in solution and was unique for each of the adsorption conditions. Taken altogether, these results reveal that the effectiveness of surfactants and denaturants to elute and denature adsorbed protein is significantly influenced by surface chemistry and the conditions from which the protein was adsorbed. These results provide a basis for the selection, design, and further development of chemical agents for protein elution and surface decontamination. PMID:26449787

  6. Structure modification of montmorillonite nanoclay by surface coating with soy protein.

    Jin, Minfeng; Zhong, Qixin

    2012-12-01

    To achieve exfoliated and/or intercalated structures, montmorillonite (MMT) was surface-coated by soy protein at 60 °C, at MMT/soy protein powder mass ratios of 49:1, 9:1, 4:1, and 2:1 and pH 2.0-10.0. The protein-coated MMT was triple-washed and lyophilized for characterization. Protein coating was observed at all pH conditions, based on data from X-ray diffraction, Fourier transform infrared spectroscopy, zeta potential, and quantification of protein remaining in the continuous phase and present in the triple-washed MMT. At a mass ratio of 4:1, >90% protein bound with MMT, with the largest d-spacing at pH 9.0. When the mass ratio was increased to 2:1, protein-coated MMT at pH 9.0 demonstrated the highest degree of intercalation/exfoliation, corresponding to disappearance of the diffraction peak characteristic of pristine MMT. This study thus demonstrated that intercalation/exfoliation of MMT can be easily achieved by coating with low-cost soy protein for manufacturing nanocomposite materials. PMID:23163488

  7. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  8. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    2016-01-01

    Roč. 132, č. 1 (2016), s. 13-20. ISSN 1874-3919 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell adhesion proteins * cell surface capture * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.888, year: 2014

  9. 'MYCOPLASMA PNEUMONIAE' INFECTION: ROLE OF A SURFACE PROTEIN IN THE ATTACHMENT ORGANELLE

    Attachment of Mycoplasma pneumoniae to host cells by means of a specialized terminus initiates infection. Monoclonal antibodies to a surface protein (Pl) inhibit this process, and react with a region of the tip covered with peplomer-like particles. Since antibodies against the Pl...

  10. Dynamics of Agglutinin-Like Sequence (ALS) Protein Localization on the Surface of Candida Albicans

    Coleman, David Andrew

    2009-01-01

    The ALS gene family encodes large cell-surface glycoproteins associated with "C. albicans" pathogenesis. Als proteins are thought to act as adhesin molecules binding to host tissues. Wide variation in expression levels among the ALS genes exists and is related to cell morphology and environmental conditions. "ALS1," "ALS3," and "ALS4" are three of…

  11. Erratum: Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing.

    2015-01-01

    The author's email has been corrected in the publication of Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing. There was an error with the author, Jerry Zhou's, email. The author's email has been updated to: j.zhou@uws.edu.au from: jzho7551@mail.usyd.edu.au. PMID:26167960

  12. Diffusion Of Hydrophobin Proteins In Solution And Interactions With A Graphite Surface

    Mereghetti, Paolo; Wade, Rebecca C.

    2011-04-21

    Background Hydrophobins are small proteins produced by filamentous fungi that have a variety of biological functions including coating of spores and surface adhesion. To accomplish these functions, they rely on unique interface-binding properties. Using atomic-detail implicit solvent rigid-body Brownian dynamics simulations, we studied the diffusion of HFBI, a class II hydrophobin from Trichoderma reesei, in aqueous solution in the presence and absence of a graphite surface. Results In the simulations, HFBI exists in solution as a mixture of monomers in equilibrium with different types of oligomers. The oligomerization state depends on the conformation of HFBI. When a Highly Ordered Pyrolytic Graphite (HOPG) layer is present in the simulated system, HFBI tends to interact with the HOPG layer through a hydrophobic patch on the protein. Conclusions From the simulations of HFBI solutions, we identify a tetrameric encounter complex stabilized by non-polar interactions between the aliphatic residues in the hydrophobic patch on HFBI. After the formation of the encounter complex, a local structural rearrangement at the protein interfaces is required to obtain the tetrameric arrangement seen in HFBI crystals. Simulations performed with the graphite surface show that, due to a combination of a geometric hindrance and the interaction of the aliphatic sidechains with the graphite layer, HFBI proteins tend to accumulate close to the hydrophobic surface.

  13. Diffusion of hydrophobin proteins in solution and interactions with a graphite surface

    Mereghetti Paolo

    2011-04-01

    Full Text Available Abstract Background Hydrophobins are small proteins produced by filamentous fungi that have a variety of biological functions including coating of spores and surface adhesion. To accomplish these functions, they rely on unique interface-binding properties. Using atomic-detail implicit solvent rigid-body Brownian dynamics simulations, we studied the diffusion of HFBI, a class II hydrophobin from Trichoderma reesei, in aqueous solution in the presence and absence of a graphite surface. Results In the simulations, HFBI exists in solution as a mixture of monomers in equilibrium with different types of oligomers. The oligomerization state depends on the conformation of HFBI. When a Highly Ordered Pyrolytic Graphite (HOPG layer is present in the simulated system, HFBI tends to interact with the HOPG layer through a hydrophobic patch on the protein. Conclusions From the simulations of HFBI solutions, we identify a tetrameric encounter complex stabilized by non-polar interactions between the aliphatic residues in the hydrophobic patch on HFBI. After the formation of the encounter complex, a local structural rearrangement at the protein interfaces is required to obtain the tetrameric arrangement seen in HFBI crystals. Simulations performed with the graphite surface show that, due to a combination of a geometric hindrance and the interaction of the aliphatic sidechains with the graphite layer, HFBI proteins tend to accumulate close to the hydrophobic surface.

  14. THE EFFECTS OF SURFACE CHEMISTRY ON THE PROPERTIES OF PROTEINS CONFINED IN NANO-POROUS MATERIALS

    Garrett, L. M.; O' Neill, H.

    2007-01-01

    The entrapment of proteins using the sol-gel route provides a means to retain its native properties and artifi cially reproduce the molecular crowding and confi nement experienced by proteins in the cell allowing investigation of the physico-chemical and structural properties of biomolecules at the biotic/abiotic interface. The biomolecules are spatially separated and ‘caged’ in the gel structure but solutes can freely permeate the matrix. Thus, properties such as the folding of ensembles of individual molecules can be examined in the absence of aggregation effects that can occur in solution studies. Green fl uorescent protein from Aequorea coerulescens was used as a model protein to examine the unfolding/re-folding properties of protein in silica gels. The recombinant protein was isolated and purifi ed from Escherichia coli extracts by cell lysis, three-phase partitioning, dialysis, and anion exchange chromatography. The purity of the protein was greater than 90% as judged by SDS PAGE gel analysis. Sol-gels were synthesized using tetramethylorthosilicate (TMOS) in combination with, methyltrimethoxyorthosilane (MTMOS), ethyltrimethoxyorthosilane (ETMOS), 3-aminopropyltriethoxysilane (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS). The acid induced denaturation and renaturation of GFP was analyzed by UV-visible, fl uorescence, and circular dichroism (CD) spectroscopies. No renaturation was observed in gels that were made with TMOS only, and in the presence of APTES, MTMOS, and ETMOS. However, in gels that were made with GPTMS, the CD and UV-visible spectra indicated that the protein had refolded. The fl uorescence emission spectrum indicated that approximately 20% of fl uorescence had returned. This study highlights the importance of the surface chemistry of the silica gels for the refolding properties of the entrapped GFP. Future studies will investigate the effect of surface chemistry on the thermal and solvent stability of the entrapped protein.

  15. Role of a cell surface-associated protein in adherence and dental caries.

    Bowen, W. H.; Schilling, K.; Giertsen, E; Pearson, S.; Lee, S. F.; Bleiweis, A; Beeman, D

    1991-01-01

    Insertional inactivation of the Streptococcus mutans spaP gene was used to construct an isogenic mutant (834) of strain NG8 (serotype c) which lacked the major cell surface-associated protein referred to as P1 (15). Results of several studies suggest that P1 is involved in the adherence of S. mutans to saliva-coated apatite surfaces. With an in vitro model system of hydroxyapatite (HA) beads coated with parotid saliva (PS) and additional HA surfaces coated with PS and in situ-formed glucan, i...

  16. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli

    Jarmander Johan

    2012-09-01

    Full Text Available Abstract Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent

  17. Exploring the Plant–Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains

    Sultan, Abida; Andersen, Birgit; Svensson, Birte;

    2016-01-01

    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant......-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation and...... included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment....

  18. Chemoselective Attachment of Biologically Active Proteins to Surfaces by Native Chemical Ligation

    Cheung, C L; de Yoreo, J J; Coleman, M; Camarero, J A

    2003-11-22

    The present work describes our ongoing efforts towards the creation of micro and nanoscaled ordered arrays of protein covalently attached to site-specific chemical linkers patterned by different microlithographic techniques. We present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto silicon-based surfaces. We show that these modified thiols can be used for creating nano- and micrometric chemical patterns by using different lithographic techniques. We show that these patterns can react chemoselectively with proteins which have been recombinantly modified to contain complementary chemical groups at specific positions thus resulting in the oriented attachment of the protein to the surface.

  19. Surface proteins of radiation-induced and radiation leukemia virus-induced thymic lymphosarcomas in mice

    Thymic lymphosarcomas (TLS) were induced in C57BL mice by X-rays or by Radiation Leukemia Virus (RadLV) and their surface glycoproteins (gps) compared after cell-surface radio-iodination and polyacrylamide gel electrophoresis (SDS-PAGE). All lymphocytic antigens tested (T200, 170/100, Thy-1) and proteins with apparent molecular weight (Mr) around 120,000 and 100,000 were present on all tumours, as well as retrovirus - encoded proteins but considerable variation in the Mr of several serologically-related proteins was observed. Therefore, the TLS in C57BL mice form a heterogeneous group, suggesting that T cells can be transformed at different stages of maturation. The possibility that transformation allows or even triggers differentiation is also entertained. (author)

  20. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  1. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria.

    Beeson, James G; Drew, Damien R; Boyle, Michelle J; Feng, Gaoqian; Fowkes, Freya J I; Richards, Jack S

    2016-05-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  2. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Ba, Xiaolan

    biomineralization is investigated by SEM, GIXRD and energy dispersive X-ray spectroscopy (EDXS). Gene expression during the exposure of SMF is also studies by RT-PCR. The results indicated that exposure to SMF induces osteoblasts to produce larger quantities of HA, with higher degree of crystalline order. The controlling and understanding of protein on the surface is of great interest in biomedical application such as implant medicine, biosensor design, food processing, and chromatographic separations. The adsorbed protein onto the surface significantly determines the performance of biomaterials in a biological environment. Recent studies have suggested that the preservation of the native secondary structure of protein adsorbed is essential for biological application. In order to manipulate protein adsorption and design biocompatible materials, the mechanisms underlying protein-surface interactions, especially how surface properties of materials induce conformational changes of adsorbed proteins, needs to be well understood. Here we demonstrated that even though SPS is a necessary condition, it is not sufficient. We show that low substrate conductivity as well as proper salt concentration are also critical in sustained protein adsorption continuously. These factors allow one to pattern regions of different conducting properties and for the first time patterns physiologically relevant protein structures. Here we show that we can achieve patterned biomineralized regimes, both with plasma proteins in a simple and robust manner without additional functionalization or application of electrochemical gradients. Since the data indicate that the patterns just need to differ in electrical conductivity, rather than surface chemistry, we propose that the creation of transient image charges, due to incomplete charge screening, may be responsible for sustain the driving force for continual protein absorption.

  3. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.

    Barbey, Raphael; Kauffmann, Ekkehard; Ehrat, Markus; Klok, Harm-Anton

    2010-12-13

    Polymer brushes represent an interesting platform for the development of high-capacity protein binding surfaces. Whereas the protein binding properties of polymer brushes have been investigated before, this manuscript evaluates the feasibility of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA-co-PDEAEMA) (co)polymer brushes grown via surface-initiated atom transfer radical polymerization (SI-ATRP) as protein reactive substrates in a commercially available microarray system using tantalum-pentoxide-coated optical waveguide-based chips. The performance of the polymer-brush-based protein microarray chips is assessed using commercially available dodecylphosphate (DDP)-modified chips as the benchmark. In contrast to the 2D planar, DDP-coated chips, the polymer-brush-covered chips represent a 3D sampling volume. This was reflected in the results of protein immobilization studies, which indicated that the polymer-brush-based coatings had a higher protein binding capacity as compared to the reference substrates. The protein binding capacity of the polymer-brush-based coatings was found to increase with increasing brush thickness and could also be enhanced by copolymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA), which catalyzes epoxide ring-opening of the glycidyl methacrylate (GMA) units. The performance of the polymer-brush-based microarray chips was evaluated in two proof-of-concept microarray experiments, which involved the detection of biotin-streptavidin binding as well as a model TNFα reverse assay. These experiments revealed that the use of polymer-brush-modified microarray chips resulted not only in the highest absolute fluorescence readouts, reflecting the 3D nature and enhanced sampling volume provided by the brush coating, but also in significantly enhanced signal-to-noise ratios. These characteristics make the proposed polymer brushes an attractive alternative to commercially available, 2D microarray

  4. The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    Lei Benfang; Liu Mengyao; Zhu Hui

    2008-01-01

    Abstract Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, ...

  5. Quantitative determination of islet cell surface antibodies using 125I-protein A

    A quantitative method to measure islet cell surface antibodies in human patients has been developed using 125I-protein A. Isolated, dispersed, viable rat islet cells prepared by collagenase digestion were fixed in 4% paraformaldehyde to allow storage for up to 7 wk at 4 degrees C. Human sera, heat inactivated and adsorbed with rat liver and kidney powder (100 mg/ml), were incubated with the fixed cells (50 x 10(3)) for 60 min at 37 degrees C. Thereafter the cells were washed and exposed to 5 x 10(5) cpm 125I-protein A, which binds to IgG attached to the cell surface. Assay precision (14%) and reproducibility (16%) were established by repeated analysis of pooled sera from healthy individuals and IDDM patients using pooled batches of islet cells. Using this method, islet cell surface antibodies were detected in 35% of insulin-dependent diabetic patients

  6. Synthesis of hepatitis B virus surface protein derivates in yeast S. cerevisiae

    Bulavaitė, Aistė; Sabaliauskaitė, Rasa; Staniulis, Juozas; Sasnauskas, Kęstutis

    2006-01-01

    HBV surface proteins PreS1[13–59]-S, PreS1[20–59]-S, PreS1[30–59]-S, PreS1[40–59]-S, PreS1[50–59]-S, PreS1[90–119]-S were produced in S.cerevisiae and purified. Electron microscopy suggested spherical virus-like particle formation for all the proteins except PreS1[90–119]-S. The PreS1[90–119] sequence was demonstrated to decrease protein solubility. Proteins are suitable for Tupaia primary hepatocyte binding investigations, diagnostic products and vaccine candidate development. Hepatito B ...

  7. Analysis of Pseudomonas aeruginosa Cell Envelope Proteome by Capture of Surface-Exposed Proteins on Activated Magnetic Nanoparticles

    Davide Vecchietti; Dario Di Silvestre; Matteo Miriani; Francesco Bonomi; Mauro Marengo; Alessandra Bragonzi; Lara Cova; Eleonora Franceschi; Pierluigi Mauri; Giovanni Bertoni

    2012-01-01

    We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT) for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedde...

  8. Intracellular protein delivery by hollow mesoporous silica capsules with a large surface hole

    We prepared cell membrane-permeable hollow mesoporous silica capsules (HMSCs) by a simple new method. CTAB micellar assembly in cholesterol emulsion gave rise to a novel capsular morphology of the HMSC particles. The HMSCs consisted of mesostructured silica walls with a large surface hole (25–50 nm) and the average particle dimension was 100–300 nm. They exhibited high surface areas of up to 719.3 m2 g−1 and a mesoporous range of pores of 2.4–2.7 nm. The surface-functionalized HMSCs could also be prepared by a similar co-condensation method using tetraethoxysilane with various organoalkoxysilane precursors in the presence of cholesterol. These organically modified HMSCs could be further modified on demand. For example, a carboxy-functionalized HMSC could be surface-functionalized by a green fluorescent 5-aminofluorescein (AFL) through an amidation reaction to afford a fluorescent AFL–HMSC. The hollow capsular morphology of the HMSCs with a large surface hole enabled us to develop very efficient intracellular delivery systems for membrane-impermeable ions, molecules, and various functional proteins. Non-covalent sequestration and delivery of proteins as well as covalent linkage of fluorescent molecules on the silica surface are effective for this system. The highly negatively charged green fluorescent probe mag-fluo-4 could be intracellularly delivered into HeLa cells by HMSC without any difficulty. The HMSCs could also effectively transport large functional proteins such as antibodies into HeLa cells. The efficiency of protein delivery by HMSC seems to be 3–22-fold higher than that of mesoporous silica nanospheres (MSNs) based on confocal laser scanning microscopy (CLSM) analysis. (paper)

  9. Construction and evaluation of novel fusion proteins for targeted delivery of micro particles to cellulose surfaces.

    Lewis, William; Keshavarz-Moore, Eli; Windust, John; Bushell, Donna; Parry, Neil

    2006-07-01

    The use of IgG antibodies and fragments has been limited to specific sectors of the biotechnology industry due to the high cost of producing large batches of product necessary for alternative applications. A novel class of Camelid antibodies, known as V(HH) offer a more economical opportunity to meet a wider application in industry. In this study, we report the evaluation of four llama V(HH)-cellulose binding domain fusion proteins displaying varying formats of V(HH) and CBD domains. Proteins were characterized in a targeted particle delivery system as a method of delivering agents such as perfume to laundry in the wash cycle. Fusion proteins were shown to be stable at high pH and in the presence of a detergent base. They were also shown to bind effectively to both the designated antigen, the azo-dye reactive-red 6 (either conjugated to BSA or attached to coacervate microparticles), and cellulose. Binding strength differences were observed between the different fusion protein formats using surface plasmon resonance. The effect of key laundry ingredients was also studied. Combining the fusion proteins and particles into a delivery and deposition study generated clear microscopy evidence for bifunctionality. Confirmation of this was validated by GC-MS analysis of retained fragrance. This research, reporting the construction and characterization of a variety of fusion proteins, illustrates that the single multidomain fusion protein route offers a new technology for successful targeted delivery of encapsulated benefit agents. Furthermore, the potential to modify or select for proteins to recognize a wide range of surfaces is also possible. PMID:16673421

  10. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases.

    Zeke, András; Bastys, Tomas; Alexa, Anita; Garai, Ágnes; Mészáros, Bálint; Kirsch, Klára; Dosztányi, Zsuzsanna; Kalinina, Olga V; Reményi, Attila

    2015-11-01

    Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles. PMID:26538579

  11. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    Graphical abstract: The adsorption of Cyt c on phosphorylcholine self-assembled monolayers (N atoms of the choline groups are colored in blue while the P atoms of the phosphate groups in orange). - Highlights: • PC-SAM could sensitively adjust its charge distribution to applied electric fields. • Adsorption of Cyt c on the PC-SAM is promoted or retarded as the charge distribution of the SAM changes. • Orientations of Cyt c on the PC-SAM are regulated by the structural changes of the SAM. • The structural changes of the SAM cause little deformation in Cyt c. - Abstract: Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the

  12. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    Xie, Yun, E-mail: xieyunxx@gdpu.edu.cn; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-30

    Graphical abstract: The adsorption of Cyt c on phosphorylcholine self-assembled monolayers (N atoms of the choline groups are colored in blue while the P atoms of the phosphate groups in orange). - Highlights: • PC-SAM could sensitively adjust its charge distribution to applied electric fields. • Adsorption of Cyt c on the PC-SAM is promoted or retarded as the charge distribution of the SAM changes. • Orientations of Cyt c on the PC-SAM are regulated by the structural changes of the SAM. • The structural changes of the SAM cause little deformation in Cyt c. - Abstract: Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the

  13. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets

    Ashford Paul

    2012-03-01

    Full Text Available Abstract Background Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. Results We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i analysis of a kinase superfamily highlights the

  14. Display of Peptides and Proteins on the Surface of Bacteriophage λ

    Sternberg, Nat; Hoess, Ronald H.

    1995-02-01

    The display of peptides or proteins on the surface of viruses is an important technology for studying peptides or proteins and their interaction with other molecules. Here we describe a display vehicle based on bacteriophage λ that incorporates a number of features distinct from other currently used display systems. Fusions of peptides or protein domains have been made to the amino terminus of the 11-kDa D protein of the λ capsid. These fusions assemble onto the viral capsid and appear to be accessible to ligand interactions, based on the ability of a monoclonal antibody to recognize an epitope fused to the D protein on phage heads. To produce large D fusion display libraries and yet avoid the cumbersome task of cloning many fragments into λ DNA, we have used the Cre-loxP site-specific recombination system in vivo to incorporate plasmids encoding the D fusions into the phage genome. Finally, we show that D fusion proteins can be added in vitro to phage lacking D protein and be assembled onto the viral capsid.

  15. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-11-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main.

  16. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  17. Divalent ion encapsulated nano titania on Ti metal as a bioactive surface with enhanced protein adsorption.

    Anbazhagan, Esaitamil; Rajendran, Archana; Natarajan, Duraipandy; Kiran, M S; Pattanayak, Deepak K

    2016-07-01

    A novel approach on incorporation of divalent species such as Mg, Ca and Sr into the titania nanostructures formed on Ti metal surface and their comparative study on enhancement of bioactivity, protein adsorption and cell compatibility is reported. When treated with hydrogen peroxide, Ti metal forms hydrogen titanate. On subsequent treatment with Mg or Ca or Sr nitrate solutions, respective ions are incorporated into hydrogen titanate layer, and heat treatment leads to titania decorated with these ions. The resultant heat-treated samples when soaked in simulated body fluid form bone-like apatite which indicates the present surface modification enhances the bioactivity. Further, enhanced protein adsorption in bovine serum albumin is an indication of suitability of these divalent species to form chelate compounds with amino acids, and Ca containing titania nanostructure favours more protein adsorption compared to the others. Cytocompatibility studies using MG-63, human osteosarcoma cell lines shows these divalent ion containing titania nanostructure favours the cell attachment and did not show any cytotoxicity. Bioactivity, enhanced protein adsorption along with cytocompatibility clearly indicates such surface modification approach to be useful to design hard tissue replacement materials in orthopaedic and dental field. PMID:27011351

  18. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  19. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Tumor suppressor protein SMAR1 might be used as a phenotypic differentiation

  20. Protein Analysis by Ambient Ionization Mass Spectrometry Using Trypsin-Immobilized Organosiloxane Polymer Surfaces.

    Dulay, Maria T; Eberlin, Livia S; Zare, Richard N

    2015-12-15

    In the growing field of proteomic research, rapid and simple protein analysis is a crucial component of protein identification. We report the use of immobilized trypsin on hybrid organic-inorganic organosiloxane (T-OSX) polymers for the on-surface, in situ digestion of four model proteins: melittin, cytochrome c, myoglobin, and bovine serum albumin. Tryptic digestion products were sampled, detected, and identified using desorption electrospray ionization mass spectrometry (DESI-MS) and nanoDESI-MS. These novel, reusable T-OSX arrays on glass slides allow for protein digestion in methanol:water solvents (1:1, v/v) and analysis directly from the same polymer surface without the need for sample preparation, high temperature, and pH conditions typically required for in-solution trypsin digestions. Digestion reactions were conducted with 2 μL protein sample droplets (0.35 mM) at incubation temperatures of 4, 25, 37, and 65 °C and digestion reaction times between 2 and 24 h. Sequence coverages were dependent on the hydrophobicity of the OSX polymer support and varied by temperature and digestion time. Under the best conditions, the sequence coverages, determined by DESI-MS, were 100% for melittin, 100% for cytochrome c, 90% for myoglobin, and 65% for bovine serum albumin. PMID:26567450

  1. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated

  2. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    Burcza, Anna, E-mail: anna.burcza@mri.bund.de; Gräf, Volker; Walz, Elke; Greiner, Ralf [Max Rubner-Institute, Department of Food Technology and Bioprocess Engineering (Germany)

    2015-11-15

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated.

  3. Cell Surface Proteins in S. Pneumoniae, S. Mitis and S. Oralis

    R Hakenbeck

    2011-06-01

    Full Text Available Background and objectives: Streptococcus pneumoniae, a major human pathogen, is closely related to the commensal species S. mitis and S. oralis. S. pneumoniae surface proteins are implicated in virulence and host interaction of this species, but many of them have recently been detected in S. mitis B6 in silico. We tested for the presence of such genes usinga set of eight S. mitis and eleven S. oralis strains from different geographic locations.Materials and Methods: An oligonucleotide microarray was designed based on the genomes of S. pneumoniae R6 and TIGR4 as well as S. mitis B6 to include 63 cell surface proteins. The S. pneumoniae genes encoding neuraminidases, hyaluronidase and pneumolysin were also included. In addition to comparative genomic hybridization experiments, homologues were identified in silico in the genome of S. oralis Uo5.Results and Conclusions: The results document that many S. pneumoniae related surface proteins are ubiquitously present among the Mitis group of streptococci. All 19 samples hybridized with the pavA probe representing a gene important for adherence and invasion of S. pneumoniae. Only eight genes were not recognized in any strain, including the S. pneumoniae PcpC gene as the only virulence gene of the S. pneumoniae core genome.The fact that only 12 out of 26 genes present in the S. oralis Uo5 genome could be detected by microarray analysis confirms the sequence variation of surface components.

  4. Reverse Line Blot Assay for Direct Identification of Seven Streptococcus agalactiae Major Surface Protein Antigen Genes

    Zhao, Zuotao; Kong, Fanrong; Gilbert, Gwendolyn L.

    2006-01-01

    We developed a multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB) to detect the genes encoding members of the family of variable surface-localized proteins of Streptococcus agalactiae (group B streptococcus [GBS]), namely, Bca (Cα), Rib, Epsilon (Epsilon/Alp1/Alp5), Alp2, Alp3, and Alp4, and the immunoglobulin A binding protein, Bac (Cβ). We used the assay to identify these genes in a collection of well-characterized GBS isolates and reference strains. The results showed tha...

  5. Using Surface Plasmon Resonance Technology to Screen Interactions Between Exopolysaccharides and Milk Proteins

    Babol, Linnéa Nygren; Svensson, Birte; Ipsen, Richard

    2011-01-01

    Surface plasmon resonance-based biosensors enable the interaction between biomolecules to be monitored in real time with a label-free assay format. In the present study, the technique was used to assess the interaction between exopolysaccharides (EPS) and different milk proteins. The EPS were...... derived from three homopolysaccharide (HoPS)-producing Lactobacilli strains; Lactobacillus sakei, Lactobacillus plantarum, and Lactobacillus salvarius. The purified milk proteins applied were β-casein, β-lactoglobulin, and κ-casein. The results show that the binding capacity depends on the pH and...

  6. The immunization-induced antibody response to the Anaplasma marginale major surface protein 2 and its association with protective immunity

    Many vector-borne pathogens evade clearance via rapid variation in immunogenic surface expressed proteins. In the case of A. marginale, the generation of major surface protein 2 (Msp2) variants allows for immune escape and long-term pathogen persistence. In the experiments reported here, we pose t...

  7. Surface force analysis of molecular interfacial interactions of proteins and lipids with polymeric biomaterials

    Full text: Adverse biological responses to biomedical devices are often caused by the irreversible accumulation of biological deposits onto the surfaces of devices. Such deposits cause blocking of artificial blood vessels, fibrous encapsulation of soft tissue regenerative devices, 'fouling' of contact lenses, secondary cataracts on intraocular lenses, and other undesirable events that interfere with the intended functions of biomedical devices. The formation of deposits is triggered by an initial stage in which various proteins and lipids rapidly adsorb onto the synthetic material surface; further biological molecules and ultimately cellular entities (e.g., host cells, bacteria) then settle onto the initial adsorbed layer. Hence, to avoid or control the accumulation of biological deposits, molecular understanding is required of the initial adsorption processes. Such adsorption is caused by attractive interfacial forces, which we are characterising by the use of a novel method. In the present study, polymeric thin film coatings, polyethylene oxide (PEO), and polysaccharide coatings have been analysed in terms of their surface forces and the ensuing propensity for protein and lipid adsorption. Interfacial forces are measured using atomic force microscopy (AFM) with a colloid-modified tip in a liquid cell using solutions of physiological pH and ionic strength. The chemical composition and uniformity of the coatings was characterised by X-ray Photon Spectroscopy (XPS). For a polymeric solid coating, repulsive forces have been measured against a silica colloid probe, and the dominant surface force is electrostatic. For the highly hydrated, 'soft' PEO and polysaccharide coatings, on the other hand, steric/entropic forces are also significant and contribute to interfacial interactions with proteins and lipids. In one system we have observed a time dependence of the electrostatic surface potential, which affects interaction with charged proteins. Force measurements were

  8. Protein-repellent silicon nitride surfaces: UV-induced formation of oligoethylene oxide monolayers.

    Rosso, Michel; Nguyen, Ai T; de Jong, Ed; Baggerman, Jacob; Paulusse, Jos M J; Giesbers, Marcel; Fokkink, Remko G; Norde, Willem; Schroën, Karin; van Rijn, Cees J M; Zuilhof, Han

    2011-03-01

    The grafting of polymers and oligomers of ethylene oxide onto surfaces is widely used to prevent nonspecific adsorption of biological material on sensors and membrane surfaces. In this report, we show for the first time the robust covalent attachment of short oligoethylene oxide-terminated alkenes (CH(3)O(CH(2)CH(2)O)(3)(CH(2))(11)-(CH═CH(2)) [EO(3)] and CH(3)O(CH(2)CH(2)O)(6)(CH(2))(11)-(CH═CH(2)) [EO(6)]) from the reaction of alkenes onto silicon-rich silicon nitride surfaces at room temperature using UV light. Reflectometry is used to monitor in situ the nonspecific adsorption of bovine serum albumin (BSA) and fibrinogen (FIB) onto oligoethylene oxide coated silicon-rich silicon nitride surfaces (EO(n)-Si(x)N(4), x > 3) in comparison with plasma-oxidized silicon-rich silicon nitride surfaces (SiO(y)-Si(x)N(4)) and hexadecane-coated Si(x)N(4) surfaces (C(16)-Si(x)N(4)). A significant reduction in protein adsorption on EO(n)-Si(x)N(4) surfaces was achieved, adsorption onto EO(3)-Si(x)N(4) and EO(6)-Si(x)N(4) were 0.22 mg m(-2) and 0.08 mg m(-2), respectively. The performance of the obtained EO(3) and EO(6) layers is comparable to those of similar, highly protein-repellent monolayers formed on gold and silver surfaces. EO(6)-Si(x)N(4) surfaces prevented significantly the adsorption of BSA (0.08 mg m(-2)). Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray reflectivity and static water contact angle measurements were employed to characterize the modified surfaces. In addition, the stability of EO(6)-Si(x)N(4) surfaces in phosphate-buffered saline solution (PBS) and alkaline condition (pH 10) was studied. Prolonged exposure of the surfaces to PBS solution for 1 week or alkaline condition for 2 h resulted in only minor degradation of the ethylene oxide moieties and no oxidation of the Si(x)N(4) substrates was observed. Highly stable antifouling coatings on Si(x)N(4) surfaces significantly broaden the application potential of silicon

  9. Probing protein orientation near charged surfaces with an implicit-solvent model and the PyGBe code

    Cooper, Christopher D

    2015-01-01

    Protein-surface interactions are ubiquitous in biological processes and bioengineering, yet are not fully understood. In the field of biosensors, a key factor in biosensor performance is the orientation of biomolecules near charged surfaces. The aim of this work is developing and assessing a computational model to study proteins interacting with charged surfaces and obtain orientation data. After extending the implicit-solvent model used in the open-source code PyGBe and deriving an analytical solution for simple geometry, our careful grid-convergence analysis builds confidence on the correctness and value of our approach for probing protein orientation. Further computational experiments support it: they study preferred orientations for protein GB1 D4' and immunoglobulin G. Sampling the free energy for protein GB1 at a range of tilt and rotation angles with respect to the charged surface, we calculated the probability of the protein orientation and observed a dipolar behavior. This result is consistent with p...

  10. Aptamer-based surface plasmon resonance sensing of glycated human blood proteins

    Reaver, Nathan G. F.; Zheng, Rui; Kim, Dong-Shik; Cameron, Brent D.

    2013-02-01

    The concentration ratio of glycated to non-glycated forms of various blood proteins can be used as a diagnostic measure in diabetes to determine a history of glycemic compliance. Depending on a protein's half-life in blood, compliance can be assessed from a few days to several months in the past, which can then be used to provide additional therapeutic guidance. Current glycated protein detection methods are limited in their ability to measure multiple proteins, and are susceptible to interference from other blood pathologies. In this study, we developed and characterized DNA aptamers for use in Surface Plasmon Resonance (SPR) sensors to assess the blood protein hemoglobin. The aptamers were developed by way of a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process which selects DNA sequences that have a high binding affinity to a specific protein. DNA products resulting from this process are sequenced and identified aptamers are then synthesized. The SELEX process was performed to produce aptamers for a glycated form of hemoglobin. Equilibrium dissociation constants for the binding of the identified aptamer to glycated hemoglobin, hemoglobin, and fibrinogen were calculated from fitted Langmuir isotherms obtained through SPR. These constants were determined to be 94 nM, 147 nM, and 244 nM respectively. This aptamer can potentially be used to create a SPR aptamer based biosensor for detection of glycated hemoglobin, a technology that has the potential to deliver low-cost and immediate glycemic compliance assessment in either a clinical or home setting.

  11. Selective amine labeling of cell surface proteins guided by coiled-coil assembly.

    Yano, Yoshiaki; Furukawa, Nami; Ono, Satoshi; Takeda, Yuki; Matsuzaki, Katsumi

    2016-11-01

    Covalent labeling of target proteins in living cells is useful for both fluorescence live-cell imaging and the subsequent biochemical analyses of the proteins. Here, we report an efficient method for the amine labeling of membrane proteins on the cell surface, guided by a noncovalent coiled-coil interaction. A carboxyl sulfosuccinimidyl ester introduced at the C-terminus of the coiled-coil probe reacted with target proteins under mild labeling conditions ([probe] = 150 nM, pH 7.4, 25°C) for 20 min. Various fluorescent moieties with different hydrophobicities are available for covalent labeling with high signal/background labeling ratios. Using this method, oligomeric states of glycophorin A (GpA) were compared in mammalian CHO-K1 cells and sodium dodecyl sulfate (SDS) micelles. In the cell membranes, no significant self-association of GpA was detected, whereas SDS-PAGE suggested partial dimerization of the proteins. Membrane cholesterol was found to be an important factor that suppressed the dimerization of GpA. Thus, the covalent functionality enables direct comparison of the oligomeric state of membrane proteins under various conditions. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 484-490, 2016. PMID:26285787

  12. Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption.

    Huang, Renliang; Liu, Xia; Ye, Huijun; Su, Rongxin; Qi, Wei; Wang, Libing; He, Zhimin

    2015-11-10

    A versatile, convenient, and cost-effective method that can be used for grafting antifouling materials onto different surfaces is highly desirable in many applications. Here, we report the one-step fabrication of antifouling surfaces via the polymerization of dopamine and the simultaneous deposition of anionic hyaluronic acid (HA) on Au substrates. The water contact angle of the Au surfaces decreased from 84.9° to 24.8° after the attachment of a highly uniform polydopamine (PDA)/HA hybrid film. The results of surface plasmon resonance analysis showed that the Au-PDA/HA surfaces adsorbed proteins from solutions of bovine serum albumin, lysozyme, β-lactoglobulin, fibrinogen, and soybean milk in ultralow or low amounts (4.8-31.7 ng/cm(2)). The hydrophilicity and good antifouling performance of the PDA/HA surfaces is attributable to the HA chains that probably attached onto their upper surface via hydrogen bonding between PDA and HA. At the same time, the electrostatic repulsion between PDA and HA probably prevents the aggregation of PDA, resulting in the formation of a highly uniform PDA/HA hybrid film with the HA chains (with a stretched structure) on the upper surface. We also developed a simple method for removing this PDA/HA film and recycling the Au substrates by using an aqueous solution of NaOH as the hydrolyzing agent. The Au surface remained undamaged, and a PDA/HA film could be redeposited on the surface, with the surface exhibiting good antifouling performance even after 10 such cycles. Finally, it was found that this grafting method is applicable to other substrates, including epoxy resins, polystyrene, glass, and steel, owing to the strong adhesion of PDA with these substrates. PMID:26488547

  13. Nanostructure protein repellant amphiphilic copolymer coatings with optimized surface energy by Inductively Excited Low Pressure Plasma.

    Bhatt, Sudhir; Pulpytel, Jérome; Ceccone, Giacomo; Lisboa, Patricia; Rossi, François; Kumar, Virendra; Arefi-Khonsari, Farzaneh

    2011-12-01

    Statistically designed amphiphilic copolymer coatings were deposited onto Thermanox, Si wafer, and quartz crystal microbalance (QCM) substrates via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl acrylate and diethylene glycol vinyl ether in an Inductively Excited Low Pressure Plasma reactor. Plasma deposited amphiphilic coatings were characterized by Field Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and Water Contact Angle techniques. The surface energy of the coatings can be adjusted between 12 and 70 mJ/m(2). The roughness of the coatings can be tailored depending on the plasma mode used. A very smooth coating was deposited with a CW (continuous wave) power, whereas a rougher surface with R(a) in the range of 2 to 12 nm was deposited with the PW (pulsed wave) mode. The nanometer scale roughness of amphiphilic PFDA-co-DEGVE coatings was found to be in the range of the size of the two proteins namely BSA and lysozyme used to examine for the antifouling properties of the surfaces. The results show that the statistically designed surfaces, presenting a surface energy around 25 mJ/m(2), present no adhesion with respect to both proteins measured by QCM. PMID:22029599

  14. Analysis of Pseudomonas aeruginosa cell envelope proteome by capture of surface-exposed proteins on activated magnetic nanoparticles.

    Davide Vecchietti

    Full Text Available We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedded in the cell envelope fragments. For a high number of proteins, our analysis strongly indicates either surface exposure or localization in an envelope district. The localization of most identified proteins was only predicted or totally unknown. This novel approach greatly improves the sensitivity and specificity of the previous methods, such as surface shaving with proteases that was also tested on P. aeruginosa. The magneto-capture procedure is simple, safe, and rapid, and appears to be well-suited for envelope studies in highly pathogenic bacteria.

  15. Hemin uptake in Porphyromonas gingivalis: Omp26 is a hemin-binding surface protein.

    Bramanti, T E; Holt, S C

    1993-01-01

    A 26-kDa outer membrane protein (Omp26) has been proposed to play a role in hemin acquisition by Porphyromonas gingivalis (T. E. Bramanti and S. C. Holt, J. Bacteriol. 174:5827-5839, 1992). We studied [55Fe]hemin uptake in P. gingivalis grown under conditions of hemin starvation (Omp26 expressed on the outer membrane surface) and hemin excess (Omp26 not expressed on surface). [55Fe]hemin uptake occurred rapidly in hemin-starved cells which incorporated up to 70% of total [55Fe]hemin within 3 ...

  16. The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces.

    Nancollas, G H; Tsortos, A; Zieba, A

    1996-01-01

    The kinetics of calcium phosphate crystal growth at the surfaces of proteins and phospholipids has been investigated using free drift and constant composition methods in supersaturated calcium phosphate solutions (relative supersaturations: with respect to hydroxyapatite, HAP, sigma HAP = 15.0, and with respect to octacalcium phosphate, OCP, sigma OCP = 1.9). Fibrinogen and collagen molecules adsorbed at hydrophobic surfaces as well as uncross-linked collagen fibrils induce ion binding and subsequent nucleation of calcium phosphate. The formation of OCP on phosphatidylserine vesicles introduced to highly supersaturated calcium phosphate solutions probably involves the interaction of the calcium ions with the ionized carboxylic groups of the phospholipid. PMID:9813627

  17. Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us - a perspective

    W. X. Schulze

    2005-01-01

    Full Text Available Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM, this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1 the identification of phylogenetic groups contributing to the environmental protein pool, and (2 identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from decomposing plant material and DOM of soil leachates and surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from litter protein extracts, leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  18. Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us - a perspective

    Schulze, W. X.

    Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the environmental protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from decomposing plant material and DOM of soil leachates and surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from litter protein extracts, leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  19. Aptamer-based localized surface plasmon resonance sensor for monitoring glycated proteins

    Zheng, Rui; Cameron, Brent D.

    2011-03-01

    The peak extinction wavelength of the nano-size noble metal localized surface plasmon resonance (LSPR) spectrum is unexpectedly sensitive to nanoparticle size, shape, and local external dielectric environment. This sensitivity to the environment has enabled the development of a new class of nanoscale affinity biosensors. Aptamer (single strand DNA) based gold nanorods (Au NRs) and magnetic beads (MBs) combined LSPR biosensor has been developed for the rapid and label-free detection of glycated proteins in small solution volumes. An aptamer self-assembly monolayer (SAM) functionalized surface plasmon resonance sensor has also been developed for comparison purposes. For demoonstration purposes, albumin and thrombin are used initially as the target proteins. The ability to monitor such molecules in the body could facilitate the diagnosis and treatment of diabetic patients.

  20. Microdroplet Protein Sensors on a Gold Surface with a Self-assembled Monolayer Treatment

    Tzu-Chun Liao

    2012-03-01

    Full Text Available A new kind of microdroplet-based biological protein sensor is presented. The sensor was made by placing silicon oil on gold film with a self-assembled monolayer (SAM. The surface tension dominates the sensitivity of the sensor. Using mercaptoundecanoic acid (11-MUA as the sensor’s SAM layer, the sensor can detect 0.5 mg/ml, 20 μg/ml, and 0.4 μg/ml bovine serum albumin (BSA protein solutions in a control volume of 0.5ml. The sensor’s reaction time for concentrations of 0.5 mg/ml, 20 μg/ml, and 0.4μg/ml protein solutions was 15, 60 and 120 minutes, respectively. As the size of microdroplet decreased, the change of contact angle increased.

  1. Transcriptional Regulation of the Borrelia burgdorferi Antigenically Variable VlsE Surface Protein

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P.; Norris, Steven J; Stevenson, Brian

    2006-01-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that...

  2. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    Poznaň : PTP, 2015. s. 1-1. [Central and Eastern European Proteomic Conference (CEEPC) /9./. 15.06.2015-18.06.2015, Poznaň] R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell adhesion proteins * cell surface capture * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology

  3. Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods

    Queiroz, Rayner M L; Charneau, Sébastien; Motta, Flávia N; Santana, Jaime M; Roepstorff, Peter; Ricart, Carlos A O

    2013-01-01

    Trypanosoma cruzi is a protozoan that causes Chagas' disease, a neglected infectious illness that affects millions of people, mostly in Latin America. Here, the cell surface subproteome of the T. cruzi epimastigote life form was characterized. In order to prepare samples enriched in epimastigote...... of the labeled proteins. Both T. cruzi subproteomes were analyzed by LC-MS/MS. The results showed that the methodologies offered comprehensive and complementary information about the parasite's plasma membrane subproteome....

  4. Production of Borreliacidal Antibody to Outer Surface Protein A In Vitro and Modulation by Interleukin-4

    Munson, Erik L.; Du Chateau, Brian K.; Jobe, Dean A.; Lovrich, Steven D.; Callister, Steven M.; Schell, Ronald F.

    2000-01-01

    Borreliacidal antibody production is one of several parameters for establishing the effectiveness of Borrelia burgdorferi vaccines. The production of borreliacidal antibody was studied in vitro by culturing immune lymph node cells with macrophages and B. burgdorferi. We showed that borreliacidal antibody, directed primarily against outer surface protein A (OspA), was readily produced by lymph node cells obtained from C3H/HeJ mice vaccinated with formalin-inactivated B. burgdorferi in aluminum...

  5. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology

    Dey, Satya S.; Dora, Krushna Chandra

    2011-01-01

    Protein hydrolysates were produced from shrimp waste mainly comprising head and shell of Penaeus monodon by enzymatic hydrolysis for 90 min using four microbial proteases (Alcalase, Neutrase, Protamex, Flavourzyme) where PR(%) and DH (%) of respective enzymes were compared to select best of the lot. Alcalase, which showed the best result, was used to optimize hydrolysis conditions for shrimp waste hydrolysis by response surface methodology using a central composite design. A model equation wa...

  6. Proteome Analysis and Serological Characterization of Surface-Exposed Proteins of Rickettsia heilongjiangensis

    Qi, Yong; Xiong, Xiaolu; Wang, Xile; Duan, Changsong; Jia, Yinjun; Jiao, Jun; Gong, Wenping; Wen, Bohai

    2013-01-01

    Background Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF), is an obligate intracellular bacterium. The surface-exposed proteins (SEPs) of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. Methods R. heilongjiangensis SEPs were identified by bi...

  7. Protein Kinase C Regulates the Cell Surface Activity of Endothelin-Converting Enzyme-1

    Smith, A Ian; Lew, Rebecca A.; Thomas, Walter G; Tochon-Danguy, Nathalie

    2006-01-01

    The potent vasoconstrictor endothelin is a 21 amino acid peptide whose principal physiological function is to regulate vascular tone. The generation of endothelin is crucially dependent on the local presence and activity of endothelin converting enzyme-1 (ECE-1) expressed on the surface of vascular endothelial cells. In this study, we have shown in endothelial cells that the enzyme is phosphorylated, and that phosphorylation is increased by phorbol ester stimulation of protein kinase C (PKC)....

  8. Genetic diversity of anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development

    de la Fuente, J.; Lew, A.; Lutz, H.; Meli, M. L.; Hofmann-Lehmann, R.; Shkap, V; Molad, T; Mangold, A J; Almazán, C; Naranjo, V.; Gortázar, C.; Torina, A; Caracappa, S.; García-Pérez, A. L.; Barral, M.

    2005-01-01

    The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several pathogens of veterinary and human medical importance. An understanding of the diversity of Anaplasma major surface proteins (MSPs), including those MSPs that modulate infection, development of persistent infections, and transmission of pathogens by ticks, is derived in part, by characterization and phylogenetic analyses of geographic strains. Information concerning the genetic diversity of Anaplasma spp. MSPs will likely in...

  9. High performance workflow implementation for protein surface characterization using grid technology

    Clematis Andrea; D'Agostino Daniele; Morra Giulia; Merelli Ivan; Milanesi Luciano

    2005-01-01

    Abstract Background This study concerns the development of a high performance workflow that, using grid technology, correlates different kinds of Bioinformatics data, starting from the base pairs of the nucleotide sequence to the exposed residues of the protein surface. The implementation of this workflow is based on the Italian Grid.it project infrastructure, that is a network of several computational resources and storage facilities distributed at different grid sites. Methods Workflows are...

  10. Sperm surface proteins: their isolation, characterization and binding study with zona pellucida

    Zigo, Michal; Dorosh, Andriy; Jonáková, Věra; Postlerová, Pavla

    Cairns : Society for Reproductive biology , 2011. s. 134-134 [The Second Worl Congress on Reproductive Biology . 09.10.2011-12.10.2011, Cairns] R&D Projects: GA ČR(CZ) GA303/09/1285; GA MŠk(CZ) 1M06011; GA MZd(CZ) NS10009-4/2008 Institutional research plan: CEZ:AV0Z50520701 Keywords : sperm surface proteins * zona pellucida * glycoproteins Subject RIV: CE - Biochemistry

  11. Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism.

    Mai, U E; Perez-Perez, G I; Wahl, L. M.; Wahl, S M; Blaser, M J; Smith, P. D.

    1991-01-01

    The inflammatory lesions associated with Helicobacter pylori gastritis and duodenitis contain large numbers of mononuclear cells. The close proximity of H. pylori to gastric mucosa suggests that the organism interacts with mononuclear cells, thereby modulating the inflammatory response. To investigate the role of monocytes/macrophages in this response, we examined the effect of whole H. pylori bacteria, H. pylori surface proteins, and H. pylori lipopolysaccharide (LPS) on purified human monoc...

  12. Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces.

    Möller, C; Allen, M.; Elings, V; Engel, A.; Müller, D J

    1999-01-01

    Compared to contact-mode atomic force microscopy (CMAFM), tapping-mode atomic force microscopy (TMAFM) has the advantage of allowing imaging surfaces of macromolecules, even when they are only weakly attached to the support. In this study, TMAFM is applied to two different regular protein layers whose structures are known to great detail, the purple membrane from Halobacterium salinarum and the hexagonally packed intermediate (HPI) layer from Deinococcus radiodurans, to assess the faithfulnes...

  13. Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation

    Yeung, Tony; Heit, Bryan; Dubuisson, Jean-Francois; Fairn, Gregory D.; Chiu, Basil; Inman, Robert; Kapus, Andras; Swanson, Michele; Grinstein, Sergio

    2009-01-01

    During phagocytosis, the phosphoinositide content of the activated membrane decreases sharply, as does the associated surface charge, which attracts polycationic proteins. The cytosolic leaflet of the plasma membrane is enriched in phosphatidylserine (PS); however, a lack of suitable probes has precluded investigation of the fate of this phospholipid during phagocytosis. We used a recently developed fluorescent biosensor to monitor the distribution and dynamics of PS during phagosome formatio...

  14. Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties.

    Le Maréchal, Caroline; Péton, Vincent; Plé, Coline; Vroland, Christophe; Jardin, Julien; Briard-Bion, Valérie; Durant, Gaël; Chuat, Victoria; Loux, Valentin; Foligné, Benoit; Deutsch, Stéphanie-Marie; Falentin, Hélène

    2015-01-01

    Propionibacterium freudenreichii is a beneficial bacterium used in the food industry as a vitamin producer, as a bio-preservative, as a cheese ripening starter and as a probiotic. It is known to adhere to the intestinal epithelial cells and mucus and to modulate important functions of the gut mucosa, including cell proliferation and immune response. Adhesion of probiotics and cross-talk with the host rely on the presence of key surface proteins, still poorly identified. Identification of the ...

  15. What Governs Protein Adsorption and Immobilization at a Charged Solid Surface?

    Kubiak-Ossowska, Karina; Mulheran, Paul A.

    2010-01-01

    The adsorption of hen egg white lysozyme at a model charged surface is studied using fully atomistic molecular dynamics simulations. The simulations are performed over a 90 ns time scale which is sufficient to observe rotational and translational steps in the adsorption process. Electrostatics is found to play a key role in guiding the protein to the favorable binding orientation with the N,C-terminal face against the substrate. However, full immobilization appears to only occur through the s...

  16. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-01

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. PMID:27155306

  17. Analysis of rat plasma proteins desorbed from gold and methyl- and hydroxyl-terminated alkane thiols on gold surfaces.

    Källtorp, M; Carlén, A; Thomsen, P; Olsson, J; Tengvall, P

    2000-03-01

    It is believed that adsorbed blood or plasma components, such as water, peptides, carbohydrates and proteins, determine key events in the concomitant inflammatory tissue response close to implants. The aim of the present study was to develop a procedure for the collection and analysis of minor amounts of proteins bound to solid metal implant surfaces. The combination of a sodium dodecyl sulfate washing method coupled with a polyacylamide gel electrophoretic protein separation technique (SDS-PAGE), Western blot and image analysis enabled the desorption, identification and semiquantification of specific proteins. The analyzed proteins were albumin, immunoglobulin G, fibrinogen and fibronectin. Concentration procedures of proteins were not required with this method despite the small area of the test surfaces. The plasma proteins were adsorbed to pure gold and hydroxylated and methylated gold surfaces, which elicit different tissue responses in vivo and plasma protein adsorption patterns in vitro. The image analysis revealed that the pure gold surfaces adsorbed the largest amount of total and specific proteins. This is in accordance with previous ellipsometry/antibody experiments in vitro. Further, the principles described for the protein analysis can be applied on implant surfaces ex vivo. PMID:15348048

  18. Identification of surface-associated proteins of Bifidobacterium animalis ssp. lactis KLDS 2.0603 by enzymatic shaving.

    Zhu, Dequan; Sun, Yu; Liu, Fei; Li, Aili; Yang, Limei; Meng, Xiang-Chen

    2016-07-01

    Bifidobacteria are commensal microorganisms of the human and animal intestinal tract, and their surface proteins can mediate bacterial communication and chemical sensing in the environment, as well as facilitate interactions between bacteria and the host. However, a systematic study of the outer surface-associated proteome of bifidobacteria has not been undertaken. In the present study, the proteins located on the surface of Bifidobacterium animalis ssp. lactis KLDS 2.0603 were systematically identified by a nongel proteomic approach, which consisted of the shaving of the bacterial surface with trypsin and an analysis of the released peptides by liquid chromatography-tandem mass spectrometry. A total of 105 surface-associated proteins were found, of which 15 proteins could potentially be involved in adhesion and interactions between bifidobacteria and the host. The proteins related to adhesion and interaction between bacteria and the host include pilus structure proteins (Fim A, Fim B), 10 moonlighting proteins, an NLP/P60 family protein, an immunogenic secreted protein, and a putative sugar-binding secreted protein. The results provide the basis for future studies on the molecular mechanisms of the interactions between bifidobacteria and the host. PMID:27132091

  19. Effect of adhesion proteins and surface chemistry on the procoagulant state of adherent platelets

    Grunkemeier, John Mark

    Poor hemocompatibility of a blood contacting device can lead to blood clotting, reduced blood flow, and depletion of platelets from the blood. Improved understanding of the processes by which blood-material contact leads to these responses could result in more hemocompatible materials. Platelets accelerate blood clotting by adhesion, aggregation, secretion of proteins and agonists and acceleration of thrombin generation. Platelets are said to be "procoagulant" after phosphatidylserine residues flip from the cytosolic to the extracellular face of the lipid bilayer. This then allows for the assembly of the prothrombinase complex (Xa, Va and calcium) on the platelet membrane, which can rapidly convert prothrombin to thrombin. In this study, three different methods confirmed that adhesion causes platelets to become procoagulant: shortening of clotting times of recalcified plasma, binding of FITC-annexin V, and generation of thrombin in the presence of Va, Xa and prothrombin by adherent platelets. Adherent platelets were 10--23 times more activated than bulk phase unactivated platelets and 10--24 times less activated than bulk phase platelets activated by calcium ionophore. The role of adsorbed fibrinogen, vWF, mixtures of fibrinogen and vWF, fibronectin, whole and dilute plasma, and plasma deficient in adhesion proteins in stimulating platelet procoagulant activity was investigated. The results of these experiments suggested that adhesion proteins affect procoagulant activation to varying degrees and that surfaces preadsorbed with mixtures of adhesion proteins are more activating that surfaces preadsorbed with single adhesion proteins. The hypothesis that materials that affect tightness of binding of adsorbed adhesion proteins affect platelet procoagulant activity was investigated. These studies showed that increasing fluorine content of RFGD polymerized films caused reduced platelet adhesion, but increased procoagulant activity, possibly due to their ability to adsorb

  20. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM.

    Johnson, Brant; Selle, Kurt; O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd

    2013-11-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  1. A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces

    A photoactivable organic polymer was prepared first by electrogeneration of a conductive biotinylated polypyrrole film in acetonitrile electrolyte. The successive anchoring of avidin and photobiotin led to a multilayer configuration. The latter was illuminated with light (wavelength 370-400 nm) in the presence of proteins adsorbed onto its surface. The irradiation allowed the covalent linking of the proteins to the modified electrode. As a result of the photochemical reaction, a monolayer of enzyme (glucose oxidase, GOX or alkaline phosphatase, AP) was covalently bound to the photobiotin-modified surface with retention of their catalytic activities. The surfacic activities were 34 and 1.69 mU cm-2 for GOX and AP photobiotin electrodes, respectively. These enzyme electrodes were compared to similar configurations obtained through the immobilization of biotinylated glucose oxidase or avidin-conjugated alkaline phosphatase on biotinylated polypyrrole film. Our results suggest that both procedures led to the immobilization of the same enzyme amount, namely a protein monolayer. This novel photo-immobilization methodology was also successfully applied to the anchoring of an anti-cholera toxin antibody which was then detected by a secondary antibody labelled with a peroxidase

  2. Large surface proteins of hepatitis B virus containing the pre-s sequence.

    Heermann, K H; Goldmann, U; Schwartz, W; Seyffarth, T; Baumgarten, H; Gerlich, W H

    1984-11-01

    The sequence of hepatitis B virus DNA contains an open reading frame which codes for a not-yet-identified protein of at least 389 amino acids. Only the products starting at the third (GP33/GP36) or the fourth (P24/GP27) initiation signal have been characterized as components of the viral surface antigen. We found a larger protein, P39, and its glycosylated form, GP42, in hepatitis B virus particles and viral surface antigen filaments. Immunological cross-reactions showed that P39/GP42 is partially homologous to P24/GP27 and GP33/GP36. The unique portion of its sequence bound monoclonal antibodies which had been induced by immunization with hepatitis B virus particles. Proteolytic cleavage patterns and subtype-specific size differences suggested that the sequence of P39 starts with the first initiation signal of the open reading frame. Its amino-terminal part (pre-s coded) is exposed at the viral surface and, probably, is highly immunogenic. A model is presented of how the open reading frame for the viral envelope leads to defined amounts of three different proteins. PMID:6492255

  3. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  4. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  5. Surface Proteins and Pneumolysin of Encapsulated and Nonencapsulated Streptococcus pneumoniae Mediate Virulence in a Chinchilla Model of Otitis Media

    Keller, Lance E.; Bradshaw, Jessica L.; Pipkins, Haley; McDaniel, Larry S.

    2016-01-01

    Streptococcus pneumoniae infections result in a range of human diseases and are responsible for almost one million deaths annually. Pneumococcal disease is mediated in part through surface structures and an anti-phagocytic capsule. Recent studies have shown that nonencapsulated S. pneumoniae (NESp) make up a significant portion of the pneumococcal population and are able to cause disease. NESp lack some common surface proteins expressed by encapsulated pneumococci, but express surface protein...

  6. Identification of protein biochemical functions by similarity search using the molecular surface database eF-site

    Kinoshita, Kengo; Nakamura, Haruki

    2003-01-01

    The identification of protein biochemical functions based on their three-dimensional structures is strongly required in the post-genome-sequencing era. We have developed a new method to identify and predict protein biochemical functions using the similarity information of molecular surface geometries and electrostatic potentials on the surfaces. Our prediction system consists of a similarity search method based on a clique search algorithm and the molecular surface database eF-site (electrost...

  7. Rapid serodiagnosis with the use of surface plasmon resonance imaging for the detection of antibodies against major surface protein A of Mycoplasma synoviae in chickens

    Oh, Kiseok; Lee, Semi; Seo, Jayoung; Lee, Dongwoo; Kim, Taejung

    2010-01-01

    Mycoplasma synoviae, a major worldwide pathogen in poultry, causes respiratory tract infection and arthritis in chickens and turkeys. Two major surface antigens of M. synoviae are encoded by a single gene, vlhA (variably expressed lipoprotein and hemagglutinin). The gene product is cleaved post-translationally to yield the lipoprotein major surface protein (MSP) B (MSPB) and the hemagglutinin MSPA. The availability of MSPA as an antigen for serodiagnosis was studied by means of a protein chip...

  8. Protein analysis in dissolved organic matter: what free proteins from soil leachate and surface water can tell us – a perspective

    W. Schulze

    2004-12-01

    Full Text Available Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM, this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1 the identification of phylogenetic groups contributing to the DOM protein pool, and (2 identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from DOM and organism-free surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  9. Protein imprinting and recognition via forming nanofilms on microbeads surfaces in aqueous media

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Yan Changling [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Wang Xuejing [Chemistry and Chemical Engineer School, Henna Institute of Science and Technology, Xinxiang 453003 (China); Wang Gongke [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)

    2009-12-15

    In this paler, we present a technique of forming nanofilms of poly-3-aminophenylboronic acid (pAPBA) on the surfaces of polystyrene (PS) microbeads for proteins (papain and trypsin) in aqueous. Papain was chosen as a model to study the feasibility of the technique and trypsin as an extension. Obtained core-shell microbeads were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and BET methods. The results show that pAPBA formed nanofilms (60-100 nm in thickness) on the surfaces of PS microbeads. The specific surface area of the papain-imprinted beads was about 180 m{sup 2} g{sup -1} and its pore size was 31 nm. These imprinted microbeads exhibit high recognition specificity and fast mass transfer kinetics. The specificity of these imprinted beads mainly originates from the spatial effect of imprinted sites. Because the protein-imprinted sites were located at, or close to, the surface, the imprinted beads have good site accessibility toward the template molecules. The facility of the imprinting protocol and the high recognition properties of imprinted microbeads make the approach an attractive solution to problems in the field of biotechnology.

  10. Phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma

    An enzyme activity capable of degrading the glycosyl-phosphatidylinositol membrane anchor of cell-surface proteins has previously been reported in a number of mammalian tissues. The experiments reported here demonstrate that this anchor-degrading activity is also abundant in mammalian plasma. The activity was inhibited by EGTA or 1,10-phenanthroline. It was capable of removing the anchor from alkaline phosphatase, 5'-nucleotidase, and variant surface glycoprotein but had little or no activity toward phosphatidylinositol or phosphatidylcholine. Phosphatidic acid was the only 3H-labeled product when this enzyme hydrolyzed [3H]myristate-labeled variant surface glycoprotein. It could be distinguished from the Ca2=-dependent inositol phospholipid-specific phospholipase C activity in several rat tissues on the basis of its molecular size and its sensitivity to 1,10-phenanthroline. The data therefore suggest that this activity is due to a phospholipase D with specificity for glycosylphosphatidylinositol structures. Although the precise physiological function of this anchor-specific phospholipase D remains to be determined, these findings indicate that it could play an important role in regulating the expression and release of cell-surface proteins in vivo

  11. Protein imprinting and recognition via forming nanofilms on microbeads surfaces in aqueous media

    In this paler, we present a technique of forming nanofilms of poly-3-aminophenylboronic acid (pAPBA) on the surfaces of polystyrene (PS) microbeads for proteins (papain and trypsin) in aqueous. Papain was chosen as a model to study the feasibility of the technique and trypsin as an extension. Obtained core-shell microbeads were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and BET methods. The results show that pAPBA formed nanofilms (60-100 nm in thickness) on the surfaces of PS microbeads. The specific surface area of the papain-imprinted beads was about 180 m2 g-1 and its pore size was 31 nm. These imprinted microbeads exhibit high recognition specificity and fast mass transfer kinetics. The specificity of these imprinted beads mainly originates from the spatial effect of imprinted sites. Because the protein-imprinted sites were located at, or close to, the surface, the imprinted beads have good site accessibility toward the template molecules. The facility of the imprinting protocol and the high recognition properties of imprinted microbeads make the approach an attractive solution to problems in the field of biotechnology.

  12. Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus.

    Kumar, Amit; Ting, Yen Peng

    2015-11-01

    Although Staphylococcus aureus and Pseudomonas aeruginosa can individually colonize and infect their hosts, the commensalistic effect of the two is more tenacious and lethal. In this study, it was shown that in co-culture with P. aeruginosa, a sub-population of S. aureus exhibited improved resistance to kanamycin by selection of small colony variant (SCV) phenotype. Additionally, biofilm formation by the two bacteria was denser in the co-culture, compared with biofilm formed in individual pure cultures. Using Atomic Force Microscope (AFM) force spectroscopy for single cells, it was demonstrated that S. aureus cultured in the presence of P. aeruginosa bound more tenaciously to substrates. Surface-shaved peptides were isolated and identified using ultra-performance liquid chromatography-quadrupole-time of flight and a homology search program spider. Results indicated that serine-rich adhesin, extracellular matrix binding protein and other putative adhesion proteins could be responsible for the enhanced attachment of S. aureus in the co-culture. Besides, several other proteins were differentially expressed, indicating the occurrence of a range of other interactions. Of particular interest was a multidrug resistant protein named ABC transporter permease which is known to expel xenobiotics out of the cells. Positive regulation of this protein could be involved in the SCV selection of S. aureus in the co-culture. PMID:25925222

  13. Accessible surface area of proteins from purely sequence information and the importance of global features

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-03-01

    We present a new approach for predicting the accessible surface area of proteins. The novelty of this approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Rather, sequential window information and the global monomer and dimer compositions of the chain are used. We find that much of the lost accuracy due to the elimination of evolutionary information is recouped by the use of global features. Furthermore, this new predictor produces similar results for proteins with or without sequence homologs deposited in the Protein Data Bank, and hence shows generalizability. Finally, these predictions are obtained in a small fraction (1/1000) of the time required to run mutation profile based prediction. All these factors indicate the possible usability of this work in de-novo protein structure prediction and in de-novo protein design using iterative searches. Funded in part by the financial support of the National Institutes of Health through Grants R01GM072014 and R01GM073095, and the National Science Foundation through Grant NSF MCB 1071785.

  14. An amino acid code to define a protein's tertiary packing surface.

    Fraga, Keith J; Joo, Hyun; Tsai, Jerry

    2016-02-01

    One difficult aspect of the protein-folding problem is characterizing the nonspecific interactions that define packing in protein tertiary structure. To better understand tertiary structure, this work extends the knob-socket model by classifying the interactions of a single knob residue packed into a set of contiguous sockets, or a pocket made up of 4 or more residues. The knob-socket construct allows for a symbolic two-dimensional mapping of pockets. The two-dimensional mapping of pockets provides a simple method to investigate the variety of pocket shapes to understand the geometry of protein tertiary surfaces. The diversity of pocket geometries can be organized into groups of pockets that share a common core, which suggests that some interactions in pockets are ancillary to packing. Further analysis of pocket geometries displays a preferred configuration that is right-handed in α-helices and left-handed in β-sheets. The amino acid composition of pockets illustrates the importance of nonpolar amino acids in packing as well as position specificity. As expected, all pocket shapes prefer to pack with hydrophobic knobs; however, knobs are not selective for the pockets they pack. Investigating side-chain rotamer preferences for certain pocket shapes uncovers no strong correlations. These findings allow a simple vocabulary based on knobs and sockets to describe protein tertiary packing that supports improved analysis, design, and prediction of protein structure. PMID:26575337

  15. Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces

    Protein detection using biologically or immunologically modified field-effect transistors (bio/immunoFETs) depends on the nanoscale structure of the polymer/protein film at sensor interfaces (Bhushan 2010 Springer Handbook of Nanotechnology 3rd edn (Heidelberg: Springer); Gupta et al 2010 The effect of interface modification on bioFET sensitivity, submitted). AlGaN-based HFETs (heterojunction FETs) are attractive platforms for many protein sensing applications due to their electrical stability in high osmolarity aqueous environments and favourable current drive capabilities. However, interfacial polymer/protein films on AlGaN, though critical to HFET protein sensor function, have not yet been fully characterized. These interfacial films are typically comprised of protein-polymer films, in which analyte-specific receptors are tethered to the sensing surface with a heterobifunctional linker molecule (often a silane molecule). Here we provide insight into the structure and tribology of silane interfaces composed of one of two different silane monomers deposited on oxidized AlGaN, and other metal oxide surfaces. We demonstrate distinct morphologies and wear properties for the interfacial films, attributable to the specific chemistries of the silane monomers used in the films. For each specific silane monomer, film morphologies and wear are broadly consistent on multiple oxide surfaces. Differences in interfacial film morphology also drive improvements in sensitivity of the underlying HFET (coincident with, though not necessarily caused by, differences in interfacial film thickness). We present a testable model of the hypothetical differential interfacial depth distribution of protein analytes on FET sensor interfaces with distinct morphologies. Empirical validation of this model may rationalize the actual behaviour of planar immunoFETs, which has been shown to be contrary to expectations of bio/immunoFET behaviour prevalent in the literature for the last 20 years

  16. Simulation studies of DNA at the nanoscale: Interactions with proteins, polycations, and surfaces

    Elder, Robert M.

    Understanding the nanoscale interactions of DNA, a multifunctional biopolymer with sequence-dependent properties, with other biological and synthetic substrates and molecules is essential to advancing these technologies. This doctoral thesis research is aimed at understanding the thermodynamics and molecular-level structure when DNA interacts with proteins, polycations, and functionalized surfaces. First, we investigate the ability of a DNA damage recognition protein (HMGB1a) to bind to anti-cancer drug-induced DNA damage, seeking to explain how HMGB1a differentiates between the drugs in vivo. Using atomistic molecular dynamics simulations, we show that the structure of the drug-DNA molecule exhibits drug- and base sequence-dependence that explains some of the experimentally observed differential recognition of the drugs in various sequence contexts. Then, we show how steric hindrance from the drug decreases the deformability of the drug-DNA molecule, which decreases recognition by the protein, a concept that can be applied to rational drug design. Second, we study how polycation architecture and chemistry affect polycation-DNA binding so as to design optimal polycations for high efficiency gene (DNA) delivery. Using a multiscale computational approach involving atomistic and coarse-grained simulations, we examine how rearranging polylysine from a linear to a grafted architecture, and several aspects of the grafted architecture, affect polycation-DNA binding and the structure of polycation-DNA complexes. Next, going beyond lysine we examine how oligopeptide chemistry and sequence in the grafted architecture affects polycation-DNA binding and find that strategic placement of hydrophobic peptides might be used to tailor binding strength. Third, we study the adsorption and conformations of single-stranded DNA (an amphiphilic biopolymer) on model hydrophilic and hydrophobic surfaces. Short ssDNA oligomers adsorb to both surfaces with similar strength, with the strength

  17. Indirect 125I-labeled protein A assay for monoclonal antibodies to cell surface antigens

    An assay for detection of monoclonal hybridoma antibodies against cell surface antigens is described. Samples of spent medium from the hybridoma cultures are incubated in microtest wells with cells, either as adherent monolayers or in suspension. Antibodies bound to surface antigens are detected by successive incubations with rabbit anti-immunoglobulin serum and 125I-labeled protein A from Staphylococcus aureus, followed by autoradiography of the microtest plate or scintillation counting of the individual wells. Particular advantages of this assay for screening hybridomas are: (1) commercially available reagents are used, (2) antibodies of any species and of any immunoglobulin class or subclass can be detected, and (3) large numbers of samples can be screened rapidly and inexpensively. The assay has been used to select hybridomas producing monoclonal antibodies to surface antigens of human melanomas and mouse sarcomas. (Auth.)

  18. Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins.

    Drescher, Dennis G; Dakshnamurthy, Selvakumar; Drescher, Marian J; Ramakrishnan, Neeliyath A

    2016-01-01

    Surface plasmon resonance is an optical technique that is utilized for detecting molecular interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected after polarized light impinges upon the film, is altered, and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. We have utilized surface plasmon resonance to study interaction of proteins of inner-ear sensory epithelia. PMID:27259927

  19. ErpC, a member of the complement regulator-acquiring family of surface proteins from Borrelia burgdorferi, possesses an architecture previously unseen in this protein family

    The structure of ErpC, a member of the complement regulator-acquiring surface protein family from B. burgdorferi, has been solved, providing insights into the strategies of complement evasion by this zoonotic bacterium and suggesting a common architecture for other members of this protein family. Borrelia burgdorferi is a spirochete responsible for Lyme disease, the most commonly occurring vector-borne disease in Europe and North America. The bacterium utilizes a set of proteins, termed complement regulator-acquiring surface proteins (CRASPs), to aid evasion of the human complement system by recruiting and presenting complement regulator factor H on its surface in a manner that mimics host cells. Presented here is the atomic resolution structure of a member of this protein family, ErpC. The structure provides new insights into the mechanism of recruitment of factor H and other factor H-related proteins by acting as a molecular mimic of host glycosaminoglycans. It also describes the architecture of other CRASP proteins belonging to the OspE/F-related paralogous protein family and suggests that they have evolved to bind specific complement proteins, aiding survival of the bacterium in different hosts

  20. Prevalence of epistasis in the evolution of influenza A surface proteins.

    Sergey Kryazhimskiy

    2011-02-01

    Full Text Available The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and

  1. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/ antibody complexes

    JieshengTian

    2014-04-01

    Full Text Available Magnetosomes are membrane-enclosed magnetite nanocrystals synthesized by magnetotactic bacteria (MTB. They display chemical purity, narrow size ranges, and species-specific crystal morphologies. Specific transmembrane proteins are sorted to the magnetosome membrane (MM. MamC is the most abundant MM protein of Magnetospirillum gryphiswaldense strain MSR-1. MamF is the second most abundant MM protein of MSR-1 and forms stable oligomers. We expressed staphylococcal protein A (SPA, an immunoglobulin-binding protein from the cell wall of Staphylococcus aureus, on MSR-1 magnetosomes by fusion with MamC or MamF. The resulting recombinant magnetosomes were capable of self-assembly with the Fc region of mammalian antibodies (Abs and were therefore useful for functionalization of magnetosomes. Recombinant plasmids pBBR-mamC-spa and pBBR-mamF-spa were constructed by fusing spa (the gene that encodes SPA with mamC and mamF, respectively. Recombinant magnetosomes with surface expression of SPA were generated by introduction of these fusion genes into wild-type MSR-1 or a mamF mutant strain. Studies with a Zeta Potential Analyzer showed that the recombinant magnetosomes had hydrated radii significantly smaller than those of WT magnetosomes and zeta potentials less than -30 mV, indicating that the magnetosome colloids were relatively stable. Observed conjugation efficiencies were as high as 71.24 µg Ab per mg recombinant magnetosomes, and the conjugated Abs retained most of their activity. Numbers of Vibrio parahaemolyticus (a common pathogenic bacterium in seafood captured by recombinant magnetosome/ Ab complexes were measured by real-time fluorescence-based quantitative PCR. One mg of complex was capable of capturing as many as 1.74×107 Vibrio cells. The surface expression system described here will be useful for design of functionalized magnetosomes from MSR-1 and other MTB.

  2. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  3. Developmental expression of a cell surface protein involved in sea urchin skeleton formation

    The authors have previously used a monoclonal antibody (1223) to identify a 130 Kd cell surface protein involved in skeleton formation is sea urchin embryos. In the current study the authors have examined the expression of the 1223 antigen over the course of development of embryos of two species, Strongylocentrotus purpuratus and Lytechinus pictus. The 130 Kd protein is detected in S. purp eggs on immunoblots. Labeling with [3H] leucine and immunoaffinity chromatography show that it also is synthesized shortly after fertilization. Immunofluroescence reveals that at this early stage the 1223 antigen is uniformly distributed on all of the cells. Synthesis decreases to a minimum by the time of hatching (18 h), as does the total amount of antigen present in the embryo. A second period of synthesis commences at the mesenchyme blastula stage, when the spicule-forming primary mesenchyme cells (PMCs) have appeared. During this later stage, synthesis and cell surface expression are restricted to the PMCs. In contrast to S. purp., in L. pictus the 130 Kd protein does not appear until the PMCs are formed. Hybrid embryos demonstrate a pattern of expression of the maternal species. These results suggest that early expression of 1223 antigen in S. purp. is due to utilization of maternal transcripts present in the egg. In both species later expression in PMCs appears to be the result of cell-type specific synthesis, perhaps encoded by embryonic transcripts

  4. Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis.

    Yong Qi

    Full Text Available BACKGROUND: Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF, is an obligate intracellular bacterium. The surface-exposed proteins (SEPs of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. METHODS: R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA. RESULTS: Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. CONCLUSIONS: Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease.

  5. High performance workflow implementation for protein surface characterization using grid technology

    Clematis Andrea

    2005-12-01

    Full Text Available Abstract Background This study concerns the development of a high performance workflow that, using grid technology, correlates different kinds of Bioinformatics data, starting from the base pairs of the nucleotide sequence to the exposed residues of the protein surface. The implementation of this workflow is based on the Italian Grid.it project infrastructure, that is a network of several computational resources and storage facilities distributed at different grid sites. Methods Workflows are very common in Bioinformatics because they allow to process large quantities of data by delegating the management of resources to the information streaming. Grid technology optimizes the computational load during the different workflow steps, dividing the more expensive tasks into a set of small jobs. Results Grid technology allows efficient database management, a crucial problem for obtaining good results in Bioinformatics applications. The proposed workflow is implemented to integrate huge amounts of data and the results themselves must be stored into a relational database, which results as the added value to the global knowledge. Conclusion A web interface has been developed to make this technology accessible to grid users. Once the workflow has started, by means of the simplified interface, it is possible to follow all the different steps throughout the data processing. Eventually, when the workflow has been terminated, the different features of the protein, like the amino acids exposed on the protein surface, can be compared with the data present in the output database.

  6. A novel protein distance matrix based on the minimum arc-length between two amino-acid residues on the surface of a globular protein.

    Hall, Damien; Li, Songling; Yamashita, Kazuo; Azuma, Ryuzo; Carver, John A; Standley, Daron M

    2014-06-01

    We present a novel protein distance matrix based on the minimum line of arc between two points on the surface of a protein. Two methods for calculating this distance matrix are developed and contrasted. The first method, which we have called TOPOL, is an approximate rule based algorithm consisting of successive rounds of vector addition. The second method is adapted from the graph theoretic approach of Dijkstra. Both procedures are demonstrated using cytochrome c, a 12,500 Da protein, as a test case. In respect to computational speed and accuracy the TOPOL procedure compares favorably against the more complex method based on shortest path enumeration over a surface manifold grid. Some potential uses of the algorithmic approaches and calculated surface protein distance measurement are discussed. PMID:24589301

  7. Construction and in vitro Expression of Streptococcus Mutans Surface Protein Encoding DNA Vaccine

    PENG; Zhixiang(

    2001-01-01

    [1]樊明文主编.口腔生物学.北京:人民卫生出版社 1996.132[2]Senpuku H Iizima T Yamaguchi Y et al.Immunogenicity of peptides coupled with multiple T-cell epitopes of a surface protein antigen of Streptococcus mutans.Immunology 1996 88:2275[3]Kato H Takeuchi H Oishi Y et al.The immunogenicity of various peptide antigens inducing cross-reacting antibodies to a cell surface protein antigen of Streptococcus mutans.Oral Microbiol Immunol 1999 14:213[4]Okahashi N Sasakawa C Yoshikawa M et al.Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans implicated in dental caries.Mol Microbiol 1989 3:673[5]Okahashi N Takahashi I Nakai M et al.Identification of antigenic epitopes in an alanine-rich repeating region of a surface protein antigen of Streptococcus mutans.Infeet Immun 1993 61(4):1301[6]Brady L J Cvitkovitch D G Geric C M et al.Deletion of the central proline-rich repeat domain results in altered antigenicity and lack of surface expression of the Streptococcus mutans P1 adhesin molecule.Infect Immun 1998 66(9):4274[7]彭志翔 樊明文 边专.变形链球菌表面蛋白PAc结构基因克隆工程数据分析.口腔医学纵横杂志 2000 16(2):90[8]彭志翔 钟燕 樊明文等.含变链菌PAc蛋白编码基因保守区重组质粒pCIA-P的亚克隆构建.中华口腔医学杂志 2000 35(5):339[9]Peng Z X Zhong Y Fan M W et al.Design and preparation of cloned DNA fragment from pac gene of Streptococcus mutans.J Comprehensive Stomatology 2000 16(1):54

  8. Photo-induced formation of nitrous acid (HONO) on protein surfaces

    Meusel, Hannah; Elshorbany, Yasin; Bartels-Rausch, Thorsten; Selzle, Kathrin; Lelieveld, Jos; Ammann, Markus; Pöschl, Ulrich; Su, Hang; Cheng, Yafang

    2014-05-01

    The study of nitrous acid (HONO) is of great interest, as the photolysis of HONO leads to the OH radical, which is the most important oxidant in the troposphere. HONO is directly emitted by combustion of fossil fuel and from soil biogenic nitrite (Su et al., 2011), and can also be formed by gas phase reactions of NO and OH and heterogeneous reactions of NO2. Previous atmospheric measurements have shown unexpectedly high HONO concentrations during daytime. Measured mixing ratios were about one order of magnitude higher than model simulations (Kleffmann et al. 2005, Vogel et al. 2003). The additional daytime source of HONO might be attributed to the photolysis of adsorbed nitric acid or heterogeneous photochemistry of NO2 on organic substrates, such as humic acids or polyphenolic compounds (Stemmler et al., 2006), or indirectly through nitration of phenols and subsequent photolysis of nitrophenols (Sosedova et al., 2011, Bejan et al., 2006). An important reactive surface for the heterogeneous formation of HONO could involve proteins, which are ubiquitous in the environment. They are part of coarse biological aerosol particles like pollen grains, fine particles (fragments of pollen, microorganism, plant debris) and dissolved in rainwater, soil and road dust (Miguel et al. 1999). In this project a thin film of bovine serum albumin (BSA), a model protein with 67 kDa and 21 tyrosine residues per molecule, is irradiated and exposed to nitrogen dioxide in humidified nitrogen. The formation of HONO is measured with long path absorption photometry (LOPAP). The generated HONO is in the range of 100 to 1100 ppt depending on light intensity, NO2 concentration and film thickness. Light induced HONO formation on protein surfaces is stable over the 20-hours experiment of irradiation and exposure. On the other hand, light activated proteins reacting with NO2 form nitrated proteins, as detected by liquid chromatography (LC-DAD). Our experiments on tetranitromethane (TNM) nitrated

  9. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics.

    Swearingen, Kristian E; Lindner, Scott E; Shi, Lirong; Shears, Melanie J; Harupa, Anke; Hopp, Christine S; Vaughan, Ashley M; Springer, Timothy A; Moritz, Robert L; Kappe, Stefan H I; Sinnis, Photini

    2016-04-01

    Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens. PMID:27128092

  10. Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System.

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-08-16

    When soy glycinin (11S) is heated for a prolonged time at pH 2 (20 h at 85 °C), a mixture is formed consisting of long semiflexible 11S fibrils and small peptides. The surface and foaming properties of this mixture were investigated at different pHs, and compared to the behavior of pure fibrils and pure peptides, to determine the individual contributions of these two factions to the behavior of the mixture. The adsorption of these three systems at air-water interfaces and the resulting surface rheological properties were studied by combining drop shape analysis tensiometry, ellipsometry, and surface large amplitude oscillatory dilatational (LAOD) rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. Our results show that the adsorption kinetics, dilatational rheological properties, and the foaming behavior of the mixture were mainly dominated by the small peptides in the fibril system. Compared to pH 2, the fibril mixture at pH 5 and 7 provides much better foam stability and appears to be a very promising protein material to make stable foams, even at low protein concentration (0.1 wt %). The presence of fibril clusters and peptide aggregates at pH 5 and 7 contributed to foam stability of the mixture. In contrast, pure fibril formed an interface with a highly pH-responsive adsorption and rheological behavior, and the foamability and foam stability of the pure fibrils were very poor. PMID:27452662

  11. Effects of surface microstructure of hydroxyapatite on protein adsorption and biological performance of osteoblasts

    He, H.W. [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Li, G.D. [College of Material Science and Engineering, Sichuan University, Chengdu 610065 (China); Li, B. [Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064 (China); Chen, Z.Q. [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: hugeboat@163.com

    2008-11-15

    The aim of this study was to investigate the effect of surface microstructure on the serum protein adsorption and the biological performance of osteoblasts cultured in vitro, when seeded onto the surface of ceramics with different grain size: conventional HA, micron-sized HA and nano-sized HA. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to comparatively analyze the protein adsorption solution. The content of alkaline phosphatase (ALP) was determined, and then by using wash way method, the adhesion ability was tested. XPS tests indicated that the content of N on the surface was significant different between the three groups (P < 0.05). SDS-PAGE analysis indicated that all the materials in these three groups could adsorb a large amount albumin, while the material in the nHA group adsorbed more albumin than the other groups. There were significant differences among them on the levels of osteoblast proliferation and adhesion in vitro. The biocompatibility of nHA is the best and of conventional HA is the worst.

  12. Effects of surface microstructure of hydroxyapatite on protein adsorption and biological performance of osteoblasts

    He, H. W.; Li, G. D.; Li, B.; Chen, Z. Q.

    2008-11-01

    The aim of this study was to investigate the effect of surface microstructure on the serum protein adsorption and the biological performance of osteoblasts cultured in vitro, when seeded onto the surface of ceramics with different grain size: conventional HA, micron-sized HA and nano-sized HA. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to comparatively analyze the protein adsorption solution. The content of alkaline phosphatase (ALP) was determined, and then by using wash way method, the adhesion ability was tested. XPS tests indicated that the content of N on the surface was significant different between the three groups ( P SDS-PAGE analysis indicated that all the materials in these three groups could adsorb a large amount albumin, while the material in the nHA group adsorbed more albumin than the other groups. There were significant differences among them on the levels of osteoblast proliferation and adhesion in vitro. The biocompatibility of nHA is the best and of conventional HA is the worst.

  13. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  14. Characterization of cell surface adenosine 3',5'-monophosphate-binding proteins in Y-1 mouse adrenal tumor cells

    Adrenal cortical cells are known to export cAMP and have binding proteins and cAMP-dependent protein kinase activity associated with their plasma membranes. Because these properties suggest a function for extracellular cAMP, we have undertaken a search for specific cell surface receptors for this cyclic nucleotide. Y-1 mouse adrenal tumor cells actively export cAMP by an energy-dependent process. Analysis of Scatchard plots of the equilibrium binding of [3H]cAMP to these cells indicate the existence of two classes of cAMP binders: one with high affinity (K/sub a/ . 2.9 X 10(9) M-1) and another with low affinity (K/sub a/ . 7.0 X 10(7) M-1). The cell surface localization of these binders was established by the sensitivity of both the [3H]cAMP-binding proteins and the [32P]8-N3-cAMP photoaffinity labeled proteins of intact cells to mild trypsin digestion and by the surface distribution of a BSA-O2-monosuccinyl cAMP-gold complex revealed by electron microscopy. Analysis of radioautograms of cell surface cAMP-binding proteins from confluent monolayer tumor cells, photoaffinity labeled with [32P]8-N3-cAMP and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two major 32P-labeled protein bands which were indistinguishable from the 49,000 and 55,000 mol wt regulatory subunits of the cytosolic protein kinase isoenzymes of this cell. These observations along with the demonstration of cell surface, cAMP-dependent protein kinase activity in the mouse adrenal tumor cell strongly suggest that these cAMP-binding proteins function as regulatory proteins for cell surface protein kinases

  15. What the cell surface does not see: The gene vector under the protein corona.

    Motta, Simona; Rondelli, Valeria; Cantu, Laura; Del Favero, Elena; Aureli, Massimo; Pozzi, Daniela; Caracciolo, Giulio; Brocca, Paola

    2016-05-01

    The fate of lipid-based nanovectors, used in genetic targeting inside cells, depends on their behavior in biological media. In fact, during both in vitro and in vivo transfection, nanovectors come in contact with proteins that compete for their surface and build the protein corona, their true biological identity while engaging the cell membrane. Nonetheless, after cell internalization, the efficacy of transfection may depend also on structural modifications that occurred under the protein cover, following interaction with biological fluids. Here, based on previous in vivo experiments, two widely used lipid mixtures, namely DOTAP/DOPC and DC-Chol/DOPE, were identified as paradigms to investigate the impact of the inner structure of nanovectors on the transfection efficiency, all being proficiently internalized. The evolution of the inner structure of cationic lipoplexes and nanoparticles based on such lipid mixtures, following interaction with human plasma, could be unraveled. Particles were investigated in high dilution, approaching the biosimilar conditions. Data have demonstrated that the modulation of their inner structure depends on their lipid composition and the plasma concentration, still preserving the genetic payload. Interestingly, protein contact induces a variety of inner structures with different perviousness, including reshaping into cubic phases of different porosity, sometimes observed upon interaction between carrier-lipids and cell-lipids. Cubic reshaping is of biological relevance, as lipid cubic phases have been recently associated to both fusogenicity and to the readiness in releasing the payload to the final target via endosomal escape. PMID:26852100

  16. Environmental proteomics – what proteins from soil and surface water can tell us: a perspective

    W. Schulze

    2004-07-01

    Full Text Available Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1 the identification of phylogenetic groups contributing to the DOC pool, and (2 identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  17. Environmental proteomics what proteins from soil and surface water can tell us: a perspective

    Schulze, W.

    2004-07-01

    Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOC pool, and (2) identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  18. Engineering nanoparticles surface for biosensing: "Chemical noses" to detect and identify proteins, bacteria and cancerous cells

    Miranda-Sanchez, Oscar Ramon

    Rapid and sensitive detection of biomolecules is an important issue in nanomedicine. Many disorders are manifested by changes in protein levels of serum and other biofluids. Rapid and effective differentiation between normal and cancerous cells is an important challenge for the diagnosis and treatment of tumor. Likewise, rapid and effective identification of pathogens is a key target in both biomedical and environmental monitoring. Most biological recognition processes occur via specific interactions. Gold nanoparticles (AuNP s) feature sizes commensurate with biomacromolecules, coupled with useful physical and optical properties. A key issue in the use of nanomaterials is controlling the interfacial interactions of these complex systems. Modulation of these physicochemical properties can be readily achieved by engineering nanoparticles surface. Inspired by the idea of mimicking nature, a convenient, precise and rapid method for sensing proteins, cancerous cells and bacteria has been developed by overtaking the superb performance of biological olfactory systems in odor detection, identification, tracking, and location. On the fundamental side, an array-based/'chemical nose' sensor composed of cationic functionalized AuNPs as receptors and anionic fluorescent conjugated polymers or green fluorescent proteins or enzyme/substrates as transducers that can properly detect and identify proteins, bacteria, and cancerous cells has been successfully fabricated.

  19. Binding of a cementum attachment protein to extracellular matrix components and to dental surfaces

    Cementum proteins (CP) have been shown to mediate cell attachment. Among these, a 55 kDa protein was isolated. The purpose of the present study was to assess the capacity of CP to bind to non-demineralized and demineralized root surfaces and to support cell attachment to dentin. CP were prepared by sequential extraction of bovine cementum with 25 mM EDTA, 0.5 M acetic acid followed by 4 M guanidine HCl. The latter was subjected to ion exchange chromatography on a DEAE-3SW column and eluted stepwise with a 0-0.5 M NaCl gradient. CP were labelled with 125I and the capacity of 125I-CP to bind to mineralized and partially demineralized dentin, synthetic hydroxyapatite, collagen, fibronectin and fibrillar collagen-fibronectin cimplex was assessed. It was found that CP bind specifically to mineralized dentin and synthetic hydroxyapatite but not to demineralized dentin. The specific binding was 60% of the total binding. SDS-PAGE analysis of the proteins bound to dentin indicated that the main bound protein had a molecular weight of 55 kDa. CP exhibited high affinity for fibronectin (kD = 1.56 x 10-10 M) and fibronectincollagen complex, but their binding to either molecular or fibrillar collagen was negligible. It is suggested that CP may play an important role in the attachment of cells of the periodontium to cementum extracellular matrix during homeostasis and regeneration. (au)

  20. Selective cell-surface labeling of the molecular motor protein prestin

    McGuire, Ryan M. [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Silberg, Jonathan J., E-mail: joff@rice.edu [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 (United States); Pereira, Fred A. [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Raphael, Robert M., E-mail: rraphael@rice.edu [Department of Bioengineering, Rice University, Houston, TX 77251 (United States)

    2011-06-24

    Highlights: {yields} Trafficking to the plasma membrane is required for prestin function. {yields} Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. {yields} BAP-prestin can be metabolically labeled with biotin in HEK293 cells. {yields} Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. {yields} The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  1. Evolution of hepatitis B virus surface gene and protein among Iranian chronic carriers from different provinces

    Fatemeh Ramezani

    2015-11-01

    Full Text Available Background and Objectives:  Iranian chronic HBV carrier’s population has shown a unique pattern of genotype D distri- bution all around the country. The aim of this study was to explore more details of evolutionary history of carriers based on structural surface proteins from different provinces.Materials and Methods: Sera obtained from 360 isolates from 12 Different regions of country were used for amplificationand sequencing of surface proteins. A detailed mutational analysis was undertaken.Results: The total ratio for Missense/Silent nucleotide substitutions was 0.96. Sistan and Kermanshah showed the lowest rate of evolution between provinces (P = 0.055. On the other hand, Khorasan Razavi and Khoozestan contained the highest ratio (P = 0.055. The rest of regions were laid between these two extremes. Azarbayjan and Guilan showed the highest proportion of immune epitope distribution (91.3% and 96%, respectively. Conversely, Sistan and Tehran harbored the least percentage (66.6% and 68.8%, respectively. Kermanshah province contained only 5.2%, whereas Isfahan had 54.5% of B cell epitope distribution. In terms of T helper epitopes, all provinces showed a somehow homogeneity: 22.58% (Fars to 46.6% (Khuz- estan. On the other hand, distribution of substitutions within the CTL epitopes showed a wide range of variation between 6.6% (Khuzestan and 63% (Kermanshah.Conclusion: Further to low selection pressure found in Iranian population, the variations between different regions designate random genetic drift within the surface proteins. These finding would have some applications in terms of specific antiviral regimen, design of more efficient vaccine and public health issues.

  2. Iodo-gen-catalysed iodination for identification of surface-exposed outer membrane proteins of Escherichia coli K12

    Surface proteins of Escherichia coli K12 were identified by radiolabelling using 1,3,4,6 - tatrachloro, 3-alpha, 6-alpha - diphenylgycoluryl (Iodo-Gen) and 131I. Labelled proteins were localized in the outer membrane of the cells. Using this technique it has been possible to observe technique it has been possible to observe that the eletrophoretic pattern of surface proteins changes according to the growth phases in culture. Radiolabelling of E.coli cells inculbated at 420C showed that the syntheses of two surface proteins were temperature-inducible. At least one such protein may be involved in the process of cell division in E.coli K12. (author)

  3. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. PMID:26253725

  4. Silica nanoparticles surface-modified with thiacalixarenes selectively adsorb oligonucleotides and proteins

    Yuskova, Elena A. [Kazan (Volga Region) Federal University, Department of Chemistry, A. M. Butlerov Chemical Institute (Russian Federation); Ignacio-de Leon, Patricia Anne A.; Khabibullin, Amir [University of Utah, Department of Chemistry (United States); Stoikov, Ivan I., E-mail: ivan.stoikov@mail.ru [Kazan (Volga Region) Federal University, Department of Chemistry, A. M. Butlerov Chemical Institute (Russian Federation); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2013-10-15

    We prepared silica nanospheres 360 nm in diameter surface-modified with p-tert-butylthiacalix[4]arenes containing amine, carboxyl, and guanidinium groups. We found that these silica nanoparticles selectively adsorb model oligonucleotides and proteins. The particles modified with the macrocycle containing guanidinium fragments selectively adsorbed long-chain oligonucleotides and those modified with the macrocycle containing amine groups adsorbed BSA and hemoglobin with pH-dependent selectivity. We compared this behavior with that of silica nanoparticles carrying amine and carboxyl groups, and concluded that both electrostatic interactions and specific binding are responsible for the observed selectivity.

  5. Identification of a cell surface protein, p97, in human melanomas and certain other neoplasms.

    Woodbury, R G; Brown, J. P.; Yeh, M Y; Hellström, I; Hellström, K E

    1980-01-01

    BALB/c mice were immunized with a human melanoma cell line, SK-MEL 28, and their spleen cells were fused with mouse NS-1 myeloma cells. Hybrid cells were tested in an indirect 125I-labeled protein A assay for production of antibodies that bound to surface antigens of SK-MEL 28 melanoma cells but not to autologous skin fibroblasts. One hybridoma, designated 4.1, had the required specificity. It was cloned and grown in mice as an ascites tumor. The monoclonal IgG1 antibody produced by the hybri...

  6. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142)

    Cheong, Fei Wen; Fong, Mun Yik; Lau, Yee Ling; Mahmud, Rohela

    2013-01-01

    Background Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-142. Methods A ~42 kDa recombinant P. knowlesi MSP-142 (pkMSP-142) was expressed using an Escherichia coli system. The purified pkMSP-142 was evaluated with malaria and non-malaria human patient sera (n = 189) using Western blots and ELISA. The immunog...

  7. Succinimidyl Ester Surface Chemistry: Implications of the Competition between Aminolysis and Hydrolysis on Covalent Protein Immobilization

    Lim, China Y.; Owens, Nicholas A.; Wampler, Ronald D.; Ying, YiXin; Granger, Jennifer H.; Porter, Marc D.; Takahashi, Makoto; Shimazu, Katsuaki

    2014-01-01

    N-Hydroxysuccinimide (NHS) ester terminal groups are commonly used to covalently couple amine-containing biomolecules (e.g., proteins and peptides) to surfaces via amide linkages. This one-step aminolysis is often performed in buffered aqueous solutions near physiological pH (pH 6 to pH 9). Under these conditions, the hydrolysis of the ester group competes with the amidization process, potentially degrading the efficiency of the coupling chemistry. The work herein examines the efficiency of c...

  8. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements

    A layer-by-layer surface decoration technique has been developed to anchor quantum dots (QDs) onto a gold substrate and an in situ surface plasmon resonance technique has been used to study interactions between the QDs and different proteins. Direct observation of the binding of the protein onto the QDs and the kinetics of the adsorption and dissociation of different proteins on the QDs has been achieved. This would be helpful for the identification of particle-associated proteins and may offer a fundamental prerequisite for nanobiology, nanomedicine and nanotoxicology. The combination of the novel layer-by-layer surface modification method and in situ surface plasmon resonance would be powerful in studying biological systems such as DNA and cells.

  9. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements

    Xiao Qi; Zhou Bo; Tian Fangfang; Ge Yushu; Liu Xiaorong; Liu Yi [State Key Laboratory of Virology, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Huang Shan; Guan Hongliang; He Zhike, E-mail: prof.liuyi@263.ne [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2009-08-12

    A layer-by-layer surface decoration technique has been developed to anchor quantum dots (QDs) onto a gold substrate and an in situ surface plasmon resonance technique has been used to study interactions between the QDs and different proteins. Direct observation of the binding of the protein onto the QDs and the kinetics of the adsorption and dissociation of different proteins on the QDs has been achieved. This would be helpful for the identification of particle-associated proteins and may offer a fundamental prerequisite for nanobiology, nanomedicine and nanotoxicology. The combination of the novel layer-by-layer surface modification method and in situ surface plasmon resonance would be powerful in studying biological systems such as DNA and cells.

  10. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements

    Xiao, Qi; Zhou, Bo; Huang, Shan; Tian, Fangfang; Guan, Hongliang; Ge, Yushu; Liu, Xiaorong; He, Zhike; Liu, Yi

    2009-08-01

    A layer-by-layer surface decoration technique has been developed to anchor quantum dots (QDs) onto a gold substrate and an in situ surface plasmon resonance technique has been used to study interactions between the QDs and different proteins. Direct observation of the binding of the protein onto the QDs and the kinetics of the adsorption and dissociation of different proteins on the QDs has been achieved. This would be helpful for the identification of particle-associated proteins and may offer a fundamental prerequisite for nanobiology, nanomedicine and nanotoxicology. The combination of the novel layer-by-layer surface modification method and in situ surface plasmon resonance would be powerful in studying biological systems such as DNA and cells.

  11. Understanding and modulating the competitive surface-adsorption of proteins through coarse-grained molecular dynamics simulations

    Vilaseca, Pol; Dawson, Kenneth A.; Franzese, Giancarlo

    2013-01-01

    It is now well accepted that cellular responses to materials in a biological medium reflect greatly the adsorbed biomolecular layer, rather than the material itself. Here, we study by molecular dynamics simulations the competitive protein adsorption on a surface (Vroman effect), i.e. the non-monotonic behavior of the amount of protein adsorbed on a surface in contact with plasma as functions of contact time and plasma concentration. We find a complex behavior, with regimes during which small ...

  12. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

    Berens, Shawn J.; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the comp...

  13. Tritium (3H) radiolabeling of protein A and antibody to high specific activity: Application to cell surface antigen radioimmunoassays

    Staphylococcal protein A and several different immunoglobulins have been radiolabeled to high specific activities (> 106 cpm/μg) by reductive methylation with tritiated (3H) sodium borohydride. The proteins retain excellent functional and antigenic properties. The utility of these reagents in a variety of assays for cell surface antigens is illustrated. The results indicate that this radiolabeling procedure may become the method of choice for many cell surface and solution immunoassays. (Auth.)

  14. Borrelia burgdorferi Regulates Expression of Complement Regulator-Acquiring Surface Protein 1 during the Mammal-Tick Infection Cycle

    von Lackum, Kate; Miller, Jennifer C.; Bykowski, Tomasz; Riley, Sean P; Woodman, Michael E.; Brade, Volker; Kraiczy, Peter; Stevenson, Brian; Wallich, Reinhard

    2005-01-01

    During the natural mammal-tick infection cycle, the Lyme disease spirochete Borrelia burgdorferi comes into contact with components of the alternative complement pathway. B. burgdorferi, like many other human pathogens, has evolved the immune evasion strategy of binding two host-derived fluid-phase regulators of complement, factor H and factor H-like protein 1 (FHL-1). The borrelial complement regulator-acquiring surface protein 1 (CRASP-1) is a surface-exposed lipoprotein that binds both fac...

  15. Surface-tuned electron transfer and electrocatalysis of hexameric tyrosine-coordinated heme protein.

    Peng, Lei; Utesch, Tillmann; Yarman, Aysu; Jeoung, Jae-Hun; Steinborn, Silke; Dobbek, Holger; Mroginski, Maria Andrea; Tanne, Johannes; Wollenberger, Ulla; Scheller, Frieder W

    2015-05-11

    Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant ks values between 0.93 and 2.86 s(-1) and apparent formal potentials ${E{{0{^{\\prime }}\\hfill \\atop {\\rm app}\\hfill}}}$ between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. PMID:25825040

  16. Protein Kinase C Regulates the Cell Surface Activity of Endothelin-Converting Enzyme-1.

    Smith, A Ian; Lew, Rebecca A; Thomas, Walter G; Tochon-Danguy, Nathalie

    2006-09-01

    The potent vasoconstrictor endothelin is a 21 amino acid peptide whose principal physiological function is to regulate vascular tone. The generation of endothelin is crucially dependent on the local presence and activity of endothelin converting enzyme-1 (ECE-1) expressed on the surface of vascular endothelial cells. In this study, we have shown in endothelial cells that the enzyme is phosphorylated, and that phosphorylation is increased by phorbol ester stimulation of protein kinase C (PKC). Furthermore, by monitoring specific ECE-1 activity on the surface of live cells, we also show that following PKC activation, enzyme activity is significantly increased at the cell surface, where it is positioned to catalyse the generation of active endothelin. We believe this novel finding is unprecedented for a peptide processing enzyme. Indeed, this new knowledge regarding the control of endothelin production by regulating ECE-1 activity at the cell surface opens up a new area of endothelin biology and will provide novel insights into the physiology and pathophysiology of endothelin and endothelin-associated diseases. In addition, the information generated in these studies may provide valuable new insights into potential extra- and intracellular targets for the pharmacological and perhaps even therapeutic regulation of endothelin production and thus vascular tone. PMID:19617920

  17. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  18. Expression of group B protective surface protein (BPS) by invasive and colonizing isolates of group B streptococci.

    Flores, Aurea E; Chhatwal, G S; Hillier, Sharon L; Baker, Carol J; Ferrieri, Patricia

    2014-12-01

    Group B protective surface protein (BPS) is expressed on the cell surface of some group B streptococcal (GBS) (Streptococcus agalactiae) strains and adds to the identification by capsular polysaccharide (CPS), and c or R proteins. We investigated the prevalence of BPS among GBS clinical isolates (303 invasive, 4122 colonizing) collected over 11 years in four American cities. Hot HCl cell extracts were tested by immunoprecipitation in agarose with rabbit antisera to BPS; the alpha (α) and beta (β) components of c protein; R1, R3, and R4 species of R protein; and CPS serotypes Ia-VIII. BPS was found in 155 isolates (seven invasive, 148 colonizing). Of these, 87 were Ia, 37 II, 20 V; none were III. BPS was expressed usually with another protein: a species of R by 87 or a component of c by 39. The predominant CPS/protein profiles with BPS were Ia/R1,BPS and II/c(α + β),BPS. Thus, along with CPS serotype and other surface proteins, BPS can be a valuable marker for precise strain characterization of unique GBS clinical isolates with complex surface protein profiles. PMID:25108378

  19. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates

    Zigo, Michal; Jonáková, Věra; Šulc, Miroslav; Maňásková-Postlerová, Pavla

    2013-01-01

    Roč. 61, oct (2013), s. 322-328. ISSN 0141-8130 R&D Projects: GA ČR GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:61388971 Keywords : Sperm surface protein * Zona pellucida-binding receptors * PKDREJ protein Subject RIV: CE - Biochemistry Impact factor: 3.096, year: 2013

  20. The role of Listeria monocytogenes cell wall surface anchor protein LapB in virulence, adherence, and intracellular replication

    Lmof2365_2117 is a Listeria monocytogenes putative cell wall surface anchor protein with a conserved domain found in collagen binding proteins. We constructed a deletion mutation in lmof2365_2117 in serotype 4b strain F2365, evaluated its virulence, and determined its ability to adhere and invade co...

  1. Genetic Immunization of BALB/c mice with a Plasmid Bearing the Gene Coding for a Hybrid Merozoite Surface Protein 1-Hepatitis B Virus Surface Protein Fusion Protects Mice against Lethal Plasmodium chabaudi chabaudi PC1 Infection

    Wunderlich, Gerhard; Moura, Ivan C.; del Portillo, Hernando A

    2000-01-01

    The genetic immunization of rodents with a plasmid coding for a Plasmodium chabaudi merozoite surface protein 1 (C terminus)-hepatitis B virus surface fusion protein (pPcMSP119-HBs) provided protection of mice against subsequent lethal challenge with P. chabaudi chabaudi PC1-infected red blood cells. The percentage of survivor mice was higher in DNA-immunized mice than in animals immunized with a recombinant rPcMSP119– glutathione S-transferase fusion protein administered in Freund adjuvant. ...

  2. Newly synthesized G protein of vesicular stomatitis virus is not transported to the cell surface during mitosis

    1983-01-01

    Indirect immunofluorescence, immunoelectron microscopy, and digestion by protease were used to study intracellular transport of the G protein of vesicular stomatitis virus in mitotic and interphase cells. Quantitation showed that the appearance of G protein on the surface of mitotic cells was inhibited at least 10-fold when compared with that on interphase cells, even though similar amounts of viral protein were being synthesized. This dramatic inhibition, taken together with the simultaneous...

  3. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-04-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.

  4. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  5. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry.

    Zen, Federico; Angione, M Daniela; Behan, James A; Cullen, Ronan J; Duff, Thomas; Vasconcelos, Joana M; Scanlan, Eoin M; Colavita, Paula E

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  6. Surface characterization, protein adsorption, and initial cell-surface reactions on glutathione and 3-mercapto-1,2,-propanediol immobilized to gold.

    Kanagaraja, S; Alaeddine, S; Eriksson, C; Lausmaa, J; Tengvall, P; Wennerberg, A; Nygren, H

    1999-09-15

    Monolayers of glutathione (GSH) and 3-mercapto-1,2-propanediol (MG) on gold were tested for their bioreactivity by assessing the degree of inflammatory reaction as manifested by the adherence and activation of platelets and white blood cells (wbc) after exposure to blood ex vivo. Surface composition was characterized by XPS, and noncontact optical profilometry was used to determine surface roughness. The thickness and composition of the adsorbed protein layers were measured by ellipsometry/antibody techniques in vitro. Cell adhesion and activation were quantified by acridine orange staining, fluorescein-diacetate staining, and by specific antibodies against cell membrane antigens. Distinct differences among the surfaces were observed relative to the amounts and composition of adsorbed plasma proteins and the adhesion and activation of platelets (CD62P-exposure) and wbc (CD11b/CD18-exposure). GSH surfaces, which adsorbed the least amount of plasma protein, caused the least adherence and activation of platelets (CD62P), followed by the highest activation of wbc (CD11b/18). The MG surfaces caused a rapid recruitment and activation of platelets (CD62P), followed by a lower activation of wbc (CD11b/18). Thus it appears that measurements of the initial adsorption of plasma protein from anticoagulated plasma and of the adhesion and activation of platelets after 8 min of exposure to whole blood cannot be used to predict accurately the adhesion and activation behavior of inflammatory cells after longer periods (2 h) of exposure on different surfaces. PMID:10398020

  7. Expression and Purification of the Uropathogenic Escherichia coli PapG Protein and its Surface Absorption on Lactobacillus reuteri: Implications for Surface Display System Vaccines

    Ashrafi

    2015-09-01

    Full Text Available Background Uropathogenic Escherichia coli (UPEC is one of the most common bacteria that can cause urinary tract infections (UTIs. Unfortunately, no human vaccine against UTIs has been developed. Therefore, it is necessary to develop an efficient and safe vaccine that is able to induce mucosal and systemic immune responses. The use of lactic acid bacteria as a delivery system is a promising method to induce the immune system. Objectives The aim of this study was to establish Lactobacillus reuteri harboring the E. coli PapG antigen on its surface. Materials and Methods In this study, the gene encoding PapG was fused to the AcmA gene (which encodes an anchor protein in Lactobacillus and cloned into the pEX A vector. The PapG.AcmA fusion gene was digested with BamHI and NdeI and sub-cloned into the pET21a expression vector at the digestion sites. Subsequently, the recombinant plasmids (pET21a-PapG.AcmA and pET21a-PapG were transformed into the E. coli Origami strain using the calcium chloride method and the fusion protein was expressed under 1 mM IPTG induction. The expression of the fusion protein was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and western blotting. Purification of the PapG and PapG.AcmA proteins was carried out using a Ni-NTA column, and surface adsorption was estimated on Lactobacillus. Finally, surface localization of the fusion protein was verified by an enzyme-linked immunosorbent assay (ELISA. Results The PapG.AcmA fusion was successfully sub-cloned in the pET21a expression vector. The expression of PapG and PapG.AcmA proteins in the E. coli Origami strain was indicated as protein bands in SDS-PAGE and confirmed by western blotting. In addition, the fusion protein was displayed on the surface of L. reuteri. Conclusions In conclusion, we developed a method to express the PapG.AcmA protein on the surface of Lactobacillus. This is the first report on the successful application of lactic acid

  8. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    Chantima Porksakorn

    2007-01-01

    Full Text Available Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL-1β, IL-6, and tumor necrosis factor (TNF mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections.

  9. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  10. Majority of cellular fatty acid acylated proteins are localized to the cytoplasmic surface of the plasma membrane

    The BC2Hl muscle cell line was previously reported to contain a broad array of fatty acid acylated proteins. Palmitate was shown to be attached to membrane proteins posttranslationally through thiol ester linkages, whereas myristate was attached cotranslationally, or within seconds thereafter, to soluble and membrane-bound proteins through amide linkages. The temporal and subcellular differences between palmitate and myristate acylation suggested that these two classes of acyl proteins might follow different intracellular pathways to distinct subcellular membrane systems or organelles. In this study, the authors examined the subcellular localization of the major fatty acylated proteins in BC4Hl cells. Palmitate-containing proteins were localized to the plasma membrane, but only a subset of myristate-containing proteins was localized to this membrane fraction. The majority of acyl proteins were nonglycosylated and resistant to digestion with extracellular proteases, suggesting that they were not exposed to the external surface of the plasma membrane. Many proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins face the cytoplasm. Two-dimensional gel electrophoresis of proteins labeled with [3H]palmitate and [3H]myristate revealed that individual proteins were modified by only one of the two fatty acids and did not undergo both N-linked myristylation and ester-linked palmitylation. Together, these results suggest that the majority of cellular acyl proteins are routed to the cytoplasmic surface of the plasma membrane, and they raise the possibility that fatty acid acylation may play a role in intracellular sorting of nontransmembranous, nonglycosylated membrane proteins

  11. Optimization of the Preparation of Fish Protein Anti-Obesity Hydrolysates Using Response Surface Methodology

    Jinju Wang

    2013-02-01

    Full Text Available The enzymatic condition for producing the anti-obesity hydrolysates from fish water-soluble protein was optimized with the aid of response surface methodology, which also derived a statistical model for experimental validation. Compared with neutral protease, papain and protamex, the porcine pancreas lipase inhibitory rate of hydrolysates from fish water-soluble protein was higher with alkaline protease. Results showed that the model terms were significant, the terms of lack of fit were not significant, and the optimal conditions for the hydrolysis by alkaline protease were initial pH 11, temperature 39 °C, enzyme dosage 122 U/mL and 10 h of hydrolysis time. Under these conditions, the porcine pancreas lipase and the α-amylase inhibitory rate could reach 53.04% ± 1.32% and 20.03 ± 0.89%, while predicted value were 54.63% ± 1.75%, 21.22% ± 0.70%, respectively. In addition, Lineweaver-Burk plots showed noncompetitive inhibition. The Ki value calculated was 84.13 mg/mL. These results demonstrated that fish water-soluble protein could be used for obtaining anti-obesity hydrolysates.

  12. Serine proteinase of Renibacterium salmoninarum digests a major autologous extracellular and cell-surface protein.

    Rockey, D D; Turaga, P S; Wiens, G D; Cook, B A; Kaattari, S L

    1991-10-01

    Renibacterium salmoninarum is a pathogen of salmonid fish that produces large amounts of extracellular protein (ECP) during growth. A proteolytic activity present in ECP at elevated temperatures digested the majority of the proteins in ECP. This digestion was also associated with the loss of ECP immunosuppressive function. In vitro activity of the proteinase in ECP was temperature dependent: it was not detected in an 18-h digest at 4 and 17 degrees C but became readily apparent at 37 degrees C. Proteinase activity was detected at bacterial physiological temperatures (17 degrees C) in reactions incubated for several days. Under these conditions, digestion of partially purified p57, a major constituent of ECP and a major cell-surface protein, yielded a spectrum of breakdown products similar in molecular weight and antigenicity to those in ECP. This pattern of digestion suggests that most of the immunologically related constituents of ECP are p57 and its breakdown products. The proteolytic activity was sensitive to phenylmethylsulfonyl fluoride, methanol, and ethanol and to 10-min incubation at temperatures above 65 degrees C. Electrophoretic analysis of the proteinase on polyacrylamide gels containing proteinase substrates indicated the native form to be 100 kDa or greater. The enzyme was active against selected unrelated substrates only when coincubated with a denaturant (0.1% lauryl sulfate) and (or) a reducing agent (20 mM dithiothreitol). PMID:1777853

  13. Protein rib: a novel group B streptococcal cell surface protein that confers protective immunity and is expressed by most strains causing invasive infections

    1993-01-01

    The group B Streptococcus, an important cause of invasive infections in the neonate, is classified into four major serotypes (Ia, Ib, II, and III) based on the structure of the polysaccharide capsule. Since the capsule is a known virulence factor, it has been extensively studied, in particular in type III strains, which cause the majority of invasive infections. Two cell surface proteins, alpha and beta, have also been studied in detail since they confer protective immunity, but these protein...

  14. Improvement of Surface Functionalities, Including Allergenicity Attenuation, of Whole Buckwheat Protein Fraction by Maillard-Type Glycation with Dextran

    Tazawa, Shigeru; Katayama, Shigeru; Hirabayashi, Masahiro; Yamaguchi, Daiki; Nakamura, Soichiro

    2014-01-01

    The purpose of the current study was to determine the effects of the introduction of polysaccharide chains onto the molecular surface of buckwheat proteins on buckwheat protein surface functionality. The whole buckwheat protein fraction (WBP) was prepared using 50 mM phosphate buffer (pH 7.5) containing 0.5 M NaCl and covalently linked with 6 kDa, 17.5 kDa, 40 kDa, 70 kDa, or 200 kDa dextran by Maillard-type glycation through controlled dry-heating at 60°C and 79% relative humidity for two we...

  15. Transfer of Fas (CD95 protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    H. Sawai

    2010-02-01

    Full Text Available Mouse monoclonal anti-Fas (CD95 antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.

  16. Binding characteristics of thrombin-activatable fibrinolysis inhibitor to streptococcal surface collagen-like proteins A and B

    Seron, Mercedes Valls; Plug, Tom; Marquart, J. Arnoud; Marx, Pauline F.; Herwald, Heiko; de Groot, Philip G.; Meijers, Joost C. M.

    2011-01-01

    Streptococcus pyogenes is the causative agent in a wide range of diseases in humans. Thrombin-activatable fibrinolysis inhibitor (TAFI) binds to collagen-like proteins ScIA and ScIB at the surface of S. pyogenes. Activation of TAFI at this surface redirects inflammation from a transient to chronic s

  17. Human Enterovirus 71 Protein Displayed on the Surface of Saccharomyces cerevisiae as an Oral Vaccine.

    Zhang, Congdang; Wang, Yi; Ma, Shuzhi; Li, Leike; Chen, Liyun; Yan, Huimin; Peng, Tao

    2016-06-01

    Human enterovirus 71 (EV-A71), a major agent of hand, foot, and mouth disease, has become an important public health issue in recent years. No effective antiviral or vaccines against EV-A71 infection are currently available. EV-A71 infection intrudes bodies through the gastric mucosal surface and it is necessary to enhance mucosal immune response to protect children from these pathogens. Recently, the majority of EV-A71 vaccine candidates have been developed for parenteral immunization. However, parenteral vaccine candidates often induce poor mucosal responses. On the other hand, oral vaccines could induce effective mucosal and systemic immunity, and could be easily and safely administered. Thus, proper oral vaccines have attached more interest compared with parenteral vaccine. In this study, the major immunogenic capsid protein of EV-A71 was displayed on the surface of Saccharomyces cerevisiae. Oral immunization of mice with surface-displayed VP1 S. cerevisiae induced systemic humoral and mucosal immune responses, including virus-neutralizing titers, VP1-specific antibody, and the induction of Th1 immune responses in the spleen. Furthermore, oral immunization of mother mice with surface-displayed VP1 S. cerevisiae conferred protection to neonatal mice against the lethal EV-A71 infection. Furthermore, we observed that multiple boost immunization as well as higher immunization dosage could induce higher EV-A71-specific immune response. Our results demonstrated that surface-displayed VP1 S. cerevisiae could be used as potential oral vaccine against EV-A71 infection. PMID:27259043

  18. Surface functionalization of superparamagnetic nanoparticles encapsulated by chitosan for protein immobilization

    Nanoscience and nanotechnology have opened up numerous developments of devices and systems on the nanometer scale, with new molecular organization, properties and functions. In this context, the polymeric magnetic nanoparticles are composites formed by magnetic materials with a particle size between 1 and 100 nm combined with functional polymers. They are well-known and have been widely studied because of its applications in various technology areas. Applications on the biological and medical areas include separation and immobilization of enzymes and proteins, improved techniques of magnetic resonance imaging and diagnostic systems for controlled drug delivery. In this work, proteins were immobilized on the surface of a biopolymer combined with superparamagnetic particles of magnetite. The biopolymer chitosan was used, cross-linked and functionalized with glutaraldehyde, applicable to the biological assays. Three types of magnetic composites were obtained, which were called QM1Glu, QM2NaGlu and QM3Glu. They were characterized by X-ray diffraction, scanning electron microscopy, vibrating sample magnetometry, differential scanning calorimetry, thermogravimetry and infrared spectroscopy. They were evaluated concerning the immobilization of the proteins bovine serum albumin (BSA), collagen and trypsin. The study showed that the immobilization of proteins on the biopolymer occurred in 30 min of incubation. The magnetic composite of non functionalized chitosan (QM3) was also evaluated. For trypsin, it was found that the immobilization potential of QM3 was higher than that observed for QM3Glu. After 30 days, the trypsin of the QM3-Trip and QM3Glu-Trip was still with activity. The activity and the enzyme kinetics of the QM3Glu-Trip with the substrate BApNA were demonstrated. (author)

  19. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-02-01

    An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU-PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU-PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU-PVP (6.0 h) film reduced greatly to 0.08 μg/cm2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  20. Surface functionalization of liposomes with proteins and carbohydrates for use in anti-cancer applications

    Platt, Virginia M.

    Liposomes can be used to exploit the altered biology of cancer thereby increasing delivery of liposome-associated anti-cancer drugs. In this dissertation, I explore methods that utilize the unique cancer expression of the polymeric glycosaminoglycan hyaluronan (HA) and the HA receptor CD44 to target liposomes to tumors, using liposomes functionalized with proteins or oligosaccharides on their surface. To make it easier to prepare protein-functionalized liposomes, a non-covalent protein/liposome association method based upon metal chelation/his 6 interaction was devised and characterized. I evaluated non-covalent attachment of the prodrug converting enzyme yeast cytosine deaminase, the far-red fluorescent protein mKate, two antigens ovalbumin and the membrane proximal region of an HIV GAG and hyaluronidase, a HA-degrading enzyme. In Chapter 2, I describe the synthesis of hyaluronan-oligosaccharide (HA-O) lipid conjugates and their incorporation into liposomes to target CD44-overexpressing cancer cells. HA-O ligands of defined-length, up to 10 monosaccharides, were attached to lipids via various linkers by reductive amination. The HA-lipids were easily incorporated into liposomes but did not mediate binding of liposomes to CD44 overexpressing cells. In Chapter 3, I evaluate the capacity of tris-NTA-Ni-lipids incorporated within a liposome bilayer to associate with his6-tagged proteins. Tris-NTA-lipids of differing structures and avidities were used to associate yeast cytosine deaminase and mKate to the surface of liposomes. Two tris-NTA-lipids and a mono-NTA lipid associated his-tagged proteins to a 1:1 molar ratio in solution. The proteins remained active while associated with the liposome surface. When challenged in vitro with fetal calf serum, tris-NTA-containing liposomes retained his-tagged proteins longer than mono-NTA. However, the tris-NTA/his6 interaction was found to be in a dynamic state; free yeast cytosine deaminase rapidly competed with pre-bound m

  1. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  2. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations.

    Hörmann, Katrin; Stukalov, Alexey; Müller, André C; Heinz, Leonhard X; Superti-Furga, Giulio; Colinge, Jacques; Bennett, Keiryn L

    2016-02-01

    Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications. PMID:26699813

  3. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  4. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  5. Intentional formation of a protein corona on nanoparticles: Serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction.

    Gräfe, Christine; Weidner, Andreas; Lühe, Moritz V D; Bergemann, Christian; Schacher, Felix H; Clement, Joachim H; Dutz, Silvio

    2016-06-01

    The protein corona, which immediately is formed after contact of nanoparticles and biological systems, plays a crucial role for the biological fate of nanoparticles. In the here presented study we describe a strategy to control the amount of corona proteins which bind on particle surface and the impact of such a protein corona on particle-cell interactions. For corona formation, polyethyleneimine (PEI) coated magnetic nanoparticles (MNP) were incubated in a medium consisting of fetal calf serum (FCS) and cell culture medium. To modulate the amount of proteins bind to particles, the composition of the incubation medium was varied with regard to the FCS content. The protein corona mass was estimated and the size distribution of the participating proteins was determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, the zeta potential of incubated particles was measured. Human blood-brain barrier-representing cell line HBMEC was used for in vitro incubation experiments. To investigate the consequences of the FCS dependent protein corona formation on the interaction of MNP and cells flow cytometry and laser scanning microscopy were used. Zeta potential as well as SDS-PAGE clearly reveal an increase in the amount of corona proteins on MNP with increasing amount of FCS in incubation medium. For MNP incubated with lower FCS concentrations especially medium-sized proteins of molecular weights between 30kDa and 100kDa could be found within the protein corona, whereas for MNP incubated within higher FCS concentrations the fraction of corona proteins of 30kDa and less increased. The presence of the protein corona reduces the interaction of PEI-coated MNP with HBMEC cells within a 30min-incubation. PMID:26556312

  6. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  7. Substrate-independent approach for the generation of functional protein resistant surfaces.

    Rodriguez-Emmenegger, Cesar; Kylián, Ondrej; Houska, Milan; Brynda, Eduard; Artemenko, Anna; Kousal, Jaroslav; Alles, Aldo Bologna; Biederman, Hynek

    2011-04-11

    A new route for coating various substrates with antifouling polymer layers was developed. It consisted in deposition of an amino-rich adhesion layer by means of RF magnetron sputtering of Nylon 6,6 followed by the well-controlled, surface-initiated atom transfer radical polymerization of antifouling polymer brushes initiated by bromoisobutyrate covalently attached to amino groups present in the adhesion layer. Polymer brushes of hydroxy- and methoxy-capped oligoethyleneglycol methacrylate and carboxybetaine acrylamide were grafted from bromoisobutyrate initiator attached to a 15 nm thick amino-rich adhesion layer deposited on gold, silicon, polypropylene, and titanium-aluminum-vanadium alloy surfaces. Well-controlled polymerization kinetics made it possible to control the thickness of the brushes at a nanometer scale. Zero fouling from single protein solutions and a reduction of more than 90% in the fouling from blood plasma observed on the uncoated surfaces was achieved. The feasibility of functionalization with bioactive compounds was tested by covalent attachment of streptavidin onto poly(oligoethylene glycol methacrylate) brush and subsequent immobilization of model antibodies and oligonucleotides. The procedure is nondestructive and does not require any chemical preactivation or the presence of reactive groups on the substrate surface. Contrary to current antifouling modifications, the developed coating can be built on various classes of substrates and preserves its antifouling properties even in undiluted blood plasma. The new technique might be used for fabrication of biotechnological and biomedical devices with tailor-made functions that will not be impaired by fouling from ambient biological media. PMID:21381652

  8. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species

    Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Aleixo, José Antonio G.

    2016-01-01

    Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus. PMID:27489951

  9. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing.

    Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin

    2016-04-01

    Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. PMID

  10. Isolation and characterization of the sperm surface proteins and their binding studies with zona pellucida glycoproteins

    Zigo, Michal; Jonáková, Věra; Postlerová, Pavla

    Praha : Biotechnologický ústav v.v AVČR, 2011 - (Pěknicová, J.). s. 65-66 [XVII. symposium českých reprodukčních imunologů s mezinárodní účastí. 26.05.2011-29.05.2011, Žďár nad Sázavou] R&D Projects: GA ČR(CZ) GA523/09/1793; GA ČR(CZ) GA523/08/H064; GA MŠk(CZ) 1M06011; GA MZd(CZ) NS10009 Institutional research plan: CEZ:AV0Z50520701 Keywords : monoclonal antibody * zona pellucida * glycoproteins * sperm surface proteins Subject RIV: CE - Biochemistry

  11. Protein-Mineral Interactions: Molecular Dynamics Simulations Capture Importance of Variations in Mineral Surface Composition and Structure.

    Andersen, Amity; Reardon, Patrick N; Chacon, Stephany S; Qafoku, Nikolla P; Washton, Nancy M; Kleber, Markus

    2016-06-21

    Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na(+)-montmorillonite (001), Ca(2+)-montmorillonite (001), goethite (100), and Na(+)-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, 4-fold β-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvated structure without these mineral surfaces present. Over the Na(+)-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 β-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation. PMID:27243116

  12. Effect of oxidization and chitosan on the surface activity of soy protein isolate.

    Wang, Wei; Li, Junsheng; Yan, Liujuan; Huang, Guoxia; Dong, Zhen

    2016-10-20

    The objective of this research was to study the effect of oxidization of performic acid and chitosan on the structure and surface properties of soy protein isolate. As the degree of oxidization increased, the emulsifying capacity and stability of all the oxidized soy protein isolate and chitosan (SPI/CHI) systems increased substantially, which were 29.7%, 31.7%, 34.1%, 31.9% and 31.9% respectively compared. Fluorescent spectrum showed that the fluorescence intensity of SPI/CHI conjugates decreased and the higher the oxidized degree was, the lower the fluorescence intensity. Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the location of acidic bands of SPI/CHI conjugates moved upwards and broadened. Meanwhile, the basic bands lightened or even disappeared gradually as the oxidization increased. Scanning electron microscope (SEM) showed that the particles became lager as the degree of oxidization increased. Better thermostability of the oxidized SPI/CHI systems was shown in the differential scanning calorimetry (DSC). PMID:27474616

  13. Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links.

    Yang, Chongchong; Yan, Xianming; Guo, Hao; Fu, Guoqi

    2016-01-15

    Researches on protein molecularly imprinted polymers have been challenged by the difficulties in facilitating biomacromolecular transfer, in particular upon the template removal step, and enhancing their recognition performance. Addressing these issues, herein we report synthesis of core–shell structured surface protein-imprinted nanoparticles with reversible physical cross-links formed in the imprinted nanoshells. The imprinted layers over nanoparticle supports are fabricated via aqueous precipitation polymerization (PP) of di(ethylene glycol) methyl ether methacrylate (MEO2MA), a thermo-responsive monomer bearing no strong H-bond donor, and other functional and cross-linking monomers. During polymerization, physical cross-links together with chemical cross-links are in site produced within the imprinted shells based on hydrophobic association among the PMEO2MA, favoring formation of high-quality imprints. While cooled appropriately below the polymerization temperature, these physical cross-links can be dissociated rapidly, thus facilitating removal of the embedded template. For proof of this concept, lysozyme-imprinted nanoparticles were synthesized at 37 °C over the nanoparticles functionalized with carboxylic and vinyl groups. The template removal from the imprinted nanoparticles was readily achieved by washing with a dilute acidic detergent solution at 4 °C. As-prepared imprinted nanoparticles showed greatly higher imprinting factor and specific rebinding than obtained with the same recipe but by solution polymerization (SP). Moreover, such imprinted nanomaterials exhibited satisfactory rebinding selectivity, kinetics and reusability. PMID:26313422

  14. A 125I-protein A-binding assay detecting antibodies to cell surface antigens

    A 125I-protein A-binding assay detecting antibodies to cell surface antigens on human blood cells was developed and evaluated using sera from multitransfused nonleukemic patients sensitized against HLA antigens. The binding assay was found to be reproducible and more sensitive than conventional HLA testing. Seven patients with acute myelogenous leukemia and two patients with acute lymphoblastic leukemia successfully treated by chemotherapy were than investigated. Sera from seven of the patients studied in partial or complete remission demonstrated significant binding to autochthonous leukemic cells obtained from bone marrow or peripheral blood. In two cases sera taken during the leukemic stage demonstrated the most pronounced binding to the patients' own leukemic cells. Sera from four patients with demonstrable significant binding to autochthonous leukemic cells failed to bind to autochthonous remission cells when both types of target cells were tested in parallel. Differences in serum concentrations of IgG, IgA, and IgM were not the cause of the demonstrated increased binding of leukemic sera to autochthonous target cells. We propose that the 125I-protein A-binding assay presented in this paper detects antibodies reacting selectively with acute leukemia cells. (orig.)

  15. Structure of an Intrinsically Disordered Stress Protein Alone and Bound to a Membrane Surface.

    Atkinson, John; Clarke, Matthew W; Warnica, Josephine M; Boddington, Kelly F; Graether, Steffen P

    2016-08-01

    Dehydrins are a group of intrinsically disordered proteins that protect plants from damage caused by drought, cold, and high salinity. Like other intrinsically disordered proteins, dehydrins can gain structure when bound to a ligand. Previous studies have shown that dehydrins are able to protect liposomes from cold damage, but the interactions that drive membrane binding and the detailed structure of the bound and unbound forms are not known. We use an ensemble-structure approach to generate models of a dehydrin known as K2 in the presence and absence of sodium dodecyl sulfate micelles, and we docked the bound structure to the micelle. The collection of residual dipolar coupling data, amide protection factors, and paramagnetic relaxation enhancement distances, in combination with chemical shifts and relaxation measurements, allows for determining plausible structures that are not otherwise visible in time-averaged structural data. The results show that in the bound structure, the conserved lysines are important for membrane binding, whereas the flanking hydrophobic residues play a lesser role. The unbound structure shows a high level of disorder and an extended structure. We propose that the structural differences between bound and unbound forms allow dehydrins to act as molecular shields in their unbound state and as membrane protectants in their bound state. Unlike α-synuclein, the significant gain of α-helicity in K2 at low concentrations of sodium dodecyl sulfate is not due to a decrease in the critical micelle concentration. The study provides structural insight into how a disordered protein can interact with a membrane surface. PMID:27508433

  16. Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study

    Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty

  17. Immobilization of Cysteine-Tagged Proteins on Electrode Surfaces by Thiol-Ene Click Chemistry.

    Zhang, Lin; Vilà, Neus; Klein, Tobias; Kohring, Gert-Wieland; Mazurenko, Ievgen; Walcarius, Alain; Etienne, Mathieu

    2016-07-13

    Thiol-ene click chemistry can be exploited for the immobilization of cysteine-tagged dehydrogenases in an active form onto carbon electrodes (glassy carbon and carbon felt). The electrode surfaces have been first modified with vinylphenyl groups by electrochemical reduction of the corresponding diazonium salts generated in situ from 4-vinylaniline. The grafting process has been optimized in order to not hinder the electrochemical regeneration of NAD(+)/NADH cofactor and soluble mediators such as ferrocenedimethanol and [Cp*Rh(bpy)Cl](+). Having demonstrated the feasibility of thiol-ene click chemistry for attaching ferrocene moieties onto those carbon surfaces, the same approach was then applied to the immobilization of d-sorbitol dehydrogenases with cysteine tag. These proteins can be effectively immobilized (as pointed out by XPS), and the cysteine tag (either 1 or 2 cysteine moieties at the N terminus of the polypeptide chain) was proven to maintain the enzymatic activity of the dehydrogenase upon grafting. The bioelectrode was applied to electroenzymatic enantioselective reduction of d-fructose to d-sorbitol, as a case study. PMID:27299176

  18. Outer Surface Protein A Protects Lyme Disease Spirochetes from Acquired Host Immunity in the Tick Vector▿

    Battisti, James M.; Bono, James L.; Rosa, Patricia A.; Schrumpf, Merry E.; Schwan, Tom G.; Policastro, Paul F.

    2008-01-01

    The Lyme disease spirochete Borrelia burgdorferi alters the expression of outer surface protein (osp) genes as the bacterium cycles between ticks and mammals. OspA is produced as borreliae enter the tick vector and remains a major surface antigen during midgut colonization. To elucidate the role of OspA in the vector, we created an insertional deletion of ospA in strain B31-A3. The ospA mutant infects mice when it is injected intradermally and is acquired by larval ticks fed on these mice, where it persists through the molt to the nymph stage. Bacterial survival rates in artificially infected tick larvae fed on naïve mice were compared with those in the vector fed on immune mice. The ospA mutant proliferates in larvae if it is exposed to blood from naïve mice, but it declines in density after larval feeding if the blood is from immune mice. When uninfected larvae are fed on B-cell-deficient mice infected with the ospA mutant, larvae show borrelial densities and persistence that are significantly greater than those fed on infected, immunocompetent mice. We conclude that OspA serves a critical antibody-shielding role during vector blood meal uptake from immune hosts and is not required for persistence in the tick vector. PMID:18779341

  19. Rapid serodiagnosis with the use of surface plasmon resonance imaging for the detection of antibodies against major surface protein A of Mycoplasma synoviae in chickens.

    Oh, Kiseok; Lee, Semi; Seo, Jayoung; Lee, Dongwoo; Kim, Taejung

    2010-01-01

    Mycoplasma synoviae, a major worldwide pathogen in poultry, causes respiratory tract infection and arthritis in chickens and turkeys. Two major surface antigens of M. synoviae are encoded by a single gene, vlhA (variably expressed lipoprotein and hemagglutinin). The gene product is cleaved post-translationally to yield the lipoprotein major surface protein (MSP) B (MSPB) and the hemagglutinin MSPA. The availability of MSPA as an antigen for serodiagnosis was studied by means of a protein chip based on surface plasmon resonance imaging (SPRi). The diagnostic potential of SPRi for measurement of levels of antibody to MSPA was compared with that of a conventional enzyme-linked immunosorbent assay (ELISA) kit. The results from SPRi, a process that took only 1 h, were similar to those from ELISA. Therefore, MSPA can be used as an antigen for serologic studies, and SPRi, a label-free and high-throughput method, may be a valuable tool in avian serodiagnostic studies. PMID:20357963

  20. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  1. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins.

    van der Vaart, J. M.; te Biesebeke, R; Chapman, J.W.; Toschka, H Y; Klis, F M; Verrips, C. T.

    1997-01-01

    The carboxyl-terminal regions of five cell wall proteins (Cwp1p, Cwp2p, Ag alpha 1p, Tip1p, and Flo1p) and three potential cell wall proteins (Sed1p, YCR89w, and Tir1p) all proved capable of immobilizing alpha-galactosidase in the cell wall of Saccharomyces cerevisiae. The fraction of the total amount of fusion protein that was localized to the cell wall varied depending on the anchor domain used. The highest proportion of cell wall incorporation was achieved with Cwp2p, Ag alpha 1p, or Sed1p...

  2. A bioactive elastin-like recombinamer reduces unspecific protein adsorption and enhances cell response on titanium surfaces

    Salvagni, Emiliano; Berguig, Geoffrey; Engel, Elisabeth; Rodriguez-Cabello, J. Carlos; Coullerez, Geraldine; Textor, Marcus; Planell, Josep A; Gil, F. Javier; Aparicio, Conrado

    2014-01-01

    We present the immobilization on synthetic substrates of elastin-like recombinamers (ELR) that combine a bioactive motif for cell adhesion with protein antifouling properties. Physical adsorption of the recombinamers and covalent-grafting through organosilane chemistry were investigated. The biochemically-modified surfaces were thoroughly characterized and tested for protein absorption in serum by fluorescence-labelling, XPS, Ellipsometry, and OWLS. The ELR were successfully grafted and stabl...

  3. Simian and Human Immunodeficiency Virus Nef Proteins Use Different Surfaces To Downregulate Class I Major Histocompatibility Complex Antigen Expression

    Swigut, Tomek; Iafrate, A. John; Muench, Jan; Kirchhoff, Frank; Skowronski, Jacek

    2000-01-01

    Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregula...

  4. Microarray of surface-exposed proteins of rickettsia heilongjiangensis for serodiagnosis of Far-eastern spotted fever

    Qi, Yong; Gong, Wenping; Xiong, Xiaolu; Jiang, Jiafu; Wang, Yawei; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Background Far-eastern spotted fever (FESF) is an important emerging infectious disease in Northeast Asia. The laboratory diagnosis of FESF in hospitals is mainly based on serological methods. However, these methods need to cultivate rickettsial cells as diagnostic antigens, which is both burdensome and dangerous. Methods Eleven surface-exposed proteins (SEPs) were identified in our previous study and their recombinant proteins (rSEPs) fabricated on a microarray were serologically analyzed wi...

  5. A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia

    Saraiya, Ashesh A.; Li, Wei; Wang, Ching C.

    2011-01-01

    Giardia is a deeply branching unicellular eukaryote. Here, the authors provide evidence for a microRNA, miR4, that regulates the expression of variant surface proteins (VSPs). Biogenesis of this miRNA requires Giardia dicer and the miRNA to be associated with the Giardia Argonaute protein. These results suggest a very ancient origin of miRNA regulatory systems.

  6. Borrelia burgdorferi Infection-Associated Surface Proteins ErpP, ErpA, and ErpC Bind Human Plasminogen▿

    Brissette, Catherine A.; Haupt, Katrin; Barthel, Diana; Cooley, Anne E.; Bowman, Amy; Skerka, Christina; Wallich, Reinhard; Zipfel, Peter F.; Kraiczy, Peter; Stevenson, Brian

    2008-01-01

    Host-derived plasmin plays a critical role in mammalian infection by Borrelia burgdorferi. The Lyme disease spirochete expresses several plasminogen-binding proteins. Bound plasminogen is converted to the serine protease plasmin and thereby may facilitate the bacterium's dissemination throughout the host by degrading extracellular matrix. In this work, we demonstrate plasminogen binding by three highly similar borrelial outer surface proteins, ErpP, ErpA, and ErpC, all of which are expressed ...

  7. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  8. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity

    Zhao, Xingchen; Lu, Dawei; Hao, Fang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Rutao, E-mail: rutaoliu@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China–America CRC for Environment & Health, Jinan 250100 (China)

    2015-07-15

    Highlights: • CNT diameter and surface area govern the stability of adsorbed proteins. • More BSA was loaded and destabilized on smaller CNTs. • Protein corona reduces the cytotoxicity of CNTs - Abstract: In this work, we investigated and compared carbon nanotubes (CNTs) of different diameters regarding their interaction with bovine serum albumin (BSA) and their ability to alter protein structure. BSA was exposed to CNT solutions, and the effects were assessed by utilizing fluorescence spectroscopy, UV–vis absorption spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), bichinchoninic acid (BCA) and zeta-potential measurement assays. We demonstrate that CNT diameter and surface area play key roles in influencing the stability of adsorbed proteins. Results showed that the secondary and tertiary structural stability of BSA decreased upon adsorption onto CNTs, with greater decrease on smaller-diametered nanotubes. Besides, more protein was loaded onto CNTs with small diameter, reducing the cytotoxicity. This study, therefore, provides fundamental information for the influence of CNT diameter and surface on protein behavior, which may be helpful to understand toxic effects of CNTs and prove beneficial for developing novel biomedical devices and safe use of nanomaterials.

  9. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces

    Lösche, M.; Piepenstock, M.; Diederich, A.;

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in...... dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state...

  10. Heme Transfer from Streptococcal Cell Surface Protein Shp to HtsA of Transporter HtsABC

    Liu, Mengyao; Lei, Benfang

    2005-01-01

    Human pathogen group A streptococcus (GAS) can take up heme from host heme-containing proteins as a source of iron. Little is known about the heme acquisition mechanism in GAS. We recently identified a streptococcal cell surface protein (designated Shp) and the lipoprotein component (designated HtsA) of an ATP-binding cassette (ABC) transporter made by GAS as heme-binding proteins. In an effort to delineate the molecular mechanism involved in heme acquisition by GAS, heme-free Shp (apo-Shp) a...

  11. Single-cell characterization of autotransporter-mediated Escherichia coli surface display of disulfide bond-containing proteins.

    Ramesh, Balakrishnan; Sendra, Victor G; Cirino, Patrick C; Varadarajan, Navin

    2012-11-01

    Autotransporters (ATs) are a family of bacterial proteins containing a C-terminal β-barrel-forming domain that facilitates the translocation of N-terminal passenger domain whose functions range from adhesion to proteolysis. Genetic replacement of the native passenger domain with heterologous proteins is an attractive strategy not only for applications such as biocatalysis, live-cell vaccines, and protein engineering but also for gaining mechanistic insights toward understanding AT translocation. The ability of ATs to efficiently display functional recombinant proteins containing multiple disulfides has remained largely controversial. By employing high-throughput single-cell flow cytometry, we have systematically investigated the ability of the Escherichia coli AT Antigen 43 (Ag43) to display two different recombinant reporter proteins, a single-chain antibody (M18 scFv) that contains two disulfides and chymotrypsin that contains four disulfides, by varying the signal peptide and deleting the different domains of the native protein. Our results indicate that only the C-terminal β-barrel and the threaded α-helix are essential for efficient surface display of functional recombinant proteins containing multiple disulfides. These results imply that there are no inherent constraints for functional translocation and display of disulfide bond-containing proteins mediated by the AT system and should open new avenues for protein display and engineering. PMID:23019324

  12. Cloning, protein expression and display of synthetic multi-epitope mycobacterial antigens on Salmonella typhi Ty21a cell surface.

    Sarhan, Mohammed A A; Musa, Mustaffa; Zainuddin, Zainul F

    2011-09-01

    Expressing proteins of interest as fusion to proteins of bacterial envelope is a powerful technique for biotechnological and medical applications. The synthetic gene (VacII) encoding for T-cell epitopes of selected genes of Mycobacterium tuberculosis namely, ESAT6, MTP40, 38 kDa, and MPT64 was fused with N- terminus of Pseudomonas syringae ice nucleation protein (INP) outer membrane protein. The fused genes were cloned into a bacterial expression vector pKK223-3. The recombinant protein was purified by Ni-NAT column. VacII gene was displayed on the cell surface of Salmonella typhi Ty21a using N-terminal region of ice nucleation proteins (INP) as an anchoring motif. Glycine method confirmed that VacII was anchored on the cell surface. Western blot analysis further identified the synthesis of INP derivatives containing the N-terminal domain INP- VacII fusion protein of the expected size (52 kDa). PMID:21941936

  13. One step growth of protein antifouling surfaces: monolayers of poly(ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces.

    Cecchet, Francesca; De Meersman, Benoît; Demoustier-Champagne, Sophie; Nysten, Bernard; Jonas, Alain M

    2006-01-31

    We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm2. PMID:16430281

  14. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces

    The conjugation of various sequences of amyloid β protein solution (Aβ); Aβ1-11, Aβ12-28, Aβ31-35, Aβ1-40, and Aβ1-42 with gold colloidal suspension of 20 nm size was examined. Absorption spectroscopy was utilized to identify changes in the optical properties of gold colloid for pHs, ranging from pH 2 to pH 10. Colour changes were seen for all tested proteins in this study at a higher pH than where bare gold colloid exhibits its colour change at pH = 3.09 ± 0.02. All tested Aβ sequences except for Aβ1-42 exhibited colour changes around pI values of Aβ1-40, about pH 5.2. The Aβ1-42 exhibited precipitants in all pH lower than pH 7 and showed the colour change around pH 3.96 ± 0.05. The colour change observed at a pH lower than 5 is attributed to the unfolded Aβ monomer units around the gold colloidal surface. Interestingly, only Aβ1-40-coated gold colloidal nanoparticles exhibited a reversible colour change as the pH was externally altered between pH 4 and 10. This reversibility is an important implication of the observation of a reversible step reported for the fibrillogenesis. It was interpreted that the reversible process takes place when hydrophilic Aβ possesses a three-dimensional network containing both β-sheet and α-helices

  15. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be ...

  16. SURFACE PROTEINS AND PNEUMOLYSIN OF ENCAPSULATED AND NONENCAPSULATED STREPTOCOCCUS PNEUMONIAE MEDIATE VIRULENCE IN A CHINCHILLA MODEL OF OTITIS MEDIA

    Keller, Lance E.; Bradshaw, Jessica L.; Haley ePipkins; McDaniel, Larry S.

    2016-01-01

    Streptococcus pneumoniae infections result in a range of human diseases and are responsible for almost one million deaths annually. Pneumococcal disease is mediated in part through surface structures and an anti-phagocytic capsule. Recent studies have shown that nonencapsulated Streptococcus pneumoniae (NESp) make up a significant portion of the pneumococcal population and are able to cause disease. NESp lack some common surface proteins expressed by encapsulated pneumococci, but express surf...

  17. The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses

    Santos, Lívia; Rodrigues, Diana Alexandra Ferreira; Lira, Madalena; Oliveira, M. Elisabete; Oliveira, Rosário; Yebra-Pimentel Vilar, Eva; Azeredo, Joana

    2007-01-01

    Purpose: To evaluate the influence of surface treatment of silicone-hydrogel CL on lens hydrophobicity, protein adsorption and microbial colonisation by studying several silicone hydrogel contact lenses (CL) with and without surface treatment. The lenses used in this study were Balafilcon A, Lotrafilcon A, Lotrafilcon B and Galyfilcon A. A conventional hydrogel CL (Etafilcon A) was also tested. Methods: Hydrophobicity was determined through contact angle measurement using the advancing typ...

  18. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth

  19. High-performance liquid chromatography as a technique to determine protein adsorption onto hydrophilic/hydrophobic surfaces.

    Huang, Tongtong; Anselme, Karine; Sarrailh, Segolene; Ponche, Arnaud

    2016-01-30

    The purpose of this study is to evaluate the potential of simple high performance liquid chromatography (HPLC) setup for quantification of adsorbed proteins on various type of plane substrates with limited area (Protein quantification was investigated with a liquid chromatography chain equipped with a size exclusion column or a reversed-phase column. By evaluating the validation of the method according to guidelines of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), all the results obtained by HPLC were reliable. By simple adsorption test at the contact of hydrophilic (glass) and hydrophobic (polydimethylsiloxane: PDMS) surfaces, kinetics of adsorption were determined and amounts of adsorbed bovine serum albumin, myoglobin and lysozyme were obtained: as expected for each protein, the amount adsorbed at the plateau on glass (between 0.15 μg/cm(2) and 0.4 μg/cm(2)) is lower than for hydrophobic PDMS surfaces (between 0.45 μg/cm(2) and 0.8 μg/cm(2)). These results were consistent with bicinchoninic acid protein determination. According to ICH guidelines, both Reversed Phase and Size Exclusion HPLC can be validated for quantification of adsorbed protein. However, we consider the size exclusion approach more interesting in this field because additional informations can be obtained for aggregative proteins. Indeed, monomer, dimer and oligomer of bovine serum albumin (BSA) were observed in the chromatogram. On increasing the temperature, we found a decrease of peak intensity of bovine serum albumin as well as the fraction of dimer and oligomer after contact with PDMS and glass surface. As the surface can act as a denaturation parameter, these informations can have a huge impact on the elucidation of the interfacial behavior of protein and in particular for aggregation processes in pharmaceutical applications. PMID:26621686

  20. Fabrication of a photocontrolled surface with switchable wettability based on host-guest inclusion complexation and protein resistance.

    Shen, Qiongxia; Liu, Lichao; Zhang, Weian

    2014-08-12

    A novel surface-modification strategy has been developed for the construction of a photocontrolled silicon wafer surface with switchable wettability based on host-guest inclusion complexation. The silicon wafer was first modified by guest molecule azobenzene (Azo) via a silanization reaction. Subsequently, a series of polymers with different polarities were attached to host molecule β-cyclodextrin (β-CD) to prepare β-CD-containing hemitelechelic polymers via click chemistry. Finally, a photocontrolled silicon wafer surface modified with polymers was fabricated by inclusion complexation between β-CD and Azo, and the surface properties of the substrate are dependent on the polymers we used. The elemental composition, surface morphology, and hydrophilic/hydrophobic property of the modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscope, and contact angle measurements, respectively. The antifouling property of the PEG-functionalized surface was evaluated by a protein adsorption assay using bovine serum albumin, which was also characterized by XPS. The results demonstrate that the surface modified with PEG possesses good protein-resistant properties. PMID:25053175

  1. A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins.

    Ryan, Anthony

    2011-06-01

    Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H\\/HeN and C3H\\/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H\\/HeJ mice and failed to induce a subsequent Th cell response. TLR4(-\\/-) and Myd88(-\\/-), but not TRIF(-\\/-) mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.

  2. Soluble CD44 interacts with intermediate filament protein vimentin on endothelial cell surface.

    Päll, Taavi; Pink, Anne; Kasak, Lagle; Turkina, Marina; Anderson, Wally; Valkna, Andres; Kogerman, Priit

    2011-01-01

    CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12-37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells. PMID:22216242

  3. Identification of cell surface proteins as potential immunotherapy targets in twelve pediatric cancers

    RimasJOrentas

    2012-12-01

    Full Text Available Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in twelve pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene, in order to categorize transcripts by their subcellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22. For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18, MTDH (metadherin, and GPC2 (glypican-2. These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  4. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    Li, Qian; Bi, Qiu-Yan; Zhou, Bo; Wang, Xiao-Lin

    2012-03-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N'-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm-2, the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  5. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N′-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm-2, the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  6. Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor.

    Silin, Vitalii I; Karlik, Evan A; Ridge, Kevin D; Vanderah, David J

    2006-02-15

    A general method to develop surface-based assays for transmembrane (TM) receptor function(s) without the need to isolate, purify, and reconstitute the proteins is presented. Based on the formation of an active surface that selectively immobilizes membrane vesicles, the method is illustrated using the chemokine receptor CCR5, a member of the largest family of cell surface eukaryotic TM proteins, the G protein-coupled receptors (GPCRs). The method begins with a protein-resistant surface containing a low percentage (1-5%) of surface-bound biotin on gold as the initial template. Surface plasmon resonance (SPR) data show specific immobilization of functional CCR5 after the initial template is activated by immobilization of rho 1D4 antibody, an anti-rhodopsin monoclonal antibody specific for the carboxyl terminal nine amino acids on bovine rhodopsin that had been engineered into the carboxyl terminus of CCR5, and exposure to vesicles obtained from mammalian cells transfected with a synthetic human CCR5 gene. Activation of the initial template is effected by sequential immobilization of avidin, which binds to the biotin in the initial template, a biotinylated goat anti-mouse immunoglobulin G (Bt-IgG), which binds to the avidin binding sites distal to the surface and the F(c) portion of the rho 1D4 antibody through its F(ab) region(s) and finally rho 1D4. This approach establishes a broad outline for the development and application of various assays for CCR5 functions. SPR data also showed that vesicle immobilization could be achieved through an integrin-integrin antibody interaction after activation of the initial template with a goat anti-human integrin beta1 antibody. These results suggest that the generic nature of the initial platform and flexibility of the subsequent surface activation for specific immobilization of membrane vesicles can be applied to the development of assays for other GPCRs or TM receptors for which antibodies are available or can be engineered to

  7. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria

    Muscariello Lidia; Boekhorst Jos; Siezen Roland; Molenaar Douwe; Renckens Bernadet; Kleerebezem Michiel

    2006-01-01

    Abstract Background Genomes of gram-positive bacteria encode many putative cell-surface proteins, of which the majority has no known function. From the rapidly increasing number of available genome sequences it has become apparent that many cell-surface proteins are conserved, and frequently encoded in gene clusters or operons, suggesting common functions, and interactions of multiple components. Results A novel gene cluster encoding exclusively cell-surface proteins was identified, which is ...

  8. Optimal conditions for decorating outer surface of single-walled carbon nanotubes with RecA proteins

    Oura, Shusuke; Umemura, Kazuo

    2016-03-01

    In this study, we estimated the optimal reaction conditions for decorating the outer surface of single-walled carbon nanotubes (SWNTs) with RecA proteins by comparison with hybrids of RecA and single-stranded DNA (ssDNA). To react SWNTs with RecA proteins, we first prepared ssDNA-SWNT hybrids. The heights of the ssDNA-SWNT hybrids increased as the amount of RecA used in the reaction increased, as determined from atomic force microscopy images. We further confirmed the increasing adsorption of RecA proteins onto ssDNA on SWNT surfaces by agarose gel electrophoresis. These results suggest that the combination of RecA proteins and ssDNA-SWNT hybrids forms RecA-ssDNA-SWNT hybrids. We also successfully controlled the amount of RecA adsorbed on the ssDNA-SWNT hybrids. Our results thus indicate the optimized reaction conditions for decorating the outer surface of SWNTs with RecA proteins, which is the key to the development of novel biosensors and nanomaterial-based bioelectronics.

  9. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  10. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.

    Meese, Thomas M; Hu, Yunhua; Nowak, Richard W; Marra, Kacey G

    2002-01-01

    The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA. PMID:12022746

  11. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks.

    Girish Neelakanta

    2007-03-01

    Full Text Available Survival of Borrelia burgdorferi in ticks and mammals is facilitated, at least in part, by the selective expression of lipoproteins. Outer surface protein (Osp A participates in spirochete adherence to the tick gut. As ospB is expressed on a bicistronic operon with ospA, we have now investigated the role of OspB by generating an OspB-deficient B. burgdorferi and examining its phenotype throughout the spirochete life cycle. Similar to wild-type isolates, the OspB-deficient B. burgdorferi were able to readily infect and persist in mice. OspB-deficient B. burgdorferi were capable of migrating to the feeding ticks but had an impaired ability to adhere to the tick gut and survive within the vector. Furthermore, the OspB-deficient B. burgdorferi bound poorly to tick gut extracts. The complementation of the OspB-deficient spirochete in trans, with a wild-type copy of ospB gene, restored its ability to bind tick gut. Taken together, these data suggest that OspB has an important role within Ixodes scapularis and that B. burgdorferi relies upon multiple genes to efficiently persist in ticks.

  12. Maternal immunization with pneumococcal surface protein A protects against pneumococcal infections among derived offspring.

    Masamitsu Kono

    Full Text Available Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA. Mother mice were intranasally immunized with recombinant PspA (rPspA and cholera toxin B subunit (CTB prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood.

  13. Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins.

    Carrillo, Robert A; Özkan, Engin; Menon, Kaushiki P; Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Jeon, Mili; Birnbaum, Michael E; Bellen, Hugo J; Garcia, K Christopher; Zinn, Kai

    2015-12-17

    We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a nine-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the six dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity. PMID:26687361

  14. Ascorbic Acid and BSA Protein in Solution and Films: Interaction and Surface Morphological Structure

    Rafael R. G. Maciel

    2013-01-01

    Full Text Available This paper reports on the study of the interactions between ascorbic acid (AA and bovine serum albumin (BSA in aqueous solution as well as in films (BSA/AA films prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, , determined for aggregates from BSA and AA was found to be about 102 M−1, which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state.

  15. Quantitative evaluation of proteins with bicinchoninic acid (BCA): resonance Raman and surface-enhanced resonance Raman scattering-based methods.

    Chen, Lei; Yu, Zhi; Lee, Youngju; Wang, Xu; Zhao, Bing; Jung, Young Mee

    2012-12-21

    A rapid and highly sensitive bicinchoninic acid (BCA) reagent-based protein quantitation tool was developed using competitive resonance Raman (RR) and surface-enhanced resonance Raman scattering (SERRS) methods. A chelation reaction between BCA and Cu(+), which is reduced by protein in an alkaline environment, is exploited to create a BCA-Cu(+) complex that has strong RR and SERRS activities. Using these methods, protein concentrations in solutions can be quantitatively measured at concentrations as low as 50 μg mL(-1) and 10 pg mL(-1). There are many advantages of using RR and SERRS-based assays. These assays exhibit a much wider linear concentration range and provide an additional one (RR method) to four (SERRS method) orders of magnitude increase in detection limits relative to UV-based methods. Protein-to-protein variation is determined using a reference to a standard curve at concentrations of BSA that exhibits excellent recoveries. These novel methods are extremely accurate in detecting total protein concentrations in solution. This improvement in protein detection sensitivity could yield advances in the biological sciences and medical diagnostic field and extend the applications of reagent-based protein assay techniques. PMID:23099478

  16. Binding Interactions Between α-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance

    Diemer, Silja Kej; Svensson, Birte; Babol, Linnéa N.;

    2012-01-01

    Interactions between milk proteins and α-glucans at pH 4.0–5.5 were investigated by use of surface plasmon resonance. The α-glucans were synthesised with glucansucrase enzymes from Lactobacillus reuteri strains ATCC-55730, 180, ML1 and 121. Variations in the molecular characteristics of the α...

  17. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species. PMID:27283856

  18. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  19. Stable Surface Expression of a Gene for Helicobacter pylori Toxic Porin Protein with pBAD Expression System

    Zhixiang PENG; Xi WEI; Zhengmei LIN

    2009-01-01

    successive passages could express Hope protein, while only 1 from 5 E. coli colonies that contained lac operon-regulated plasmid encoding hopE gene could express HopE. Indi-rect immunofluorescence confirmed the expression of HopE on E. coli cell surface.

  20. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins.

    Van der Vaart, J M; te Biesebeke, R; Chapman, J W; Toschka, H Y; Klis, F M; Verrips, C T

    1997-01-01

    The carboxyl-terminal regions of five cell wall proteins (Cwp1p, Cwp2p, Ag alpha 1p, Tip1p, and Flo1p) and three potential cell wall proteins (Sed1p, YCR89w, and Tir1p) all proved capable of immobilizing alpha-galactosidase in the cell wall of Saccharomyces cerevisiae. The fraction of the total amount of fusion protein that was localized to the cell wall varied depending on the anchor domain used. The highest proportion of cell wall incorporation was achieved with Cwp2p, Ag alpha 1p, or Sed1p as an anchor. Although 80% of these fusion proteins were incorporated in the cell wall, the total production of alpha-galactosidase-Ag alpha 1p was sixfold lower than that of alpha-galactosidase-Cwp2p and eightfold lower than that of alpha-galactosidase-Sed1p. Differences in mRNA levels were not responsible for this discrepancy, nor was an intracellular accumulation of alpha-galactosidase-Ag alpha 1p detectable. A lower translation efficiency of the alpha-galactosidase-AG alpha 1 fusion construct is most likely to be responsible for the low level of protein production. alpha-Galactosidase immobilized by the carboxyl-terminal 67 amino acids of Cwp2p was most effective in the hydrolysis of the high-molecular-weight substrate guar gum from Cyamopsis tetragonoloba. This indicates that the use of a large anchoring domain does not necessarily result in a better exposure of the immobilized enzyme to the exterior of the yeast cell. PMID:9023939

  1. A protective surface protein from type V group B streptococci shares N-terminal sequence homology with the alpha C protein.

    Lachenauer, C S; Madoff, L C

    1996-01-01

    Infection by group B streptococci (GBS) is an important cause of bacterial disease in neonates, pregnant women, and nonpregnant adults. Historically, serotypes Ia, Ib, II, and III have been most prevalent among disease cases; recently, type V strains have emerged as important strains in the United States and elsewhere. In addition to type-specific capsular polysaccharides, many GBS strains possess surface proteins which demonstrate a laddering pattern on sodium dodecyl sulfate-polyacrylamide ...

  2. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    Lösche, M.; Erdelen, C.; Rump, E.; Ringsdorf, H.; Kjær, K.; Vaknin, D.

    The structure of monomolecular layers of the protein streptavidin, specifically bound to biotin-functionalized lipid monolayers at aqueous surfaces, has been characterized. Neutron and X-ray reflectivity measurements allowed an assessment of the organization of these self-assembled systems with...... molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...

  3. Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    Catalayud, M P; Raffa, V; Riggio, C; Ibarra, M R; Goya, G F

    2014-01-01

    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the...

  4. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-04-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.

  5. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures

    1980-01-01

    A 68,000 mol wt polypeptide has been identified as one of the few major proteins in the microfilament bundles of the microvilli present on intestinal epithelial cells. Antibodies against the purified protein have been used in indirect immunofluorescence microscopy on several cultured cells. The protein have been used in indirect immunofluorescence microscopy on several cultured cells. The protein is found particularly prominent in membrane ruffles, microspikes, and microvilli.

  6. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes. PMID:27106502

  7. Surface reengineering of RPA70N enables cocrystallization with an inhibitor of the replication protein A interaction motif of ATR interacting protein.

    Feldkamp, Michael D; Frank, Andreas O; Kennedy, J Phillip; Patrone, James D; Vangamudi, Bhavatarini; Waterson, Alex G; Fesik, Stephen W; Chazin, Walter J

    2013-09-17

    Replication protein A (RPA) is the primary single-stranded DNA (ssDNA) binding protein in eukaryotes. The N-terminal domain of the RPA70 subunit (RPA70N) interacts via a basic cleft with a wide range of DNA processing proteins, including several that regulate DNA damage response and repair. Small molecule inhibitors that disrupt these protein-protein interactions are therefore of interest as chemical probes of these critical DNA processing pathways and as inhibitors to counter the upregulation of DNA damage response and repair associated with treatment of cancer patients with radiation or DNA-damaging agents. Determination of three-dimensional structures of protein-ligand complexes is an important step for elaboration of small molecule inhibitors. However, although crystal structures of free RPA70N and an RPA70N-peptide fusion construct have been reported, RPA70N-inhibitor complexes have been recalcitrant to crystallization. Analysis of the P61 lattice of RPA70N crystals led us to hypothesize that the ligand-binding surface was occluded. Surface reengineering to alter key crystal lattice contacts led to the design of RPA70N E7R, E100R, and E7R/E100R mutants. These mutants crystallized in a P212121 lattice that clearly had significant solvent channels open to the critical basic cleft. Analysis of X-ray crystal structures, target peptide binding affinities, and (15)N-(1)H heteronuclear single-quantum coherence nuclear magnetic resonance spectra showed that the mutations do not result in perturbations of the RPA70N ligand-binding surface. The success of the design was demonstrated by determining the structure of RPA70N E7R soaked with a ligand discovered in a previously reported molecular fragment screen. A fluorescence anisotropy competition binding assay revealed this compound can inhibit the interaction of RPA70N with the peptide binding motif from the DNA damage response protein ATRIP. The implications of the results are discussed in the context of ongoing efforts

  8. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin [(Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA]. Immunoprecipitation of SIg from the detergent soluble fraction of 35S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal

  9. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein-Ligand Equilibrium Dissociation Constant Determinations

    Pedro, Liliana; Van Voorhis, Wesley C.; Quinn, Ronald J.

    2016-05-01

    Electrospray ionization mass spectrometry (ESI-MS) binding studies between proteins and ligands under native conditions require that instrumental ESI source conditions are optimized if relative solution-phase equilibrium concentrations between the protein-ligand complex and free protein are to be retained. Instrumental ESI source conditions that simultaneously maximize the relative ionization efficiency of the protein-ligand complex over free protein and minimize the protein-ligand complex dissociation during the ESI process and the transfer from atmospheric pressure to vacuum are generally specific for each protein-ligand system and should be established when an accurate equilibrium dissociation constant (KD) is to be determined via titration. In this paper, a straightforward and systematic approach for ESI source optimization is presented. The method uses statistical design of experiments (DOE) in conjunction with response surface methodology (RSM) and is demonstrated for the complexes between Plasmodium vivax guanylate kinase (PvGK) and two ligands: 5'-guanosine monophosphate (GMP) and 5'-guanosine diphosphate (GDP). It was verified that even though the ligands are structurally similar, the most appropriate ESI conditions for KD determination by titration are different for each.

  10. Plasmodium falciparum Merozoite Surface Protein-1 Polymorphisms among Asymptomatic Sickle Cell Anemia Patients in Nigeria.

    Bamidele Abiodun, Iwalokun; Oluwadun, Afolabi; Olugbenga Ayoola, Aina; Senapon Olusola, Iwalokun

    2016-01-01

    Asymptomatic malaria (ASM) has been implicated in the development of hemolytic crisis in infected sickle cell anemia (SCA) patients worldwide. This study surveyed steady state SCA Nigerian patients for ASM to investigate the influence of malaria prevention behaviors and age on parasitaemia and multiplicity of infection (MOI). A total of 78 steady SCA patients aged 5 - 27 years on routine care at three health facilities in Lagos were investigated for ASM by light microscopy and PCR with a multiplicity of infection determined by genotyping block 2 of merozoite surface protein 1 (msp1) gene of Plasmodium falciparum (P. falciparum). Use of malaria prevention measures was captured using a semi-structured questionnaire. The prevalence rates of ASM (due to Pf only) by microscopy and PCR were found to be 27.3% and 47.4% respectively (P < 0.05) with a Mean + SEM parasite density of 2238.4 + 464.3 parasites/uL. Five distinct msp1 genotypes [K1 (2), MAD20 (2), RO33 (1)] were detected and significant (P<0.05) disparity in allele frequencies (K1, 91.8%, MAD20, 32.4%; RO33, 18.9%) was found. The overall MOI was 1.43 and 37.8% of infections were polyclonal (P<0.05). ASM was associated with non-use of preventive measures and occurred in 62.1% of SCA patients aged < 10y with lower MOI of 1.3 compared to 38.1% in older patients with a higher MOI of 1.5 (P<0.05). We conclude that PCR improved the diagnosis of ASM among Nigerian SCA patients with infections being of low complexity and associated with non-use of preventive interventions and R033 msp1 allele selection. PMID:26853290

  11. Plasmodium falciparum Merozoite Surface Protein-1 Polymorphisms among Asymptomatic Sickle Cell Anemia Patients in Nigeria

    Iwalokun Bamidele Abiodun

    2016-01-01

    Full Text Available Asymptomatic malaria (ASM has been implicated in the development of hemolytic crisis in infected sickle cell anemia (SCA patients worldwide. This study surveyed steady state SCA Nigerian patients for ASM to investigate the influence of malaria prevention behaviors and age on parasitaemia and multiplicity of infection (MOI. A total of 78 steady SCA patients aged 5 – 27 years on routine care at three health facilities in Lagos were investigated for ASM by light microscopy and PCR with a multiplicity of infection determined by genotyping block 2 of merozoite surface protein 1 (msp1 gene of Plasmodium falciparum (P. falciparum. Use of malaria prevention measures was captured using a semi-structured questionnaire. The prevalence rates of ASM (due to Pf only by microscopy and PCR were found to be 27.3% and 47.4% respectively (P < 0.05 with a Mean + SEM parasite density of 2238.4 + 464.3 parasites/uL. Five distinct msp1 genotypes [K1 (2, MAD20 (2, RO33 (1] were detected and significant (P<0.05 disparity in allele frequencies (K1, 91.8%, MAD20, 32.4%; RO33, 18.9% was found. The overall MOI was 1.43 and 37.8% of infections were polyclonal (P<0.05. ASM was associated with non-use of preventive measures and occurred in 62.1% of SCA patients aged < 10y with lower MOI of 1.3 compared to 38.1% in older patients with a higher MOI of 1.5 (P<0.05. We conclude that PCR improved the diagnosis of ASM among Nigerian SCA patients with infections being of low complexity and associated with non-use of preventive interventions and R033 msp1 allele selection.

  12. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Joseph P R O Orgel

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  13. Effect of proteins on the surface microstructure evolution of a CoCrMo alloy in bio-tribocorrosion processes.

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2016-09-01

    Under tribological contact, the subsurface microstructure of CoCrMo alloys for artificial joint implants can be changed and affect the life and safety of such devices. As one of the most important and abundant components in the synovial fluid, proteins play a key role in affecting the bio-tribocorrosion behaviors of metal implants. The effect of proteins on the subsurface microstructure evolution of a CoCrMo alloy was investigated using a transmission electron microscope (TEM) in this study. The result shows that proteins have two main effects on the subsurface's evolution: forming a multilayered structure and causing severer subsurface deformation. The tribo-film can protect the passive film from scrapping, and then the passive film can reduce or even suppress the stacking fault annihilation by blocking the access to the metal surface. It leads to the stacking fault being diffused towards the deeper area and a strain accumulation in the subsurface, before inducing a severer deformation. On the other hand, the effect of proteins results in the location changing from the top surface to be underneath the top surface, where the maximum frictional shear stress occurs. This can cause a deeper deformation. PMID:27182652

  14. Sequence and epitope analysis of surface proteins of avian influenza H5N1 viruses from Asian patients

    LI Guanglin; TAO Shiheng; WANG Xiujie

    2006-01-01

    Increasing cases of human infections with the high pathogenic avian influenza virus H5N1 have raised great concern on potential human flu pandemics caused by H5N1. The two viral surface glycoproteins, the hemagglutinin (HA) and the neuraminidase (NA) proteins, are major antigens of H5N1. Introducing new mutations on these two proteins is the major strategy used by H5N1 to expand host range and to avoid the recognition of host immune systems. We analyzed the two surface proteins of H5N1 from Asian human patients and identified many new mutation sites, including a few that were unique to certain lethal strains. We also analyzed the distribution of mutations on different epitopes of the two surface proteins. A receptor-binding site that might involve in the determination of host specificity of H5N1 was also found. Results reported here provided information for better understanding of the evolution trend of H5N1 genome in human.

  15. Aqueous amino acids and proteins near solid surfaces: ZnO, ZnS, Au, and mica

    Cieplak, Marek

    2015-03-01

    We calculate potentials of the mean force for 20 amino acids in the vicinity of the (111) surface of Au, four surfaces of ZnO, and the (110) surface of ZnS using molecular dynamics simulations combined with the umbrella sampling method. In the case of Au, we compare results obtained within three different force fields: one hydrophobic (for a contaminated surface) and two hydrophilic - with and without polarization of the solid. The properties of water near the surface sensitively depend on the force field. All of these fields lead to good binding with very different specificities and to unlike patterns in the density and polarization of water. We demonstrate that binding energies of dipeptides are distinct from the combined binding energies of their amino acidic components. We show that ZnS is more more hydrophobic than ZnO and that the density profile of water is quite different than that forming near ZnO - it has only a minor articulation into layers. Furthermore, the first layer of water is disordered and mobile. In the case of ZnS, not all amino acids can attach to the surface and when they do, the binding energies are comparable to those found for the surfaces of ZnO (and to hydrogen bonds in proteins) but the nature of the specificity is distinct. The covalent bond with the sulfur atom on cysteine is modeled by the Morse potential. For the hydrophobic Au, adsorption events of a small protein (the tryptophan cage) are driven by attraction to the strongest binding amino acids. This is not so for ZnO, ZnS and for the hydrophilic models of Au - a result of smaller specificities combined with the difficulty for proteins, but sometimes not for single amino acids, to penetrate the first layer of water. Molecular dynamics studies of several proteins near mica with a net charge on its surface indicate existence of two types of states: deformed and unfolded. Using a coarse-grained model, we also study a glassy behavior of protein layers at air-water interfaces. Polish

  16. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    Shaw, Wendy J.

    2015-09-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area..

  17. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32

    Sugiyama Hideaki

    2011-05-01

    Full Text Available Abstract Background Elevated numbers of regulatory T cells (Tregs have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32, also known as Glycoprotein A Repetitions Predominant (GARP, has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  18. Optimization for Ultrasound-assisted Calcium Hydroxide Extraction of Protein from Shrimp Waste using Response Surface Methodology

    Xiaopeng Cui

    2014-02-01

    Full Text Available Each year a considerable number of shrimp wastes were discarded. It caused a waste of resources, but also led to environmental pollution. In order to make a reasonable use of shrimp waste, protein was extracted from Vannamei waste by calcium hydroxide and ultrasonic-assisted, then used response surface methodology to optimize experiments to find the optimum extraction method. The optimal condition, predicted protein extraction rate of 37%, was obtained under the optimum conditions of the extraction time of 81 min, the extraction temperature of 60.00°C and the extraction concentration of 0.18 g/g dry matter.

  19. Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein

    Kobayashi, Keiko; Kawabata, Masuyo; Hisano, Keizo; Kazama, Tomohiko; Matsuoka, Ken; Sugita, Mamoru; Nakamura, Takahiro

    2011-01-01

    The expressions of chloroplast and mitochondria genes are tightly controlled by numerous nuclear-encoded proteins, mainly at the post-transcriptional level. Recent analyses have identified a large, plant-specific family of pentatricopeptide repeat (PPR) motif-containing proteins that are exclusively involved in RNA metabolism of organelle genes via sequence-specific RNA binding. A tandem array of PPR motifs within the protein is believed to facilitate the RNA interaction, although little is k...

  20. Antifouling Surfaces for Proteins Labeled with Dye-Doped Silica Nanoparticles

    Wang, Hui; Tong, Qi; Yan, Mingdi

    2012-01-01

    We report that proteins labeled with fluorescein-doped silica nanoparticles (FSNPs) showed drastically different fouling behavior than those labeled with the fluorescein dye. Arrays of polymer films were covalently immobilized on silicon wafers, and were treated with protein conjugated on FSNPs. Fluorescence imaging showed that the protein-FSNP conjugate adsorbed strongly on hydrophilic polymers such as poly(ethylene oxide) (PEO) and weakly on hydrophobic polymers such as polystyrene (PS), an...

  1. Functional test of PCDHB11, the most human-specific neuronal surface protein

    de Freitas, Guilherme Braga; Gonçalves, Rafaella Araújo; Gralle, Matthias

    2016-01-01

    Background Brain-expressed proteins that have undergone functional change during human evolution may contribute to human cognitive capacities, and may also leave us vulnerable to specifically human diseases, such as schizophrenia, autism or Alzheimer’s disease. In order to search systematically for those proteins that have changed the most during human evolution and that might contribute to brain function and pathology, all proteins with orthologs in chimpanzee, orangutan and rhesus macaque a...

  2. Deposition of dairy protein-containing fluids on heat exchange surfaces.

    Rakes, P A; Swartzel, K R; Jones, V A

    1986-12-01

    The deposition behavior of milk and dairy protein model systems under turbulent flow conditions (Re > 66,700) was observed in the heating sections of a tubular ultra-high temperature processing unit. This phenomenon was monitored via thermal resistance of the deposit in four segments in each of two shell-and-tube heat exchangers. Model systems were comprised of mixtures of sodium caseinate, whey proteins, salts, lactose, and fat. Fouling rates varied with type of milk protein, heater wall temperature, and location in the heat exchangers. The relationship between deposition rate in the heat exchanger and protein denaturation kinetics was also examined. PMID:20568219

  3. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. PMID:27251945

  4. Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein.

    Turner, David P J; Wooldridge, Karl G; Ala'Aldeen, Dlawer A A

    2002-08-01

    Several autotransporter proteins have previously been identified in Neisseria meningitidis. Using molecular features common to most members of the autotransporter family of proteins, we have identified an additional novel ca. 112-kDa autotransporter protein in the meningococcal genomic sequence data. This protein, designated autotransported serine protease A (AspA), has significant N-terminal homology to the secreted serine proteases (subtilases) from several organisms and contains a serine protease catalytic triad. The amino acid sequence of AspA is well-conserved in serogroup A, B, and C meningococci. In Neisseria gonorrhoeae, the AspA homologue appears to be a pseudogene. The gene encoding AspA was cloned and expressed from meningococcal strain MC58 (B15:P1.16b). Anti-AspA antibodies were detected in patients' convalescent-phase sera, suggesting that AspA is expressed in vivo during infection and is immunogenic and cross-reactive. Rabbit polyclonal monospecific anti-AspA serum was used to probe whole-cell proteins from a panel of wild-type meningococcal strains and two AspA mutant strains. Expression of the ca. 112-kDa precursor polypeptide was detected in 12 of 20 wild-type meningococcal strains examined, suggesting that AspA expression is phase variable. Immunogold electron microscopy and cellular fractionation studies showed that the AspA precursor is transported to the outer membrane and remains surface exposed. Western blot experiments confirmed that smaller, ca. 68- or 70-kDa components of AspA (AspA68 and AspA70, respectively) are then secreted into the meningococcal culture supernatant. Site-directed mutagenesis of S426 abolished secretion of both rAspA68 and rAspA70 in Escherichia coli, confirming that AspA is an autocleaved autotransporter protein. In conclusion, we characterized a novel, surface-exposed and secreted, immunogenic, meningococcal autotransporter protein. PMID:12117956

  5. Fuzzy Clustering-Based Modeling of Surface Interactions and Emulsions of Selected Whey Protein Concentrate Combined to i-Carrageenan and Gum Arabic Solutions

    Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties (surface tension, interfacial tension, emulsion activity index “EAI” and emulsion stability index “ESI”) of 4% whey protein concentrate (WPC) in a combination with '- carrageenan (0.05%, 0.1%, and 0.5...

  6. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

    Dickson Joseph

    2014-09-01

    Full Text Available The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles.

  7. Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula.

    Kelly, Grace M; O'Mahony, James A; Kelly, Alan L; O'Callaghan, Donal J

    2016-09-01

    Physical properties of spray-dried dairy powders depend on their composition and physical characteristics. This study investigated the effect of hydrolyzed whey protein on the microstructure and physical stability of dried model infant formula. Model infant formulas were produced containing either intact (DH 0) or hydrolyzed (DH 12) whey protein, where DH=degree of hydrolysis (%). Before spray drying, apparent viscosities of liquid feeds (at 55°C) at a shear rate of 500 s(-1) were 3.02 and 3.85 mPa·s for intact and hydrolyzed infant formulas, respectively. On reconstitution, powders with hydrolyzed whey protein had a significantly higher fat globule size and lower emulsion stability than intact whey protein powder. Lactose crystallization in powders occurred at higher relative humidity for hydrolyzed formula. The Guggenheim-Anderson-de Boer equation, fitted to sorption isotherms, showed increased monolayer moisture when intact protein was present. As expected, glass transition decreased significantly with increasing water content. Partial hydrolysis of whey protein in model infant formula resulted in altered powder particle surface morphology, lactose crystallization properties, and storage stability. PMID:27320674

  8. Rat serum proteins and nutritional quality of full-fat soy flour: application of response surface methodology.

    Buassi, N

    1987-06-01

    A study was conducted to diagnose nutritional status by determining total serum proteins and electrophoretic patterns of protein reserves. Serum proteins are affected by privation of several amino acids. The purpose of the present research work was to evaluate protein quality of full-fat soy flour (FFSF) obtained from various hydrothermal processes by measuring changes in the serum proteins of Wistar rats. Response surface methodology was used as tool to determine the optimum conditions of hydrothermal process. The mean values of total serum proteins for the experimental group fed treated FFSF, were beta 0 = 5.12 +/- 0.13 g%; for the untreated FFSF group, C1 = 4.60 +/- 0.28 g%, and for the control group fed casein, C2 = 5.63 +/- 0.33 g%. All these values differ at 5% of significance (p less than or equal to 0.05). Results confirmed that treated full-fat soy flour is nutritionally superior to untreated FFSF, but not to casein. PMID:3455183

  9. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... domain is directly involved in the molecular contact with uPA. The receptor binds uPA as well as its proenzyme, pro-uPA, in such a manner that the activation cascade can occur directly on the cell surface. Furthermore, the activation rates are enhanced relative to the situation in solution, probably due...

  10. Elastic response of a protein monolayer adsorbed at decorated water surface

    Singh, Amarjeet; Konovalov, Oleg

    2015-05-01

    Under the in-plane isothermal compression the self-assembled protein monolayer expand in the direction perpendicular to the applied force as a function of applied compression. The structure finally buckle beyond a critical compression, which finally returns to the initial structure when the compression force was removed, behaving like an elastic body. We modelled the layer as homogeneous elastic medium and calculated elastic constants. Young's modulus of the protein layer is 2 orders of magnitude smaller than the bulk lysozyme crystals. It is of fundamental significance to be able to predict the elastic properties of the proteins at air-water interface since protein remains in their natural environment unlike protein crystals.

  11. Surface enhanced Raman scattering investigation of protein-bound flavin adenine dinucleotide structure

    Maskevich, S. A.; Strekal, N. D.; Artsukevich, I. M.; Kivach, L. N.; Chernikevich, I. P.

    1995-04-01

    The SERS spectra of alcohol oxidase from Pichia pastoris adsorbed on a silver electrode were obtained. The similarities and differences of these spectra with the SERS spectrum of free flavin adenine dinucleiotide were considered. The dependence of relative intensity of 1258 cm -1 band from the electrode potential in the protein SERS spectra differed from that of free flavin. From the data on this band being sensitive to the protein-flavin interaction a suggestion was made about incomplete dissociation of flavin from the protein. This conclusion is confirmed both by the fluorescence data and the SERS data on alcohol oxidase purified from Candida boidinii. The results of the SERS investigation of the interaction between the substrate, ethanol and the cofactor, FAD, as well as between protein-bound cofactor with the substrate are presented. The problem of retaining the protein enzyme activity is discussed.

  12. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C ter...

  13. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  14. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV in Shrimp.

    Vorawit Ananphongmanee

    Full Text Available Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7 and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1 promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7 and partial VP28 (pVP28 were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against

  15. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons

    Branch OraLee H

    2010-05-01

    Full Text Available Abstract Background Plasmodium falciparum Merozoite Surface Protein-6 (PfMSP6 is a component of the complex proteinacious coat that surrounds P. falciparum merozoites. This location, and the presence of anti-PfMSP6 antibodies in P. falciparum-exposed individuals, makes PfMSP6 a potential blood stage vaccine target. However, genetic diversity has proven to be a major hurdle for vaccines targeting other blood stage P. falciparum antigens, and few endemic field studies assessing PfMSP6 gene diversity have been conducted. This study follows PfMSP6 diversity in the Peruvian Amazon from 2003 to 2006 and is the first longitudinal assessment of PfMSP6 sequence dynamics. Methods Parasite DNA was extracted from 506 distinct P. falciparum infections spanning the transmission seasons from 2003 to 2006 as part of the Malaria Immunology and Genetics in the Amazon (MIGIA cohort study near Iquitos, Peru. PfMSP6 was amplified from each sample using a nested PCR protocol, genotyped for allele class by agarose gel electrophoresis, and sequenced to detect diversity. Allele frequencies were analysed using JMP v.8.0.1.0 and correlated with clinical and epidemiological data collected as part of the MIGIA project. Results Both PfMSP6 allele classes, K1-like and 3D7-like, were detected at the study site, confirming that both are globally distributed. Allele frequencies varied significantly between transmission seasons, with 3D7-class alleles dominating and K1-class alleles nearly disappearing in 2005 and 2006. There was a significant association between allele class and village location (p-value = 0.0008, but no statistically significant association between allele class and age, sex, or symptom status. No intra-allele class sequence diversity was detected. Conclusions Both PfMSP6 allele classes are globally distributed, and this study shows that allele frequencies can fluctuate significantly between communities separated by only a few kilometres, and over time in the

  16. Development of single chain variable fragment (scFv) antibodies against surface proteins of 'Ca. Liberibacter asiaticus'.

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Minenkova, Olga; Hartung, John

    2016-03-01

    'Candidatus Liberibacter asiaticus' is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vector, pKM19. The antibody population is enriched for antibodies that bind antigens of 'Ca. Liberibacter asiaticus'. The primary library has more than 10(7) unique antibodies and the genes that encode them. We have screened this library for antibodies that bind to specifically-chosen proteins that are present on the surface of 'Ca. Liberibacter asiaticus'. These proteins were used as targets for affinity-based selection of scFvs that bind to the major outer membrane protein, OmpA; the polysaccharide capsule protein KpsF; a protein component of the type IV pilus (CapF); and, two flagellar proteins FlhA and FlgI. These scFvs have been used in ELISA and dot blot assays against purified protein antigens and 'Ca. Liberibacter asiaticus' infected plant extracts. We have also recloned many of these scFvs into a plasmid expression vector designed for the production of scFvs. Screening of these scFvs was more efficient when phage-bound, rather than soluble scFvs, were used. We have demonstrated a technology to produce antibodies at will and against any protein target encoded by 'Ca. Liberibacter asiaticus'. Applications could include advanced diagnostic methods for huanglongbing and the development of immune labeling reagents for in planta applications. PMID:26744234

  17. Approach to Interfacial and Intramolecular Electron Transfer of the Diheme Protein Cytochrome c(4) Assembled on Au(111) Surfaces

    Chi, Qijin; Zhang, Jingdong; Taner, Arslan;

    2010-01-01

    two-center proteins are simple enough to offer complete communication networks. At the same time, multicenter redox proteins operate in membrane environments where conformational dynamics may lead to gated ET features different from conditions in homogeneous solution. The bacterial respiratory diheme...... protein Pseudomonas stutzeri cytochrome c(4) has been a target for intramolecular, interheme ET. We report here voltammetric and in situ scanning tunneling microscopy (STM) data for P. stutzeri cyt c(4) at single-crystal, atomically planar Au(111)-electrode surfaces modified by variable-length omega...... is understandable due to the through-space, hydrogen-bonded electronic contact between the heme propionates which is highly sensitive to environmental configurational fluctuations....

  18. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang;

    2006-01-01

    In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which...... minimal and proteins could be imaged without detectable tip interference. The results indicate further that the structural sensitivity of (in situ) STM depends to a significant extent on associated electron transfer kinetics. In the present case, the heme group does not contribute significantly to the...... tunnelling current, apparently due to slow electron transfer kinetics. As a consequence, STM images of heme-containing and heme-free MOP-C did not reveal any notable differences in apparent height or physical extension. The apparent height of heme-containing MOP-C did not show any dependence on the substrate...

  19. Optimization of protein production by Geotrichum candidum MIUG 2.15 by cultivation on paper residues, using response surface methodology

    Gigi Coman

    2012-11-01

    Full Text Available Response surface methodology (RSM based on the 23 factorial central composite design (CCD was used to optimize the biotechnological conditions for growth and protein production by a selected fungal strain Geotrichum candidum MIUG 2.15, by solid-state cultivation on a semisolid medium based on a mixture of paper residues, i.e. office paper, newspaper, and cardboard, mixed in a ratio of 1:1:1(w/w, supplemented with cheese whey waste and complex manure. Three independent variables, the solid:liquid ratio, the concentration of complex manure, and cultivation time, were evaluated to determine their correlative effect on biomass production and protein biosynthesis. The optimal conditions for obtaining a maximum protein yield of 9.53% w/w dry mass were the following: the complex manure concentration of 0.5%, the solid:liquid ratio of 1:5, and the growth time of 10 days.

  20. Binding Interactions Between alpha-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance

    Diemer, Silja K.; Svensson, Birte; Babol, Linnea N.; Cockburn, Darrell; Grijpstra, Pieter; Dijkhuizen, Lubbert; Folkenberg, Ditte M.; Garrigues, Christel; Ipsen, Richard H.

    2012-01-01

    Interactions between milk proteins and alpha-glucans at pH 4.0-5.5 were investigated by use of surface plasmon resonance. The alpha-glucans were synthesised with glucansucrase enzymes from Lactobacillus reuteri strains ATCC-55730, 180, ML1 and 121. Variations in the molecular characteristics of the alpha-glucans, such as molecular weight, linkage type and degree of branching, influenced the interactions with native and denatured beta-lactoglobulin and kappa-casein. The highest overall binding...

  1. Neural progenitor differentiation patterns of surface and secreted proteins for cell-replacement therapies of neuronal disorders

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    Split : Mediterranean Institute for life Sciences, 2015. s. 1-1. [OMICs in Biomedical Research. 08.06.2015-12.06.2015, Split] R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : neuronal differentiation * surface N-glycoproteome * cell adhesion proteins Subject RIV: EB - Genetics ; Molecular Biology

  2. The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar

    Goode, K. R.; Bowen, J.; Akhtar, N; Robbins, P. T.; Fryer, P. J.

    2013-01-01

    The formation of fouling deposit from foods and food components is a severe problem in food processing and leads to frequent cleaning. The design of surfaces that resist fouling may decrease the need for cleaning and thus increase efficiency. Atomic force microscopy has been used to measure adhesion forces between stainless steel (SS) and fluoro-coated glass (FCG) microparticles and the model food deposits (i) whey protein (WPC), (ii) sweetened condensed milk, and (iii) caramel. Measurements ...

  3. Characterization of proteins isolated from the sperm surface of boar – sperm-zona pellucida binding receptors

    Zigo, Michal; Jonáková, Věra; Šulc, Miroslav; Postlerová, Pavla

    Praha: Biotechnologický ústav, 2013 - (Pěknicová, J.). s. 19 [XIX. Symposium imunologie a biologie reprodukce s mezinárodní účastí. 23.05.2013-25.05.2013, Třešť] R&D Projects: GA ČR(CZ) GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Keywords : Zona pellucida * Sperm surface protein * 2D-electrophoresis * Glycoproteins Subject RIV: CE - Biochemistry

  4. Characterization of Four Outer Membrane Proteins Involved in Binding Starch to the Cell Surface of Bacteroides thetaiotaomicron

    Shipman, Joseph A.; Berleman, James E.; Salyers, Abigail A.

    2000-01-01

    Bacteroides thetaiotaomicron, a gram-negative obligate anaerobe, utilizes polysaccharides by binding them to its cell surface and allowing cell-associated enzymes to hydrolyze them into digestible fragments. We use the starch utilization system as a model to analyze the initial steps involved in polysaccharide binding and breakdown. In a recent paper, we reported that one of the outer membrane proteins involved, SusG, had starch-degrading activity but was not sufficient for growth on starch. ...

  5. Spread of Enterococcal Surface Protein in Antibiotic Resistant Entero-coccus faecium and Enterococcus faecalis isolates from Urinary Tract Infections

    Kafil, Hossein S; Mobarez, Ashraf M.

    2015-01-01

    Enterococci rank among leading cause of nosocomial bacteremia and urinary tract infection in hospital and community acquired infections. Several traits that may contribute to enhanced virulence have been identified in Enterococci. Extracellular surface protein (Esp) is a virulence factor that contributes in biofilm formation and resistance to environmental stresses. In this study we aimed to determine occurrence of esp in E. faecium and E. faecalis isolates isolated from urinary tract infecti...

  6. Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes

    Noto, Mayumi; Keng, David; Teraoka, Iwao; Arnold, Stephen

    2007-01-01

    The state of adsorbed protein molecules can be examined by comparing the shifts in a narrow line resonance wavelength of transverse electric (TE) and transverse magnetic (TM) whispering gallery modes (WGM) when the molecules adsorb onto a transparent microsphere that houses WGM. In adsorption of bovine serum albumin (BSA) onto an aminopropyl-modified silica microsphere, the TM/TE shift ratio indicated highly anisotropic polarizability of BSA in the direction normal to the surface, most likely...

  7. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples

    Belov, Larissa; Matic, Kieran J.; Hallal, Susannah; Mulligan, Stephen P.; Best, O. Giles; Christopherson, Richard I

    2016-01-01

    Extracellular vesicles (EV) are membranous particles (30–1,000 nm in diameter) secreted by cells. Important biological functions have been attributed to 2 subsets of EV, the exosomes (bud from endosomal membranes) and the microvesicles (MV; bud from plasma membranes). Since both types of particles contain surface proteins derived from their cell of origin, their detection in blood may enable diagnosis and prognosis of disease. We have used an antibody microarray (DotScan) to compare the surfa...

  8. Thickness and morphology of polyelectrolyte coatings on silica surfaces before and after protein exposure studied by atomic force microscopy

    Haselberg, Rob, E-mail: r.haselberg@vu.nl [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Flesch, Frits M. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Boerke, Arjan [Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht (Netherlands); Somsen, Govert W. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2013-05-24

    Graphical abstract: -- Highlights: •Atomic force microscopy is used to characterize polyelectrolyte coatings. •Coating procedure leads to nm-thick layers on a silica surface. •Polyelectrolyte coatings effectively prevent protein adsorption. •AFM provides the high resolution to investigate these thin films. •AFM results support earlier findings obtained with capillary electrophoresis. -- Abstract: Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings

  9. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    Xuan Le

    2013-01-01

    Full Text Available Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.

  10. Hierarchical self-assembly of designed 2x2-alpha-helix bundle proteins on Au(111) surfaces

    Wackerbarth, Hainer; Tofteng, A.P.; Jensen, K.J.;

    2006-01-01

    Self-assembled monolayers of biomolecules on atomically planar surfaces offer the prospect of complex combinations of controlled properties, e. g., for bioelectronics. We have prepared a novel hemi-4-alpha-helix bundle protein by attaching two alpha-helical peptides to a cyclo-dithiothreitol (cyclo......-DTT) template. The protein was de novo designed to self-assemble in solution to form a 4-alpha-helix bundle, whereas the disulfide moiety enables the formation of a self-assembled monolayer on a Au(111) surface by opening of the disulfide, thus giving rise to a two-step self-assembly process. The 2 x 2-alpha......, respectively. The 2 x 2-alpha-helix bundle protein adlayers were imaged by in situ STM. The images indicated a dense monolayer according with the voltammetric data. No long-range order could be detected, but two clearly distinct STM contrasts were assigned to 2 x 2-alpha-helix bundle protein molecules oriented...

  11. Molecular dynamics studies on the NMR structures of rabbit prion protein wild-type and mutants: surface electrostatic charge distributions

    Zhang, Jiapu

    2014-01-01

    Prion is a misfolded protein found in mammals that causes infectious diseases of the nervous system in humans and animals. Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer, elk and humans etc. Recent studies have shown that rabbits have a low susceptibility to be infected by prion diseases with respect to other animals including humans. The present study employs molecular dynamics (MD) means to unravel the mechanism of rabbit prion proteins (RaPrPC) based on the recently available rabbit NMR structures (of the wild-type and its two mutants of two surface residues). The electrostatic charge distributions on the protein surface are the focus when analysing the MD trajectories. It is found that we can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrPC; this may be useful for the medicinal treatment of prion diseases.

  12. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain.

    Xiaohui Zou

    Full Text Available Mycoplasma bovis (M. bovis is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX. Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX. Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL, and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1.

  13. Improvement of surface functionalities, including allergenicity attenuation, of whole buckwheat protein fraction by maillard-type glycation with dextran.

    Tazawa, Shigeru; Katayama, Shigeru; Hirabayashi, Masahiro; Yamaguchi, Daiki; Nakamura, Soichiro

    2014-12-01

    The purpose of the current study was to determine the effects of the introduction of polysaccharide chains onto the molecular surface of buckwheat proteins on buckwheat protein surface functionality. The whole buckwheat protein fraction (WBP) was prepared using 50 mM phosphate buffer (pH 7.5) containing 0.5 M NaCl and covalently linked with 6 kDa, 17.5 kDa, 40 kDa, 70 kDa, or 200 kDa dextran by Maillard-type glycation through controlled dry-heating at 60°C and 79% relative humidity for two weeks. Conjugation with 40 kDa dextran improved the water solubility and emulsifying properties of WBP without causing a serious loss of available lysine; 84.9% of the free amino groups were conserved. In addition, we found that the introduction of dextran chains onto the molecular surfaces of WBP attenuated the antigenicity of WBP. PMID:25580398

  14. Surface Immunolabeling and Consensus Computational Framework To Identify Candidate Rare Outer Membrane Proteins of Treponema pallidum▿ †

    Cox, David L.; Luthra, Amit; Dunham-Ems, Star; Desrosiers, Daniel C.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2010-01-01

    Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's “stealth pathogenicity,” we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection. PMID:20876295

  15. A protein allergen microarray detects specific IgE to pollen surface, cytoplasmic, and commercial allergen extracts.

    Katinka A Vigh-Conrad

    Full Text Available BACKGROUND: Current diagnostics for allergies, such as skin prick and radioallergosorbent tests, do not allow for inexpensive, high-throughput screening of patients. Additionally, extracts used in these methods are made from washed pollen that lacks pollen surface materials that may contain allergens. METHODOLOGY/PRINCIPAL FINDINGS: We sought to develop a high-throughput assay to rapidly measure allergen-specific IgE in sera and to explore the relative allergenicity of different pollen fractions (i.e. surface, cytoplasmic, commercial extracts. To do this, we generated a protein microarray containing surface, cytoplasmic, and commercial extracts from 22 pollen species, commercial extracts from nine non-pollen allergens, and five recombinant allergenic proteins. Pollen surface and cytoplasmic fractions were prepared by extraction into organic solvents and aqueous buffers, respectively. Arrays were incubated with <25 uL of serum from 176 individuals and bound IgE was detected by indirect immunofluorescence, providing a high-throughput measurement of IgE. We demonstrated that the allergen microarray is a reproducible method to measure allergen-specific IgE in small amounts of sera. Using this tool, we demonstrated that specific IgE clusters according to the phylogeny of the allergen source. We also showed that the pollen surface, which has been largely overlooked in the past, contained potent allergens. Although, as a class, cytoplasmic fractions obtained by our pulverization/precipitation method were comparable to commercial extracts, many individual allergens showed significant differences. CONCLUSIONS/SIGNIFICANCE: These results support the hypothesis that protein microarray technology is a useful tool for both research and in the clinic. It could provide a more efficient and less painful alternative to traditionally used skin prick tests, making it economically feasible to compare allergen sensitivity of different populations, monitor individual

  16. S-Layer-Mediated Display of the Immunoglobulin G-Binding Domain of Streptococcal Protein G on the Surface of Caulobacter crescentus: Development of an Immunoactive Reagent▿

    Nomellini, John F.; Duncan, Gillian; Dorocicz, Irene R.; Smit, John

    2007-01-01

    The immunoglobulin G (IgG)-binding streptococcal protein G is often used for immunoprecipitation or immunoadsorption-based assays, as it exhibits binding to a broader spectrum of host species IgG and IgG subclasses than the alternative, Staphylococcus aureus protein A. Caulobacter crescentus produces a hexagonally arranged paracrystalline protein surface layer (S-layer) composed of a single secreted protein, RsaA, that is notably tolerant of heterologous peptide insertions while maintaining t...

  17. Nucleolin: acharan sulfate-binding protein on the surface of cancer cells.

    Joo, E.J.; Dam, G.B. ten; Kuppevelt, A.H.M.S.M. van; Toida, T.; Linhardt, R.J.; Kim, Y.

    2005-01-01

    Glycosaminoglycans (GAGs) are complex polysaccharides that participate in the regulation of physiological processes through the interactions with a wide variety of proteins. Acharan sulfate (AS), isolated from the giant African snail Achatina fulica, primarily consists of the repeating disaccharide

  18. Adsorption of a small protein to a methyl-terminated hydrophobic surfaces

    Otzen, Daniel; Oliveberg, M.; Höök, F.

    2003-01-01

    We have studied the adsorption kinetics of a small monomeric protein S6 using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. Competitive adsorption from various proportions of native (Nat) and denatured (Den) protein in the bulk phase was carried out using a range of...... chemical denaturant concentrations. The ratio between Nat and Den in bulk has a profound affect on the adsorption behavior, most obvious from a significant (one order of magnitude) increase in the rate of a lag– and consolidation–adsorption phase when Nat is the major species present in bulk, signaling...... that these adsorption phases originates from the Den fraction of proteins in the bulk. To determine whether the kinetics of protein unfolding in the bulk phase are rate-limiting for adsorption of Nat, the adsorption kinetics of wildtype S6 with the mutant VA85 (whose unfolding kinetics are around 30...

  19. Influence of preadsorbed milk proteins on adhesion of Listeria monocytogenes to hydrophobic and hydrophilic silica surfaces.

    al-Makhlafi, H; McGuire, J.; Daeschel, M

    1994-01-01

    The adsorption of beta-lactoglobulin, bovine serum albumin, alpha-lactalbumin, and beta-casein for 8 h and beta-lactoglobulin and bovine serum albumin for 1 h at silanized silica surfaces of low and high hydrophobicity, followed by incubation in buffer and contact with Listeria monocytogenes, resulted in different numbers of cells adhered per unit of surface area. Adhesion to both surfaces was greatest when beta-lactoglobulin was present and was lowest when bovine serum albumin was present. P...

  20. The Membrane Receptor for Plasma Retinol Binding Protein, a New Type of Cell-Surface Receptor

    Sun, Hui; KAWAGUCHI, RIKI

    2011-01-01

    Vitamin A is essential for diverse aspects of life ranging from embryogenesis to the proper functioning of most adult organs. Its derivatives (retinoid) have potent biological activities such as regulating cell growth and differentiation. Plasma retinol binding protein (RBP) is the specific vitamin A carrier protein in the blood that binds to vitamin A with high affinity and delivers it to target organs. A large amount of evidence has accumulated over the past decades supporting the existence...

  1. Biochemical and immunological characterization of the surface proteins of Borrelia burgdorferi.

    Luft, B J; Jiang, W.; Munoz, P.; Dattwyler, R J; Gorevic, P D

    1989-01-01

    The immunodominant proteins and glycoproteins of Borrelia burgdorferi were analyzed by one-dimensional (1D) and 2D gel electrophoresis. More than 100 polypeptide species could be detected on silver-stained 2D gels. Separation of sonic extracts of the organism by differential centrifugation (100,000 X g) revealed several of the major proteins to reside predominantly within the pellet fraction. The antigenicity of the individual polypeptides was determined by Western (immuno-) blot analysis wit...

  2. A very fast program for visualizing protein surfaces, channels and cavities

    Voorintholt, Richard; Kosters, M.T.; Vegter, G.; Vriend, Gerrit; Hol, W.G.J.

    1989-01-01

    A method for visualizing molecular surfaces is described that uses a grid to store the distance to the nearest atom. Using on-the-fly three-dimensional (3D) contouring of a molecular graphics program such as FRODO, one can obtain a good impression of van der Waals surfaces and solvent-accessible surfaces. The main advantages of the method described here are its high speed and the fact that no recalculations need to be done to obtain the solvent-accessible surface visualized for a probe with a...

  3. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression.

    Heidi A Crosby

    2016-05-01

    Full Text Available Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD. EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins.

  4. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression

    Crosby, Heidi A.; Schlievert, Patrick M.; Merriman, Joseph A.; King, Jessica M.; Salgado-Pabón, Wilmara; Horswill, Alexander R.

    2016-01-01

    Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD). EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins. PMID:27144398

  5. Double protein functionalized poly-ε-caprolactone surfaces: in depth ToF-SIMS and XPS characterization.

    Desmet, T; Poleunis, C; Delcorte, A; Dubruel, P

    2012-02-01

    In biomaterial research, great attention has focussed on the immobilization of biomolecules with the aim to increase cell-adhesive properties of materials. Many different strategies can be applied. In previously published work, our group focussed on the treatment of poly-ε-caprolactone (PCL) films by an Ar-plasma, followed by the grafting of 2-aminoethyl methacrylate (AEMA) under UV-irradiation. The functional groups introduced, enabled the subsequent covalent immobilisation of gelatin. The obtained coating was finally applied for the physisorption of fibronectin. The successful PCL surface functionalization was preliminary confirmed using XPS, wettability studies, AFM and SEM. In the present article, we report on an in-depth characterization of the materials developed using ToF-SIMS and XPS analysis. The homogeneous AEMA grafting and the subsequent protein coating steps could be confirmed by both XPS and ToF-SIMS. Using ToF-SIMS, it was possible to demonstrate the presence of polymethacrylates on the surface. From peak deconvoluted XPS results (C- and N-peak), the presence of proteins could be confirmed. Using ToF-SIMS, different positive ions, correlating to specific amino-acids could be identified. Importantly, the gelatin and the fibronectin coatings could be qualitatively distinguished. Interestingly for biomedical applications, ethylene oxide sterilization did not affect the surface chemical composition. This research clearly demonstrates the complementarities of XPS and ToF-SIMS in biomedical surface modification research. PMID:22203514

  6. Colloidal stability of gold nanorod solution upon exposure to excised human skin: Effect of surface chemistry and protein adsorption.

    Mahmoud, Nouf N; Al-Qaoud, Khaled M; Al-Bakri, Amal G; Alkilany, Alaaldin M; Khalil, Enam A

    2016-06-01

    In this study, we evaluated the colloidal stability of gold nanorods (with positive, negative and neutral surface charge) in solution upon contact with excised human skin. UV-vis absorption, plasmon peak broadening index (PPBI%) and transmission electron microscope analysis were used to follow nanoparticles aggregation in solution. Our results show that positively charged gold nanorods aggregate extensively upon exposure to excised human skin compared to negatively and neutrally charged gold nanorods. Skin-induced aggregation of cationic gold nanorods was linked to the adsorption of proteins released from the dermis layer to the surface of gold nanorods. Protein adsorption significantly screen nanorod's effective surface charge and induce their aggregation. Moreover, we demonstrate that the presence of polyethylene glycol polymer on the surface of cationic gold nanorods minimize this aggregation significantly by providing steric repulsion (non-electrostatic stabilization mechanism). This work highlights the importance of evaluating the colloidal stability of nanoparticles in solution upon contact with skin, which is a "usually overlooked" parameter when studying the nanoparticle-skin interaction. PMID:26923289

  7. Comparative Study on the Infectivity and Spore Surface Protein of Nosema bombycis and Its Morphological Variant Strain

    HUANG Shao-kang; LU Xing-meng

    2005-01-01

    A new morphological variant strain of microsporidium was produced by infecting the mulberry looper, Hemerophila atrilineata [Phthonandria atrilineata], with Nosema bombycis successively for 24 times, and named 24Nbh. Comparative studies on morphology, infectivity and spore surface protein were conducted. 24Nbh was short and wide, and had a significant difference (P<0.01) over the Nb spores. The infectivity tests conducted on second instar silkworm larvae showed that IC50 of 24Nbh was 1.98× 104 spores mL-1 and of Nb was 1.72× 103 spores mL-1, thus indicating that the infectivity of Nb decreased 11.5 times after multiplying in mulberry looper for 24 times. The IC50 of spores from silkworm infected with 24 Nbh was 6.9 times less than Nb, showing that the infectivity of 24Nbh spores rejuvenated very fast when reinfected to silkworms, further more, the length and width of such spore was larger than 24Nbh (P<0.01) and smaller than Nb (P<0.05).The SDS-PAGE profiles of Nb and 24Nbh were generally the same, 4 distinct proteins of 12, 17, 30, 33 kDa were obtained with difference in quantity. When 120 μg of protein was applied for 2D-PAGE, five suspected different proteins with difference in quantity were observed. These results demonstrate that these differential proteins maybe associated with variation in infectivity of the spores.

  8. Folding free energy surfaces of three small proteins under crowding: validation of the postprocessing method by direct simulation

    We have developed a ‘postprocessing’ method for modeling biochemical processes such as protein folding under crowded conditions (Qin and Zhou 2009 Biophys. J. 97 12–19). In contrast to the direct simulation approach, in which the protein undergoing folding is simulated along with crowders, the postprocessing method requires only the folding simulation without crowders. The influence of the crowders is then obtained by taking conformations from the crowder-free simulation and calculating the free energies of transferring to the crowders. This postprocessing yields the folding free energy surface of the protein under crowding. Here the postprocessing results for the folding of three small proteins under ‘repulsive’ crowding are validated by those obtained previously by the direct simulation approach (Mittal and Best 2010 Biophys. J. 98 315–20). This validation confirms the accuracy of the postprocessing approach and highlights its distinct advantages in modeling biochemical processes under cell-like crowded conditions, such as enabling an atomistic representation of the test proteins. (paper)

  9. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis.

    Hsing-Hui Li

    Full Text Available The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19 proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.

  10. Adjuvant requirement for successful immunization with recombinant derivatives of Plasmodium vivax merozoite surface protein-1 delivered via the intranasal route

    Daniel Y Bargieri

    2007-06-01

    Full Text Available Recently, we generated two bacterial recombinant proteins expressing 89 amino acids of the C-terminal domain of the Plasmodium vivax merozoite surface protein-1 and the hexa-histidine tag (His6MSP1(19. One of these recombinant proteins contained also the amino acid sequence of the universal pan allelic T-cell epitope (His6MSP1(19-PADRE. In the present study, we evaluated the immunogenic properties of these antigens when administered via the intra-nasal route in the presence of distinct adjuvant formulations. We found that C57BL/6 mice immunized with either recombinant proteins in the presence of the adjuvants cholera toxin (CT or the Escherichia coli heat labile toxin (LT developed high and long lasting titers of specific serum antibodies. The induced immune responses reached maximum levels after three immunizing doses with a prevailing IgG1 subclass response. In contrast, mice immunized by intranasal route with His6MSP1(19-PADRE in the presence of the synthetic oligonucleotides adjuvant CpG ODN 1826 developed lower antibody titers but when combined to CT, CpG addition resulted in enhanced IgG responses characterized by lower IgG1 levels. Considering the limitations of antigens formulations that can be used in humans, mucosal adjuvants can be a reliable alternative for the development of new strategies of immunization using recombinant proteins of P. vivax.

  11. Induction of Boosted Immune Response in Mice by Leptospiral Surface Proteins Expressed in Fusion with DnaK

    Marina V. Atzingen

    2014-01-01

    Full Text Available Leptospirosis is an important global disease of human and veterinary concern. Caused by pathogenic Leptospira, the illness was recently classified as an emerging infectious disease. Currently available veterinarian vaccines do not induce long-term protection against infection and do not provide cross-protective immunity. Several studies have suggested the use of DnaK as an antigen in vaccine formulation, due to an exceptional degree of immunogenicity. We focused on four surface proteins: rLIC10368 (Lsa21, rLIC10494, rLIC12690 (Lp95, and rLIC12730, previously shown to be involved in host-pathogen interactions. Our goal was to evaluate the immunogenicity of the proteins genetically fused with DnaK in animal model. The chosen genes were amplified by PCR methodology and cloned into pAE, an E. coli vector. The recombinant proteins were expressed alone or in fusion with DnaK at the N-terminus. Our results demonstrate that leptospiral proteins fused with DnaK have elicited an enhanced immune response in mice when compared to the effect promoted by the individual proteins. The boosted immune effect was demonstrated by the production of total IgG, lymphocyte proliferation, and significant amounts of IL-10 in supernatant of splenocyte cell cultures. We believe that this approach could be employed in vaccines to enhance presentation of antigens of Leptospira to professional immune cells.

  12. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.

    Finlay, John A; Bennett, Stephanie M; Brewer, Lenora H; Sokolova, Anastasiya; Clay, Gemma; Gunari, Nikhil; Meyer, Anne E; Walker, Gilbert C; Wendt, Dean E; Callow, Maureen E; Callow, James A; Detty, Michael R

    2010-08-01

    Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, gamma(C) and surface energies, gamma(S), and duplicated the 'Baier curve'. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with gamma(C) and increased wettability as measured by the static water contact angle, theta(Ws), of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R(2) = 0.74 for percentage removal as a function of theta(Ws) and R(2) = 0.69 for percentage removal as a function of gamma(C)). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with theta(Ws) (R(2) = 0.84) and gamma(C) (R(2) = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes). PMID:20645195

  13. Preparation and characterization of soy protein films with a durable water resistance-adjustable and antimicrobial surface.

    Li, Shuzhao; Donner, Elizabeth; Xiao, Huining; Thompson, Michael; Zhang, Yachuan; Rempel, Curtis; Liu, Qiang

    2016-12-01

    A water resistant surface was first obtained by immobilizing hydrophobic copolymers, poly (styrene-co-glycidyl methacrylate) (PSG), with functional groups on soy protein isolate (SPI) films. XPS and AFM results showed that PSG copolymers were immobilized on the film by chemical bonding, and formed a rough surface with some bumps because of the segregation of two different phases on PSG copolymers. Water resistance of the modified films could be adjusted dramatically by further immobilizing different amounts of guanidine-based antimicrobial polymers, poly (hexamethylene guanidine hydrochloride) (PHMG) on the resulting hydrophobic surface. The introduction of hydrophilic PHMG on the resulting surface generated many micropores, which potentially increased the water uptake of the modified films. Furthermore, the modified SPI films showed higher thermostability compared to native SPI film and broad-spectrum antimicrobial activity by contact killing, attributed to the presence of PHMG on the surface. The modified SPI film with a multi-functional surface showed potential for applications in the packaging and medical fields. PMID:27612790

  14. Interfacial Protein-Protein Associations

    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2013-01-01

    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for ...

  15. Protein Compatible Polymer Brushes on Polymeric Substrates Prepared by Surface-Initiated Transfer Radica Polymerization

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.; Hvilsted, Søren

    2008-01-01

    coating materials. ATR FTIR, water contact angle measurements, Thermal Gravimetric Analysis (TGA), and X-ray Photoelectron Spectroscopy (XPS) confirmed that hydrophilic polymers have been grafted from the surface. The surface topography which was evaluated by Atomic Force Microscopy (AFM) did not change...

  16. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas G.; Kutter, Jörg P.

    " and "ene" monomers present in the microfluidic chip bulk material provides a simple and efficient way of tuning the chip's surface chemistry. Here, thiol-ene chips displaying an excess of functional thiol groups at their surfaces are functionalized with biotin and streptavidin in a controlled fashion...

  17. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas Glasdam; Kutter, Jörg Peter

    ” and “ene” monomers present in the microfluidic chip bulk material provides a simple and efficient way of tuning the chip’s surface chemistry. Here, thiol-ene chips displaying an excess of functional thiol groups at their surfaces are functionalized with biotin and streptavidin in a controlled fashion...

  18. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells.

    Naganbabu, Matharishwan; Perkins, Lydia A; Wang, Yi; Kurish, Jeffery; Schmidt, Brigitte F; Bruchez, Marcel P

    2016-06-15

    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569

  19. Antifouling surfaces for proteins labeled with dye-doped silica nanoparticles.

    Wang, Hui; Tong, Qi; Yan, Mingdi

    2013-01-01

    We report that proteins labeled with fluorescein-doped silica nanoparticles (FSNPs) showed drastically different fouling behavior than those labeled with the fluorescein dye. Arrays of polymer films were covalently immobilized on silicon wafers and were treated with protein conjugated on FSNPs. Fluorescence imaging showed that the protein-FSNP conjugate adsorbed strongly on hydrophilic polymers such as poly(ethylene oxide) (PEO) and weakly on hydrophobic polymers such as polystyrene (PS), and the extent of adsorption decreased with increasing hydrophobicity of the polymer film. Thus, carbohydrate microarrays probed with FSNP-labeled lectin showed significantly enhanced signals when PS was used as the antifouling coating than when PEO was used, or when using bovine serum albumin as the blocking agent. PMID:23236953

  20. Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins

    Cooke, M. J.; Phillips, S R; Shah, D. S. H.; Athey, D.; Lakey, J H; Przyborski, S A

    2008-01-01

    Many factors contribute to the creation and maintenance of a realistic environment for cell growth in vitro, e.g. the consistency of the growth medium, the addition of supplements, and the surface on which the cells grow. The nature of the surface on which cells are cultured plays an important role in their ability to attach, proliferate, migrate and function. Components of the extracellular matrix (ECM) are often used to coat glass or plastic surfaces to enhance cell attachment in vitro. Fra...