WorldWideScience

Sample records for 11b-hydroxysteroid dehydrogenase type

  1. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1.

    Brozic, P; Lanisnik Risner, T; Gobec, S

    2008-01-01

    Carcinogenesis of hormone-related cancers involves hormone-stimulated cell proliferation, which increases the number of cell divisions and the opportunity for random genetic errors. In target tissues, steroid hormones are interconverted between their potent, high affinity forms for their respective receptors and their inactive, low affinity forms. One group of enzymes responsible for these interconversions are the hydroxysteroid dehydrogenases, which regulate ligand access to steroid receptors and thus act at a pre-receptor level. As part of this group, the 17beta-hydroxysteroid dehydrogenases catalyze either oxidation of hydroxyl groups or reduction of keto groups at steroid position C17. The thoroughly characterized 17beta-hydroxysteroid dehydrogenase type 1 activates the less active estrone to estradiol, a potent ligand for estrogen receptors. This isoform is expressed in gonads, where it affects circulating levels of estradiol, and in peripheral tissue, where it regulates ligand occupancy of estrogen receptors. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 are thus highly interesting potential therapeutic agents for the control of estrogen-dependent diseases such as endometriosis, as well as breast and ovarian cancers. Here, we present the review on the recent development of inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 published and patented since the previous review of 17beta-hydroxysteroid dehydrogenase inhibitors of Poirier (Curr. Med. Chem., 2003, 10, 453). These inhibitors are divided into two separate groups according to their chemical structures: steroidal and non-steroidal 17beta-hydroxysteroid dehydrogenase type 1 inhibitors. Their estrogenic/ proliferative activities and selectivities over other 17beta-hydroxysteroid dehydrogenases that are involved in local regulation of estrogen action (types 2, 7 and 12) are also presented. PMID:18220769

  2. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  3. A new type of didhydroorotate dehydrogenase, type 1S, from the thermoacidophilic archaeon Sulfolobus solfataricus

    Sørensen, P. G.; Dandanell, Gert

    2002-01-01

    Dihydroorotate dehydrogenase (DHOD) (EC 1.3.3.1) from the thermoacidophilic archaeon Sulfolobus solfataricus P2 (DSM 1617) was partially purified 3,158-fold, characterized, and the encoding genes identified. Based on enzymological as well as phylogenetic methods, dihydroorotate dehydrogenase from S....... solfataricus (DHODS) represents a new type of DHOD, type 1S. Furthermore, it is unable to use any of the (type-specific) natural electron acceptors employed by all other presently known DHODs. DHODS shows optimal activity at 70°C in the pH range 7-8.5. It is capable of using ferricyanide, 2...

  4. Targeted Disruption of the Inosine 5′-Monophosphate Dehydrogenase Type I Gene in Mice

    Gu, Jing Jin; Tolin, Amy K.; Jain, Jugnu; Huang, Hai; Santiago, Lalaine; Mitchell, Beverly S.

    2003-01-01

    Inosine 5′-monophosphate dehydrogenase (IMPDH) is the critical, rate-limiting enzyme in the de novo biosynthesis pathway for guanine nucleotides. Two separate isoenzymes, designated IMPDH types I and II, contribute to IMPDH activity. An additional pathway salvages guanine through the activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) to supply the cell with guanine nucleotides. In order to better understand the relative contributions of IMPDH types I and II and HPRT to normal b...

  5. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  6. The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution

    Xu, Lin; Law, Simon R.; Murcha, Monika W.; Whelan, James; Carrie, Chris

    2013-01-01

    Background: Type II NAD(PH) dehydrogenases are located on the inner mitochondrial membrane of plants, fungi, protists and some primitive animals. However, recent observations have been made which identify several Arabidopsis type II dehydrogenases as dual targeted proteins. Targeting either mitochondria and peroxisomes or mitochondria and chloroplasts. Results: Members of the ND protein family were identified in various plant species. Phylogenetic analyses and subcellular targeting prediction...

  7. Cortisol Release From Adipose Tissue by 11β-Hydroxysteroid Dehydrogenase Type 1 in Humans

    Stimson, Roland H.; Andersson, Jonas; Andrew, Ruth; Redhead, Doris N.; Karpe, Fredrik; Peter C. Hayes; Olsson, Tommy; Walker, Brian R

    2009-01-01

    OBJECTIVE—11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates cortisol from cortisone. 11β-HSD1 mRNA and activity are increased in vitro in subcutaneous adipose tissue from obese patients. Inhibition of 11β-HSD1 is a promising therapeutic approach in type 2 diabetes. However, release of cortisol by 11β-HSD1 from adipose tissue and its effect on portal vein cortisol concentrations have not been quantified in vivo. RESEARCH DESIGN AND METHODS—Six healthy men underwent 9,11,12,12-[2H]...

  8. Identification of a xanthinuria type I case with mutations of xanthine dehydrogenase in an Afghan child.

    Nakamura, Makiko; Yuichiro, Yamaguchi; Sass, Jörn Oliver; Tomohiro, Matsumura; Schwab, Karl Otfried; Takeshi, Nishino; Tatsuo, Hosoya; Ichida, Kimiyoshi

    2012-12-24

    Xanthinuria due to xanthine dehydrogenase (XDH) deficiency is a rare genetic disorder characterized by hypouricemia and the accumulation of xanthine in the urine. We have identified an Afghan girl whose xanthinuria could be classified as type I xanthinuria based on an allopurinol loading test. Three mutations were identified in the XDH gene, 141insG, C2729T (T910M) and C3886T (R1296W). Site-directed mutagenesis followed by expression analysis in Escherichia coli revealed that not only the frame shift mutation 141insG impairs XDH activity, but also the missense mutation C2729T, while C3886T resulted in major residual activity of about 50% of the wild type. In this report, a case of xanthinuria type I with mutations of XDH was identified and characterized by expression studies. PMID:22981351

  9. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.

    Yamashita, Yuki; Ferri, Stefano; Huynh, Mai Linh; Shimizu, Hitomi; Yamaoka, Hideaki; Sode, Koji

    2013-02-01

    The FAD-dependent glucose dehydrogenase (FADGDH) from Burkholderia cepacia has several attractive features for glucose sensing. However, expanding the application of this enzyme requires improvement of its substrate specificity, especially decreasing its high activity toward maltose. A three-dimensional structural model of the FADGDH catalytic subunit was generated by homology modeling. By comparing the predicted active site with that of glucose oxidase, the two amino acid residues serine 326 and serine 365 were targeted for site-directed mutagenesis. The single mutations that produced the highest glucose specificity were combined, leading to the creation of the S326Q/S365Y double mutant, which was virtually nonreactive to maltose while retaining high glucose dehydrogenase activity. The engineered FADGDH was used to develop a direct electron transfer-type, disposable glucose sensor strip by immobilizing the enzyme complex onto a carbon screen-printed electrode. While the electrode employing wild-type FADGDH provided dangerously flawed results in the presence of maltose, the sensor employing our engineered FADGDH showed a clear glucose concentration-dependent response that was not affected by the presence of maltose. PMID:23273282

  10. Expression of 11beta-hydroxysteroid-dehydrogenase type 2 in human thymus.

    Almanzar, Giovanni; Mayerl, Christina; Seitz, Jan-Christoph; Höfner, Kerstin; Brunner, Andrea; Wild, Vanessa; Jahn, Daniel; Geier, Andreas; Fassnacht, Martin; Prelog, Martina

    2016-06-01

    11beta-hydroxysteroid-dehydrogenase type 2 (11β-HSD2) is a high affinity dehydrogenase which rapidly inactivates physiologically-active glucocorticoids to protect key tissues. 11β-HSD2 expression has been described in peripheral cells of the innate and the adaptive immune system as well as in murine thymus. In absence of knowledge of 11β-HSD2 expression in human thymus, the study aimed to localize 11β-HSD2 in human thymic tissue. Thymic tissue was taken of six healthy, non-immunologically impaired male infants below 12months of age with congenital heart defects who had to undergo correction surgery. 11β-HSD2 protein expression was analyzed by immunohistochemistry and Western blot. Kidney tissue, peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC) were taken as positive controls. Significant expression of 11β-HSD2 protein was found at single cell level in thymus parenchyma, at perivascular sites of capillaries and small vessels penetrating the thymus lobuli and within Hassall's bodies. The present study demonstrates that 11β-HSD2 is expressed in human thymus with predominant perivascular expression and also within Hassall's bodies. To our knowledge, this is the first report confirming 11β-HSD2 expression at the protein level in human thymic tissue underlining a potential role of this enzyme in regulating glucocorticoid function at the thymic level. PMID:27025972

  11. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  12. Glucose-6-phosphate dehydrogenase

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  13. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154→Cys forms of yeast xylitol dehydrogenase

    Klimacek, Mario; Hellmer, Heidemarie; Nidetzky, Bernd

    2007-01-01

    Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.10–0.40 atom/subunit), purified preparations of E154C exhibited a constant catalytic Zn2+ centre activity (kcat) of 1.19±0.03 s−1 and did not require exogenous Zn2+ for activity or stability. E154C retained 0.019±0.003% and 0.74±0.03% of wild-type catalytic efficiency (kcat/Ksorbitol=7800±700 M−1· s−1) and kcat (=161±4 s−1) for NAD+-dependent oxidation of sorbitol at 25 °C respectively. The pH profile of kcat/Ksorbitol for E154C decreased below an apparent pK of 9.1±0.3, reflecting a shift in pK by about +1.7–1.9 pH units compared with the corresponding pH profiles for GmXDH and sheep liver sorbitol dehydrogenase (termed slSDH). The difference in pK for profiles determined in 1H2O and 2H2O solvent was similar and unusually small for all three enzymes (≈+0.2 log units), suggesting that the observed pK in the binary enzyme–NAD+ complexes could be due to Zn2+-bound water. Under conditions eliminating their different pH-dependences, wild-type and mutant GmXDH displayed similar primary and solvent deuterium kinetic isotope effects of 1.7±0.2 (E154C, 1.7±0.1) and 1.9±0.3 (E154C, 2.4±0.2) on kcat/Ksorbitol respectively. Transient kinetic studies of NAD+ reduction and proton release during sorbitol oxidation by slSDH at pH 8.2 show that two protons are lost with a rate constant of 687±12 s−1 in the pre-steady state, which features a turnover of 0.9±0.1 enzyme equivalents as NADH was produced with a rate constant of 409±3 s−1. The

  14. Increased 17ß-hydroxysteroid dehydrogenase type 1 levels in primary cervical cancer.

    Tomaszewska, Agata; Roszak, Andrzej; Pawlik, Piotr; Sajdak, Stefan; Jagodziński, Paweł Piotr

    2015-05-01

    Infections with oncogenic human papillomavirus (HPV) strains are recognized as the major risk factor for developing malignant lesions in the uterine cervix. However, several findings have demonstrated cooperation between HPV infection and 17β-estradiol (E2) in cervical carcinogenesis. The 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) is the enzyme involved in the transformation of estrone (E1) into E2. In this study, we identified the HSD17B1 transcript and protein in HeLa, SiHa, Ca Ski and C-33A cervical cancer cells. These cells were able to convert E1 to E2 in a time-dependent manner. Moreover, we identified the HSD17B1 transcript and protein in primary cancerous tissues (n=28) and in histologically unchanged tissues (n=25). We did not observe significant differences (P=0.33) between the HSD17B1 transcript levels in cancerous tissues and histologically unchanged tissues. However, we found an overrepresentation of the HSD17B1 protein in cancerous tissues compared with histologically unchanged tissues (Pprotein in primary cervical cancerous tissues may be responsible for the local conversion of E1 to E2. PMID:26054693

  15. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes. PMID:25522366

  16. Complexities of gender assignment in 17β-hydroxysteroid dehydrogenase type 3 deficiency: is there a role for early orchiectomy?

    Chuang, Janet; Vallerie, Amy; Breech, Lesley; Saal, Howard M.; Alam, Shumyle; Crawford, Peggy; Rutter, Meilan M

    2013-01-01

    Background 17β-Hydroxysteroid dehydrogenase type-3 (17βHSD-3) deficiency is a rare cause of 46,XY disorders of sex development. The enzyme converts androstenedione to testosterone, necessary for masculinization of male genitalia in utero. 17βHSD-3 deficiency is frequently diagnosed late, at puberty, following virilization, with consequent female-to-male gender reassignment in 39-64%. The decision for sex of rearing is difficult, especially if diagnosed in early childhood. Consensus guidelines...

  17. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J;

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  18. Nutritional marginal zinc deficiency disrupts placental 11β-hydroxysteroid dehydrogenase type 2 modulation.

    Huang, Y L; Supasai, S; Kucera, H; Gaikwad, N W; Adamo, A M; Mathieu, P; Oteiza, P I

    2016-01-01

    This paper investigated if marginal zinc nutrition during gestation could affect fetal exposure to glucocorticoids as a consequence of a deregulation of placental 11βHSD2 expression. Placenta 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) plays a central role as a barrier protecting the fetus from the deleterious effects of excess maternal glucocorticoids. Rats were fed control (25 μg zinc per g diet) or marginal (10 μg zinc per g diet, MZD) zinc diets from day 0 through day 19 (GD19) of gestation. At GD19, corticosterone concentration in plasma, placenta, and amniotic fluid was similar in both groups. However, protein and mRNA levels of placenta 11βHSD2 were significantly higher (25% and 58%, respectively) in MZD dams than in controls. The main signaling cascades modulating 11βHSD2 expression were assessed. In MZD placentas the activation of ERK1/2 and of the downstream transcription factor Egr-1 was low, while p38 phosphorylation and SP-1-DNA binding were low compared to the controls. These results point to a central role of ERK1/Egr-1 in the regulation of 11βHSD2 expression under the conditions of limited zinc availability. In summary, results show that an increase in placenta 11βHSD2 expression occurs as a consequence of gestational marginal zinc nutrition. This seems to be due to a low tissue zinc-associated deregulation of ERK1/2 rather than to exposure to high maternal glucocorticoid exposure. The deleterious effects on brain development caused by diet-induced marginal zinc deficiency in rats do not seem to be due to fetal exposure to excess glucocorticoids. PMID:26645329

  19. Overexpression of inosine 5'-monophosphate dehydrogenase type II mediates chemoresistance to human osteosarcoma cells.

    Jörg Fellenberg

    Full Text Available BACKGROUND: Chemoresistance is the principal reason for poor survival and disease recurrence in osteosarcoma patients. Inosine 5'-monophosphate dehydrogenase type II (IMPDH2 encodes the rate-limiting enzyme in the de novo guanine nucleotide biosynthesis and has been linked to cell growth, differentiation, and malignant transformation. In a previous study we identified IMPDH2 as an independent prognostic factor and observed frequent IMPDH2 overexpression in osteosarcoma patients with poor response to chemotherapy. The aim of this study was to provide evidence for direct involvement of IMPDH2 in the development of chemoresistance. METHODOLOGY/PRINCIPAL FINDINGS: Stable cell lines overexpressing IMPDH2 and IMPDH2 knock-down cells were generated using the osteosarcoma cell line Saos-2 as parental cell line. Chemosensitivity, proliferation, and the expression of apoptosis-related proteins were analyzed by flow cytometry, WST-1-assay, and western blot analysis. Overexpression of IMPDH2 in Saos-2 cells induced strong chemoresistance against cisplatin and methotrexate. The observed chemoresistance was mediated at least in part by increased expression of the anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP, reduced activation of caspase-9, and, consequently, reduced cleavage of the caspase substrate PARP. Pharmacological inhibition of IMPDH induced a moderate reduction of cell viability and a strong decrease of cell proliferation, but no increase in chemosensitivity. However, chemoresistant IMPDH2-overexpressing cells could be resensitized by RNA interference-mediated downregulation of IMPDH2. CONCLUSIONS: IMPDH2 is directly involved in the development of chemoresistance in osteosarcoma cells, suggesting that targeting of IMPDH2 by RNAi or more effective pharmacological inhibitors in combination with chemotherapy might be a promising means of overcoming chemoresistance in osteosarcomas with high IMPDH2 expression.

  20. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance.

    Shao, Shiying; Zhang, Xiaojie; Zhang, Muxun

    2016-09-01

    Excess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11β-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11β-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11β-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11β-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11β-HSD1 inhibition. Furthermore, the down-regulation of 11β-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11β-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production. PMID:27268236

  1. Structure-based drug design of 11β-hydroxysteroid dehydrogenase type 1 inhibitors

    Adie, Jillian E.

    2010-01-01

    The enzyme 11β-Hydroxysteroid Dehydrogenase 1 (11β-HSD1) catalyses the intracellular biosynthesis of the active glucocorticoid cortisol. Tissue specific dysregulation of the enzyme has been implicated in the development of metabolic syndrome and other associated diseases. Experiments with transgenic mice and prototype inhibitors show that inhibition of 11β-HSD1 in visceral adipose tissue and liver leads to a resistance of diet-induced hyperglycemia and a favourable lipid and lipoprotein profi...

  2. XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

    Wu, Ming L.; Wessels, Hans J. C. T.; Pol, Arjan; Op den Camp, Huub J. M.; Mike S.M. Jetten; van Niftrik, Laura; Keltjens, Jan T.

    2014-01-01

    “Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one...

  3. Association of degree and type of edema in posterior reversible encephalopathy syndrome with serum lactate dehydrogenase level: Initial experience

    Gao, Bo, E-mail: gygb2004@yahoo.com.cn [Shandong Medical Imaging Research Institute, Medical School of Shandong University, Jinan, Shandong 250021 (China); Division of MRI, Department of Radiology, Yantai Yuhuangding Hospital, Yantai, 264000 Shandong (China); Liu, Feng-li [Division of MRI, Department of Radiology, Yantai Yuhuangding Hospital, Yantai, 264000 Shandong (China); Zhao, Bin, E-mail: cjr.zhaobin@vip.163.com [Shandong Medical Imaging Research Institute, Medical School of Shandong University, Jinan, Shandong 250021 (China)

    2012-10-15

    Purpose: Posterior reversible encephalopathy syndrome (PRES) is a clinicoradiologic entity characterized by headache, blurred vision and seizures with typical parieto-occipital predominantly vasogenic edema, occasionally with cytotoxic edema. The association between the degree and type of edema in PRES with biochemical parameter, especially serum lactate dehydrogenase, has not been determined. Material and methods: Thirty-five patients with typical clinical symptoms and characteristic MR imaging findings of PRES were included in this study. The extent of brain edema was graded on the anatomical distribution by 2 observers blinded to patients’ clinical record, as well as the type of brain edema determined on DWI and ADC map. The levels of biochemical parameters were correlated with the degree of edema and compared between different types of edema. Results: Serum LDH concentrations between patients with cytotoxic edema and with vasogenic components were not statistically different (NWU test, U = 93.0, Z = 1.818, P = 0.069). Only serum lactate dehydrogenase (LDH) concentration was significantly correlated with the score of brain edema distribution (Spearman's rho correlation, r = 0.721, P = 0.00). No relationship was found between other biochemical parameters and the degree and type of brain edema. Conclusion: Increased serum LDH level, which plays an essential role in endothelial injury, may be a potential risk factor for the development of edema in PRES.

  4. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation.

    Wodara, C; Bardischewsky, F; Friedrich, C G

    1997-08-01

    A 13-kb genomic region of Paracoccus dentrificans GB17 is involved in lithotrophic thiosulfate oxidation. Adjacent to the previously reported soxB gene (C. Wodara, S. Kostka, M. Egert, D. P. Kelly, and C. G. Friedrich, J. Bacteriol. 176:6188-6191, 1994), 3.7 kb were sequenced. Sequence analysis revealed four additional open reading frames, soxCDEF. soxC coded for a 430-amino-acid polypeptide with an Mr of 47,339 that included a putative signal peptide of 40 amino acids (Mr of 3,599) with a RR motif present in periplasmic proteins with complex redox centers. The mature soxC gene product exhibited high amino acid sequence similarity to the eukaryotic molybdoenzyme sulfite oxidase and to nitrate reductase. We constructed a mutant, GBsoxC delta, carrying an in-frame deletion in soxC which covered a region possibly coding for the molybdenum cofactor binding domain. GBsoxC delta was unable to grow lithoautotrophically with thiosulfate but grew well with nitrate as a nitrogen source or as an electron acceptor. Whole cells and cell extracts of mutant GBsoxC delta contained 10% of the thiosulfate-oxidizing activity of the wild type. Only a marginal rate of sulfite-dependent cytochrome c reduction was observed from cell extracts of mutant GBsoxC delta. These results demonstrated that sulfite dehydrogenase was essential for growth with thiosulfate of P. dentrificans GB17. soxD coded for a periplasmic diheme c-type cytochrome of 384 amino acids (Mr of 39,983) containing a putative signal peptide with an Mr of 2,363. soxE coded for a periplasmic monoheme c-type cytochrome of 236 amino acids (Mr of 25,926) containing a putative signal peptide with an Mr of 1,833. SoxD and SoxE were highly identical to c-type cytochromes of P. denitrificans and other organisms. soxF revealed an incomplete open reading frame coding for a peptide of 247 amino acids with a putative signal peptide (Mr of 2,629). The deduced amino acid sequence of soxF was 47% identical and 70% similar to the sequence

  5. Crystal structures of type III{sub H} NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Hemantha Kumar, G. [Department of Studies in Computer Science, University of Mysore, Mysore 570 006 (India); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-08-15

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III{sub H} PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III{sub H} and such PGDHs structures having this type are reported for the first time.

  6. Expression of 11 beta-hydroxysteroid dehydrogenase type 2 is deregulated in colon carcinoma

    Moravec, Martin; Švec, Jiří; Ergang, Peter; Mandys, V.; Řeháková, Lenka; Zádorová, Z.; Hajer, J.; Kment, M.; Pácha, Jiří

    2014-01-01

    Roč. 29, č. 4 (2014), s. 489-496. ISSN 0213-3911 R&D Projects: GA MZd(CZ) NS9982; GA ČR(CZ) GA13-08304S Grant ostatní: Univerzita Karlova(CZ) 70310; Univerzita Karlova(CZ) Prvouk P27; Univerzita Karlova(CZ) CZ.2.16/3.1.00/24024 Institutional support: RVO:67985823 Keywords : 11beta-hydroxysteroid dehydrogenase * colorectal polyp * adenoma Subject RIV: ED - Physiology Impact factor: 2.236, year: 2013

  7. Discrimination of damages depending on the types of lactic dehydrogenase isozymes in electron beam irradiation

    Lactate dehydrogenase (EC 1.1.1.27,LDH) was a tetrameric molecule. The five different combinations of two different polypeptide chains can be readily identified by electrophoresis and ion-exchange chromatography. Injury patterns of LDH activity following electron-beam irradiation was investigated by assaying activities of three isozymes (pig heart LDH;M4, rabbit muscle LDH;H4, chicken heart LDH;M3H1). Following results were obtained in the electron beam irradiation to three kinds of LDH isozymes: 1) Each isozyme has respective different reactivities to the electron beam irradiation. 2) Among the isozymes, M4 enzyme was increased its enzymatic activity by the irradiations of low-level doses. 3) For the H4 enzymes, an increasing phenomenon of -SH group was found in the low-level doses of electron beam irradiation. (author)

  8. Identification of the 11 beta-hydroxysteroid dehydrogenase type 1 mRNA and protein in human mononuclear leukocytes.

    Fiore, C; Nardi, A; Dalla Valle, L; Pellati, D; Krozowski, Z; Colombo, L; Armanini, D

    2009-10-01

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the interconversion between inactive 11-ketoglucocorticoids and their active 11beta-hydroxy derivatives, such as cortisol and corticosterone. We have investigated the expression of 11beta-HSD1 in freshly isolated human peripheral mononuclear leukocytes (MNL). The presence of 11beta-HSD1 mRNA was demonstrated in total RNA by RT-PCR using specific primers designed on the 4th and 5th exons of the human 11beta-HSD1 gene. Fragments of the expected size were consistently detected on agarose gels, and sequencing showed complete identity with the corresponding sequence deposited in GenBank. The occurrence of 11beta-HSD1 protein was established by Western immunoblot analysis with a specific polyclonal antibody. Enzyme oxo-reductase activity was investigated by incubating 12 samples of MNL isolated from from 8 subjects with [3H]cortisone and formation of cortisol was established only in 4 subjects (yield range: 0.15-1.3%) after acetylation and TLC, blank subtraction and correction for losses. 18beta-Glycyrrhetinic acid, an inhibitor of 11 beta-HSD1, reduced cortisol production below detection limit. Dehydrogenase activity could not be demonstrated. It is suggested that, although enzyme activity of 11beta-HSD1 in circulating MNL is low, it is apparently ready for enhancement after MNL migration to sites of inflammation. PMID:19235128

  9. Aldehyde Dehydrogenase Type 2 Activation by Adenosine and Histamine Inhibits Ischemic Norepinephrine Release in Cardiac Sympathetic Neurons: Mediation by Protein Kinase Cε

    Robador, Pablo A.; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-01-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sym...

  10. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  11. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues.

    Hara, Masakazu; Monna, Shuhei; Murata, Takae; Nakano, Taiyo; Amano, Shono; Nachbar, Markus; Wätzig, Hermann

    2016-04-01

    Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93 μM Cu(2+) but totally inactivated by 9.3 μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3 μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress. PMID:26940498

  12. Hypertrophy in the Distal Convoluted Tubule of an 11β-Hydroxysteroid Dehydrogenase Type 2 Knockout Model.

    Hunter, Robert W; Ivy, Jessica R; Flatman, Peter W; Kenyon, Christopher J; Craigie, Eilidh; Mullins, Linda J; Bailey, Matthew A; Mullins, John J

    2015-07-01

    Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11βHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids. PMID:25349206

  13. Species used for drug testing reveal different inhibition susceptibility for 17beta-hydroxysteroid dehydrogenase type 1.

    Gabriele Möller

    Full Text Available Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD 1 for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17beta-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17beta-HSD types 1, 2, 4, 5 and 7 but also against 17beta-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17beta-HSDs analyzed were observed. Especially, the rodent 17beta-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17beta-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution.

  14. Kinetics of allopregnanolone formation catalyzed by human 3 alpha-hydroxysteroid dehydrogenase type III (AKR1C2).

    Trauger, John W; Jiang, Alice; Stearns, Brian A; LoGrasso, Philip V

    2002-11-12

    Allopregnanolone is a neurosteroid which exhibits anxiolytic and anticonvulsant activities through potentiation of the GABA(A) receptor. The reduction of 5alpha-dihydroprogesterone (5alpha-DHP), the last step in allopregnanolone biosynthesis, is catalyzed by 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs). While the mechanism of action of allopregnanolone and the physiological and pharmacological modulation of allopregnanolone concentrations in vivo have been extensively studied, there has been little characterization of the kinetics of human 3alpha-HSD catalyzed allopregnanolone formation. We report here determination of the kinetic mechanism for 5alpha-DHP reduction catalyzed by human 3alpha-HSD type III by using steady-state kinetics studies and assessment of the ability of fluoxetine and various other small molecules to activate 3alpha-HSD type III catalyzed allopregnanolone formation. Enzyme-catalyzed 5alpha-DHP reduction yielded two products, allopregnanolone and 5alpha,20alpha-tetrahydroprogesterone, as measured by using a radiometric thin-layer chromatography assay, while 5beta-DHP reduction yielded the neurosteroid pregnanolone as the only product. 5Beta-DHP reduction proceeded with a catalytic efficiency 10 times higher than that of 5alpha-DHP reduction. Two-substrate kinetic analysis and dead-end inhibition studies for 5alpha-DHP reduction and allopregnanolone oxidation indicated that 3alpha-HSD type III utilized a ternary complex (sequential) kinetic mechanism, with nicotinamide adenine dinucleotide cofactor binding before steroid substrate and leaving after steroid product. Since previous reports suggested that fluoxetine and certain other small molecules increased allopregnanolone concentrations in vivo by activating 3alpha-HSD type III, we investigated whether these small molecules were able to activate human 3alpha-HSD type III. Our results showed that, at concentrations up to 50 microM, fluoxetine, paroxetine, sertraline, norfluoxetine

  15. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  16. 11β-Hydroxysteroid Dehydrogenase Type 1 Is Expressed in Neutrophils and Restrains an Inflammatory Response in Male Mice.

    Coutinho, Agnes E; Kipari, Tiina M J; Zhang, Zhenguang; Esteves, Cristina L; Lucas, Christopher D; Gilmour, James S; Webster, Scott P; Walker, Brian R; Hughes, Jeremy; Savill, John S; Seckl, Jonathan R; Rossi, Adriano G; Chapman, Karen E

    2016-07-01

    Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity. However, the key cells in which 11β-HSD1 exerts these effects remain unknown. Here we have identified neutrophils (CD11b(+),Ly6G(+),7/4(+) cells) as the thioglycollate-recruited cells that most highly express 11β-HSD1 and show dynamic regulation of 11β-HSD1 in these cells during an inflammatory response. Flow cytometry showed high expression of 11β-HSD1 in peritoneal neutrophils early during inflammation, declining at later states. In contrast, expression in blood neutrophils continued to increase during inflammation. Ablation of monocytes/macrophages by treatment of CD11b-diphtheria-toxin receptor transgenic mice with diphtheria toxin prior to thioglycollate injection had no significant effect on 11β-HSD1 activity in peritoneal cells, consistent with neutrophils being the predominant 11β-HSD1 expressing cell type at this time. Similar to genetic deficiency in 11β-HSD1, acute inhibition of 11β-HSD1 activity during thioglycollate-induced peritonitis augmented inflammatory cell recruitment to the peritoneum. These data suggest that neutrophil 11β-HSD1 increases during inflammation to contribute to the restraining effect of glucocorticoids upon neutrophil-mediated inflammation. In human neutrophils, lipopolysaccharide activation increased 11β-HSD1 expression, suggesting the antiinflammatory effects of 11β-HSD1 in neutrophils may be conserved in humans. PMID:27145012

  17. A Novel Mechanism of V Type Zinc Inhibition of Glutamate Dehydrogenase Results from Disruption of Subunit Interactions Necessary for Efficient Catalysis

    Bailey, Jaclyn; Powell, Lakeila; Sinanan, Leander; Neal, Jacob; Li, Ming; Smith, Thomas; Bell, Ellis

    2011-01-01

    Bovine Glutamate Dehydrogenase is potently inhibited by zinc and the major impact is on Vmax suggesting a V-type effect on catalysis or product release. Zinc inhibition decreases as glutamate concentrations decrease suggesting a role for subunit interactions. With the monocarboxylic amino acid, norvaline, which gives no evidence of subunit interactions zinc does not inhibit. Zinc significantly decreases the size of the pre-steady state burst in the reaction but does not affect NADPH binding i...

  18. Role of 2-mercaptoethanol in direct electron transfer-type bioelectrocatalysis of fructose dehydrogenase at Au electrodes

    Highlights: • The state of FDH on the Au electrode is voltammetrically monitored with DET catalytic current, O2 reduction current, and [Fe(CN)6]3−/4− redox signal. • FDH shows the highest activity at around the pzc of Au electrode. • The DET activity of FDH decreases with time at positive electrode potentials due to the strong positive electric field. • Mercaptoethanol-Au binding located in the gap of the adsorbed FDH plays a significant role in the stability of the adsorbed FDH on the Au electrode. -- Abstract: Effects of the electrode potential on a direct electron transfer (DET)-type bioelectrocatalysis of fructose dehydrogenase (FDH) at Au electrodes were investigated. Adsorbed FDH showed the highest DET activity at an adsorption potential (Ead) around the point of zero charge (Epzc). Since FDH stock solution contains 2-mercaptoethanol (ME) for stabilization, ME is partially bound to the Au electrode. However, the DET activity drastically decreased at Ead >> Epzc. Au oxide layer is formed at the positive potentials to hinder the interfacial electron transfer. In contrast, only slight decrease in the DET activity was observed at sufficiently negative Ead (<

  19. The role of 11?-hydroxysteroid dehydrogenase type 1 and type2 isoenzymes on the pathogenesis of Cushing’s syndrome - doi:10.5020/18061230.2007.p104

    Maria Betânia Pereira Toralles

    2012-01-01

    Full Text Available The action of glucocorticoids is modulated by isoenzymes 11?-hidroxiesteróide desidrogenases (11?-HSD type 1 and 2. The knowledge concerning these isoenzymes contribute to the understanding of the regulatory mechanisms involved in several disease processes of the Cushing’s syndrome, such as obesity, osteoporosis and hypertension. With the aim at describing the action of isoenzymes 11?-HSD type 1 and 2 in the Cushing’s syndrome, a literature review was done from 1990 - 2006 using the Medline data base, searching for the following key-words: Cushing’s syndrome, glucocorticoids, 11?-hydroxysteroid dehydrogenase, hypertension, osteoporosis and obesity. Review studies, meta-analysis and original articles were selected and chosen on the basis of methodological aspects and relevance. The exact mechanism by which cortisol increases blood pressure is not completely understood, but it involves, among others factors, changes in the sodium homeostasis. The conversion of cortisone to cortisol through expression of 11?-HSD1 induces the differentiation of preadipoctyes to mature adipoctyes and such patients develop an increase in visceral fat. The prevalence of osteoporosis in adult patients with Cushing’s syndrome is approximately 50% and glucocorticoids play a strong effect on the bone and calcium metabolism. The isoenzymes 11?-HSD1 and 11?-HSD2 have an important function in these several pathophysiology processes; however the isoenzymes action in the pathophysiology of the Cushing’s syndrome need to be more investigated.

  20. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  1. The HADHSC gene encoding short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) and type 2 diabetes susceptibility

    van Hove, Els C; Hansen, Torben; Dekker, Jacqueline M;

    2006-01-01

    The short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) protein is involved in the penultimate step of mitochondrial fatty acid oxidation. Previously, it has been shown that mutations in the corresponding gene (HADHSC) are associated with hyperinsulinism in infancy. The presumed function of the...

  2. Molecular characterization of peroxisomal multifunctional 2-enoyl-CoA hydratase 2/(3R)-hydroxyacyl-CoA dehydrogenase (MFE type 2) from mammals and yeast

    Qin, Y.-M. (Yong-Mei)

    1999-01-01

    Abstract Fatty acid degradation in living organisms occurs mainly via the β-oxidation pathway. When this work was started, it was known that the hydration and dehydrogenation reactions in mammalian peroxisomal β-oxidation were catalyzed by only multifunctional enzyme type 1 (MFE-1; Δ2-Δ3-enoyl-CoA isomerase/2-enoyl-CoA hydratase 1/(3S)-hydroxyacyl-CoA dehydrogenase) via the S-specific pathway, whereas in the yeast peroxisomes via the R-specific pathway by multifunctional enzyme type 2 (MFE...

  3. Distinct Effect of Stress on 11 beta-Hydroxysteroid Dehydrogenase Type 1 and Corticosteroid Receptors in Dorsal and Ventral Hippocampus

    Ergang, Peter; Kuželová, A.; Soták, Matúš; Klusoňová, Petra; Makal, J.; Pácha, Jiří

    2014-01-01

    Roč. 63, č. 2 (2014), s. 255-261. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/10/0969 Grant ostatní: Univerzita Karlova(CZ) 6187/2012; Univerzita Karlova(CZ) 5366/2012 Institutional support: RVO:67985823 Keywords : 11beta-hydroxysteroid dehydrogenase * stress * hippocampus Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  4. Identification of Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) as a CD8+ T-cell-defined human tumor antigen of human carcinomas

    Visus, Carmen; Ito, Diasuke; Dhir, Rajiv; Szczepanski, Miroslaw J.; Chang, Yoo Jung; Latimer, Jean J.; Grant, Stephen G.; DeLeo, Albert B.

    2011-01-01

    Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) is a multifunctional isoenzyme functional in the conversion of estrone to estradiol (E2), and elongation of long-chain fatty acids, in particular the conversion of palmitic to archadonic (AA) acid, the precursor of sterols and the inflammatory mediator, prostaglandin E2. Its overexpression together with that of COX-2 in breast carcinoma is associated with a poor prognosis. We have identified the HSD17B12114–122 peptide (IYDKIKTGL) as a nat...

  5. Increased Whole-Body and Sustained Liver Cortisol Regeneration by 11 beta-Hydroxysteroid Dehydrogenase Type 1 in Obese Men With Type 2 Diabetes Provides a Target for Enzyme Inhibition

    Stimson, Roland H.; Andrew, Ruth; McAvoy, Norma C.; Tripathi, Dhiraj; Peter C. Hayes; Walker, Brian R

    2011-01-01

    OBJECTIVE-The cortisol-regenerating enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) amplifies glucocorticoid levels in liver and adipose tissue. 11 beta-HSD1 inhibitors are being developed to treat type 2 diabetes. In obesity, 11 beta-HSD1 is increased in adipose tissue but decreased in liver. The benefits of pharmacological inhibition may be reduced if hepatic 11 beta-HSD1 is similarly decreased in obese patients with type 2 diabetes. To examine this, we quantified in vivo ...

  6. Increased Whole-Body and Sustained Liver Cortisol Regeneration by 11β-Hydroxysteroid Dehydrogenase Type 1 in Obese Men With Type 2 Diabetes Provides a Target for Enzyme Inhibition

    Stimson, Roland H.; Andrew, Ruth; McAvoy, Norma C.; Tripathi, Dhiraj; Peter C. Hayes; Walker, Brian R

    2011-01-01

    OBJECTIVE The cortisol-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid levels in liver and adipose tissue. 11β-HSD1 inhibitors are being developed to treat type 2 diabetes. In obesity, 11β-HSD1 is increased in adipose tissue but decreased in liver. The benefits of pharmacological inhibition may be reduced if hepatic 11β-HSD1 is similarly decreased in obese patients with type 2 diabetes. To examine this, we quantified in vivo whole-body, splanchn...

  7. A Dedicated Type II NADPH Dehydrogenase Performs the Penultimate Step in the Biosynthesis of Vitamin K1 in Synechocystis and Arabidopsis

    Fatihi, Abdelhak; Latimer, Scott; Schmollinger, Stefan; Block, Anna; Dussault, Patrick H.; Vermaas, Wim F.J.; Merchant, Sabeeha S.; Basset, Gilles J.

    2015-01-01

    Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process. PMID:26023160

  8. Derivatives of (phenylsulfonamido-methyl)nicotine and (phenylsulfonamido-methyl)thiazole as novel 11β-hydroxysteroid dehydrogenase type 1 inhibitors: synthesis and biological activities in vitro

    Xu ZHANG; Yang ZHOU; Yu SHEN; Li-li DU; Jun-hua CHEN; Ying LENG; Jian-hua SHEN

    2009-01-01

    Aim: To design and synthese a novel class of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors, featuring the (phenylsul-fonamido-methyl)pyridine and (phenyisulfonamido-methyl)thiazole framework. Methods: Our initial lead 4-(phenylsulfonamido-methyl)benzamides were modified. Inhibition of human and mouse 11β-HSD1 enzy-matic activities by the new compounds was determined by a scintillation proximity assay (SPA) using microsomes containing 11β-HSD1.Results: Sixteen new compounds (6a-6h, 7a-7h) were designed, synthesized and bioassayed. In dose-response studies, several com-pounds showed strong inhibitory activities with IC_(50) values at nanomolar or low nanomolar concentrations. Structure-activity relation-ships are also discussed with respect to molecular docking results. Conclusion: This study provides two promising new templates for 11β-HSD1 inhibitors.

  9. Molybdenum center of xanthine dehydrogenase

    Cyanolysis of native, oxidized xanthine dehydrogenase is known to inactivate the enzyme by removing a unique sulfur as thiocyanate. Chemical, genetic, and spectroscopic evidence indicates that this sulfur is a terminal ligand of Mo and is present in native xanthine dehydrogenase, but not in cyanolyzed xanthine dehydrogenase or native sulfite oxidase. A procedure for rapid, reproducible, and quantitative reconstitution of desulfo Mo hydroxylases with sulfide was developed. The cyanolyzable sulfur of xanthine dehydrogenase was specifically radiolabeled with 35sulfide using this procedure. Various chemical properties of the cyanolyzable sulfur could be determined with the radiolabelled enzyme. The data support the conclusion that the cyanolyzable sulfur is a terminal sulfur ligand of the Mo atoms, and is not part of an organic moiety. Application of the resulfuration procedure to crude extracts of Drosophila melanogaster ma-1 flies, which are pleiotropically deficient in xanthine dehydrogenase and aldehyde oxidase, led to the emergence of these enzyme activities. Evidence for the identity of in vitro reconstituted xanthine dehydrogenase from ma-1 mutants with wild type enzyme is presented. A system for efficient reconstitution of the apo-subunits of the molybdoenzyme nitrate reductase from the Neurospora crassa mutant nit-1 with molybdenum cofactor from denatured purified molybdoenzymes in the absence of exogenous molybdate was developed

  10. A novel mechanism of V-type zinc inhibition of glutamate dehydrogenase results from disruption of subunit interactions necessary for efficient catalysis.

    Bailey, Jaclyn; Powell, Lakeila; Sinanan, Leander; Neal, Jacob; Li, Ming; Smith, Thomas; Bell, Ellis

    2011-09-01

    Bovine glutamate dehydrogenase is potently inhibited by zinc and the major impact is on V(max) suggesting a V-type effect on catalysis or product release. Zinc inhibition decreases as glutamate concentrations decrease suggesting a role for subunit interactions. With the monocarboxylic amino acid norvaline, which gives no evidence of subunit interactions, zinc does not inhibit. Zinc significantly decreases the size of the pre-steady state burst in the reaction but does not affect NADPH binding in the enzyme-NADPH-glutamate complex that governs the steady state turnover, again suggesting that zinc disrupts subunit interactions required for catalytic competence. While differential scanning calorimetry suggests zinc binds and induces a slightly conformationally more rigid state of the protein, limited proteolysis indicates that regions in the vicinity of the antennae regions and the trimer-trimer interface become more flexible. The structures of glutamate dehydrogenase bound with zinc and europium show that zinc binds between the three dimers of subunits in the hexamer, a region shown to bind novel inhibitors that block catalytic turnover, which is consistent with the above findings. In contrast, europium binds to the base of the antenna region and appears to abrogate the inhibitory effect of zinc. Structures of various states of the enzyme have shown that both regions are heavily involved in the conformational changes associated with catalytic turnover. These results suggest that the V-type inhibition produced with glutamate as the substrate results from disruption of subunit interactions necessary for efficient catalysis rather than by a direct effect on the active site conformation. PMID:21749647

  11. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2.

    Kratschmar, Denise V; Vuorinen, Anna; Da Cunha, Thierry; Wolber, Gerhard; Classen-Houben, Dirk; Doblhoff, Otto; Schuster, Daniela; Odermatt, Alex

    2011-05-01

    Modulation of intracellular glucocorticoid availability is considered as a promising strategy to treat glucocorticoid-dependent diseases. 18β-Glycyrrhetinic acid (GA), the biologically active triterpenoid metabolite of glycyrrhizin, which is contained in the roots and rhizomes of licorice (Glycyrrhiza spp.), represents a well-known but non-selective inhibitor of 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, to assess the physiological functions of the respective enzymes and for potential therapeutic applications selective inhibitors are needed. In the present study, we applied bioassays and 3D-structure modeling to characterize nine 11β-HSD1 and fifteen 11β-HSD2 inhibiting GA derivatives. Comparison of the GA derivatives in assays using cell lysates revealed that modifications at the 3-hydroxyl and/or the carboxyl led to highly selective and potent 11β-HSD2 inhibitors. The data generated significantly extends our knowledge on structure-activity relationship of GA derivatives as 11β-HSD inhibitors. Using recombinant enzymes we found also potent inhibition of mouse 11β-HSD2, despite significant species-specific differences. The selected GA derivatives potently inhibited 11β-HSD2 in intact SW-620 colon cancer cells, although the rank order of inhibitory potential differed from that obtained in cell lysates. The biological activity of compounds was further demonstrated in glucocorticoid receptor (GR) transactivation assays in cells coexpressing GR and 11β-HSD1 or 11β-HSD2. 3D-structure modeling provides an explanation for the differences in the selectivity and activity of the GA derivatives investigated. The most potent and selective 11β-HSD2 inhibitors should prove useful as mechanistic tools for further anti-inflammatory and anti-cancer in vitro and in vivo studies. Article from the Special issue on Targeted Inhibitors. PMID:21236343

  12. KLF15 Is a Transcriptional Regulator of the Human 17β-Hydroxysteroid Dehydrogenase Type 5 Gene. A Potential Link between Regulation of Testosterone Production and Fat Stores in Women

    Du, Xiaofei; Rosenfield, Robert L.; Qin, Kenan

    2009-01-01

    Context: Kruppel-like factor 15 (KLF15) is a newly discovered transcription factor that plays an important role in glucose homeostasis and lipid accumulation in cells. We present evidence for KLF15 as a transcriptional regulator of the human 17β-hydroxysteroid dehydrogenase type 5 gene (HSD17B5) and its potential role in the pathogenesis of hyperandrogenism.

  13. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST.

    Pantaleo, Maria A; Astolfi, Annalisa; Urbini, Milena; Nannini, Margherita; Paterini, Paola; Indio, Valentina; Saponara, Maristella; Formica, Serena; Ceccarelli, Claudio; Casadio, Rita; Rossi, Giulio; Bertolini, Federica; Santini, Donatella; Pirini, Maria G; Fiorentino, Michelangelo; Basso, Umberto; Biasco, Guido

    2014-01-01

    Mutations of genes encoding the subunits of the succinate dehydrogenase (SDH) complex were described in KIT/PDGFRA wild-type GIST separately in different reports. In this study, we simultaneously sequenced the genome of all subunits, SDHA, SDHB, SDHC, and SDHD in a larger series of KIT/PDGFRA wild-type GIST in order to evaluate the frequency of the mutations and explore their biological role. SDHA, SDHB, SDHC, and SDHD were sequenced on the available samples obtained from 34 KIT/PDGFRA wild-type GISTs. Of these, in 10 cases, both tumor and peripheral blood (PB) were available, in 19 cases only tumor, and in 5 cases only PB. Overall, 9 of the 34 patients with KIT/PDGFRA wild-type GIST carried mutations in one of the four subunits of the SDH complex (six patients in SDHA, two in SDHB, one in SDHC). WB and immunohistochemistry analysis showed that patients with KIT/PDGFRA wild-type GIST who harbored SDHA mutations exhibited a significant downregulation of both SDHA and SDHB protein expression, with respect to the other GIST lacking SDH mutations and to KIT/PDGFRA-mutated GIST. Clinically, four out of six patients with SDHA mutations presented with metastatic disease at diagnosis with a very slow, indolent course. Patients with KIT/PDGFRA wild-type GIST may harbor germline and/or de novo mutations of SDH complex with prevalence for mutations within SDHA, which is associated with a downregulation of SDHA and SDHB protein expression. The presence of germline mutations may suggest that these patients should be followed up for the risk of development of other cancers. PMID:23612575

  14. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases.

    Hao, Meng-Shu; Rasmusson, Allan G

    2016-07-01

    Most eukaryotic organisms, except some animal clades, have mitochondrial alternative electron transport enzymes that allow respiration to bypass the energy coupling in oxidative phosphorylation. The energy bypass enzymes in plants include the external type II NAD(P)H dehydrogenases (DHs) of the NDB family, which are characterized by an EF-hand domain for Ca(2+) binding. Here we investigate these plant enzymes by combining molecular modeling with evolutionary analysis. Molecular modeling of the Arabidopsis thaliana AtNDB1 with the yeast ScNDI1 as template revealed distinct similarities in the core catalytic parts, and highlighted the interaction between the pyridine nucleotide and residues correlating with NAD(P)H substrate specificity. The EF-hand domain of AtNDB1 has no counterpart in ScNDI1, and was instead modeled with Ca(2+) -binding signal transducer proteins. Combined models displayed a proximity of the AtNDB1 EF-hand domain to the substrate entrance side of the catalytic part. Evolutionary analysis of the eukaryotic NDB-type proteins revealed ancient and recent reversions between the motif observed in proteins specific for NADH (acidic type) and NADPH (non-acidic type), and that the clade of enzymes with acidic motifs in angiosperms derives from non-acidic-motif NDB-type proteins present in basal plants, fungi and protists. The results suggest that Ca(2+) -dependent external NADPH oxidation is an ancient process, indicating that it has a fundamental importance for eukaryotic cellular redox metabolism. In contrast, the external NADH DHs in plants are products of a recent expansion, mirroring the expansion of the alternative oxidase family. PMID:27079180

  15. Preparation of 16β-Estradiol Derivative Libraries as Bisubstrate Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 Using the Multidetachable Sulfamate Linker

    Donald Poirier

    2010-03-01

    Full Text Available Combinatorial chemistry is a powerful tool used to rapidly generate a large number of potentially biologically active compounds. In our goal to develop bisubstrate inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1 that interact with both the substrate (estrone or estradiol and the cofactor (NAD(PH binding sites, we used parallel solid-phase synthesis to prepare three libraries of 16β-estradiol derivatives with two or three levels of molecular diversity. From estrone, we first synthesized a sulfamate precursor that we loaded on trityl chloride resin using the efficient multidetachable sulfamate linker strategy recently developed in our laboratory. We then introduced molecular diversity [one or two amino acid(s followed by a carboxylic acid] on steroid nucleus by Fmoc peptide chemistry. Finally, after a nucleophilic cleavage, libraries of 30, 63 and 25 estradiol derivatives were provided. A library of 30 sulfamoylated estradiol derivatives was also generated by acidic cleavage and its members were screened for inhibition of steroid sulfatase. Biological evaluation on homogenated HEK-293 cells overexpressing 17β-HSD1 of the estradiol derivatives carrying different oligoamide-type chains at C-16 first revealed that three levels of molecular diversity (a spacer of two amino acids were necessary to interact with the adenosine part of the cofactor binding site. Second, the best inhibition was obtained when hydrophobic residues (phenylalanine were used as building blocks.

  16. NdhV subunit regulates the activity of type-1 NAD(P)H dehydrogenase under high light conditions in cyanobacterium Synechocystis sp. PCC 6803.

    Chen, Xin; He, Zhihui; Xu, Min; Peng, Lianwei; Mi, Hualing

    2016-01-01

    The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions. However, the regulative mechanism of NDH-1 under stressed conditions is still unclear. In this study, we detected that the NDH-1 activity is partially impaired, but the accumulation of NDH-1 complexes was little affected in the NdhV deleted mutant (ΔndhV) at low light in cyanobacterium Synechocystis sp. PCC 6803. ΔndhV grew normally at low light but slowly at high light under inorganic carbon limitation conditions (low pH or low CO2), meanwhile the activity of CO2 uptake was evidently lowered than wild type even at pH 8.0. The accumulation of NdhV in thylakoids strictly relies on the presence of the hydrophilic subcomplex of NDH-1. Furthermore, NdhV was co-located with hydrophilic subunits of NDH-1 loosely associated with the NDH-1L, NDH-1MS' and NDH-1M complexes. The level of the NdhV was significantly increased at high light and deletion of NdhV suppressed the up-regulation of NDH-1 activity, causing the lowered the photosynthetic oxygen evolution at pH 6.5 and high light. These data indicate that NdhV is an intrinsic subunit of hydrophilic subcomplex of NDH-1, required for efficient operation of cyclic electron transport around photosystem I and CO2 uptake at high lights. PMID:27329499

  17. Structural modeling and in silico analysis of non-synonymous single nucleotide polymorphisms of human 3β-hydroxysteroid dehydrogenase type 2

    Achintya Mohan Goswami

    2015-09-01

    Full Text Available Single-nucleotide polymorphisms (SNPs, a most common type of genetic mutations, result from single base pair alterations. Non-synonymous SNPs (nsSNP occur in the coding regions of a gene and result in single amino acid substitution which might have the potential to affect the function as well as structure of the corresponding protein. In human the 3β-hydroxysteroid dehydrogenases/Δ4,5-isomerase type 2 (HSD3B2 is an important membrane-bound enzyme involved in the dehydrogenation and Δ4,5-isomerization of the Δ5-steroid precursors into their respective Δ4-ketosteroids in the biosynthesis of steroid hormones such as glucocorticoids, mineralocorticoids, progesterone, androgens, and estrogens in tissues such as adrenal gland, ovary, and testis. Most of the nsSNPs of HSD3B2 are still uncharacterized in terms of their disease causing potential. So, this study has been undertaken to explore and extend the knowledge related to the effect of nsSNPs on the stability and function of the HSD3B2. In this study sixteen nsSNP of HSD3B2 were subjected to in silico analysis using nine different algorithms: SIFT, PROVEAN, PolyPhen, MutPred, SNPeffect, nsSNP Analyzer, PhD SNP, stSNP, and I Mutant 2.0. The results obtained from the analysis revealed that the prioritization of diseases associated amino acid substitution as evident from possible alteration in structure–function relationship. Structural phylogenetic analysis using ConSurf revealed that the functional residues are highly conserved in human HSD3B2; and most of the disease associated nsSNPs are within these conserved residues. Structural theoritical models of HSD3B2 were created using HHPred, Phyre2 and RaptorX server. The predicted models were evaluated to get the best one for structural understanding of amino acid substitutions in three dimensional spaces.

  18. Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C ε-dependent aldehyde dehydrogenase type-2 activation.

    Aldi, Silvia; Takano, Ken-ichi; Tomita, Kengo; Koda, Kenichiro; Chan, Noel Y-K; Marino, Alice; Salazar-Rodriguez, Mariselis; Thurmond, Robin L; Levi, Roberto

    2014-06-01

    Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype-ε (PKCε)-aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow-derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure. PMID:24696042

  19. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation.

    Saroussi, Shai I; Wittkopp, Tyler M; Grossman, Arthur R

    2016-04-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H(+) gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF The H(+) gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. PMID:26858365

  20. Domain Modeling: NP_940935.1 [SAHG[Archive

    Full Text Available NP_940935.1 chr19 The crystal structure of murine 11b-hydroxysteroid dehydrogenase complexed with corticoste...rone c1y5rb_ chr19/NP_940935.1/NP_940935.1_holo_20-287.pdb psi-blast 36G,37A,38N,39

  1. No evidence of mutations in the genes for type I and type II 3{beta}-hydroxysteroid dehydrogenase (3{beta}HSD) in nonclassical 3{beta}HSD deficiency

    Zerah, M.; Mani, P.; Schram, P. [New York Hospital-Cornell Medical Center, New York, NY (United States)] [and others

    1994-12-01

    Nonclassical 3{beta}-hydroxysteroid dehydrogenase/{Delta}{sup 5}-{Delta}{sup 4}-isomerase deficiency (NC3{beta}HSDD) has been diagnosed in hyperandrogenic women with an increasing frequency during the last 14 yr. Fifteen menarcheal women with androgen excess syndrome, previously diagnosed with NC3{beta}HSDD were studied, in 12 after discontinuation of glucocorticoid treatment, in 2 patients never treated with glucocorticoids, and in 1 both before and after glucocorticoid therapy. Molecular DNA analysis was also performed in 6 of the patients, using the strategy successfully used to detect point mutations in the type II 3{beta}-hydroxysteriod dehydrogenase (3{beta}HSD) gene, which are responsible for classical 3{beta}HSD deficiency. This strategy consists of the direct sequencing of polymerase chain reaction-amplified DNA fragments corresponding to the complete coding sequence and all intron-exon junctions and to the 5{prime}- and 3{prime}-noncoding region of this gene. We were unable to demonstrate any mutation of the type II 3{beta}HSD gene in these 6 patients. To gain additional information about potential mutations, direct sequencing of the type I 3{beta}HSD gene was also performed using this same strategy, and no mutations were found. The present study strongly suggests that unlike the salt-losing and nonsalt-losing forms of classical 3{beta}HSD deficiency, NC3{beta}HSDD is not due to a mutant type II 3{beta}HSD enzyme. However, the possibility remains of a mutation(s) in the unsequenced regions of the type II 3{beta}HSD gene or elsewhere, such as in a gene for modulatory protein, playing a specific role in the expression of the type II 3{beta}HSD gene. On the other hand, knowing the multiple hormonal controls to which 3{beta}HSD activity is subject, it cannot be excluded that at least in some cases, NC3{beta}HSDD may be an acquired defect, the result of endogenous or environmental factors. 41 refs., 2 figs., 2 tabs.

  2. Regulation of 11β-hydroxysteroid dehydrogenase type 1 and 7α-hydroxylase CYP7B1 during social stress.

    Martin Vodička

    Full Text Available 11β-hydroxysteroid dehydrogenase type 1 (11HSD1 is an enzyme that amplifies intracellular glucocorticoid concentration by the conversion of inert glucocorticoids to active forms and is involved in the interconversion of 7-oxo- and 7-hydroxy-steroids, which can interfere with the activation of glucocorticoids. The presence of 11HSD1 in the structures of the hypothalamic-pituitary-adrenal (HPA axis suggests that this enzyme might play a role in the regulation of HPA output. Here we show that the exposure of Fisher 344 rats to mild social stress based on the resident-intruder paradigm increased the expression of 11HSD1 and CYP7B1, an enzyme that catalyzes 7-hydroxylation of steroids. We found that social behavioral profile of intruders was significantly decreased whereas their plasma levels of corticosterone were increased more than in residents. The stress did not modulate 11HSD1 in the HPA axis (paraventricular nucleus, pituitary, adrenal cortex but selectively upregulated 11HSD1 in some regions of the hippocampus, amygdala and prelimbic cortex. In contrast, CYP7B1 was upregulated not only in the hippocampus and amygdala but also in paraventricular nucleus and pituitary. Furthermore, the stress downregulated 11HSD1 in the thymus and upregulated it in the spleen and mesenteric lymphatic nodes whereas CYP7B1 was upregulated in all of these lymphoid organs. The response of 11HSD1 to stress was more obvious in intruders than in residents and the response of CYP7B1 to stress predominated in residents. We conclude that social stress induces changes in enzymes of local metabolism of glucocorticoids in lymphoid organs and in brain structures associated with the regulation of the HPA axis. In addition, the presented data clearly suggest a role of 11HSD1 in modulation of glucocorticoid feedback of the HPA axis during stress.

  3. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε.

    Robador, Pablo A; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-10-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sympathetic nerve endings with acetaldehyde, at concentrations achieved in myocardial ischemia, caused a concentration-dependent increase in norepinephrine release. A major increase in norepinephrine release also occurred when sympathetic nerve endings were incubated in hypoxic conditions. ALDH2 activation substantially reduced acetaldehyde- and hypoxia-induced norepinephrine release, an action prevented by inhibition of ALDH2 or protein kinase Cε (PKCε). Selective activation of G(i/o)-coupled adenosine A(1), A(3), or histamine H(3) receptors markedly inhibited both acetaldehyde- and hypoxia-induced norepinephrine release. These effects were also abolished by PKCε and/or ALDH2 inhibition. Moreover, A(1)-, A(3)-, or H(3)-receptor activation increased ALDH2 activity in a sympathetic neuron model (differentiated PC12 cells stably transfected with H(3) receptors). This action was prevented by the inhibition of PKCε and ALDH2. Our findings suggest the existence in sympathetic neurons of a protective pathway initiated by A(1)-, A(3)-, and H(3)-receptor activation by adenosine and histamine released in close proximity of these terminals. This pathway comprises the sequential activation of PKCε and ALDH2, culminating in aldehyde detoxification and inhibition of hypoxic norepinephrine release. Thus, pharmacological activation of PKCε and ALDH2 in cardiac sympathetic nerves may have significant protective effects by alleviating norepinephrine-induced life-threatening arrhythmias that

  4. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1.

    Baltz, Anthony; Dang, Kieu-Van; Beyly, Audrey; Auroy, Pascaline; Richaud, Pierre; Cournac, Laurent; Peltier, Gilles

    2014-05-12

    Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae. PMID:24820024

  5. Lack of renal 11 beta-hydroxysteroid dehydrogenase type 2 at birth, a targeted temporal window for neonatal glucocorticoid action in human and mice.

    Laetitia Martinerie

    Full Text Available BACKGROUND: Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2. This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. METHODS: Cortisol (F and cortisone (E concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity and between plasma and urine in newborns (renal activity. Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. RESULTS: We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. CONCLUSIONS: We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming.

  6. A Novel Mutation Causing 17-β-Hydroxysteroid Dehydrogenase Type 3 Deficiency in an Omani Child: First Case Report and Review of Literature

    Aisha Al-Sinani

    2015-03-01

    Full Text Available This is the first case report in Oman and the Gulf region of a 17-β-hydroxysteroid dehydrogenase type 3 (17-β-HSD3 deficiency with a novel mutation in the HSD17B3 gene that has not been previously described in the medical literature. An Omani child was diagnosed with 17-β-HSD3 deficiency and was followed up for 11 years at the Pediatric Endocrinology Clinic, Royal Hospital, Oman. He presented at the age of six weeks with ambiguous genitalia, stretched penile and bilateral undescended testes. Ultrasound showed no evidence of any uterine or ovarian structures with oval shaped solid structures in both inguinal regions that were confirmed by histology to be testicular tissues with immature seminiferous tubules only. The diagnosis was made by demonstrating low serum testosterone and high androstenedione, estrone, and androstenedione:testosterone ratio. Karyotyping confirmed 46,XY and the infant was raised as male. Testosterone injections (25mg once monthly were given at two and six months and then three months before his surgeries at five and seven years of age when he underwent multiple operations for orchidopexy and hypospadias correction. At the age of 10 years he developed bilateral gynecomastia (stage 4. Laboratory investigations showed raised follicle-stimulating hormone, luteinizing hormone, androstenedione, and estrone with low-normal testosterone and low androstendiol glucurunide. Testosterone injections (50mg once monthly for six months were given that resulted in significant reduction in his gynecomastia. Molecular analysis revealed a previously unreported homozygous variant in exon eight of the HSD17B3 gene (NM_000197.1:c.576G>A.Trp192*. This variant creates a premature stop codon, which is very likely to result in a truncated protein or loss of protein production. This is the first report in the medical literature of this novel HSD17B3 gene mutation. A literature review was conducted to identify the previous studies related to this

  7. Down-regulation of 11β-hydroxysteroid dehydrogenase type 2 by bortezomib sensitizes Jurkat leukemia T cells against glucocorticoid-induced apoptosis.

    Yi Tao

    Full Text Available 11β-Hydroxysteroid dehydrogenases type 2 (11β-HSD2, a key regulator for pre-receptor metabolism of glucocorticoids (GCs by converting active GC, cortisol, to inactive cortisone, has been shown to be present in a variety of tumors. But its expression and roles have rarely been discussed in hematological malignancies. Proteasome inhibitor bortezomib has been shown to not only possess antitumor effects but also potentiate the activity of other chemotherapeutics. In this study, we demonstrated that 11β-HSD2 was highly expressed in two GC-resistant T-cell leukemic cell lines Jurkat and Molt4. In contrast, no 11β-HSD2 expression was found in two GC-sensitive non-hodgkin lymphoma cell lines Daudi and Raji as well as normal peripheral blood T cells. Inhibition of 11β-HSD2 by 11β-HSD inhibitor 18β-glycyrrhetinic acid or 11β-HSD2 shRNA significantly increased cortisol-induced apoptosis in Jurkat cells. Additionally, pretreatment of Jurkat cells with low-dose bortezomib resulted in increased cellular sensitivity to GC as shown by elevated induction of apoptosis, more cells arrested at G1 stage and up-regulation of GC-induced leucine zipper which is an important mediator of GC action. Furthermore, we clarified that bortezomib could dose-dependently inhibit 11β-HSD2 messenger RNA and protein levels as well as activity (cortisol-cortisone conversion through p38 mitogen-activated protein kinase signaling pathway. Therefore, we suggest 11β-HSD2 is, at least partially if not all, responsible for impaired GC suppression in Jurkat cells and also indicate a novel mechanism by which proteasome inhibitor bortezomib may influence GC action.

  8. Peroxisome proliferator-activated receptor-gamma stimulates 11beta-hydroxysteroid dehydrogenase type 1 in rat vascular smooth muscle cells

    Vagnerová, Karla; Loukotová, Jana; Ergang, Peter; Musílková, Jana; Mikšík, Ivan; Pácha, Jiří

    2011-01-01

    Roč. 76, č. 6 (2011), s. 577-581. ISSN 0039-128X R&D Projects: GA ČR(CZ) GAP303/10/0969 Institutional research plan: CEZ:AV0Z50110509 Keywords : 11beta-hydroxysteroid dehydrogenase * thiazolidinediones Subject RIV: ED - Physiology Impact factor: 2.829, year: 2011

  9. 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitors Still Improve Metabolic Phenotype in Male 11β-HSD1 Knockout Mice Suggesting Off-Target Mechanisms

    Harno, Erika; Cottrell, Elizabeth C.; Yu, Alice; DeSchoolmeester, Joanne; Gutierrez, Pablo Morentin; Denn, Mark; Swales, John G.; Goldberg, Fred W.; Bohlooly-Y, Mohammad; Andersén, Harriet; Wild, Martin J.; Turnbull, Andrew V.; Leighton, Brendan; White, Anne

    2013-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a target for novel type 2 diabetes and obesity therapies based on the premise that lowering of tissue glucocorticoids will have positive effects on body weight, glycemic control, and insulin sensitivity. An 11β-HSD1 inhibitor (compound C) inhibited liver 11β-HSD1 by >90% but led to only small improvements in metabolic parameters in high-fat diet (HFD)–fed male C57BL/6J mice. A 4-fold higher concentration produced similar enzyme ...

  10. The dilemma of the gender assignment in a Portuguese adolescent with disorder of sex development due to 17β-hydroxysteroid-dehydrogenase type 3 enzyme deficiency

    Castro-Correia, Cíntia; Mira-Coelho, Alda; Monteiro, Bessa; Monteiro, Joaquim; Hughes, Ieuan; Fontoura, Manuel

    2014-01-01

    Summary The development of male internal and external genitalia in an XY fetus requires a complex interplay of many critical genes, enzymes, and cofactors. The enzyme 17β-hydroxysteroid-dehydrogenase type 3 (17βHSD3) is present almost exclusively in the testicles and converts Delta 4-androstenodione (Δ4) to testosterone. A deficiency in this enzyme is rare and is a frequently misdiagnosed autosomal recessive cause of 46,XY, disorder of sex development. The case report is of a 15-year-old adolescent, who was raised according to female gender. At puberty, the adolescent had a severe virilization and primary amenorrhea. The physical examination showed a male phenotype with micropenis and blind vagina. The Tanner stage was A3B1P4, nonpalpable gonads. The karyotype revealed 46,XY. The endocrinology study revealed: testosterone=2.38 ng/ml, Δ4>10.00 ng/ml, and low testosterone/Δ4 ratio=0.23. Magnetic resonance imaging of the abdominal–pelvic showed the presence of testicles in inguinal canal, seminal vesicle, prostate, micropenis, and absence of uterus and vagina. The genetic study confirmed the mutation p.Glu215Asp on HSD17B3 gene in homozygosity. The dilemma of sex reassignment was seriously considered when the diagnosis was made. During all procedures the patient was accompanied by a child psychiatrist/psychologist. The teenager desired to continue being a female, so gonadectomy was performed. Estrogen therapy and surgical procedure to change external genitalia was carried out. In this case, there was a severe virilization at puberty. It is speculated to be due to a partial activity of 17βHSD3 in the testicles and/or extratesticular ability to convert Δ4 to testosterone by 17βHSD5. Prenatal exposure of the brain to androgens has increasingly been put forward as a critical factor in gender identity development, but in this case the social factor was more important for the gender assignment. Learning points In this case, we highlight the late diagnosis

  11. Human type 2 17beta-hydroxysteroid dehydrogenase mRNA and protein distribution in placental villi at mid and term pregnancy

    Plante Julie

    2007-07-01

    Full Text Available Abstract Background During human pregnancy, the placental villi produces high amounts of estradiol. This steroid is secreted by the syncytium, which is directly in contact with maternal blood. Estradiol has to cross placental foetal vessels to reach foetal circulation. The enzyme 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2 was detected in placental endothelial cells of foetal vessels inside the villi. This enzyme catalyzes the conversion of estradiol to estrone, and of testosterone to androstenedione. It was proposed that estradiol level into foetal circulation could be regulated by 17beta-HSD2. Methods We obtained placentas from 10 to 26 6/7 weeks of pregnancy from women undergoing voluntary termination of pregnancy, term placentas were collected after normal spontaneous vaginal deliveries. We quantified 17beta-HSD2 mRNA levels in mid-gestation and term human placenta by RT-QPCR. We produced a new anti-17beta-HSD2 antibody to study its spatio-temporal expression by immunohistochemistry. We also compared steroid levels (testosterone, estrone and estradiol and 17beta-HSD2 mRNA and protein levels between term placenta and endometrium. Results High 17beta-HSD2 mRNA and protein levels were found in both mid-gestation and term placentas. However, we showed that 17beta-HSD2 mRNA levels increase by 2.27 fold between mid-gestation and term. This period coincides with a transitional phase in the development of the villous vasculature. In mid-gestation placenta, high levels of 17beta-HSD2 were found in mesenchymal villi and immature intermediate villi, more precisely in endothelial cells of the stromal channel. At term, high levels of 17beta-HSD2 were found in the numerous sinusoidal capillaries of terminal villi. 17beta-HSD2 mRNA and protein levels in term placentas were respectively 25.4 fold and 30 to 60 fold higher than in the endometrium. Steroid levels were also significantly higher in term placenta than in the endometrium. Conclusion

  12. Dengue virus type 2 (DENV2)-induced oxidative responses in monocytes from glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD normal subjects.

    Abdullah Ahmed Al-Alimi; Syed A. Ali; Faisal Muti Al-Hassan; Fauziah Mohd Idris; Sin-Yeang Teow; Narazah Mohd Yusoff

    2014-01-01

    BACKGROUND: Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocyte...

  13. Regulation of 11 beta-Hydroxysteroid Dehydrogenase Type 1 and 7 alpha-Hydroxylase CYP7B1 during Social Stress

    Vodička, Martin; Ergang, Peter; Mikulecká, Anna; Řeháková, Lenka; Klusoňová, Petra; Makal, J.; Soták, Matúš; Musílková, Jana; Zach, P.; Pácha, Jiří

    2014-01-01

    Roč. 9, č. 2 (2014), e89421. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/10/0969 Grant ostatní: Univerzita Karlova(CZ) Prvouk P34; Univerzita Karlova(CZ) 5366/2012 Institutional support: RVO:67985823 Keywords : 11beta-hydroxysteroid dehydrogenase * stress * HPA axis Subject RIV: ED - Physiology Impact factor: 3.234, year: 2014

  14. Dengue Virus Type 2 (DENV2)-Induced Oxidative Responses in Monocytes from Glucose-6-Phosphate Dehydrogenase (G6PD)-Deficient and G6PD Normal Subjects

    Al-alimi, Abdullah Ahmed; Syed A. Ali; AL-HASSAN, FAISAL MUTI; Idris, Fauziah Mohd; Teow, Sin-Yeang; Mohd Yusoff, Narazah

    2014-01-01

    Background Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes...

  15. Plant Formate Dehydrogenase

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  16. Glucose-6-phosphate dehydrogenase deficiency

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  17. The intrinsic topological information of the wild-type and of up-promoter mutations of the Saccharomyces cerevisiae alcohol dehydrogenase II regulatory region.

    Della Seta, F; Camilloni, G; Venditti, S; Di Mauro, E

    1988-11-01

    A 569-base pair fragment encompassing the upstream regulatory region, the RNA initiation sites, and the initial part of the coding region of the Saccharomyces cerevisiae alcohol dehydrogenase II gene has been analyzed for the presence of sites which undergo conformational modification under torsional stress. Fine mapping of P1 and S1 endonuclease-sensitive sites was obtained on single topoisomers produced by in vitro ligation. It was shown that the upstream activator sequence, the TATA sequence, a region directly upstream to the RNA initiation sites, and several positions in the first segment of the transcribed region change conformation as a function of the applied torsional stress in a precisely coordinate fashion. The superhelical density optima for this coordinate modifications have been determined. Analysis of the conformational changes of the promoter sequence in several naturally occurring (Young, E. T., Williamson, V. M., Taguchi, A., Smith, M., Sledziewski, L., Russel, D., Osterman, J., Denis, C., Cox, D., and Beier, D., (1982) in Genetic Engineering of Microorganisms for Chemicals (Hollander, A., De Moss, R. D., Kaplan, S., Konisky, J., Savage, D., and Wolle, R. S., eds) pp. 335-361, Plenum Publishing Corp., New York) up-promoter constitutive mutants was performed. This analysis has shown that the conformation of functionally relevant sites changes as a function of sequence mutations that have taken place elsewhere; this shows that the conformational behavior of the whole promoter region is linked and suggests transmission in cis of topological effects in RNA polymerase II promoters. PMID:3053683

  18. Dengue virus type 2 (DENV2-induced oxidative responses in monocytes from glucose-6-phosphate dehydrogenase (G6PD-deficient and G6PD normal subjects.

    Abdullah Ahmed Al-Alimi

    2014-03-01

    Full Text Available BACKGROUND: Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals. METHODOLOGY: Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO, superoxide anions (O2-, and oxidative stress were determined and compared with normal controls. PRINCIPAL FINDINGS: Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O2- in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O2- were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings. CONCLUSIONS/SIGNIFICANCE: Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.

  19. Decreased expression of 17β-hydroxysteroid dehydrogenase type 1 is associated with DNA hypermethylation in colorectal cancer located in the proximal colon

    The importance of 17β-estradiol (E2) in the prevention of large bowel tumorigenesis has been shown in many epidemiological studies. Extragonadal E2 may form by the aromatase pathway from androstenedione or the sulfatase pathway from estrone (E1) sulfate followed by E1 reduction to E2 by 17-β-hydroxysteroid dehydrogenase (HSD17B1), so HSD17B1 gene expression may play an important role in the production of E2 in peripheral tissue, including the colon. HSD17B1 expression was analyzed in colorectal cancer cell lines (HT29, SW707) and primary colonic adenocarcinoma tissues collected from fifty two patients who underwent radical colon surgical resection. Histopathologically unchanged colonic mucosa located at least 10-20 cm away from the cancerous lesions was obtained from the same patients. Expression level of HSD17B1 using quantitative PCR and western blot were evaluated. DNA methylation level in the 5' flanking region of HSD17B1 CpG rich region was assessed using bisulfite DNA sequencing and HRM analysis. The influence of DNA methylation on HSD17B1 expression was further evaluated by ChIP analysis in HT29 and SW707 cell lines. The conversion of estrone (E1) in to E2 was determined by electrochemiluminescence method. We found a significant decrease in HSD17B1 transcript (p = 0.0016) and protein (p = 0.0028) levels in colorectal cancer (CRC) from the proximal but not distal colon and rectum. This reduced HSD17B1 expression was associated with significantly increased DNA methylation (p = 0.003) in the CpG rich region located in the 5' flanking sequence of the HSD17B1 gene in CRC in the proximal but not distal colon and rectum. We also showed that 5-dAzaC induced demethylation of the 5' flanking region of HSD17B1, leading to increased occupation of the promoter by Polymerase II, and increased transcript and protein levels in HT29 and SW707 CRC cells, which contributed to the increase in E2 formation. Our results showed that reduced HSD17B1 expression can

  20. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2014-12-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  1. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2015-06-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  2. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells

    Jensen, T G; Andresen, B S; Bross, P; Jensen, U B; Holme, E; Kølvraa, S; Gregersen, N; Bolund, L

    1992-01-01

    polyadenylation signals in the EBV-based vector. Both wild-type MCAD cDNA and cDNA containing the prevalent disease-causing mutation A to G at position 985 of the MCAD cDNA were tested. In transfected COS-7 cells, the steady state amount of mutant MCAD protein was consistently lower than the amount of wild...

  3. Peroxisomal multifunctional enzyme type 2 from the fruit fly: dehydrogenase and hydratase act as separate entities as revealed by structure and kinetics

    Haataja, Tatu J.K.; Koski, M. Kristian; Hiltunen, J. Kalervo; Glumoff, Tuomo

    2011-01-01

    Abstract All the peroxisomal ?-oxidation pathways characterized thus far house at least one multifunctional enzyme (MFE) catalyzing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for D. melanogaster MFE-2 (DmMFE-2), complements the S. cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitr...

  4. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1.

    Jan Hintzpeter

    Full Text Available The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1 catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome. Since tea has been associated with health benefits for thousands of years, we sought to elucidate the active principle in tea with regard to diabetes type 2 prevention. Several teas and tea specific polyphenolic compounds were tested for their possible inhibition of cortisone reduction with human liver microsomes and purified human 11β-HSD1. Indeed we found that tea extracts inhibited 11β-HSD1 mediated cortisone reduction, where green tea exhibited the highest inhibitory potency with an IC50 value of 3.749 mg dried tea leaves per ml. Consequently, major polyphenolic compounds from green tea, in particular catechins were tested with the same systems. (--Epigallocatechin gallate (EGCG revealed the highest inhibition of 11β-HSD1 activity (reduction: IC50 = 57.99 µM; oxidation: IC50 = 131.2 µM. Detailed kinetic studies indicate a direct competition mode of EGCG, with substrate and/or cofactor binding. Inhibition constants of EGCG on cortisone reduction were Ki = 22.68 µM for microsomes and Ki = 18.74 µM for purified 11β-HSD1. In silicio docking studies support the view that EGCG binds directly to the active site of 11β-HSD1 by forming a hydrogen bond with Lys187 of the catalytic triade. Our study is the first to provide evidence that the health benefits of green tea and its

  5. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1.

    Hintzpeter, Jan; Stapelfeld, Claudia; Loerz, Christine; Martin, Hans-Joerg; Maser, Edmund

    2014-01-01

    The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1) catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome. Since tea has been associated with health benefits for thousands of years, we sought to elucidate the active principle in tea with regard to diabetes type 2 prevention. Several teas and tea specific polyphenolic compounds were tested for their possible inhibition of cortisone reduction with human liver microsomes and purified human 11β-HSD1. Indeed we found that tea extracts inhibited 11β-HSD1 mediated cortisone reduction, where green tea exhibited the highest inhibitory potency with an IC50 value of 3.749 mg dried tea leaves per ml. Consequently, major polyphenolic compounds from green tea, in particular catechins were tested with the same systems. (-)-Epigallocatechin gallate (EGCG) revealed the highest inhibition of 11β-HSD1 activity (reduction: IC50 = 57.99 µM; oxidation: IC50 = 131.2 µM). Detailed kinetic studies indicate a direct competition mode of EGCG, with substrate and/or cofactor binding. Inhibition constants of EGCG on cortisone reduction were Ki = 22.68 µM for microsomes and Ki = 18.74 µM for purified 11β-HSD1. In silicio docking studies support the view that EGCG binds directly to the active site of 11β-HSD1 by forming a hydrogen bond with Lys187 of the catalytic triade. Our study is the first to provide evidence that the health benefits of green tea and its polyphenolic compounds may

  6. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major......Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...

  7. Impact of structural modifications at positions 13, 16 and 17 of 16β-(m-carbamoylbenzyl)-estradiol on 17β-hydroxysteroid dehydrogenase type 1 inhibition and estrogenic activity.

    Maltais, René; Trottier, Alexandre; Barbeau, Xavier; Lagüe, Patrick; Perreault, Martin; Thériault, Jean-François; Lin, Sheng-Xiang; Poirier, Donald

    2016-07-01

    The chemical synthesis of four stereoisomers (compounds 5a-d) of 16β-(m-carbamoylbenzyl)-estradiol, a potent reversible inhibitor of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), and two intermediates (compounds 3a and b) was performed. Assignment of all nuclear magnetic resonance signals confirmed the stereochemistry at positions 13, 16 and 17. Nuclear overhauser effects showed clear correlations supporting a C-ring chair conformation for 5a and b and a C-ring boat conformation for 5c and d. These compounds were tested as 17β-HSD1 inhibitors and to assess their proliferative activity on estrogen-sensitive breast cancer cells (T-47D) and androgen-sensitive prostate cancer cells (LAPC-4). Steroid derivative 5a showed the best inhibitory activity for the transformation of estrone to estradiol (95, 82 and 27%, at 10, 1 and 0.1μM, respectively), but like the other isomers 5c and d, it was found to be estrogenic. The intermediate 3a, however, was weakly estrogenic at 1μM, not at all at 0.1μM, and showed an interesting inhibitory potency on 17β-HSD1 (90, 59 and 22%, at 10, 1 and 0.1μM, respectively). As expected, no compound showed an androgenic activity. The binding modes for compounds 3a and b, 5a-d and CC-156 were evaluated from molecular modeling. While the non-polar interactions were conserved for all the inhibitors in their binding to 17β-HSD1, differences in polar interactions and in binding conformational energies correlated to the inhibitory potencies. PMID:26519987

  8. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1[W][OPEN

    Baltz, Anthony; Dang, Kieu-Van; Beyly, Audrey; Auroy, Pascaline; Richaud, Pierre; Cournac, Laurent; Peltier, Gilles

    2014-01-01

    Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae. PMID:24820024

  9. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Glucose-6-phosphate dehydrogenase deficiency Title Other Names: G6PD ... G6PD deficiency Categories: Newborn Screening Summary Summary Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary ...

  10. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    ... Information Center (GARD) Print friendly version Glucose-6-phosphate dehydrogenase deficiency Table of Contents Overview Symptoms Cause ... National Institutes of Health. Overview Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary condition in ...

  11. Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats

    Ayyalasomayajula Vajreswari

    2011-06-01

    Full Text Available Abstract Background 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats. Methods Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat. Results Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα, the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα, a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes. Conclusions This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly

  12. Effect of ketoconazole on the pharmacokinetics of the 11β-hydroxysteroid dehydrogenase type 1 inhibitor ABT-384 and its two active metabolites in healthy volunteers: population analysis of data from a drug-drug interaction study.

    An, Guohua; Liu, Wei; Katz, David A; Marek, Gerard; Awni, Walid; Dutta, Sandeep

    2013-05-01

    ABT-384 [1-piperazineacetamide, N-[5-(aminocarbonyl) tricyclo[3.3.1.13,7]dec-2-yl]-α,α-dimethyl-4-[5-(trifluoromethyl)-2-pyridinyl]-,stereoisomer] is a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase type 1 (HSD-1). ABT-384 has been shown to be safe and well tolerated in humans at doses up to 100 mg daily, and to fully inhibit both peripheral and brain HSD-1 at a dose of 2 mg daily. The effect of ketoconazole on the pharmacokinetics of ABT-384 and its two active metabolites, A-1331480 and A-847082, was investigated in healthy volunteers. When 10 mg of ABT-384 was coadministered with ketoconazole, ABT-384 exposures increased 18-fold for area under the plasma concentration-time curve from time 0 to infinity and 3.5-fold for Cmax. The results suggest that ABT-384 is a sensitive substrate of CYP3A. After ketoconazole coadministration, exposures of A-1331480 and A-847082 were also greatly increased. A population pharmacokinetic model was constructed for ABT-384 and its metabolites using NonMEM. A two-compartment model with three transit absorption compartments best described ABT-384 data. The model predicted a 69.3% decrease in ABT-384 clearance and 91.1% increase in the volume of distribution of ABT-384 in the presence of ketoconazole. A-1331480 was shown to be formation rate-limited and A-847082 was elimination rate-limited. Both metabolites were characterized by a one-compartment model with first-order rate constants of formation and elimination. Overall the model adequately captured the concentration-time profiles of ABT-384, A-1331480, and A-847082 in both ABT-384-alone and ketoconazole-coadministration conditions. Although ABT-384 exposures were greatly increased in the presence of ketoconazole, coadministration of ABT-384 with ketoconazole or other strong/moderate CYP3A inhibitors is not expected to contribute to any major clinical safety issues considering the favorable safety profile of ABT-384. PMID:23431112

  13. Relationships between the H and A-O blood types, phosphohexose isomerase and 6-phosphogluconate dehydrogenase red cell enzyme systems and halothane sensitivity, and economic traits in a superior and an inferior selection line of swiss landrace pigs.

    Vögeli, P; Stranzinger, G; Schneebeli, H; Hagger, C; Künzi, N; Gerwig, C

    1984-12-01

    Associations between production traits and the genes for halothane sensitivity (HAL), S, A and H blood group systems and phosphohexose isomerase (PHI) and 6-phosphogluconate dehydrogenase (6-PGD) enzyme systems were investigated in two lines of pigs selected for an index. The phenotypic variance-covariance matrix of the index included backfat thickness and daily gain, whereas the genetic variance-covariance matrix included daily gain, feed conversion and percentage of lean meat. The experiment was conducted at the experimental station of the Institute of Animal Production and has been underway since 1973. The same index was applied but in two opposite directions to give a superior and inferior line in relation to the production traits. One hundred twenty-nine animals of the superior line in the seventh generation and 88 animals of the inferior line in the sixth generation were studied. Forty-two percent (54/129) of the animals of the superior line were halothane-positive. No animals in the inferior line were halothane reactors. Of the halothane-positive pigs, 70.4% (38/54) in the superior line had the HaHa and 94.4% (51/54) had the SsSs genotype, whereas only 4% (3/75) of the HaHa and 12% (9/75) of the SsSs pigs were halothane-negative. By practicing selection at the H and S loci, it seems possible to efficiently reduce halothane sensitivity in Swiss Landrace pigs. In pigs of the superior line, there were significant differences in percentage of lean meat, carcass length, pH1 (pH value at 45 min to 1 h postmortem, M. longissimus) and reflectance values among genotypes of the HAL, S and H systems and among some genotypes of the 6-PGD system. Poorest meat quality, highest percentage of lean meat and shortest carcass length were observed in pigs homozygous for the alleles HALn, Ss, Ha, PHIB and 6-PGDA. In the inferior line, these associations were absent. As the HAL locus is associated with the above mentioned production traits, linkage disequilibria may explain the

  14. Sorbitol dehydrogenase is a zinc enzyme.

    Jeffery, J; Chesters, J; C. Mills; P.J. Sadler; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and poly...

  15. Specific biotinylation of IMP dehydrogenase

    Hoefler, B. Christopher; Gollapalli, Deviprasad R.; Hedstrom, Lizbeth

    2011-01-01

    IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.

  16. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  17. Preparation of 15N-labeled L-alanine by coupling the alanine dehydrogenase and alcohol dehydrogenase reactions

    A simple enzymatic procedure for the preparation of L-[15N]alanine, one of the metabolically most active amino acids in all types of cells, is reported. The procedure is based on the coupling of two reactions, one catalyzed by bacterial alanine dehydrogenase, the second catalyzed by yeast alcohol dehydrogenase. An impediment in the use of this procedure could be the high cost of commercial AlaDH. However, the enzyme is widespread in the Bacillus species and partially purified samples, adequate preparative purposes, could be obtained relatively easily by chromatography on blue-Sepharose. (Auth.)

  18. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis

    Andersen, H.W.; Pedersen, M.B.; Hammer, Karin;

    2001-01-01

    enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control (C- LDH(F1)J=-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate...

  19. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Ma YM; Zhao S

    2016-01-01

    Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, th...

  20. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2012-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophili...

  1. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  2. Studies on 2-oxoacid dehydrogenase multienzyme complexes of Azotobacter vinelandii

    Bosma, H.J.

    1984-01-01

    In this thesis, some studies on the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes of Azotobacter vinelandii are described; the emphasis strongly lies on the pyruvate dehydrogenase complex.A survey of the literature on 2-oxoacid dehydrogenase complexes is given in chap

  3. Microbial alcohol dehydrogenases: identification, characterization and engineering

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  4. Screening of aspartate dehydrogenase of bacteria

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  5. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers

    Nam Ho Jeoung

    2015-06-01

    Full Text Available Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4 and pyruvate dehydrogenase phosphatases (PDP1 and 2. PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.

  6. Phosphorylation site on yeast pyruvate dehydrogenase complex

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  7. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  8. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  9. Characterization of wild-type human medium-chain acyl-CoA dehydrogenase (MCAD) and mutant enzymes present in MCAD-deficient patients by two-dimensional gel electrophoresis

    Bross, P; Jensen, T G; Andresen, B S;

    1994-01-01

    eukaryotic COS-7 cells we demonstrate that variants with point mutations changing the net charge of the protein can be readily resolved from the wild-type protein. After expression of the cDNA in eukaryotic cells two spots representing mature MCAD can be distinguished, one with an isoelectric point (p...... one aspartic acid residue per monomer. Comparison of pulse labeling and steady-state amounts of MCAD protein in overexpressing COS-7 cells confirms that K304E MCAD is synthesized and transported into mitochondria in amounts similar to the wild-type protein, but is degraded much more readily. For wild...

  10. Inducible xylitol dehydrogenases in enteric bacteria.

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  11. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  12. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism.

    Singer, M E; Finnerty, W R

    1985-01-01

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH) exhibiting an apparent Km for ethanol of 512 microM and a Vmax of 138 nmol/min. An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficien...

  13. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  14. Catalytic reaction of cytokinin dehydrogenase : preference for quinones as electron acceptors

    Frébortová, Jitka; Fraaije, Marco W.; Galuszka, Petr; Šebela, Marek; Peč, Pavel; Hrbáč, Jan; Novák, Ondřej; Bilyeu, Kristin D.; English, James T.; Frébort, Ivo; Sebela, M.; Pec, P.; Hrbac, J.; Frebort, [No Value

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that

  15. Microbial alcohol dehydrogenases: identification, characterization and engineering

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety of substrate specificities and are involved in an astonishingly wide range of metabolic processes, in all living organisms. Besides the scientific interest in ADHs, they are also attractive biocat...

  16. Genetics Home Reference: pyruvate dehydrogenase deficiency

    ... the most common cause of pyruvate dehydrogenase deficiency , accounting for approximately 80 percent of cases. These mutations ... deficiency ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific articles on PubMed (1 link) PubMed OMIM (5 links) ...

  17. Genetics Home Reference: lactate dehydrogenase deficiency

    ... throughout the body and is important for creating energy for cells. There are five different forms of this enzyme, each made up of four ... and lactate dehydrogenase-B subunits make up the different forms of the ... large amounts of energy during high-intensity physical activity when the body's ...

  18. Ethylbenzene Dehydrogenase and Related Molybdenum Enzymes Involved in Oxygen-Independent Alkyl Chain Hydroxylation.

    Heider, Johann; Szaleniec, Maciej; Sünwoldt, Katharina; Boll, Matthias

    2016-01-01

    Ethylbenzene dehydrogenase initiates the anaerobic bacterial degradation of ethylbenzene and propylbenzene. Although the enzyme is currently only known from a few closely related denitrifying bacterial strains affiliated to the Rhodocyclaceae, it clearly marks a universally occurring mechanism used for attacking recalcitrant substrates in the absence of oxygen. Ethylbenzene dehydrogenase belongs to subfamily 2 of the DMSO reductase-type molybdenum enzymes together with paralogous enzymes involved in the oxygen-independent hydroxylation of p-cymene, the isoprenoid side chains of sterols and even possibly n-alkanes; the subfamily also extends to dimethylsulfide dehydrogenases, selenite, chlorate and perchlorate reductases and, most significantly, dissimilatory nitrate reductases. The biochemical, spectroscopic and structural properties of the oxygen-independent hydroxylases among these enzymes are summarized and compared. All of them consist of three subunits, contain a molybdenum-bis-molybdopterin guanine dinucleotide cofactor, five Fe-S clusters and a heme b cofactor of unusual ligation, and are localized in the periplasmic space as soluble enzymes. In the case of ethylbenzene dehydrogenase, it has been determined that the heme b cofactor has a rather high redox potential, which may also be inferred for the paralogous hydroxylases. The known structure of ethylbenzene dehydrogenase allowed the calculation of detailed models of the reaction mechanism based on the density function theory as well as QM-MM (quantum mechanics - molecular mechanics) methods, which yield predictions of mechanistic properties such as kinetic isotope effects that appeared consistent with experimental data. PMID:26960184

  19. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants

    Edenberg, Howard J

    2007-01-01

    The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carries influence his or her level of alcohol consumption and risk of alcoholism. Researchers to date pri...

  20. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    Girio, F.M.; Amaral-Collaco, M.T. [INETI, Lisboa (Portugal); Pelica, F. [ITQB, Oeiras (Portugal)

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  1. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    Ferrari, P.; McKay, J. D.; Jenab, M.;

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati......BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...... populations.SUBJECTS/METHODS: A nested case-control study (1269 cases matched to 2107controls by sex, age, study centre and date of blood collection) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) to evaluate the impact of rs1229984 (ADH1B), rs1573496 (ADH7......) and rs441 (ALDH2) polymorphisms on CRC risk. Using the wild-type variant of each polymorphism as reference category, CRC risk estimates were calculated using conditional logistic regression, with adjustment for matching factors.RESULTS: Individuals carrying one copy of the rs1229984(A) (ADH1B) allele...

  2. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanse and hexadecanol metabolism

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH). An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH was distinct from ADH-A and ADH-B. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation

  3. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  4. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  5. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg2+, and [γ-32P]ATP. The protein-bound radioactivity was localized in the PDH α subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg2+, and Ca2+. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the α subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg

  6. Alcohol dehydrogenase activity in immobilized yeast cells

    A method for the immobilization of Saccharomyces cerevisiae was developed and the activity of alcohol dehydrogenase of the immobilized cells was determined. The treatment of the yeast cells with 1 % toluene followed by irradiation with acrylamide and bisacrylamide resulted in a high activity of alcohol dehydrogenase in the immobilized cells. The enzyme of the immobilized cells was stable in the pH range of 7.5 - 8.0 and the optimum pH opposed to be 8.5. Although the immobilized cells showed a rather low level of thermostability, it is suggested that they could be used for a long period of time at a temperature of 27 deg C. The immobilized cells did not exhibit any loss in the enzyme activity when stored at 4 deg C or -20 deg C. (author)

  7. Glucose 6 phosphate dehydrogenase deficiency Review

    Şaşmaz, İlgen

    2009-01-01

    Glucose 6 phosphate dehydrogenase G6PD is the first enzyme of the pentose phosphate pathway providing reducing power to all cells in the form of reduced form of nicotinamide adenine dinucleotide phosphate G6PD deficiency is the most common human enzyme defect being present in more than 400 million people worldwide G6PD deficiency is an X linked hereditary genetic defect caused by mutations in the G6PD gene Clinical presentations include acute hemolytic anemia chronic hemolytic anemia neonatal...

  8. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  9. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien

    2013-01-01

    Cellular toxicity and/or cell death entail complex mechanisms that require detailed evaluation for proper characterization. A detailed mechanistic assessment of cytotoxicity is essential for design and construction of more effective polycations for nucleic acid delivery. A single toxicity assay...... cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...... event in necrosis but a late event in apoptosis. An accurate temporal assessment of the toxic responses is crucial as late apoptosis may convert into necrosis as well as in situations where cell death is initiated without any visible cell morphological changes or responses in assays measuring late...

  10. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases

    Markey, Keira A; Uldall, Maria; Botfield, Hannah; Cato, Liam D; Miah, Mohammed A L; Hassan-Smith, Ghaniah; Jensen, Rigmor H; Gonzalez, Ana M; Sinclair, Alexandra J

    2016-01-01

    Idiopathic intracranial hypertension (IIH) results in raised intracranial pressure (ICP) leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11β-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH.

  11. Glucose-6 phosphate dehydrogenase deficiency and psychotic illness

    Vijender Singh

    2012-01-01

    Full Text Available Mr. T, a 28-year-old unmarried male, a diagnosed case of Glucose-6 Phosphate Dehydrogenase (G6PD deficiency since childhood, presented with 13 years of psychotic illness and disturbed biological functions. He showed poor response to antipsychotics and mood stabilizers and had three prior admissions to Psychiatry. There was a family history of psychotic illness. The General Physical Examination and Systemic Examination were unremarkable. Mental Status Examination revealed increased psychomotor activity, pressure of speech, euphoric affect, prolixity, delusion of persecution, delusion of grandiosity, delusion of control, thought withdrawal and thought insertion, and second and third person auditory hallucinations, with impaired judgment and insight. A diagnosis of schizophrenia paranoid type, with a differential diagnosis of schizoaffective disorder manic subtype, was made. This case is being reported for its rarity and atypicality of clinical presentation, as well as a course of psychotic illness in the G6PD Deficiency state,with its implications on management.

  12. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Nagaharu, Keiki; Ikemura, Kenji; Yamashita, Yoshiki; Oda, Hiroyasu; Ishihara, Mikiya; Sugawara, Yumiko; Tamaru, Satoshi; Mizuno, Toshiro; Katayama, Naoyuki

    2016-01-01

    Over the past decades, 5-Fluorouracil (5-FU) has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD) activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment. PMID:27195162

  13. Lactate dehydrogenase X, malate dehydrogenase and total protein in rat spermatozoa during epididymal transit.

    Vermouth, N T; Carriazo, C S; Ponce, R H; Blanco, A

    1986-01-01

    Lactate dehydrogenase isozyme X (LDH X), malate dehydrogenase (MDH) and total soluble protein have been determined in lysates of spermatozoa isolated from caput, corpus and cauda of rat epididymis. Transit of spermatozoa through epididymis is accompanied by a reduction of LDH X, MDH and total protein per cell in sexually rested animals. The profiles of reduction along epididymal segments are different for the three variables studied. Mating with receptive females during the 5 days prior to determinations increases significantly the levels of MDH in spermatozoa from all sections of epididymis and produces increase of total soluble protein in the cells contained in cauda. PMID:3956158

  14. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    Sadeghi, H. Mir Mohammad; Ahmadi, R; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. ...

  15. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Shane C. Quinonez

    2014-01-01

    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  16. Molecular genetic analysis of human alcohol dehydrogenase

    Duester, G; Wesley Hatfield, G.; Smith, M.

    1985-01-01

    Human alcohol dehydrogenase (ADH) consists of a complex group of isozymes encoded by at least five non-identical genes, two of which have previously been shown through enzymatic analysis to possess polymorphic variants. Using a cDNA probe the ADH2gene encoding the β subunit of human ADH was mapped to human chromosome 4. The cDNA probe for ADH2 was also used to detect a restriction fragment length polymorphism present in human populations. This polymorphism may help establish whether certain A...

  17. Lactate dehydrogenase in sickle cell disease.

    Stankovic Stojanovic, Katia; Lionnet, François

    2016-07-01

    Lactate dehydrogenase (LDH) activity is elevated in many pathological states. Interest in LDH activity in sickle cell disease (SCD) has developed out of an increased comprehension of the pathophysiological process and the clinical course of the disease. Elevated LDH activity in SCD comes from various mechanisms, especially intravascular hemolysis, as well as ischemia-reperfusion damage and tissular necrosis. Intravascular hemolysis is associated with vasoconstriction, platelet activation, endothelial damage, and vascular complications. LDH has been used as a diagnostic and prognostic factor of acute and chronic complications. In this review we have evaluated the literature where LDH activity was examined during steady-state or acute conditions in SCD. PMID:27138446

  18. NAD(H recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase

    2006-03-01

    Full Text Available A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens and lactate dehydrogenase (LDH; from Bacillus stearothermophilus was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.

  19. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 1- Measured by using dehydrogenase Enzyme Activities

    The present study searches for the improvement vitality of the Mediterranean fruit fly, Ceratitis capitata Wied. Through the induction of a specific variance (mutation) in the genetic material. Several types of treatments that were thought to cause this mutation were used, as IGR's, temperature, formaldehyde, colchicine, alcohols, several types of larval rearing media and gamma-rays. Generally, the activities of the energy enzymes alpha-glycerophosphate dehydrogenase (alpha-GPDH) enzyme lactate dehydrogenase (LDH) enzyme and malate dehydrogenase (MDH) enzyme, when used as a direct measure for the fly vitality, increased due to treatments of the egg stage by the previously mentioned treatments specially by the usage of rice hulls in the larval rearing medium alone or followed by irradiation of the pupal stage with 90 Gy

  20. Aldehyde dehydrogenase protein superfamily in maize.

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement. PMID:22983498

  1. Involvement of AMPK in Alcohol Dehydrogenase Accentuated Myocardial Dysfunction Following Acute Ethanol Challenge in Mice

    GUO Rui; Scott, Glenda I.; Ren, Jun

    2010-01-01

    Objectives Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. Methods ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3...

  2. Glutamate Dehydrogenase Is Not Essential for Glutamate Formation by Corynebacterium glutamicum

    Kholy, Elke R. Börmann-El; Eikmanns, Bernhard J.; Gutmann, Marcella; Sahm, Hermann

    1993-01-01

    Two Corynebacterium glutamicum strains, one being glutamate dehydrogenase (GDH) negative and the other possessing 11-fold-higher specific GDH activity than the parental wild type, were constructed and used to analyze the role of GDH in C. glutamicum. The results indicate (i) that GDH is dispensable for glutamate synthesis required for growth and (ii) that although a high level of GDH increases the intracellular glutamate pool, the level of GDH has no influence on glutamate secretion.

  3. Directed Evolution of a Thermostable Phosphite Dehydrogenase for NAD(P)H Regeneration

    Johannes, Tyler W.; Woodyer, Ryan D.; Zhao, Huimin

    2005-01-01

    NAD(P)H-dependent oxidoreductases are valuable tools for synthesis of chiral compounds. The expense of the cofactors, however, requires in situ cofactor regeneration for preparative applications. We have attempted to develop an enzymatic system based on phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri to regenerate the reduced nicotinamide cofactors NADH and NADPH. Here we report the use of directed evolution to address one of the main limitations with the wild-type PTDH enzyme, its l...

  4. HISTIDINE MUTAGENESIS OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE KINASE

    Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex (PDC). Analysis of the primary amino acid sequences of PDK from various sources reveals that these enzymes include the five domains characteristic of prokaryotic two-compone...

  5. Studies on the structure and function of pyruvate dehydrogenase complexes

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  6. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  7. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  8. Disease-causing missense mutations affect enzymatic activity, stability and oligomerization of glutaryl-CoA dehydrogenase (GCDH)

    Keyser, B.; Muhlhausen, C.; Dickmanns, A.; Muschol, N.; Ullrich, K.; Braulke, T.; Christensen, Ernst

    2008-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive neurometabolic disorder caused by mutations in the glutaryl-CoA dehydrogenase gene (GCDH), leading to an accumulation and high excretion of glutaric acid and 3-hydroxyglutaric acid. Considerable variation in severity of the clinical phenotype...

  9. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  10. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  11. Fast internal dynamics in alcohol dehydrogenase

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains

  12. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Margit Winkler; Manuela Avi; Karen Robins; Strohmeier, Gernot A; Sonavane, Manoj N.; Kamila Napora-Wijata

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisia...

  13. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.

    Tang, J. C.; Forage, R G; Lin, E C

    1982-01-01

    An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.

  14. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.

    Smith, K.; Sundaram, T K; Kernick, M

    1984-01-01

    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  15. Structural and Thermodynamic Basis for Weak Interactions between Dihydrolipoamide Dehydrogenase and Subunit-binding Domain of the Branched-chain [alpha]-Ketoacid Dehydrogenase Complex

    Brautigam, Chad A.; Wynn, R. Max; Chuang, Jacinta L.; Naik, Mandar T.; Young, Brittany B.; Huang, Tai-huang; Chuang, David T. (AS); (UTSMC)

    2012-02-27

    The purified mammalian branched-chain {alpha}-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain {alpha}-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-{angstrom} resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other {alpha}-ketoacid dehydrogenase complexes.

  16. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    ... as seizures, life-threatening heart and breathing problems, coma, and sudden death. This condition may explain some ... hydroxyacyl-CoA dehydrogenase United Mitochondrial Disease Foundation: Treatments & Therapies These resources from MedlinePlus offer information about the ...

  17. Crystallization behaviour of glyceraldehyde dehydrogenase from Thermoplasma acidophilum

    Lermark, L.; Degtjarik, Oksana; Steffler, F.; Sieber, V.; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 71, č. 12 (2015), s. 1475-1480. ISSN 2053-230X Institutional support: RVO:67179843 Keywords : TaAlDH * Thermoplasma acidophilum * bioproduction * cell-free enzyme cascade * glyceraldehyde dehydrogenase Subject RIV: CE - Biochemistry

  18. Lactate Dehydrogenase in Hepatocellular Carcinoma: Something Old, Something New

    Faloppi, Luca; Bianconi, Maristella; Memeo, Riccardo; Casadei Gardini, Andrea; Giampieri, Riccardo; Bittoni, Alessandro; Andrikou, Kalliopi; Del Prete, Michela; Cascinu, Stefano; Scartozzi, Mario

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver tumour (80–90%) and represents more than 5.7% of all cancers. Although in recent years the therapeutic options for these patients have increased, clinical results are yet unsatisfactory and the prognosis remains dismal. Clinical or molecular criteria allowing a more accurate selection of patients are in fact largely lacking. Lactic dehydrogenase (LDH) is a glycolytic key enzyme in the conversion of pyruvate to lactate under anaerobic conditions. In preclinical models, upregulation of LDH has been suggested to ensure both an efficient anaerobic/glycolytic metabolism and a reduced dependence on oxygen under hypoxic conditions in tumour cells. Data from several analyses on different tumour types seem to suggest that LDH levels may be a significant prognostic factor. The role of LDH in HCC has been investigated by different authors in heterogeneous populations of patients. It has been tested as a potential biomarker in retrospective, small, and nonfocused studies in patients undergoing surgery, transarterial chemoembolization (TACE), and systemic therapy. In the major part of these studies, high LDH serum levels seem to predict a poorer outcome. We have reviewed literature in this setting trying to resume basis for future studies validating the role of LDH in this disease. PMID:27314036

  19. Glucose 6 phosphate dehydrogenase deficiency in adults

    Objective: To determine the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in adults presented with anemia. Subjects and Methods: Eighteen months admission data was reviewed for G6PD deficiency as a cause of anemia. Anemia was defined by world health organization (WHO) criteria as haemoglobin less than 11.3 gm%. G6PD activity was measured by Sigma dye decolorisation method. All patients were screened for complications of hemolysis and its possible cause. Patients with more than 13 years of age were included in the study. Results: Out of 3600 patients admitted, 1440 were found anaemic and 49 as G6PD deficient. So the frequency of G6PD deficiency in anaemic patients was 3.4% and the overall frequency is 1.36%. G6PD deficiency among males and females was three and six percent respectively. Antimalarials and antibiotics containing sulphonamide group were the most common precipitating factors for hemolysis. Anemia and jaundice were the most common presentations while malaria was the most common associated disease. Acute renal failure was the most severe complication occurring in five patients with two deaths. Conclusion: G6PD deficiency is a fairly common cause of anemia with medicine as common precipitating factor for hemolysis. Such complications can be avoided with early recognition of the disease and avoiding indiscriminate use of medicine. (author)

  20. Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids.

    Peterson, J. B.; LaRue, T A

    1982-01-01

    A soluble aldehyde dehydrogenase (EC 1.2.1.3) was partially purified from Rhizobium japonicum bacteroids and from free-living R. japonicum 61A76. The enzyme was activated by NAD+, NADH, and dithiothreitol, and it reduced NAD(P)+. Acetaldehyde, propionaldehyde, butyraldehyde, benzaldehyde, and succinic semialdehyde were substrates. The Km for straight-chain aldehydes decreased with increasing carbon chain length. The aldehyde dehydrogenase was inhibited by 6-cyanopurine, but not by metronidazo...

  1. Malate dehydrogenase activity in human seminal plasma and spermatozoa homogenates

    Hulya Leventerler

    2013-08-01

    Full Text Available Purpose: Malate Dehydrogenase is an important enzyme of the Krebs cycle, most cells require this enzyme for their metabolic activity. We evaluated the Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates in normozoospermic, fertile and infertile males. Also glucose and fructose concentrations were determined in the seminal plasma samples. Material and Methods: Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates of normozoospermic and infertile males was determined by spectrophotometric method. Semen analysis was considered according to the WHO Criteria. Results: Malat Dehydrogenase-NAD value in seminal plasma (the mean ± SD, mU/ml of asthenoteratospermic (40.0±25.7 and azospermic (38.0±43.6 groups were significantly lower than normozoospermic, (93.9±52.1 males. Malat Dehydrogenase-NAD value in sperm homogenates (the mean ± SD, mU/ 20x106 sperm of teratospermic group (136.8±61.8 was significantly higher compared to the normozoospermic (87.3±26.5 males. Glucose concentration (mg/dl in asthenoteratospermic (4.0±1.4 and azospermic (15.4±6.4 groups were significantly higher than fertile (2.0±2.1 males. Also fructose concentration (mg/dl in asthenoteratospermic (706.6±143.3 and azospermic (338.1±228.2 groups were significantly high compared to the normozoospermic (184.7±124.8 group. Conclusion: Sperm may be some part of the source of Malat Dehydrogenase activity in semen. Malat Dehydrogenase activity in seminal plasma has an important role on energy metabolism of sperm. Intermediate substrates of Krebs cycle might have been produced under the control of Malat Dehydrogenase and these substrates may be important for sperm motility and male infertility. [Cukurova Med J 2013; 38(4.000: 648-658

  2. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme.

    Govindaraj, S; Eisenstein, E.; Jones, L. H.; Sanders-Loehr, J; Chistoserdov, A Y; Davidson, V L; Edwards, S. L.

    1994-01-01

    Aromatic amine dehydrogenase (AADH) catalyzes the oxidative deamination of aromatic amines including tyramine and dopamine. AADH is structurally similar to methylamine dehydrogenase (MADH) and possesses the same tryptophan tryptophylquinone (TTQ) prosthetic group. AADH exhibits an alpha 2 beta 2 structure with subunit molecular weights of 39,000 and 18,000 and with a quinone covalently attached to each beta subunit. Neither subunit cross-reacted immunologically with antibodies to the correspo...

  3. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hallberg, B Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled vi...

  4. In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde

    Mun, Ju-Ae; Doh, Eunjin; Min, Hyesun

    2008-01-01

    Alcoholism has been associated with folate deficiency in humans and laboratory animals. Previous study showed that ethanol feeding reduces the dehydrogenase and hydrolase activity of 10-formyltetrahydrofolate dehydrogenase (FDH) in rat liver. Hepatic ethanol metabolism generates acetaldehyde and acetate. The mechanisms by which ethanol and its metabolites produce toxicity within the liver cells are unknown. We purified FDH from rat liver and investigated the effect of ethanol, acetaldehyde an...

  5. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-direc...... insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k...

  6. Crystallization and preliminary X-ray analysis of binary and ternary complexes of Haloferax mediterranei glucose dehydrogenase

    Single crystals of binary and ternary complexes of wild-type and D38C mutant H. mediterranei glucose dehydrogenase have been obtained by the hanging-drop vapour-diffusion method. Haloferax mediterranei glucose dehydrogenase (EC 1.1.1.47) belongs to the medium-chain alcohol dehydrogenase superfamily and requires zinc for catalysis. In the majority of these family members, the catalytic zinc is tetrahedrally coordinated by the side chains of a cysteine, a histidine, a cysteine or glutamate and a water molecule. In H. mediterranei glucose dehydrogenase, sequence analysis indicates that the zinc coordination is different, with the invariant cysteine replaced by an aspartate residue. In order to analyse the significance of this replacement and to contribute to an understanding of the role of the metal ion in catalysis, a range of binary and ternary complexes of the wild-type and a D38C mutant protein have been crystallized. For most of the complexes, crystals belonging to space group I222 were obtained using sodium/potassium citrate as a precipitant. However, for the binary and non-productive ternary complexes with NADPH/Zn, it was necessary to replace the citrate with 2-methyl-2,4-pentanediol. Despite the radical change in conditions, the crystals thus formed were isomorphous

  7. Structural studies on dihydrolipoyl transacetylase : the core component of the pyruvate dehydrogenase complex of Azotobacter vinelandii.

    Hanemaaijer, R.

    1988-01-01

    The studies described in this thesis deal with the structure of the Azotobactervinelandii dihydrolipoyl transacetylase, the core component (E 2 ) of the pyruvate dehydrogenase complex. in all organisms the pyruvate dehydrogenase complex is closely related to the 2-oxoglutarate dehydrogenase complex and, if present, the branched-chain 2-oxoacid dehydrogenase complex. These enzyme complexes are large multimeric structures. The smallest known is the pyruvate dehydrogenase complex from A.vineland...

  8. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.

    Clair Crewe

    Full Text Available Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance

  9. Aldehyde Dehydrogenase 2 Knockout Accentuates Ethanol-Induced Cardiac Depression: Role of Protein Phosphatases

    Ma, Heng; Byra, Emily A.; Yu, Lu; Hu, Nan; Kitagawa, Kyoko; Nakayama, Keiichi I.; Kawamoto, Toshihiro; Ren, Jun

    2010-01-01

    Alcohol consumption leads to myocardial contractile dysfunction possibly due to the toxicity of ethanol and its major metabolite acetaldehyde. This study was designed to examine the influence of mitochondrial aldehyde dehydrogenase-2 (ALDH2) knockout (KO) on acute ethanol exposure-induced cardiomyocyte dysfunction. Wild-type (WT) and ALDH2 KO mice were subjected to acute ethanol (3 g/kg, i.p.) challenge and cardiomyocyte contractile function was assessed 24 hrs later using an IonOptix® edge-d...

  10. Analysis of a Corynebacterium glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase.

    Reinscheid, D J; Eikmanns, B J; Sahm, H

    1991-01-01

    From a Corynebacterium glutamicum mutant possessing a homoserine dehydrogenase resistant to feedback inhibition by L-threonine, the corresponding gene (homFBR) was analyzed and compared with the wild-type hom gene. DNA fragment exchange experiments between both genes showed that a 0.23-kb region close to the 3' terminus of homFBR was responsible for deregulation. Nucleotide sequence analysis revealed a single transition from G to A in homFBR leading to replacement of glycine-378 by glutamate ...

  11. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency

    Andresen, B S; Christensen, E; Corydon, T J;

    2000-01-01

    of homozygosity for a 1228G-->A mutation in the patient. This mutation was not present in 118 control chromosomes. In vitro transcription/translation experiments and overexpression in COS cells confirmed the disease-causing nature of the mutant SBCAD protein and showed that ACAD-8 is an isobutyryl......-CoA dehydrogenase and that both wild-type proteins are imported into mitochondria and form tetramers. In conclusion, we report the first mutation in the SBCAD gene, show that it results in an isolated defect in isoleucine catabolism, and indicate that ACAD-8 is a mitochondrial enzyme that functions in valine...

  12. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri

    Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 μM KCN and was rapidly inactivated by O2. The enzyme was nearly homogenous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent K/sub m/ of 5 mM for CO and a V/sub max/ of 1300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed

  13. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  14. Function of C-terminal hydrophobic region in fructose dehydrogenase

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  15. Urinary Bladder Paragangliomas: Analysis of Succinate Dehydrogenase and Outcome.

    Gupta, Sounak; Zhang, Jun; Rivera, Michael; Erickson, Lori A

    2016-09-01

    Paragangliomas of the urinary bladder can arise sporadically or as a part of hereditary syndromes including those with underlying mutations in the succinate dehydrogenase (SDH) genes, which serve as tumor suppressors. SDH deficiency can be screened for by absence of immunohistochemical detection of SDHB. In this study of 11 cases, clinical follow-up was available for 9/11 cases. The cases were reviewed and graded based on the grading system for adrenal pheochromocytomas and paragangliomas (GAPP) criteria. Immunohistochemistry was performed for Ki67 and SDHB. Proliferative index was calculated by quantification of Ki67-positive cells at hot spots. The medical record was accessed for documentation of germline SDH mutations. Urinary bladder paragangliomas had a female predilection (8/11 cases), and 5/11 cases exhibited metastatic behavior. Patients with metastatic disease tended to be younger (mean age 43 vs 49 years), have larger lesions (5.8 vs 1.5 cm), and presented with catecholamine excess (4/4 vs 2/6 patients with non-metastatic lesions). Patients with metastatic disease had a higher mean Ki67 proliferation rate (4.9 vs 1.3 %) and GAPP score (mean of 5.8 vs 3.8) (p = 0.01). IHC for SDHB expression revealed loss of expression in 2/6 cases of non-metastatic paragangliomas compared to 4/5 patients with metastatic paragangliomas. Interestingly, of these four patients, two had a documented mutation of SDHB, one patient had a SDHC mutation, and another patient had a history of familial disease without mutation analysis being performed. Our study, suggests that SDH loss was suggestive of metastatic behavior in addition to younger age at diagnosis, larger tumor size, and higher Ki67 proliferation rate and catecholamine type. PMID:27262318

  16. Origin and evolution of medium chain alcohol dehydrogenases.

    Jörnvall, Hans; Hedlund, Joel; Bergman, Tomas; Kallberg, Yvonne; Cederlund, Ella; Persson, Bengt

    2013-02-25

    Different lines of alcohol dehydrogenases (ADHs) have separate superfamily origins, already recognized but now extended and re-evaluated by re-screening of the latest databank update. The short-chain form (SDR) is still the superfamily with most abundant occurrence, most multiple divergence, most prokaryotic emphasis, and most non-complicated architecture. This pattern is compatible with an early appearance at the time of the emergence of prokaryotic cellular life. The medium-chain form (MDR) is also old but second in terms of all the parameters above, and therefore compatible with a second emergence. However, this step appears seemingly earlier than previously considered, and may indicate sub-stages of early emergences at the increased resolution available from the now greater number of data entries. The Zn-MDR origin constitutes a third stage, possibly compatible with the transition to oxidative conditions on earth. Within all these three lines, repeated enzymogeneses gave the present divergence. MDR-ADH origin(s), at a fourth stage, may also be further resolved in multiple or extended modes, but the classical liver MDR-ADH of the liver type can still be traced to a gene duplication ~550 MYA (million years ago), at the early vertebrate radiation, compatible with the post-eon-shift, "Cambrian explosion". Classes and isozymes correspond to subsequent and recent duplicatory events, respectively. They illustrate a peculiar pattern with functional and emerging evolutionary distinctions between parent and emerging lines, suggesting a parallelism between duplicatory and mutational events, now also visible at separate sub-stages. Combined, all forms show distinctive patterns at different levels and illustrate correlations with global events. They further show that simple molecular observations on patterns, multiplicities and occurrence give much information, suggesting common divergence rules not much disturbed by horizontal gene transfers after the initial origins. PMID

  17. Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP+ dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP+ was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV

  18. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  19. Reversible inactivation of CO dehydrogenase with thiol compounds

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H2O → CO2 + 2e− + 2H+) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([MoVI(=O)OH(2)SCuI(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed

  20. Reversible inactivation of CO dehydrogenase with thiol compounds

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  1. Properties of Lactate Dehydrogenase in a Psychrophilic Marine Bacterium

    Mitchell, P; Yen, H. C.; Mathemeier, P. F.

    1985-01-01

    Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30...

  2. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    Li, Shi-Yan; Gilbert, Sara A. B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  3. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and β-cell apoptosis

    Zhang, Zhaoyun; Liew, Chong Wee; Handy, Diane E.; Zhang, Yingyi; Leopold, Jane A.; Hu, Ji; Guo, Lili; Kulkarni, Rohit N.; Loscalzo, Joseph; Stanton, Robert C.

    2010-01-01

    Patients with type 2 diabetes lose β cells, but the underlying mechanisms are incompletely understood. Glucose-6-phosphate dehydrogenase (G6PD) is the principal source of the major intracellular reductant, NADPH, which is required by many enzymes, including enzymes of the antioxidant pathway. Previous work from our laboratory has shown that high glucose impairs G6PD activity in endothelial and kidney cells, which leads to decreased cell survival. Pancreatic β cells are highly sensitive to inc...

  4. Alcohol Dehydrogenase Accentuates Ethanol-Induced Myocardial Dysfunction and Mitochondrial Damage in Mice: Role of Mitochondrial Death Pathway

    GUO Rui; Ren, Jun

    2010-01-01

    Objectives Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods ADH and wild-type FVB mice were acutely chall...

  5. Prostaglandin dehydrogenase and the initiation of labor.

    Challis, J R; Patel, F A; Pomini, F

    1999-01-01

    In summary, these studies have suggested that prostaglandin dehydrogenase may have a central role to play in the mechanisms which determine biologically active prostaglandin concentrations within human fetal membranes and placenta at the time of labor, at term or preterm. Moreover, our studies indicate that the regulation of PGDH may by multifactorial (figure 3). In certain regions of the membranes, we suggest that PGDH expression may be influenced by levels of anti-inflammatory and pro-inflammatory cytokines. In other regions of the membranes, we suggest that PGDH may be regulated at a transcriptional level by competing activities of progesterone and cortisol. The action of progesterone could be effected through systemically-derived steroid, or by locally synthesized steroid, acting in a paracrine and/or autocrine fashion. The effects of cortisol in placenta must be due to glucocorticoid derived from the maternal or fetal compartment, since the placenta lacks the hydroxylases required for endogenous cortisol production. However, metabolism of cortisol by 11 beta-HSD-2 reduces the potency of this glucocorticoid in placental tissue. In chorion however, cortisol may be formed locally, from cortisone, in addition to its being derived from the maternal circulation and/or from the amniotic fluid. Our current studies do not allow us to delineate whether the effects of progesterone and cortisol on PGDH are exerted through the glucocorticoid receptor (GR) or progesterone receptor (PR) or both. It is possible that through pregnancy, PGDH activity is maintained by progesterone acting either through low levels of PR in membranes, or, more likely, acting through GR. At term, elevated levels of cortisol compete with and displace progesterone from GR, resulting in inhibition of PGDH transcription and activity. In this way, local withdrawal of progesterone action would be effected within human intrauterine tissues, without requiring changes in systemic, circulating progesterone

  6. Enhanced clearance of lactic dehydrogenase-5 in severe combined immunodeficiency (SCID) mice: effect of lactic dehydrogenase virus on enzyme clearance.

    Hayashi, T.; Ozaki, M.; Mori, I; Saito, M; Itoh, T.; Yamamoto, H.

    1992-01-01

    The lactic dehydrogenase (LDH) level in plasma and the clearance of LDH in C.B-17 scid (severe combined immunodeficiency; SCID) mice were compared with those in C.B-17 or BALB/cCrSlc mice with or without lactic dehydrogenase virus (LDV) infection. The resting enzyme level in SCID mice showed little difference from that in C.B-17 or BALB/cCrSlc mice. The degree of increased plasma LDH level in SCID mice was lower than that in C.B-17 and BALB/cCrSlc mice after LDV infection. To assess the mecha...

  7. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao

    2008-01-01

    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  8. The roles of aldehyde dehydrogenases (ALDHs in the PDH bypass of Arabidopsis

    Lin Ming

    2009-03-01

    Full Text Available Abstract Background Eukaryotic aldehyde dehydrogenases (ALDHs, EC 1.2.1, which oxidize aldehydes into carboxylic acids, have been classified into more than 20 families. In mammals, Family 2 ALDHs detoxify acetaldehyde. It has been hypothesized that plant Family 2 ALDHs oxidize acetaldehyde generated via ethanolic fermentation, producing acetate for acetyl-CoA biosynthesis via acetyl-CoA synthetase (ACS, similar to the yeast pathway termed the "pyruvate dehydrogenase (PDH bypass". Evidence for this pathway in plants has been obtained from pollen. Results To test for the presence of the PDH bypass in the sporophytic tissue of plants, Arabidopsis plants homozygous for mutant alleles of all three Family 2 ALDH genes were fed with 14C-ethanol along with wild type controls. Comparisons of the incorporation rates of 14C-ethanol into fatty acids in mutants and wild type controls provided direct evidence for the presence of the PDH bypass in sporophytic tissue. Among the three Family 2 ALDHs, one of the two mitochondrial ALDHs (ALDH2B4 appears to be the primary contributor to this pathway. Surprisingly, single, double and triple ALDH mutants of Arabidopsis did not exhibit detectable phenotypes, even though a Family 2 ALDH gene is required for normal anther development in maize. Conclusion The PDH bypass is active in sporophytic tissue of plants. Blocking this pathway via triple ALDH mutants does not uncover obvious visible phenotypes.

  9. The Crystal Structure of Aquifex aeolicus Prephenate Dehydrogenase Reveals the Mode of Tyrosine Inhibition*

    Sun, Warren; Shahinas, Dea; Bonvin, Julie; Hou, Wenjuan; Kimber, Matthew S.; Turnbull, Joanne; Christendat, Dinesh

    2009-01-01

    TyrA proteins belong to a family of dehydrogenases that are dedicated to l-tyrosine biosynthesis. The three TyrA subclasses are distinguished by their substrate specificities, namely the prephenate dehydrogenases, the arogenate dehydrogenases, and the cyclohexadienyl dehydrogenases, which utilize prephenate, l-arogenate, or both substrates, respectively. The molecular mechanism responsible for TyrA substrate selectivity and regulation is unknown. To further our underst...

  10. Alcohol and Aldehyde Dehydrogenases: Retinoid Metabolic Effects in Mouse Knockout Models

    Kumar, Sandeep; Sandell, Lisa L.; Trainor, Paul A; Koentgen, Frank; Duester, Gregg

    2011-01-01

    Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and development. The first step of RA synthesis is controlled by enzymes of the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH) that further oxidize retinaldehyde to produce RA. RA fun...

  11. Heterozygosity for an in-frame deletion causes glutaryl-CoA dehydrogenase deficiency in a patient detected by newborn screening

    Bross, Peter Gerd; Frederiksen, Jane B; Bie, Anne Sigaard; Hansen, Jakob; Palmfeldt, Johan; Nielsen, Marit N; Duno, Morten; Lund, Allan M; Christensen, Ernst

    2012-01-01

    A patient with suspected glutaric aciduria type 1 (GA-1) was detected by newborn screening. GA-1 is known as an autosomal recessively inherited disease due to defects in the gene coding for glutaryl-CoA dehydrogenase (GCDH), a mitochondrial enzyme involved in the catabolism of the amino acids...

  12. l-Valine Production during Growth of Pyruvate Dehydrogenase Complex- Deficient Corynebacterium glutamicum in the Presence of Ethanol or by Inactivation of the Transcriptional Regulator SugR▿

    Blombach, Bastian; Arndt, Annette; Auchter, Marc; Eikmanns, Bernhard J.

    2008-01-01

    Pyruvate dehydrogenase complex-deficient strains of Corynebacterium glutamicum produce l-valine from glucose only after depletion of the acetate required for growth. Here we show that inactivation of the DeoR-type transcriptional regulator SugR or replacement of acetate by ethanol already in course of the growth phase results in efficient l-valine production.

  13. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis

    Moon, Hee-Jung; Tiwari, Manish; Jeya, Marimuthu;

    2010-01-01

    Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to D-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide...

  14. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    Sadeghi, H. Mir Mohammad; Ahmadi, R.; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D.

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities. PMID:22110522

  15. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  16. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  17. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydroxybutyric dehydrogenase test system. 862.1380 Section 862.1380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  18. Medium-chain acyl-CoA dehydrogenase deficiency

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin; Bennetts, Bruce; Angel, Lyn; Andresen, Brage S; Wilcken, Bridget

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  19. Cloning and expression of chicken 20-hydroxysteroid dehydrogenase

    Bryndová, Jana; Klusoňová, Petra; Kučka, Marek; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 37, č. 3 (2006), s. 453-462. ISSN 0952-5041 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant ostatní: GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z50110509 Keywords : 20-hydroxysteroid dehydrogenase * SDR family Subject RIV: CE - Biochemistry Impact factor: 2.988, year: 2006

  20. Cloning and expression of chicken 20beta hydroxysteroid dehydrogenase

    Klusoňová, Petra; Kučka, Marek; Bryndová, Jana; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    Seefeld, 2006. [International Symposium of the Journal of Steroid Biochemistry and Molecular Biology /17./. 31.05.2006-03.06.2006, Seefeld] R&D Projects: GA AV ČR(CZ) IAA6011201 Keywords : 20beta hydroxysteroid dehydrogenase * chicken Subject RIV: ED - Physiology

  1. Two different dihydroorotate dehydrogenases from yeast Saccharomyees kluyveri

    Zameitat, E.; Knecht, Wolfgang; Piskur, Jure; Loffler, M.

    2004-01-01

    Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces klujveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family...

  2. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.;

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  3. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnologica

  4. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Elena Ciornea

    2010-09-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  5. Expressions of 11β-hydroxysteroid dehydrogenase type 1 and steroids receptors in ciliary body with glucocorticoid-induced ocular hypertension rabbit model%11β-HSD1及皮质类固醇受体在兔糖皮质激素性高眼压模型睫状体组织中的表达

    刘溢; 张玉杰; 夏丹; 姚志峰; 袁志兰

    2014-01-01

    Background Long-term administration of glucocorticoid drugs induces ocular hypertension in susceptible individuals probably.It has been verified that 1 1β-hydroxysteroid dehydrogenase type 1 (11β-HSD1),glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) can affect the generating of aqueous humor,but how they play the role in glucocorticoid-induced ocular hypertension is unclear.Objective This study was to investigate the relationship of expressions of 11β-HSD1 and steroids receptors in ciliary body and steroid-induced ocular hypertension.Methods Thirteen 12-16 week-old New Zealand albino rabbits were randomized to control group (5 rabbits) and experimental group (8 rabbits).Steroid-induced glaucoma models were induced by administration of subconjunctival injection of 5 mg dexamethasone solution(1 ml) and 0.5% dexamethasone eye drops on alternate days in the left eyes for consecutive two months in the experimental group,and the equal volume of sterile normal saline solution was used in the same way in the control group.The successful criteria of model eyes was defined as rising of intraocular pressure (IOP) to ≥ 18 mmHg for over one week.Then,the animals were sacrificed by excessive anesthesia and the ciliary tissues were isolated for the assay of expressions of 1 1β-HSD1 protein by immunochemistry,and the expressions of 11β-HSD1 mRNA,GR mRNA and MR mRNA in ciliary body were semi-quantitatively detected by reverse transcription-PCR (RT-PCR).The experimental results were compared between the two groups.Results The IOP was normal in the first two weeks after administration of drugs,and no significant difference was found in IOP between the first week and the second week in the experimental group (q =0.469,P >0.05).From 3 through 5 weeks after injection,the IOP was gradually elevated,with the highest value of (18.87±0.77) mmHg in the fifth week.Significant differences were seen between the two groups at mentioned-above time points (q =10

  6. Physiological and Growth Responses of Tomato Progenies Harboring the Betaine Alhyde Dehydrogenase Gene to Salt Stress

    Shu-Feng Zhou; Xian-Yang Chen; Xing-Ning Xue; Xin-Guo Zhang; Yin-Xin Li

    2007-01-01

    The responses of five transgenlc tomato (Lycoperslcon esculentum Mill) lines containing the betaine aldehyde dehydrogenase (BADH) gene to salt stress were evaluated. Proline, betaine (N, N, N-trimethylglycine, hereafter betaine), chlorophyll and ion contents, BADH activity, electrolyte leakage (EL), and some growth parameters of the plants under 1.0% and 1.5% NaCl treatments were examined. The transgenic tomatoes had enhanced BADH activity and betaine content, compared to the wild type under stress conditions. Salt stress reduced chlorophyll contents to a higher extent in the wild type than in the transgenic plants. The wild type exhibited significantly higher proline content than the transgenic plants at 0.9% and 1.3% NaCl. Cell membrane of the wild type was severely damaged as determined by higher EL under salinity stress. K+ and Ca2+ contents of all tested lines decreased under salt stress,but the transgenic plants showed a significantly higher accumulation of K+ and Ca2+ than the wild type. In contrast,the wild type had significantly higher Cl- and Na+ contents than the transgenic plants under salt stress. Although yield reduction among various lines varied, the wild type had the highest yield reduction. Fruit quality of the transgenic plants was better in comparison with the wild type as shown by a low ratio of blossom end rot fruits.The results show that the transgenic plants have improved salt tolerance over the wild type.

  7. High-temperature crystallization of the secondary alcohol dehydrogenase from the extreme thermophilic bacteria Thermoanaerobacter ethanolicus, a bifunctional alcohol dehydrogenase-acetyl-CoA thio esterase

    Full text. Ethanol fermentations from Saccharomyces sp. are used in industrial ethanol production and are performed at mesophilic temperatures where final ethanol concentrations must exceed 4% (v/v) to make the process industrially economic. In addition, distillation is required to recover ethanol. Thermophilic fermentations are very attractive since they enable separation of ethanol from continuous cultures at process temperature and reduced pressure. Two different ethanol-production pathways have been identified for thermophilic bacteria; type I from Clostridium thermocellum, which contains only NADH-linked primary-alcohol dehydrogeneases, and type II from Thermoanaerobacter brockii which in addition include NADPH-linked secondary-alcohol dehydrogenases. The thermophilic anaerobic bacterium T ethanolicus 39E produces ethanol as the major end product from starch, pentose and herose substrates. The 2 Adh has a lower catalytic efficiency for the oxidation of 1 alcohols, including ethanol, than for the oxidation of secondary (2) alcohols or the reduction of ketones or aldehydes and possesses a significant acetyl-CoA reductive thioesterase activity. Large single crystals (0.7 x 0.3 x 0.3 mn) of this enzyme have been obtained at 400C and diffraction data to 2.7 A resolution has been collected (Rmerge = 10.44%). Attempts are currently underway to obtain higher resolution data and a search for heavy atom derivatives is currently underway. The crystals belong to the space group P21 21 2 with cell constants of a a= 170.0 A, b=125.7 A and c=80.5 A. The asymmetric unit contains a tetramer as in the case of the crystals of the secondary alcohol dehydrogenase from Thermoanaerobacter brockii with a VM of 2.85 A3/Da. (author)

  8. Site-directed mutagenesis to enable and improve crystallizability of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase

    The N-terminal part of Candida tropicalis MFE-2 (MFE-2(h2Δ)) having two (3R)-hydroxyacyl-CoA dehydrogenases with different substrate specificities has been purified and crystallized as a recombinant protein. The expressed construct was modified so that a stabile, homogeneous protein could be obtained instead of an unstabile wild-type form with a large amount of cleavage products. Cubic crystals with unit cell parameters a = 74.895, b = 78.340, c = 95.445, and α = β = γ = 90 deg were obtained by using PEG 4000 as a precipitant. The crystals exhibit the space group P212121 and contain one molecule, consisting of two different (3R)-hydroxyacyl-CoA dehydrogenases, in the asymmetric unit. The crystals diffract to a resolution of 2.2 A at a conventional X-ray source

  9. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Research highlights: → A new mutant of PQQ-GDH designed for glucose biosensors application. → First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. → Position N428 is a key point to increase the enzyme activity. → Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  10. Succinate dehydrogenase subunit D and succinate dehydrogenase subunit B mutation analysis in canine phaeochromocytoma and paraganglioma.

    Holt, D E; Henthorn, P; Howell, V M; Robinson, B G; Benn, D E

    2014-07-01

    Phaeochromocytomas (PCs) are tumours of the adrenal medulla chromaffin cells. Paragangliomas (PGLs) arise in sympathetic ganglia (previously called extra-adrenal PCs) or in non-chromaffin parasympathetic ganglia cells that are usually non-secretory. Parenchymal cells from these tumours have a common embryological origin from neural crest ectoderm. Several case series of canine PCs and PGLs have been published and a link between the increased incidence of chemoreceptor neoplasia in brachycephalic dog breeds and chronic hypoxia has been postulated. A similar link to hypoxia in man led to the identification of germline heterozygous mutations in the gene encoding succinate dehydrogenase subunit D (SDHD) and subsequently SDHA, SDHB and SDHC in similar tumours. We investigated canine PCs (n = 6) and PGLs (n = 2) for SDHD and SDHB mutations and in one PGL found a somatic SDHD mutation c.365A>G (p.Lys122Arg) in exon 4, which was not present in normal tissue from this brachycephalic dog. Two PCs were heterozygous for both c.365A>G (p.Lys122Arg) mutation and an exon 3 silent variant c.291G>A. We also identified the heterozygous SDHB exon 2 mutation c.113G>A (p.Arg38Gln) in a PC. These results illustrate that genetic mutations may underlie tumourigenesis in canine PCs and PGLs. The spontaneous nature of these canine diseases and possible association of PGLs with hypoxia in brachycephalic breeds may make them an attractive model for studying the corresponding human tumours. PMID:24813157

  11. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis.

    Nora Grahl

    2011-07-01

    Full Text Available Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA and (1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid. In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses.

  12. Inhibitory effects of ofloxacin and cefepime on enzyme activity of 6-phosphogluconate dehydrogenase from chicken liver.

    Erat, Mustafa; Sakiroğlu, Halis

    2007-01-01

    In this study, effects of some antibiotics, namely, ofloxacin, cefepime, cefazolin, and ampicillin on the in vitro enzyme activity of 6-phosphogluconate dehydrogenase have been investigated. For this purpose, 6-phosphogluconate dehydrogenase was purified from chicken liver 535-fold with a yield of 18% by using ammonium sulphate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography, and Sephadex G-200 gel filtration chromatography. In order to check the purity of the enzyme, SDS polyacylamide gel electrophoresis (SDS-PAGE) was performed. This analysis revealed a highly pure enzyme band on the gel. Among the antibiotics, ofloxacin and cefepime exhibited inhibitory effects, but cefazolin and ampicillin showed neither important inhibitory nor activatory effects on the enzyme activity. The measured I(50) values by plotting activity percent vs. inhibitor concentration, [I(50)] were 0.1713 mM for ofloxacin and 6.0028 mM for cefepime. Inhibition constants, K(i), for ofloxacin and cefepime were also calculated as 0.2740 +/- 0.1080 mM and 12.869 +/- 16.6540 mM by means of Lineweaver-Burk graphs, and inhibition types of the antibiotics were found out to be non-competitive and competitive, respectively. It has been understood from the calculated inhibitory parameters that the purified chicken enzyme has been quite inhibited by these two antimicrobials. PMID:17305608

  13. Comparative 13C Metabolic Flux Analysis of Pyruvate Dehydrogenase Complex-Deficient, l-Valine-Producing Corynebacterium glutamicum▿†

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-01-01

    l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum o...

  14. [Cooperative properties of D-glyceraldehyde-3-phosphate dehydrogenase].

    Nagradova, N K

    1977-03-01

    The structure of the active center of glyceraldehyde-3-phosphate dehydrogenase and the arrangement of subunits in the tetrameric molecule is delineated. The mechanism of cooperative effects in the oligomer is considered, and the involvement of various regions of the active center and of different-subunit contact area in the realization of the cooperative phenomena is discussed. A special attention is paid to the effect of NAD+ bound to one of the subunits of the tetramer on the structure of an adjacent subunit and to the problem of the participation of the coenzyme in the creation of anion-binding sites of the enzyme. The conditions of reversible dissociation of the tetrameric apoenzyme molecule into dimers are depicted, and the role of NAD+ in the organization of the quaternary structure of the dehydrogenase is discussed. The problem of catalytic activity of the dimeric form of the enzyme is argued. PMID:193581

  15. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    Biehl, R.; Hoffmann, B.; Monkenbusch, M.; Falus, P.; Préost, S.; Merkel, R.; Richter, D.

    2008-01-01

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spinecho spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffenin...

  16. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    Dash Ranjan K; Pradhan Ranjan K; Qi Feng; Beard Daniel A

    2011-01-01

    Abstract Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, an...

  17. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency: sex distribution.

    Kaplan, M.; Hammerman, C; Kvit, R; Rudensky, B; Abramov, A.

    1994-01-01

    Eight hundred and six newborn infants at high risk for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency were screened; 30.2% of the boys and 10.4% of the girls had severe G-6-PD deficiency. Surprisingly, 14% of the enzyme deficient girls had a father from a low risk ethnic group. Girls of high risk mothers should be screened for G-6-PD deficiency regardless of paternal origin.

  18. Characterization of the rat Class 3 aldehyde dehydrogenase gene promoter.

    Xie, Y Q; Takimoto, K; Pitot, H. C.; Miskimins, W K; Lindahl, R

    1996-01-01

    The Class 3 aldehyde dehydrogenase gene (ALDH-3) is differentially expressed. Expression is either constitutive or xenobiotic inducible via an aromatic hydrocarbon (Ah) receptor-mediated pathway, depending upon the tissue. A series of studies were performed to examine the regulation of rat ALDH-3 basal expression. DNase I footprint analysis identified four DNA regions within the proximal 1 kb of the 5' flanking region of rat ALDH-3 which interact with regulatory proteins. Reporter gene and ge...

  19. Regulation of human class I alcohol dehydrogenases by bile acids

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver . Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and ...

  20. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  1. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  2. Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males

    Tong, Ming-Han; Yang, Qi-En; Davis, Jeffrey C.; Griswold, Michael D.

    2012-01-01

    Retinoic acid (RA), an active vitamin A derivative, is essential for mammalian spermatogenesis. Genetic studies have revealed that oxidation of vitamin A to retinal by retinol dehydrogenase 10 (RDH10) is critical for embryonic RA biosynthesis. However, physiological roles of RDH10 in postnatal RA synthesis remain unclear, given that Rdh10 loss-of-function mutations lead to early embryonic lethality. We conducted in vivo genetic studies of Rdh10 in postnatal mouse testes and found that an RDH1...

  3. Fatty acids and the regulation of pyruvate dehydrogenase interconversion

    Stewart, Melanie Ann.

    1997-01-01

    This thesis presents evidence for a novel mechanism of regulation of pyruvate dehydrogenase (PDH) kinase by fatty acids and also results of a study of muscle triacylglycerol concentration. In animals regulation of PDH complex activity is central to the selection of respiratory fuels and to the conservation of glucose during carbohydrate deprivation. The principal means of regulation of PDH complex is interconversion of phosphorylated (inactive) and dephosphorylated (active) fo...

  4. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Lulla, Aaron; Murphy, Niall P.; Lam, Hoa A.; O’Donnell, Kelley C.; Barnhill, Lisa; Casida, John E.; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C.; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff. M.

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the...

  5. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group.

    1989-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest enzyme disorder of human beings and a globally important cause of neonatal jaundice, which can lead to kernicterus and death or spastic cerebral palsy. It can also lead to life-threatening haemolytic crises in childhood and at later ages, by interacting with specific drugs and with fava beans in the diet. The complications of G6PD deficiency can largely be prevented by education and information, and neonatal jaundice can be ...

  6. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    Hirokazu Shiga; Hiromi Joreau; Tze Loon Neoh; Takeshi Furuta; Hidefumi Yoshii

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably...

  7. Retinal Dehydrogenase 12 (RDH12) Mutations in Leber Congenital Amaurosis

    Perrault, Isabelle; Hanein, Sylvain; Gerber, Sylvie; Barbet, Fabienne; Ducroq, Dominique; Dollfus, Helene; Hamel, Christian,; Dufier, Jean-Louis; Munnich, Arnold; Kaplan, Josseline; Rozet, Jean-Michel

    2004-01-01

    Leber congenital amaurosis (LCA), the most early-onset and severe form of all inherited retinal dystrophies, is responsible for congenital blindness. Ten LCA genes have been mapped, and seven of these have been identified. Because some of these genes are involved in the visual cycle, we regarded the retinal pigment epithelium and photoreceptor-specific retinal dehydrogenase (RDH) genes as candidate genes in LCA. Studying a series of 110 unrelated patients with LCA, we found mutations in the p...

  8. Molecular properties of succinate dehydrogenase isolated from Micrococcus luteus (lysodeikticus).

    Crowe, B A; Owen, P.(Imperial College London, London, United Kingdom)

    1983-01-01

    Succinate dehydrogenase (EC 1.3.99.1) of Micrococcus luteus was selectively precipitated from Triton X-100-solubilized membranes by using specific antiserum. The precipitated enzyme contained equimolar amounts of four polypeptides with apparent molecular weights of 72,000, 30,000, 17,000, and 15,000. The 72,000 polypeptide possessed a covalently bound flavin prosthetic group and appeared to be strongly antigenic as judged by immunoprinting experiments. Low-temperature absorption spectroscopy ...

  9. Visual evoked potentials in succinate semialdehyde dehydrogenase (SSADH) Deficiency

    Di Rosa, G.; Malaspina, P; P. Blasi(INAF Arcetri); Dionisi-Vici, C.; Rizzo, C; Tortorella, G; Crutchfield, S. R.; Gibson, K. M.

    2009-01-01

    In mammals, increased GABA in the central nervous system has been associated with abnormalities of visual evoked potentials (VEPs), predominantly manifested as increased latency of the major positive component P100. Accordingly, we hypothesized that patients with a defect in GABA metabolism, succinate semialdehyde dehydrogenase (SSADH) deficiency (in whom supraphysiological levels of GABA accumulate), would manifest VEP anomalies. We evaluated VEPs on two patients with confirmed SSADH deficie...

  10. Glucose-6-Phosphate Dehydrogenase Deficiency in Nigerian Children

    Olatundun Williams; Daniel Gbadero; Grace Edowhorhu; Ann Brearley; Tina Slusher; Lund, Troy C.

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (...

  11. A guide to 17beta-hydroxysteroid dehydrogenases.

    Adamski, J; Jakob, F J

    2001-01-22

    17beta-Hydroxysteroid dehydrogenases (17beta-HSD) are pivotal in controlling the biological potency of steroid hormones by catalyzing oxidation or reduction at position 17. Several 17beta-HSDs may as well metabolize further substrates including alcohols, bile acids, fatty acids and retinols. This review summarizes recent progress in the field of 17beta-HSD research provides an update of nomenclature. PMID:11165003

  12. A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana.

    Bari, Rafijul; Kebeish, Rashad; Kalamajka, Rainer; Rademacher, Thomas; Peterhänsel, Christoph

    2004-03-01

    The fixation of molecular O2 by the oxygenase activity of Rubisco leads to the formation of phosphoglycolate in the chloroplast that is further metabolized in the process of photorespiration. The initial step of this pathway is the oxidation of glycolate to glyoxylate. Whereas in higher plants this reaction takes place in peroxisomes and is dependent on oxygen as a co-factor, most algae oxidize glycolate in the mitochondria using organic co-factors. The identification and characterization of a novel glycolate dehydrogenase in Arabidopsis thaliana is reported here. The enzyme is dependent on organic co-factors and resembles algal glycolate dehydrogenases in its enzymatic properties. Mutants of E. coli incapable of glycolate oxidation can be complemented by overexpression of the Arabidopsis open reading frame. The corresponding RNA accumulates preferentially in illuminated leaves, but was also found in other tissues investigated. A fusion of the N-terminal part of the Arabidopsis glycolate dehydrogenase to red fluorescent protein accumulates in mitochondria when overexpressed in the homologous system. Based on these results it is proposed that the basic photorespiratory system of algae is conserved in higher plants. PMID:14966218

  13. Novel yeast cell dehydrogenase activity assay in situ.

    Berłowska, Joanna; Kregiel, Dorota; Klimek, Leszek; Orzeszyna, Bartosz; Ambroziak, Wojciech

    2006-01-01

    The aim of this research was to develop a suitable method of succinate dehydrogenase activity assay in situ for different industrial yeast strains. For this purpose different compounds: EDTA, Triton X-100, sodium deoxycholate, digitonin, nystatin and beta-mercaptoethanol were used. The permeabilization process was controlled microscopically by primuline staining. Enzyme assay was conducted in whole yeast cells with Na-succinate as substrate, phenazine methosulfate (PMS) as electron carrier and in the presence one of two different tetrazolium salts: tetrazolium blue chloride (BT) or cyanoditolyl tetrazolium chloride (CTC) reduced during the assay. In comparabile studies of yeast vitality the amount of intracellular ATP was determined according to luciferin/luciferase method. During the succinate dehydrogenase assay in intact yeast cells without permeabilization, BT formazans were partially visualized in the cells, but CTC formazans appeared to be totally extracellular or associated with the plasma membrane. Under these conditions there was no linear relationship between formazan color intensity signal and yeast cell density. From all chemical compounds tested, only digitonin was effective in membrane permeabilization without negative influence on cell morphology. Furthermore, with digitonin-treated cells a linear relationship between formazan color intensity signal and yeast cell number was noticed. Significant decreasing of succinate dehydrogenase activity and ATP content were observed during aging of the tested yeast strains. PMID:17419290

  14. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P212121, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  15. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  16. Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.

    Qi, Xiang-Hui; Zhu, Jing-Fei; Yun, Jun-Hua; Lin, Jing; Qi, Yi-Lin; Guo, Qi; Xu, Hong

    2016-09-01

    Xylitol has numerous applications in food and pharmaceutical industry, and it can be biosynthesized by microorganisms. In the present study, xdh gene, encoding xylitol dehydrogenase (XDH), was cloned from the genome of Gluconobacter oxydans CGMCC 1.49 and overexpressed in Escherichia coli BL21. Sequence analysis revealed that XDH has a TGXXGXXG NAD(H)-binding motif and a YXXXK active site motif, and belongs to the short-chain dehydrogenase/reductase family. And then, the enzymatic properties and kinetic parameter of purified recombinant XDH were investigated. Subsequently, transformations of xylitol from d-xylulose and d-arabitol, respectively, were studied through mixed culture of resting cells of G. oxydans wild-type strain and recombinant strain BL21-xdh. We obtained 28.80 g/L xylitol by mixed culture from 30 g/L d-xylulose in 28 h. The production was increased by more than three times as compared with that of wild-type strain. Furthermore, 25.10 g/L xylitol was produced by the mixed culture from 30 g/L d-arabitol in 30 h with a yield of 0.837 g/g, and the max volumetric productivity of 0.990 g/L h was obtained at 22 h. These contrast to the fact that wild-type strain G. oxydans only produced 8.10 g/L xylitol in 30 h with a yield of 0.270 g/g. To our knowledge, these values are the highest among the reported yields and productivity efficiencies of xylitol from d-arabitol with engineering strains. PMID:26975753

  17. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation

  18. Immunological study of lactate dehydrogenase from Streptococcus mutans and evidence of common antigenic domains with lactate dehydrogenases from lactic bacteria.

    Sommer, P.; Klein, J P; Ogier, J. A.; Frank, R M

    1986-01-01

    Rabbit polyclonal antibodies directed against purified Streptococcus mutans L-(+)-lactate dehydrogenase reacted with the purified enzyme, giving a marked deviation of its kinetic parameters. The enzyme affinity for pyruvate or NADH decreased in the presence of antibody, the affinity for fructose 1,6-diphosphate (FDP) appeared to be slightly affected, and the cooperativity of the ligand binding was lowered. A partial protective effect was observed when the enzyme was preincubated with FDP prio...

  19. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  20. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  1. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1995-08-10

    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdh was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.

  2. Immunolocalization of succinate dehydrogenase in the esophagus epithelium of domesticated mammals

    W. Meyer

    2013-05-01

    Full Text Available Using immunohistochemistry and transmission electron microscopy (TEM, the esophagus epithelia of seven domesticated mammals (horse, cattle, goat, pig, dog, laboratory rat, cat of three nutrition groups (herbivorous, omnivorous, carnivorous were studied to get first information about energy generation, as demonstrated by succinate dehydrogenase (SDH activities. Distinct reaction intensities could be observed in all esophageal cell layers of the different species studied reflecting moderate to strong metabolic activities. The generally strong staining in the stratum basale indicated that new cells are continuously produced. The latter feature was confirmed by a thick, and in the horse generally highly active stratum spinosum. Only in the pig, reaction intensity variations occurred, obviously related to differences in physical feed quality or restricted feed allocation. The immunohistochemical results were corroborated by the presence of intact mitochondria in the esophageal cells of all species and nutrition types studied, except for the horse. Possible relationships between SDH reaction intensities and feed structure, mass or consistency are discussed.

  3. Increased riboflavin production by manipulation of inosine 5'-monophosphate dehydrogenase in Ashbya gossypii.

    Buey, Rubén M; Ledesma-Amaro, Rodrigo; Balsera, Mónica; de Pereda, José María; Revuelta, José Luis

    2015-11-01

    Guanine nucleotides are the precursors of essential biomolecules including nucleic acids and vitamins such as riboflavin. The enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the ratelimiting step in the guanine nucleotide de novo biosynthetic pathway and plays a key role in controlling the cellular nucleotide pools. Thus, IMPDH is an important metabolic bottleneck in the guanine nucleotide synthesis, susceptible of manipulation by means of metabolic engineering approaches. Herein, we report the functional and structural characterization of the IMPDH enzyme from the industrial fungus Ashbya gossypii. Our data show that the overexpression of the IMPDH gene increases the metabolic flux through the guanine pathway and ultimately enhances 40 % riboflavin production with respect to the wild type. Also, IMPDH disruption results in a 100-fold increase of inosine excretion to the culture media. Our results contribute to the developing metabolic engineering toolbox aiming at improving the production of metabolites with biotechnological interest in A. gossypii. PMID:26150243

  4. Reduction of 3-mercaptopyruvate in rat liver is catalyzed by lactate dehydrogenase.

    Ohta,Jun; Ubuka,Toshihiko

    1989-01-01

    It has been assumed that the in vivo reduction of 3-mercaptopyruvate, an intermediate of cysteine metabolism, to 3-mercaptolactate is catalyzed by lactate dehydrogenase (EC 1.1.1.27) though no definitive evidence has been presented. In order to examine this assumption, reduction of 3-mercaptopyruvate and its inhibition were studied using rat liver homogenate, lactate dehydrogenase purified from rat liver and anti-lactate dehydrogenase antiserum. Reduction of 3-mercaptopyruvate was actively ca...

  5. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties.

    Anne Krog

    Full Text Available Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD(+-dependent methanol dehydrogenase (Mdh, catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907 and PB1 (NCIMB13113 were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD(+-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD(+ as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation.

  6. Investigations regarding the anthropic impact on the Krebs cycle dehydrogenases system on certain wood-species in mining areas, Suceava county

    Marius Viorel Oniciuc

    2013-03-01

    Full Text Available The Krebs cycle, a second stage of cellular respiration that occurs in the mitochondrion of the leafcell and consist in a multistep processes plays a central role in catabolism of organic fuel molecules. The miningextraction technologies for both underground and surface, the preparation of copper ore and barite applied in Tarnia,respectively to the sulphur in Calimani Mountain and the excess of these elements in natural environment may causemalfunction of ecosystem. The dehydrogenases of Krebs cycle can give information on the type and the duration of theeffects of pollutants on the metabolic activity in leaves, to subsequent area pollution, therefore, the aim of the presentstudy has been to determine these effects on this enzymatic system activity. For this reason, the isocitrate dehydrogenase,the -ketoglutate dehydrogenase, the succinate ehydrogenase and the malate dehydrogenase activity was determined using the spectrophotometric method with triphenyl-tetrazolium and the analysis of experimental results shows the differences from one sample to another sample of closely related species specificity, but also the effect of environmentalfactors.

  7. AMP-Dependent Kinase and Autophagic Flux are Involved in Aldehyde Dehydrogenase 2-Offered Protection against Cardiac Toxicity of Ethanol

    Ge, Wei; GUO Rui; Ren, Jun

    2011-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) alleviates ethanol toxicity although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on ethanol-induced myocardial damage with a focus on autophagy. Wild-type FVB and transgenic mice overexpressing ALDH2 were challenged with ethanol (3 g/kg/d, i.p.) for 3 days and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate essential...

  8. NAD-Independent l-Lactate Dehydrogenase Required for l-Lactate Utilization in Pseudomonas stutzeri A1501

    Gao, Chao; WANG, YUJIAO; Zhang, Yingxin; Lv, Min; Dou, Peipei; Xu, Ping; Ma, Cuiqing

    2015-01-01

    NAD-independent l-lactate dehydrogenases (l-iLDHs) play important roles in l-lactate utilization of different organisms. All of the previously reported l-iLDHs were flavoproteins that catalyze the oxidation of l-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of l-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichi...

  9. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.; Rasmusson, A.G.

    2004-01-01

    The plant respiratory chain contains a complex setup of non-energy conserving NAD(P)H dehydrogenases, the physiological consequences of which are highly unclear. An expression construct for the potato (Solanum tuberosum L., cv. Desiree) ndb1 gene, a homologue of bacterial and fungal type II NAD...... specific for NADPH and dependent on calcium for activity. Transgenic lines overexpressing St-ndb1 had specifically increased protein levels for alternative oxidase and uncoupling protein, as compared to the WT and one co-suppressing line. This indicates cross-talk in the expressional control, or metabolic...

  10. Glucose-6-phosphate dehydrogenase (G6PD) Deficiency

    DD Farhud"; L Yazdanpanah

    2008-01-01

    "nGlucose-6-phosphate dehydrogenase (G6PD) Deficiency is the most prevalent enzymopathy in mankind. It has sex-linked in­heritance. This enzyme exists in all cells.  G6PD deficiency increases the sensitivity of red blood cells to oxidative dam­age. G6PD deficiency was discovered in 1950 when some people suffered hemolytic anemia as a result of taking antimalar­ial drugs (primaquin). Most people with G6PD deficiency do not have any symptoms, till they are ...

  11. Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency.

    van Staveren, M C; Guchelaar, H Jan; van Kuilenburg, A B P; Gelderblom, H; Maring, J G

    2013-10-01

    5-Fluorouracil (5-FU) is rapidly degraded by dihyropyrimidine dehydrogenase (DPD). Therefore, DPD deficiency can lead to severe toxicity or even death following treatment with 5-FU or capecitabine. Different tests based on assessing DPD enzyme activity, genetic variants in DPYD and mRNA variants have been studied for screening for DPD deficiency, but none of these are implemented broadly into clinical practice. We give an overview of the tests that can be used to detect DPD deficiency and discuss the advantages and disadvantages of these tests. PMID:23856855

  12. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-01

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity towar...

  13. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.;

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  14. 6-Phosphogluconate Dehydrogenase Mechanism: EVIDENCE FOR ALLOSTERIC MODULATION BY SUBSTRATE

    Hanau, Stefania; Montin, Katy; Cervellati, Carlo; Magnani, Morena; Dallocchio, Franco

    2010-01-01

    The reductive carboxylation of ribulose-5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (6PGDH) from Candida utilis was investigated using kinetic isotope effects. The intrinsic isotope effect for proton abstraction from Ru5P was found at 4.9 from deuterium isotope effects on V and V/K and from tritium isotope effects on V/K. The presence of 6-phosphogluconate (6PG) in the assay mixture changes the magnitude of the observed isotope effects. In the absence of 6PG D(V/K) and D(V) are 1.6...

  15. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  16. Genetic Control of Malate Dehydrogenase Isozymes in Maize

    Goodman, M. M.; Stuber, C. W.; Lee, C N; Johnson, F. M.

    1980-01-01

    At least six nuclear loci are responsible for the genetic control of malate dehydrogenase (L-malate: NAD oxidoreductase; EC 1.1.1.37; MDH) in coleoptiles of maize. Three independently segregating loci (Mdh1, Mdh2, Mdh3) govern the production of MDH isozymes resistant to inactivation by ascorbic acid and found largely or solely in the mitochondria. A rare recessive allele found at a fourth nuclear locus (mmm) causes increased electrophoretic mobility of the MDH isozymes governed by the Mdh1, M...

  17. Effect of thoracic x-irradiation on glucose-6-phosphate dehydrogenase activity of the pectoral muscle of guinea pig

    The histochemical distribution of glucose-6-phosphate dehydrogenase (G6PD) was observed in the major pectoral muscle of a guinea pig that had received 240 R thoracic X-irradiation. The irradiation effects were studied at 24, 48 and 72 hrs after X-irradiation. Type I fibres of the pectoral muscle were deeply stained showing high activity whereas type II fibres demonstrated minimum enzyme activity. The intermediate fibres had medium levels of G6PD activity. Type II fibres showed more staining at 24 and 48 hrs as compared with control muscle. However, at 72 hrs all three fibre types showed a marked inhibition of G6PD activity. The significance of these changes suggests that muscle G6PD metabolism generally altered after irradiation, but the specific nature of these changes and their causes still remain unclear. (author)

  18. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  19. Co-operation between cytosolic and plastidic oxidative pentose phosphate pathways revealed by 6-phosphogluconate dehydrogenase-deficient genotypes of maize

    The aim of this work was to examine the extent to which the oxidative steps of the pentose phosphate pathway in the cytosol contribute to the provision of reductant for biosynthetic reactions. Maize (Zea mays L.) contains at least two loci (pgd1 and pgd2) that encode 6-phosphogluconate dehydrogenase. Ten genotypic combinations of wild-type (Pgd1+3.8;Pgd2+5) and null alleles of pgd1 and pgd2 were constructed in the B73 background. The maximum catalytic activity of 6-phosphogluconate dehydrogenase in the roots of seedlings of these lines correlated with the number of functional pgd1 and pgd2 alleles. Enzyme activity in the double-null homozygote (pgd1-null;pgd2-null) was 32% of that in B73 wild-type suggesting the presence of at least one other isozyme of 6-phosphogluconate dehydrogenase in maize. Subcellular fractionation studies and latency measurements confirmed that the products of pgd1 and pgd2 are responsible for the vast majority, if not all, of the cytosolic 6-phosphogluconate dehydrogenase activity in maize roots. Essentially, all of the residual activity in the double-null homozygote was confined to the plastids. Low concentrations (0.1–0.5 mM) of sodium nitrite stimulated 14CO2 production by detached root tips of both wild-type and 6-phosphogluconate dehydrogenase-deficient maize seedlings fed [U-14C]glucose. Analysis of the ratio of 14CO2 released from [1–14C]glucose relative to [6–14C]glucose (C1/C6 ratio) showed that stimulation of the oxidative pentose phosphate pathway by nitrite correlated with the dosage of wild-type alleles of pgd1 and pgd2. The failure of 6-phosphogluconate dehydrogenase-deficient lines to respond to nitrite indicates that perturbation of the cytosolic oxidative pentose phosphate pathway can influence the provision of reductant in the plastid. We conclude that the plastidic and cytosolic oxidative pentose phosphate pathways are able to co-operate in the provision of NADPH for biosynthesis. (author)

  20. Coenzyme- and His-tag-induced crystallization of octopine dehydrogenase

    The crystal structure of octopine dehydrogenase revealed a specific role of the His5 tag in inducing the crystal contacts required for successful crystallization. Over the last decade, protein purification has become more efficient and standardized through the introduction of affinity tags. The choice and position of the tag, however, can directly influence the process of protein crystallization. Octopine dehydrogenase (OcDH) without a His tag and tagged protein constructs such as OcDH-His5 and OcDH-LEHis6 have been investigated for their crystallizability. Only OcDH-His5 yielded crystals; however, they were multiple. To improve crystal quality, the cofactor NADH was added, resulting in single crystals that were suitable for structure determination. As shown by the structure, the His5 tag protrudes into the cleft between the NADH and l-arginine-binding domains and is mainly fixed in place by water molecules. The protein is thereby stabilized to such an extent that the formation of crystal contacts can proceed. Together with NADH, the His5 tag obviously locks the enzyme into a specific conformation which induces crystal growth

  1. A straightforward radiometric technique for measuring IMP dehydrogenase.

    Cooney, D A; Wilson, Y; McGee, E

    1983-04-15

    [2-3H]Inosinic acid ([2-3H]IMP) has been biosynthesized in good yield from [2-3H]hypoxanthine and PRPP via the action of a partially purified preparation of hypoxanthine/guanine phosphoribosyl transferase from mouse brain. The product was purified in one step by ascending paper chromatography, and used to assess the activity of IMP dehydrogenase. To conduct the assay, tritiated substrate is admixed with enzyme in a final volume of 10 microliters; NAD is present to serve as cofactor for the reaction, and allopurinol to inhibit the oxidation of any hypoxanthine generated as a consequence of side reactions. After an appropriate period of incubation, the 3H2O arising from the oxidation of tritiated IMP via [3H]NAD is isolated by quantitative microdistillation. Performed as described, the assay is facile, sensitive, and accurate, with the capability of detecting the dehydrogenation of as little as 1 pmol of [3H]IMP. Using it, measurements have been made of IMP dehydrogenase in a comprehensive array of mouse organs. Of these, pancreas contained the enzyme at the highest specific activity. PMID:6135372

  2. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  3. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation.

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization. PMID:26151670

  4. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization. PMID:26151670

  5. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Ferisman Tindaon

    2011-01-01

    Full Text Available The objective of this research was to determine the effects of nitrification inhibitors (NIs such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA,in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT. The toxicity and dose response curve of three NIs were quantified under laboratory conditions using a loamy clay, a sandy loam and a sandy soil. The quantitative determination of DHA was carried out spectrophotometrically. In all experiments, the influence of 5-1000 times the base concentration were examined. To evaluate the rate of inhibition with the increasing NI concentrations, dose reponse curves were presented and no observable effect level =NOEL, as well as effective dose ED10 and ED 50(10% and 50% inhibition were calculated. The NOEL for common microbial activity such as DHA was about 30–70 times higher than base concentration in all investigated soils. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils if it compare to DMPP and DCD. The NOEL,ED10 and ED50 values higher in clay than in loamy or sandy soil. The NIs were generally most effective in sandy soils. The three NIs considered at the present state of knowledge as environmentally safe in use.

  6. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  7. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    Nagae, Takayuki; Kawamura, Takashi [Nagoya University, (Japan); Chavas, Leonard M. G. [High Energy Research Organization (KEK), (Japan); Niwa, Ken; Hasegawa, Masashi [Nagoya University, (Japan); Kato, Chiaki [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), (Japan); Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp [Nagoya University, (Japan); Nagoya University, (Japan)

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  8. Crystal structure of a chimaeric bacterial glutamate dehydrogenase.

    Oliveira, Tânia; Sharkey, Michael A; Engel, Paul C; Khan, Amir R

    2016-06-01

    Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)(+) as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD(+) versus NADP(+), but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase from Clostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia coli enzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP(+) cofactor from the parent E. coli domain II, although there are subtle differences in catalytic activity. PMID:27303899

  9. Inhibition of Horse Liver Alcohol Dehydrogenase by Methyltin Compounds

    Pavel V. Bychkov

    2004-01-01

    Full Text Available The study of inorganic tin (SnCl2, SnCl4 and methyltin compounds (MeSnCl3, Me2SnCI2, Me3SnCl effects on the enzymatic activity of alcohol dehydrogenase (ADH in the reaction of ethanol oxidation has been carried out. The experimental results of the study show that inorganic tin and methyltin substances induce slight inhibition of the catalytic activity of horse liver alcohol dehydrogenase (HLADH, unable to be improved during pre-incubation with the enzyme. The conditions for carrying out the kinetic investigation of the mentioned phenomenon were optimized and as it turned out the mechanism of methyltin trichloride action, as the most effective methyltin inhibitor, is more complex than the proposed interaction of the metal atom with SH-groups of the enzyme protein. It was demonstrated that the tin compounds act in the same manner as methylmercury compounds and might serve as oxidative agents towards the co-enzyme NADH. Kinetic data on MeSnCl3 were calculated. Data acquired on NAD-dependent ADH from horse liver and those regarding NAD-dependent LDH from sturgeon liver were compared.

  10. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    2010-01-01

    TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol...

  11. The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilisation in alcohol dehydrogenase active sites

    Klimacek, Mario; Nidetzky, B

    2009-01-01

    Abstract The side chains of Asn-191 and Asn-300 constitute a characteristic structural motif of the active site of Pseudomonas fluorescens mannitol 2-dehydrogenase that lacks precedent in known alcohol dehydrogenases and resembles the canonical oxyanion binding pocket of serine proteases. We have used steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in substrates and solvent on the enzymatic rates to delineate catalytic con...

  12. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations

    Peng Giia-Sheun; Yin Shih-Jiun

    2009-01-01

    Abstract Alcoholism is a complex behavioural disorder. Molecular genetics studies have identified numerous candidate genes associated with alcoholism. It is crucial to verify the disease susceptibility genes by correlating the pinpointed allelic variations to the causal phenotypes. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the principal enzymes responsible for ethanol metabolism in humans. Both ADH and ALDH exhibit functional polymorphisms among racial populations; the...

  13. Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus.

    Hammel, K E; Cornwell, K L; Diekert, G B; Thauer, R K

    1984-01-01

    In growing cultures of Methanobrevibacter arboriphilicus (Methanobrevibacter arboriphilus), the synthesis of active carbon monoxide dehydrogenase required nickel. The 21-fold-purified enzyme from 63Ni-labeled cells of M. arboriphilicus comigrated with 63Ni during gel filtration. These results provide evidence that the carbon monoxide dehydrogenase of methanogens is a nickel protein.

  14. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123. ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.396, year: 2014

  15. Soil dehydrogenase activity in the presence of chromium (III) and (VI)

    Wolińska A.; Stępniewska Z.

    2005-01-01

    The paper presents the influence of chromium forms (III) and (VI) on the soil dehydrogenase activity. Enzyme activities can be considered effective indicators of soil quality changes resulting from environmental stress or management practices. It was found that chromium compounds have detrimental effects on soil dehydrogenase activity. After the addition of chromium, a rapid and significant decrease in enzymatic activities was observed.

  16. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    2010-04-01

    ... assay. 864.7360 Section 864.7360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  17. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  18. Myricetin is a novel inhibitor of human inosine 5'-monophosphate dehydrogenase with anti-leukemia activity.

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang; Lu, Weiqiang; Huang, Jin

    2016-09-01

    Human inosine 5'-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC50 values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. PMID:27378425

  19. Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis.

    Zhu, Lin; Wu, Zhe; Jin, Jian-Ming; Tang, Shuang-Yan

    2016-07-01

    L-tert-Leucine and its derivatives are used as synthetic building blocks for pharmaceutical active ingredients, chiral auxiliaries, and ligands. Leucine dehydrogenase (LeuDH) is frequently used to prepare L-tert-leucine from the α-keto acid precursor trimethylpyruvate (TMP). In this study, a high-throughput screening method for the L-tert-leucine synthesis reaction based on a spectrophotometric approach was developed. Directed evolution strategy was applied to engineer LeuDH from Lysinibacillus sphaericus for improved efficiency of L-tert-leucine synthesis. After two rounds of random mutagenesis, the specific activity of LeuDH on the substrate TMP was enhanced by more than two-fold, compared with that of the wild-type enzyme, while the activity towards its natural substrate, leucine, decreased. The catalytic efficiencies (k cat/K m) of the best mutant enzyme, H6, on substrates TMP and NADH were all enhanced by more than five-fold as compared with that of the wild-type enzyme. The efficiency of L-tert-leucine synthesis by mutant H6 was significantly improved. A productivity of 1170 g/l/day was achieved for the mutant enzyme H6, compared with 666 g/l/day for the wild-type enzyme. PMID:26898942

  20. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  1. A 'random steady-state' model for the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase enzyme complexes

    The multienzyme complexes, pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, involved in the central metabolism of Escherichia coli consist of multiple copies of three different enzymes, E1, E2 and E3, that cooperate to channel substrate intermediates between their active sites. The E2 components form the core of the complex, while a mixture of E1 and E3 components binds to the core. We present a random steady-state model to describe catalysis by such multienzyme complexes. At a fast time scale, the model describes the enzyme catalytic mechanisms of substrate channeling at a steady state, by polynomially approximating the analytic solution of a biochemical master equation. At a slower time scale, the structural organization of the different enzymes in the complex and their random binding/unbinding to the core is modeled using methods from equilibrium statistical mechanics. Biologically, the model describes the optimization of catalytic activity by substrate sharing over the entire enzyme complex. The resulting enzymatic models illustrate the random steady state (RSS) for modeling multienzyme complexes in metabolic pathways

  2. The Plant Short-Chain Dehydrogenase (SDR superfamily: genome-wide inventory and diversification patterns

    Moummou Hanane

    2012-11-01

    Full Text Available Abstract Background Short-chain dehydrogenases/reductases (SDRs form one of the largest and oldest NAD(P(H dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs, improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce. Results Wide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types — ‘classical’, ‘extended’ and ‘divergent’ — but a minority (10% of the predicted SDRs could not be classified into these general types (‘unknown’ or ‘atypical’ types. In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families — tropinone reductase-like proteins (SDR65C, ‘ABA2-like’-NAD dehydrogenase (SDR110C, ‘salutaridine/menthone-reductase-like’ proteins (SDR114C, ‘dihydroflavonol 4-reductase’-like proteins (SDR108E and ‘isoflavone-reductase-like’ (SDR460A proteins — have undergone significant functional diversification within vascular plants since they diverged from Bryophytes. Interestingly, these diversified families are either involved in the secondary metabolism routes (terpenoids, alkaloids, phenolics or participate in developmental processes (hormone biosynthesis or

  3. Frostbite: A Novel Presentation of Glucose-6-Phosphate Dehydrogenase Deficiency?

    Bowles, Justin M; Joas, Chris; Head, Steven

    2015-01-01

    Acute hemolytic anemia (AHA) due to glucose 6-phosphate dehydrogenase (G6PD) deficiency has rarely been recognized as a contributor to the development of frostbite. We discuss a case of frostbite in a 32-year-old male Marine with G6PD deficiency during military training on Mount McKinley in Alaska, which eventually led to a permanent disability. In this report, the pathophysiology of G6PD deficiency, the effects of hemolytic anemia, and factors that contribute to frostbite will be discussed, as well as the clinical findings, treatment course, and the outcome of this case. The patient was evacuated and admitted to Alaska Regional Hospital. He was treated for fourth-degree frostbite, ultimately resulting in the complete or partial amputation of all toes. Although it cannot be proved that AHA occurred in this patient, this case potentially adds frostbite to the list of rare but possible clinical presentations of G6PD deficiency. PMID:26360347

  4. Kawasaki disease with Glucose-6-Phosphate Dehydrogenase deficiency, case report.

    Obeidat, Hesham Radi; Al-Dossary, Sahar; Asseri, Abdulsalam

    2015-09-01

    Kawasaki disease (KD) is an acute, self-limited vasculitis of unknown etiology that occurs predominantly in infants and children younger than 5 years of age. Coronary artery abnormalities are the most serious complication. Based on the literatures infusion of Intravenous Immunoglobulin of 2 g/kg and a high dose of oral aspirin up to 100 mg/kg/day are the standard treatment for Kawasaki disease in the acute stage, and should be followed by antiplatelet dose of aspirin for thrombocytosis. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is an inherited X-linked hereditary disorder, and aspirin can induce hemolysis in patients with G6PD deficiency. We report a case of a 5 year and 8 month old male with KD and G6PD deficiency. PMID:27134550

  5. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  6. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules. PMID:27463000

  7. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti. PMID:8765684

  8. Circadian rhythm of lactate dehydrogenase in rat testis.

    Vermouth, N T; Ponce, R H; Carriazo, C S; Blanco, A

    1984-01-01

    Activity of total lactate dehydrogenase (LDH) and of the isozyme X (LDH X or C4) have been determined at 2 hr intervals during 24 hr cycles in testis of adult rats maintained since birth in a photoperiod of 14 hr light: 10 hr dark. LDH X activity of epididymal sections (caput, corpus and cauda) from the same animals was also determined. Total LDH and LDH X activities in testis exhibited circadian rhythms with different timing. LDH X in the three portions of epididymis showed diurnal variations similar to those in testis. Rats subjected to constant light or constant dark presented marked modifications of LDH X profiles, indicating that the photoperiod plays a synchronizer role. While total soluble proteins did not show variations in testis of rats exposed to the photoperiod, a circadian rhythm was demonstrated in animals maintained in constant light or dark. PMID:6467917

  9. Mellemkaedet acyl-CoA dehydrogenase (MCAD)-mangel

    Gregersen, N; Winter, V; Andresen, B S;

    1992-01-01

    today considered more common than previously anticipated, since the incidence of patients with MCAD enzyme deficiency in Denmark is estimated to 1/27,000 newborns, or two new cases annually. The relationship between the enzyme defect (gene defect) and the clinical expression of the disease is a main......Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal metabolic disease, which is characterized by non-ketotic hypoglycemia and lethargy. The disease manifests itself by periodic attacks in connection with infections and periods of fasting, or suddenly as unexpected child......-card constitute today a certain and specific diagnosis for the disease in 75% of all cases. In the remaining 25% the mutation analysis is supplemented with urine metabolite studies by gas chromatography/mass spectrometry, and with measurements of enzyme activities in cultured skin fibroblasts. The disease is...

  10. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.;

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...... extent of phosphorylation of both FDH and PDH was strongly decreased by NAD+, formate, and pyruvate, indicating that reversible phosphorylation of FDH and PDHs was regulated in a similar fashion. At low oxygen concentrations inside the intact potato tubers, FDH activity was strongly increased relative to...... cytochrome c oxidase activity pointing to a possible involvement of FDH in hypoxic metabolism. Computational sequence analysis indicated that a conserved local sequence motif of pyruvate formate-lyase is found in the Arabidopsis thaliana genome, and this enzyme might be the source of formate for FDH in...

  11. IMP Dehydrogenase: Structural Schizophrenia and an Unusual Base

    Hedstrom,L.; Gan, L.

    2006-01-01

    Textbooks describe enzymes as relatively rigid templates for the transition state of a chemical reaction, and indeed an enzyme such as chymotrypsin, which catalyzes a relatively simple hydrolysis reaction, is reasonably well described by this model. Inosine monophosphate dehydrogenase (IMPDH) undergoes a remarkable array of conformational transitions in the course of a complicated catalytic cycle, offering a dramatic counterexample to this view. IMPDH displays several other unusual mechanistic features, including an Arg residue that may act as a general base catalyst and a dynamic monovalent cation site. Further, IMPDH appears to be involved in 'moon-lighting' functions that may require additional conformational states. How the balance between conformational states is maintained and how the various conformational states interconvert is only beginning to be understood.

  12. Lactate dehydrogenase (LDH isoenzymes patterns in ocular tumours

    Singh Rajendra

    1991-01-01

    Full Text Available Estimation of lactate dehydrogenase (LDH isoenzymes in the serum and aqueous humor was carried out in 15 cases of benign ocular tumour, 15 cases of malignant tumor and 15 normal cases. Cases of both sexes aged between 1 year and 75 years were included. LDH, isoenzymes specially LDH4 and LDH5 are higher and LDH1 and LDH2 lower in sera of patients with malignant tumor specially retinoblastoma as compared to benign tumor cases and control cases. LDH isoenzymes in aqueous humor are significantly higher and show a characteristic pattern in retinoblastoma cases, the concentration was presumably too low in the control, malignant tumor other than retinoblastoma and benign tumor cases as its fractionation was not possible.

  13. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  14. Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome.

    Dudek, Jan; Cheng, I-Fen; Chowdhury, Arpita; Wozny, Katharina; Balleininger, Martina; Reinhold, Robert; Grunau, Silke; Callegari, Sylvie; Toischer, Karl; Wanders, Ronald Ja; Hasenfuß, Gerd; Brügger, Britta; Guan, Kaomei; Rehling, Peter

    2015-01-01

    Barth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre-onset stage of the disease. This reorganization of supercomplexes was specific to cardiac tissue and could be recapitulated in cardiomyocytes derived from BTHS patients. Moreover, our analyses demonstrate a cardiac-specific loss of succinate dehydrogenase (SDH), an enzyme linking the respiratory chain with the tricarboxylic acid cycle. As a similar defect of SDH is apparent in patient cell-derived cardiomyocytes, we conclude that these defects represent a molecular basis for the cardiac pathology in Barth syndrome. PMID:26697888

  15. 17 beta-hydroxysteroid dehydrogenase activity in canine pancreas

    The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively

  16. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  17. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares 80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  18. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  19. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum.

    Huang, Shi-Ping; Cheng, Hong-Mei; Wang, Peng; Zhu, Guo-Ping

    2016-01-01

    Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP⁺-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP⁺ over NAD⁺ in the presence of Mg(2+) and Mn(2+), respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn(2+)) and 65 °C (with Mg(2+)), and pH 7.5 (with Mn(2+)) and pH 8.0 (with Mg(2+)). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn(2+) or Mg(2+). Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP⁺ to NAD⁺ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP⁺ use by the IDH family. PMID:26927087

  20. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum

    Shi-Ping Huang

    2016-02-01

    Full Text Available Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH from B. longum (BlIDH, a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP+-dependent IDH (NADP-IDH, with a 567- and 193-fold preference for NADP+ over NAD+ in the presence of Mg2+ and Mn2+, respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn2+ and 65 °C (with Mg2+, and pH 7.5 (with Mn2+ and pH 8.0 (with Mg2+. Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn2+ or Mg2+. Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP+ to NAD+ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP+ use by the IDH family.

  1. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N

  2. Characterization of lactate dehydrogenase enzyme in seminal plasma of Japanese quail (Coturnix coturnix japonica).

    Singh, R P; Sastry, K V H; Pandey, N K; Shit, N; Agrawal, R; Singh, K B; Mohan, Jag; Saxena, V K; Moudgal, R P

    2011-02-01

    Lactate dehydrogenase enzyme present in quail seminal plasma has been characterized. Polyacrylamide gel electrophoresis and subsequently with LDH specific staining of seminal plasma revealed a single isozyme in quail semen. Studies on substrate inhibition, pH for optimum activity and inhibitor (urea) indicated the isozyme present in the quail semen has catalytic properties like LDH-1 viz. H-type. Furthermore, unlike other mammalian species, electrophoretic and kinetic investigations did not support the existence of semen specific LDH-X isozyme in quail semen. The effect of exogenous lactate and pyruvate on sperm metabolic activity was also studied. The addition of 1 mM lactate or pyruvate to quail semen increased sperm metabolic activity. Our results suggested that both pyruvate and lactate could be used by quail spermatozoa to maintain their basic functions. Since the H-type isozyme is important for conversion of lactate to pyruvate under anaerobic conditions it was postulated that exogenous lactate being converted into pyruvate via LDH present in semen may be used by sperm mitochondria to generate ATP. During conversion of lactate to pyruvate NADH is being generated that may be useful for maintaining sperm mitochondrial membrane potential. PMID:21074838

  3. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  4. Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase.

    Quang M Tran

    Full Text Available The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to -80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.

  5. Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I

    Molecular modeling of alcohol dehydrogenases suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degree C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD+ and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver β enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD+ complex limiting for turnover with ethanol

  6. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase.

    Takeda, Kouta; Matsumura, Hirotoshi; Ishida, Takuya; Yoshida, Makoto; Igarashi, Kiyohiko; Samejima, Masahiro; Ohno, Hiroyuki; Nakamura, Nobuhumi

    2016-08-26

    A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron to a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of l-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. PMID:27338639

  7. Branched chain amino acid transaminase and branched chain alpha-ketoacid dehydrogenase activity in the brain, liver and skele­tal muscle of acute hepatic failure rats

    Takei,Nobuyuki

    1985-02-01

    Full Text Available Branched chain amino acid (BCAA transaminase activity increased in both the mitochondrial and supernatant fractions of brain from hepatic failure rats, in which a partial hepatectomy was performed 24h following carbon tetrachloride (CCl4 administration, although the activity of liver and skeletal muscle was the same as in control rats. The elevation of mitochondrial BCAA transaminase activity in liver-injured rats was partly due to increased activity of brain specific Type III isozyme. Branched chain alpha-ketoacid (BCKA dehydrogenase in the brain homogenates was not significantly altered in acute hepatic failure rats, while the liver enzyme activity was markedly diminished. BCKA dehydrogenase activity in the brain homogenates was inhibited by adding ATP to the assay system, and was activated in vitro by preincubating the brain homogenate at 37 degrees C for 15 min. These findings suggest that brain BCAA catabolism is accelerated in acute hepatic failure rats.

  8. Catalytic properties of Sepharose-bound L-alanine dehydrogenase from Bacillus cereus.

    Mureşan, L; Vancea, D; Presecan, E; Porumb, H; Lascu, I; Oargă, M; Matinca, D; Abrudan, I; Bârzu, O

    1983-02-15

    (1) L-Alanine dehydrogenase from Bacillus cereus was purified by a two-step chromatographic procedure involving Cibacron-Blue 3G-A Sepharose 4B-CL, and Sepharose 6B-CL, and immobilized on CNBr-activated Sepharose 4B. (2) Following immobilization via two of the six subunits, L-alanine dehydrogenase retained 66% of the specific activity of the soluble enzyme. The affinity of the immobilized enzyme for NH4+, pyruvate and L-alanine, was not different to that of the soluble form. The Km of the Sepharose-bound L-alanine dehydrogenase for pyridine coenzymes was 6-8-times higher than in the soluble case. (3) The stability of L-alanine dehydrogenase towards urea or thermal denaturation was increased by immobilization. (4) The incubation at 37 degrees C for 24 h of the immobilized L-alanine dehydrogenase with 3 M NH4Cl/NH4OH buffer (pH 9) released 70% of the enzyme. The specific activity and the affinity of the 'solubilized' L-alanine dehydrogenase for the pyridine coenzymes was the same as that obtained with the original, soluble L-alanine dehydrogenase. PMID:6404304

  9. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.

    Cerqueira, Nuno M F S A; Gonzalez, Pablo J; Fernandes, Pedro A; Moura, José J G; Ramos, Maria João

    2015-11-17

    It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both

  10. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  11. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  12. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...... internal rotenone-insensitive NADH dehydrogenase activity are also light dependent. These findings suggest that NDA has a role in photorespiration and might be identical to the previously unidentified internal rotenone-insensitive NADH dehydrogenase....

  13. Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins.

    Penning, T M; Jin, Y; Steckelbroeck, S; Lanisnik Rizner, T; Lewis, M

    2004-02-27

    Four soluble human 3 alpha-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo-keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20 alpha(3 alpha)-HSD); AKR1C2 (type 3 3 alpha-HSD and bile-acid binding protein); AKR1C3 (type 2 3 alpha-HSD and type 5 17 beta-HSD); and AKR1C4 (type 1 3 alpha-HSD). Each of the homogeneous recombinant enzymes are plastic and display 3-, 17- and 20-ketosteroid reductase and 3 alpha- 17 beta- and 20 alpha-hydroxysteroid oxidase activities with different k(cat)/K(m) ratios in vitro. The crystal structure of the AKR1C2.NADP(+).ursodeoxycholate complex provides an explanation for this functional plasticity. Ursodeoxycholate is bound backwards (D-ring in the A-ring position) and upside down (beta-face of steroid inverted) relative to the position of 3-ketosteroids in the related rat liver 3 alpha-HSD (AKR1C9) structure. Transient transfection indicates that in COS-1 cells, AKR1C enzymes function as ketosteroid reductases due to potent inhibition of their oxidase activity by NADPH. By acting as ketosteroid reductases they may regulate the occupancy of the androgen, estrogen and progesterone receptors. RT-PCR showed that AKRs are discretely localized. AKR1C4 is virtually liver specific, while AKR1C2 and AKR1C3 are dominantly expressed in prostate and mammary gland. AKR1C genes are highly conserved in structure and may be transcriptionally regulated by steroid hormones and stress. PMID:15026176

  14. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna; Carlquist, Magnus

    2015-01-01

    A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by p...... mapping revealed conditions where the GPD2 promoter was either completely inactive or hyperactive, which has implications for its implementation in future biotechnological applications such as for process control of heterologous gene expression.......A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by...... growth rate of 0.3 h-1 and in conditions with excess oxygen (i.e. with an aeration of 2.5 vvm, and a stirring of 800 rpm). In addition, a clear window of operation where the gpd1Δgpd2Δ strain can be grown with the same efficiency as wild type yeast was identified. In conclusion, the flow cytometry...

  15. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol

    Liu, Xiang

    2013-03-01

    We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA(RE1) at 1.9Å and 2.5Å resolution, respectively. LlAdhA(RE1), which contains three amino acid mutations (Y50F, I212T, and L264V), was engineered to increase the microbial production of isobutanol (2-methylpropan-1-ol) from isobutyraldehyde (2-methylpropanal). Structural comparison of LlAdhA and LlAdhA(RE1) indicates that the enhanced activity on isobutyraldehyde stems from increases in the protein\\'s active site size, hydrophobicity, and substrate access. Further structure-guided mutagenesis generated a quadruple mutant (Y50F/N110S/I212T/L264V), whose KM for isobutyraldehyde is ∼17-fold lower and catalytic efficiency (kcat/KM) is ∼160-fold higher than wild-type LlAdhA. Combining detailed structural information and directed evolution, we have achieved significant improvements in non-native alcohol dehydrogenase activity that will facilitate the production of next-generation fuels such as isobutanol from renewable resources.

  16. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V; Mühlemann, Joëlle K; Bomati, Erin K; Bowman, Marianne E; Dudareva, Natalia; Dixon, Richard A; Noel, Joseph P; Wang, Xiaoqiang

    2014-09-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  17. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate

    Ghashghaeinia, Mehrdad; Giustarini, Daniela; Koralkova, Pavla; Köberle, Martin; Alzoubi, Kousi; Bissinger, Rosi; Hosseinzadeh, Zohreh; Dreischer, Peter; Bernhardt, Ingolf; Lang, Florian; Toulany, Mahmoud; Wieder, Thomas; Mojzikova, Renata; Rossi, Ranieri; Mrowietz, Ulrich

    2016-01-01

    In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11–7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11–7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11–7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach “Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target” (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity. PMID:27353740

  18. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1

    Zhou Cong-Zhao

    2007-06-01

    Full Text Available Abstract Background As the third enzyme of the pentose phosphate pathway, 6-phosphogluconate dehydrogenase (6PGDH is the main generator of cellular NADPH. Both thioredoxin reductase and glutathione reductase require NADPH as the electron donor to reduce oxidized thioredoxin or glutathione (GSSG. Since thioredoxin and GSH are important antioxidants, it is not surprising that 6PGDH plays a critical role in protecting cells from oxidative stress. Furthermore the activity of 6PGDH is associated with several human disorders including cancer and Alzheimer's disease. The 3D structural investigation would be very valuable in designing small molecules that target this enzyme for potential therapeutic applications. Results The crystal structure of 6-phosphogluconate dehydrogenase (6PGDH/Gnd1 from Saccharomyces cerevisiae has been determined at 2.37 Å resolution by molecular replacement. The overall structure of Gnd1 is a homodimer with three domains for each monomer, a Rossmann fold NADP+ binding domain, an all-α helical domain contributing the majority to hydrophobic interaction between the two subunits and a small C-terminal domain penetrating the other subunit. In addition, two citrate molecules occupied the 6PG binding pocket of each monomer. The intact Gnd1 had a Km of 50 ± 9 μM for 6-phosphogluconate and of 35 ± 6 μM for NADP+ at pH 7.5. But the truncated mutants without the C-terminal 35, 39 or 53 residues of Gnd1 completely lost their 6PGDH activity, despite remaining the homodimer in solution. Conclusion The overall tertiary structure of Gnd1 is similar to those of 6PGDH from other species. The substrate and coenzyme binding sites are well conserved, either from the primary sequence alignment, or from the 3D structural superposition. Enzymatic activity assays suggest a sequential mechanism of catalysis, which is in agreement with previous studies. The C-terminal domain of Gnd1 functions as a hook to further tighten the dimer, but it is not

  19. A simple method for the rapid determination of the stereospecificity of NAD-dependent dehydrogenases applied to mammalian IMP dehydrogenase and bacterial NADH peroxidase.

    Cooney, D; Hamel, E; Cohen, M; Kang, G J; Dalal, M; Marquez, V

    1987-11-01

    The stereospecificity of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205) from two different sources was determined. The enzyme preparations were obtained from murine lymphoblasts and from Escherichia coli. Both enzymes transferred the 2-3H of IMP to the pro-S position of carbon atom C-4 of the nicotinamide ring in NAD. Thus, B-sided stereospecificity is common to the enzyme from two very different species. In addition, the studies described here demonstrate that alcohol dehydrogenase and NADH peroxidase, used as auxiliary enzymes, in combination with a microdistillation procedure, should permit rapid determination of the stereospecificity of any NAD-dependent dehydrogenase for which the appropriate tritiated substrate is available. PMID:2889473

  20. Current knowledge of the multifunctional 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1).

    He, Wanhong; Gauri, Misra; Li, Tang; Wang, Ruixuan; Lin, Sheng-Xiang

    2016-08-15

    At the late 1940s, 17β-HSD1 was discovered as the first member of the 17β-HSD family with its gene cloned. The three-dimensional structure of human 17β-HSD1 is the first example of any human steroid converting enzyme. The human enzyme's structure and biological function have thus been studied extensively in the last two decades. In humans, the enzyme is expressed in placenta, ovary, endometrium and breast. The high activity of estrogen activation provides the basis of 17β-HSD1's implication in estrogen-dependent diseases, such as breast cancer, endometriosis and non-small cell lung carcinomas. Its dual function in estrogen activation and androgen inactivation has been revealed in molecular and breast cancer cell levels, significantly stimulating the proliferation of such cells. The enzyme's overexpression in breast cancer was demonstrated by clinical samples. Inhibition of human 17β-HSD1 led to xenograft tumor shrinkage. Unfortunately, through decades of studies, there is still no drug using the enzyme's inhibitors available. This is due to the difficulty to get rid of the estrogenic activity of its inhibitors, which are mostly estrogen analogues. New non-steroid inhibitors for the enzyme provide new hope for non-estrogenic inhibitors of the enzyme. PMID:27102893

  1. Prenatal glucocorticoid programming of 11-beta hydroxysteroid dehydrogenase type 2 and erythropoietin in the kidney

    Tang, Justin I-Shing

    2011-01-01

    Numerous epidemiological studies show a strong association between low birth weight and later life hypertension and metabolic disease. Excessive in utero exposure to glucocorticoids (‘stress hormones’) has been hypothesized to be important in such developmental ‘programming’, acting via crucial physiological, gene expression or structural changes in the developing fetus. Normally, the fetus is protected from the high levels of maternal glucocorticoids by an enzymic placental ba...

  2. Neuroinflammation and Complexes of 17 beta-Hydroxysteroid Dehydrogenase type 10-Amyloid beta in Alzheimer's Disease

    Krištofíková, Z.; Řípová, D.; Bartoš, A.; Bocková, Markéta; Hegnerová, Kateřina; Říčný, J.; Čechová, L.; Vrajová, M.; Homola, Jiří

    2013-01-01

    Roč. 10, č. 2 (2013), s. 165-173. ISSN 1567-2050 R&D Projects: GA MZd(CZ) NT11225 Institutional support: RVO:67985882 Keywords : Amyloid beta * mitochondrial enzyme * Alzheimer 's disease Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.796, year: 2013

  3. Genetics Home Reference: 17β-hydroxysteroid dehydrogenase type 10 deficiency

    ... Ruiter JP, Wanders RJ, Schwab KO, Brandis M, Lehnert W. Clinical variability in 3-hydroxy-2-methylbutyryl- ... M, Poll-The BT, Zschocke J, Ensenauer R, Lehnert W, Sass JO, Sperl W, Wanders RJ. 2- ...

  4. Cloning of chicken 11beta-hydroxysteroid dehydrogenase type 1 and its tissue distribution

    Klusoňová, Petra; Kučka, Marek; Ergang, Peter; Mikšík, Ivan; Bryndová, Jana; Pácha, Jiří

    2008-01-01

    Roč. 111, 3-5 (2008), s. 217-224. ISSN 0960-0760 R&D Projects: GA AV ČR IAA6011201 Institutional research plan: CEZ:AV0Z50110509 Keywords : chicken * corticosterone * 11HSD1 Subject RIV: CE - Biochemistry Impact factor: 2.827, year: 2008

  5. Chicken 11beta-hydroxysteroid dehydrogenase type 2: Partial cloning and tissue distribution

    Klusoňová, Petra; Kučka, Marek; Mikšík, Ivan; Bryndová, Jana; Pácha, Jiří

    2008-01-01

    Roč. 73, č. 3 (2008), s. 348-355. ISSN 0039-128X R&D Projects: GA AV ČR IAA6011201 Institutional research plan: CEZ:AV0Z50110509 Keywords : steroid metabolism * corticosterone * birds Subject RIV: CE - Biochemistry Impact factor: 2.588, year: 2008

  6. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  7. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Cossio de Gurrola Gladys

    2008-05-01

    Full Text Available Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in naphthalene-impregnated garments, resulting in reduced psychomotor development, neurosensory hypoacousia, absence of speech and poor reflex of the pupil to light. Conclusion Mutational analysis revealed the glucose-6-phosphate dehydrogenase Mediterranean polymorphic variant, which explained the development of kernicterus after exposition of naphthalene. As the use of naphthalene in stored clothes is a common practice, glucose-6-phosphate dehydrogenase testing in neonatal screening could prevent severe clinical consequences.

  8. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation

    M. Timmerman (Michelle); R.B. Wilkening; T.R. Regnault

    2003-01-01

    textabstractGlucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and th

  9. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers.

    Zhang, Rongzhen; Xu, Yan; Xiao, Rong

    2015-12-01

    Alcohol dehydrogenases/reductases predominantly catalyze the asymmetric biosynthesis of optically pure stereoisomers because of their unique chiral constitutions. The enantioselectivities of alcohol dehydrogenases/reductases are substrate- and cofactor-dependent, and therefore they usually catalyze specific reactions with high enantioselectivity under physiological conditions; this may not be suitable for asymmetric biosynthesis with non-natural substrates or non-natural cofactors, and under nonphysiological conditions. It is therefore necessary to modify alcohol dehydrogenases/reductases using various redesigning tools such as directed evolution and rational design, and their combinations, as well as engineering enzyme modules for more efficient production of "non-natural" products. In this article, progress in these aspects of alcohol dehydrogenase/reductase design is reviewed, and future challenges are discussed. PMID:26320091

  10. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  11. Asp295 Stabilizes the Active-Site Loop Structure of Pyruvate Dehydrogenase, Facilitating Phosphorylation of Ser292 by Pyruvate Dehydrogenase-Kinase

    Hirani, Tripty A.; Alejandro Tovar-Méndez; Miernyk, Ján A.; Randall, Douglas D.

    2011-01-01

    We have developed an in vitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thalianaα2β2-heterotetrameric pyruvate dehydrogenase (E1) plus A. thaliana E1-kinase (AtPDK). Upon addition of MgATP, Ser292, which is located within the active-site loop structure of E1α, is phosphorylated. In addition to Ser292, Asp295 and Gly297 are highly conserved in the E1α active-site loop sequences. Mutat...

  12. Mediatorless electron transfer in glucose dehydrogenase/laccase system adsorbed on carbon nanotubes

    Highlights: • Glucose dehydrogenase from Ewingella americana (GDH) demonstrated an effective mediatorless oxidation of glucose on single-walled carbon nanotubes (SWCNT). • Laccase from Trichaptum abietinum (LAC) exhibited mediatorless oxygen reduction when the enzyme was adsorbed on SWCNT. • Simultaneous adsorption of GDH and LAC on SWCNT formed an electron transfer chain in which glucose and lactose were oxidized by oxygen in mediatorless manner. - Abstract: A mediatorless electron transfer in the chain of glucose dehydrogenase (GDH) and laccase (LAC) catalysing the oxidation of glucose by molecular oxygen was studied. To demonstrate mediatorless processes, the GDH from Ewingella americana was adsorbed on single-walled carbon nanotubes (SWCNT). The effective mediatorless oxidation of glucose proceeded at 0.2–0.4 V vs. SCE. The electrode was most active at pH 6.1, and generated 0.8 mA cm−2 biocatalytic current in the presence of 50 mM glucose. The electrode showed a bell-shaped pH dependence with pKa values of 4.1 and 7.5. LAC from Trichaptum abietinum adsorbed on SWCNT exhibited mediatorless oxygen reduction at electrode potential less than 0.65 V. The electrode was most active at pH 3.0–4.0 and generated 1.1 mA cm−2 biocatalytic current in the presence of 0.254 mM oxygen, with an apparent pKa of 1.0 and 5.4. The electrodes prepared by simultaneous adsorption of GDH and LAC on SWCNT exhibited glucose oxidation at a potential higher than 0.25 V. The oxygen consumption in the chain was demonstrated using a Clark-type oxygen electrode. The dependence of oxygen consumption on glucose and lactose concentrations as well as activity of the system on pH were measured. A model of the pH dependence as well as mediatorless consecutive glucose oxidation with oxygen catalysed by LAC/GDH system is presented. This work provides a novel approach towards the synthesis of artificial multi enzyme systems by wiring oxidoreductases with SWCNT, and offers a better

  13. The TyrA family of aromatic-pathway dehydrogenases in phylogenetic context

    Wolinsky Murray

    2005-05-01

    Full Text Available Abstract Background The TyrA protein family includes members that catalyze two dehydrogenase reactions in distinct pathways leading to L-tyrosine and a third reaction that is not part of tyrosine biosynthesis. Family members share a catalytic core region of about 30 kDa, where inhibitors operate competitively by acting as substrate mimics. This protein family typifies many that are challenging for bioinformatic analysis because of relatively modest sequence conservation and small size. Results Phylogenetic relationships of TyrA domains were evaluated in the context of combinatorial patterns of specificity for the two substrates, as well as the presence or absence of a variety of fusions. An interactive tool is provided for prediction of substrate specificity. Interactive alignments for a suite of catalytic-core TyrA domains of differing specificity are also provided to facilitate phylogenetic analysis. tyrA membership in apparent operons (or supraoperons was examined, and patterns of conserved synteny in relationship to organismal positions on the 16S rRNA tree were ascertained for members of the domain Bacteria. A number of aromatic-pathway genes (hisHb, aroF, aroQ have fused with tyrA, and it must be more than coincidental that the free-standing counterparts of all of the latter fused genes exhibit a distinct trace of syntenic association. Conclusion We propose that the ancestral TyrA dehydrogenase had broad specificity for both the cyclohexadienyl and pyridine nucleotide substrates. Indeed, TyrA proteins of this type persist today, but it is also common to find instances of narrowed substrate specificities, as well as of acquisition via gene fusion of additional catalytic domains or regulatory domains. In some clades a qualitative change associated with either narrowed substrate specificity or gene fusion has produced an evolutionary "jump" in the vertical genealogy of TyrA homologs. The evolutionary history of gene organizations that include

  14. Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening

    Begley, Darren W.; Davies, Douglas R.; Hartley, Robert C.; Hewitt, Stephen N.; Rychel, Amanda L.; Myler, Peter J.; Van Voorhis, Wesley C.; Staker, Bart L.; Stewart, Lance J. (Emerald)

    2014-10-02

    Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.

  15. Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum

    Germain, P.; Toukourou, F.; Donaduzzi, L.

    1986-07-01

    The enzyme lactate dehydrogenase (LDH) in Clostridium thermohydrosulfuricum is controlled by the type and the concentration of the substrate. In batch fermentations an increase of the initial concentration of glucose leads to an increase in the activity of LDH. This increase in activity is related to the accumulation of fructose 1,6-diphosphate (F 1,6-DP), an intermediate of the Embden-Meyerhof-Parnas (EMP) pathway, which stimulates the enzyme by increasing its affinity for pyruvate and NADH. The Ksub(m) values of LDH for pyruvate and NADH, which are 2.5 x 10/sup -3/ M and 9.1 x 10/sup -5/ M respectively in absence of F 1,6-DP, fall considerably in the presence of this substrate. In presence of 0.2 mM of F 1,6-DP we observed a Ksub(m) of 3.3 x 10/sup -4/ M for pyruvate and 4.1 x 10/sup -5/ M for NADH.

  16. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J. (CH-PA); (UPENN); (Danforth)

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  17. Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

    Dumitru Constantin-Teodosiu

    2013-10-01

    Full Text Available Since the mitochondrial pyruvate dehydrogenase complex (PDC controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D. There are also situations where muscle insulin resistance can occur independently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same underlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome proliferator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycaemia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell's ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D's complications are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and peripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be viable strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.

  18. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate.

    Yingzhi Xu

    Full Text Available 3-Hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35 is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60-80 that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.

  19. Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis

    ToruHisabori

    2014-09-01

    Full Text Available Regulation of mitochondrial metabolism is essential for ensuring cellular growth and maintenance in plants. Based on redox-proteomics analysis, several proteins involved in diverse mitochondrial reactions have been identified as potential redox-regulated proteins. NAD+-dependent isocitrate dehydrogenase (IDH, a key enzyme in the tricarboxylic acid cycle, is one such candidate. In this study, we investigated the redox regulation mechanisms of IDH by biochemical procedures. In contrast to mammalian and yeast counterparts reported to date, recombinant IDH in Arabidopsis mitochondria did not show adenylate-dependent changes in enzymatic activity. Instead, IDH was inactivated by oxidation treatment and partially reactivated by subsequent reduction. Functional IDH forms a heterodimer comprising regulatory (IDH-r and catalytic (IDH-c subunits. IDH-r was determined to be the target of oxidative modifications forming an oligomer via intermolecular disulfide bonds. Mass spectrometric analysis combined with tryptic digestion of IDH-r indicated that Cys128 and Cys216 are involved in intermolecular disulfide bond formation. Furthermore, we showed that mitochondria-localized o-type thioredoxin (Trx-o promotes the reduction of oxidized IDH-r. These results suggest that IDH-r is susceptible to oxidative stress, and Trx-o serves to convert oxidized IDH-r to the reduced form that is necessary for active IDH complex.

  20. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine

  1. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  2. Ectopic Expression of the Chinese Cabbage Malate Dehydrogenase Gene Promotes Growth and Aluminum Resistance in Arabidopsis.

    Li, Qing-Fei; Zhao, Jing; Zhang, Jing; Dai, Zi-Hui; Zhang, Lu-Gang

    2016-01-01

    Malate dehydrogenases (MDHs) are key metabolic enzymes that play important roles in plant growth and development. In the present study, we isolated the full-length and coding sequences of BraMDH from Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour) Olsson]. We conducted bioinformatics analysis and a subcellular localization assay, which revealed that the BraMDH gene sequence contained no introns and that BraMDH is localized to the chloroplast. In addition, the expression pattern of BraMDH in Chinese cabbage was investigated, which revealed that BraMDH was heavily expressed in inflorescence apical meristems, as well as the effect of BraMDH overexpression in two homozygous transgenic Arabidopsis lines, which resulted in early bolting and taller inflorescence stems. Furthermore, the fresh and dry weights of aerial tissue from the transgenic Arabidopsis plants were significantly higher than those from the corresponding wild-type plants, as were plant height, the number of rosette leaves, and the number of siliques produced, and the transgenic plants also exhibited stronger aluminum resistance when treated with AlCl3. Therefore, our results suggest that BraMDH has a dramatic effect on plant growth and that the gene is involved in both plant growth and aluminum resistance. PMID:27536317

  3. Classification and clustering analysis of pyruvate dehydrogenase enzyme based on their physicochemical properties.

    Banerjee, Amit Kumar; M, Sunita; M, Naveen; Murty, Upadhyayula Suryanarayana

    2010-01-01

    Biological systems are highly organized and enormously coordinated maintaining greater complexity. The increment of secondary data generation and progress of modern mining techniques provided us an opportunity to discover hidden intra and inter relations among these non linear dataset. This will help in understanding the complex biological phenomenon with greater efficiency. In this paper we report comparative classification of Pyruvate Dehydrogenase protein sequences from bacterial sources based on 28 different physicochemical parameters (such as bulkiness, hydrophobicity, total positively and negatively charged residues, α helices, β strand etc.) and 20 type amino acid compositions. Logistic, MLP (Multi Layer Perceptron), SMO (Sequential Minimal Optimization), RBFN (Radial Basis Function Network) and SL (simple logistic) methods were compared in this study. MLP was found to be the best method with maximum average accuracy of 88.20%. Same dataset was subjected for clustering using 2*2 grid of a two dimensional SOM (Self Organizing Maps). Clustering analysis revealed the proximity of the unannotated sequences with the Mycobacterium and Synechococcus genus. PMID:20975910

  4. Effect of glucocorticoid on promoter of 11β-hydroxysteroid dehydrogenase I gene

    何平; 孙刚

    2003-01-01

    Objective: To study the effect of glucocorticoid on the promoter of the pre-receptor glucocorticoid metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) gene. Methods: The 1.2 kb length sequence upstream to the transcription start site of the 11β-HSD1 gene was amplified with polymerase chain reaction (PCR) and then was cloned into pBLCAT6 plasmid carrying chloramphenicol acetyltransferase (CAT) reporter gene. The plasmid pBLCAT6 carrying the promoter and reporter gene was used to transfect HeLa cells to study the regulation of 11β-HSD1 gene expression by glucocorticoids in terms of reporter gene expression. Results: PCR showed that there was a complete alignment of the amplified sequence with the sequence 1.2 kb upstream to the transcription start site of 11β-HSD1 gene. When cloned into pBLCAT6 plasmid carrying the reporter gene, this part of the promoter is functional in terms of regulation of reporter gene expression upon transfection into HeLa cells. The synthetic glucocorticoid-dexamethasone induced the reporter gene expression in the system described above, which was blocked by glucocorticoid receptor antagonist RU486. Conclusion: Glucocorticoids can modulate the expression of 11β-HSD1 through a mechanism involving activation of GR and interaction of the promoter of 11β-HSD1 gene.

  5. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.; (Danforth)

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  6. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    Dash Ranjan K

    2011-09-01

    Full Text Available Abstract Background Mitochondrial 2-oxoglutarate (α-ketoglutarate dehydrogenase complex (OGDHC, a key regulatory point of tricarboxylic acid (TCA cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP, pH, and metal ion cofactors (Ca2+ and Mg2+. Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function.

  7. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  8. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    Yaou Xu

    2013-06-01

    Full Text Available The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1 gene in yak (Bos grunniens. Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.

  9. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    Felicia Stefania Falvella

    2015-04-01

    Full Text Available Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD, a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T, fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C, conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.

  10. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli.

    Bzik, D J; Fox, B A; Gonyer, K

    1993-05-01

    A Plasmodium falciparum gene is described which encodes lactate dehydrogenase activity (P. falciparum LDH). The P. falciparum LDH gene contains no introns and is present in a single copy on chromosome 13. P. falciparum LDH was expressed in all asexual blood stages as a 1.6-kb mRNA. The predicted 316 amino acid protein coding region of P. falciparum LDH was inserted into the prokaryotic expression vector pKK223-3 and a 33-kDa protein having LDH activity was synthesized in Escherichia coli. P. falciparum LDH primary structure displays high amino acid similarity (50-57%) to vertebrate and bacterial LDH, but lacks the amino terminal extension observed in all vertebrate LDH. The majority of amino acid residues implicated in substrate and coenzyme binding and catalysis of other LDH are well conserved in P. falciparum LDH. However, several notable differences in amino acid composition were observed. P. falciparum LDH contained several distinctive single amino acid insertions and deletions compared to other LDH enzymes, and most remarkably, it contained a novel insertion of 5 amino acids within the conserved mobile loop region near arginine residue 109, a residue which is known to make contact with pyruvate in the ternary complex of other LDH. These results suggest that novel features of P. falciparum LDH primary structure may be correlated with previously characterized and distinctive kinetic, biochemical, immunochemical, and electrophoretic properties of P. falciparum LDH. PMID:8515777

  11. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  12. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren;

    2008-01-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may...... be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking...... and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men...

  13. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.;

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  14. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

    Fitzmaurice, Arthur G; Rhodes, Shannon L; Lulla, Aaron; Murphy, Niall P; Lam, Hoa A; O'Donnell, Kelley C; Barnhill, Lisa; Casida, John E; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff M

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis. PMID:23267077

  15. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  16. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase.

    Adam L Orr

    Full Text Available Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5 were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC₅₀ and K(i values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.

  17. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  18. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the αPDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the αPDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated αPDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles 32P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated αPDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated αPDH subunit. Tryptic digests of the 32P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined

  19. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD+), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H2O2) in the culture medium. Under oxidative stress, the NAD+ generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD+ reveals an intricate link between metabolism and the processing of genetic information

  20. Structural and Kinetic Studies of Formate Dehydrogenase from Candida boidinii.

    Guo, Qi; Gakhar, Lokesh; Wickersham, Kyle; Francis, Kevin; Vardi-Kilshtain, Alexandra; Major, Dan T; Cheatum, Christopher M; Kohen, Amnon

    2016-05-17

    The structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system for studies on the role of protein dynamics in catalysis, but so far these studies have been limited by the availability of structural information. Second, CbFDH and its mutants can be used in various industrial applications (e.g., CO2 fixation or nicotinamide recycling systems), and the lack of structural information has been a limiting factor in commercial development. Here, we report the crystallization and structural determination of both holo- and apo-CbFDH. The free-energy barrier for the catalyzed reaction was computed and indicates that this structure indeed represents a catalytically competent form of the enzyme. Complementing kinetic examinations demonstrate that the recombinant CbFDH has a well-organized reactive state. Finally, a fortuitous observation has been made: the apoenzyme crystal was obtained under cocrystallization conditions with a saturating concentration of both the cofactor (NAD(+)) and inhibitor (azide), which has a nanomolar dissociation constant. It was found that the fraction of the apoenzyme present in the solution is less than 1.7 × 10(-7) (i.e., the solution is 99.9999% holoenzyme). This is an extreme case where the crystal structure represents an insignificant fraction of the enzyme in solution, and a mechanism rationalizing this phenomenon is presented. PMID:27100912

  1. Cloning and Expression of a Xylitol-4-Dehydrogenase Gene from Pantoea ananatis

    Aarnikunnas, J. S.; Pihlajaniemi, A.; Palva, A; Leisola, M.; Nyyssölä, A.

    2006-01-01

    The Pantoea ananatis ATCC 43072 mutant strain is capable of growing with xylitol as the sole carbon source. The xylitol-4-dehydrogenase (XDH) catalyzing the oxidation of xylitol to l-xylulose was isolated from the cell extract of this strain. The N-terminal amino acid sequence of the purified protein was determined, and an oligonucleotide deduced from this peptide sequence was used to isolate the xylitol-4-dehydrogenase gene (xdh) from a P. ananatis gene library. Nucleotide sequence analysis ...

  2. Optimization of production, purification and lyophilisation of cellobiose dehydrogenase by Sclerotium rolfsii

    Fischer, Christin; Krause, Annett; Kleinschmidt, Thomas

    2014-01-01

    Background The enzyme cellobiose dehydrogenase (CDH) can be used to oxidize lactose to lactobionic acid. As Sclerotium rolfsii is known to be a good producer of CDH, the aim of this paper was to simplify its production and secondly to systematically study its purification aiming for a high yield. Two preservation methods (freezing and freeze-drying) and the influence of several protectants were investigated. Results Production of cellobiose dehydrogenase was optimized leading to a more simpli...

  3. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Cossio de Gurrola Gladys; Araúz Juan; Durán Elfilda; Aguilar-Medina Maribel; Ramos-Payán Rosalío; García-Magallanes Noemí; Pacheco Gerardo; Arámbula Meraz Eliakym

    2008-01-01

    Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in nap...

  4. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer

    Murugan, Avaniyapuram Kannan; Bojdani, Ermal; Xing, Mingzhao

    2010-01-01

    Mutations in the genes for isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) have been recently identified in glioblastoma. In the present study, we investigated IDH1 and IDH2 mutations in follicular thyroid cancer (FTC) and anaplastic thyroid cancer (ATC), with the latter, like glioblastoma, having a rapidly aggressive and lethal clinical course. By direct genomic DNA sequencing, we analyzed exon 4 of the IDH1 and IDH2 genes that harbored the mutation hot spots codon 13...

  5. Search for Human Lactate Dehydrogenase A Inhibitors Using Structure-Based Modeling

    Nilov, D.; Prokhorova, E.; Švedas, V.

    2015-01-01

    The human lactate dehydrogenase isoform A plays an important role in the anaerobic metabolism of tumour cells and therefore constitutes an attractive target in the oncology field. Full-atom models of lactate dehydrogenase A (in complex with NADH and in the apo form) have been generated to enable structure-based design of novel inhibitors competing with pyruvate and NADH. The structural criteria for the selection of potential inhibitors were established, and virtual screening of a library of l...

  6. Soil Dehydrogenases as an Indicator of Contamination of the Environment with Petroleum Products

    Kaczyńska, Grażyna; Borowik, Agata; Wyszkowska, Jadwiga

    2015-01-01

    The aim of the research was to compare the effects of various petroleum products, biodiesel, diesel oil, fuel oil and unleaded petrol on soil dehydrogenases, and to evaluate biostimulation with compost and urea in the restoration of homeostasis of the soil contaminated with these products. The obtained results allowed for defining the weight of dehydrogenases in monitoring of the environment subjected to pressure from petroleum hydrocarbons. The studies were carried out under laboratory condi...

  7. Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

    Taniyama, Kosuke; Itoh, Hideomi; Takuwa, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Toyofuku, Masanori; Nomura, Nobuhiko; Takaya, Naoki

    2012-01-01

    Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD+- or NADP+-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological...

  8. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation

    Sun Joo Lee; Ji Yun Jeong; Chang Joo Oh; Sungmi Park; Joon-Young Kim; Han-Jong Kim; Nam Doo Kim; Young-Keun Choi; Ji-Yeon Do; Younghoon Go; Chae-Myung Ha; Je-Yong Choi; Seung Huh; Nam Ho Jeoung; Ki-Up Lee

    2015-01-01

    Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification...

  9. Studies on the mechanism of action of benzamide riboside: a novel inhibitor of IMP dehydrogenase.

    Gharehbaghi, Kamran; Grünberger, Werner; Jayaram, Hiremagalur N

    2002-04-01

    Benzamide is a well known inhibitor of poly(ADP-ribose)polymerase, an enzyme involved in DNA repair. However, benzamide exhibited neuotoxicity in animals and hence, in the hope of overcoming this problem, benzamide riboside (BR) was synthesized. Our mechanism of action studies on BR suggested that the agent was being metabolized to its 5'-monophosphate and then to its NAD analogue (BAD, benzamide adenine dinucleotide) that inhibits Inosine 5'-monophosphate dehydrogenase (IMPDH). IMPDH is the rate-limiting enzyme of the branched purine nucleotide synthetic pathway that provides guanylates including GTP and dGTP. There are two isoforms of IMPDH, type I that is constitutively present in all cells, and type II that is inducible and is present in highly proliferating cells such as cancer. Ongoing studies with BR analogues suggest that they are more selective in inhibiting IMPDH type II. Our studies have characterized the metabolites of BR, especially its NAD analogue, BAD, by synthesizing this active metabolite by enzymatic means, and identifying its structure by NMR and mass spectrometry. We have partially purified IMPDH from tumor cells and have examined the kinetics of inhibition of IMPDH by BAD. We have also compared biochemical and cytotoxic activities of BR with tiazofurin and selenazofurin, that share similar mechanisms of action with BR. Our studies demonstrated that 2-3-fold more BAD is formed compared to TAD and SAD, the active metabolites of tiazofurin and selenazofurin, respectively. BR has demonstrated potent cytotoxic activity in a diverse group of human tumor cells, specifically more active in sarcomas and CNS neoplasms compared to tiazofurin or selenazofurin. Future in vivo animal studies should set a stage for determining its effectiveness in clinical Phase I studies. PMID:11966437

  10. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  11. The Crystal Structure of Aquifex aeolicus Prephenate Dehydrogenase Reveals the Mode of Tyrosine Inhibition

    Sun, Warren; Shahinas, Dea; Bonvin, Julie; Hou, Wenjuan; Kimber, Matthew S.; Turnbull, Joanne; Christendat, Dinesh; (Guelph); (Toronto); (ConU)

    2009-08-14

    TyrA proteins belong to a family of dehydrogenases that are dedicated to l-tyrosine biosynthesis. The three TyrA subclasses are distinguished by their substrate specificities, namely the prephenate dehydrogenases, the arogenate dehydrogenases, and the cyclohexadienyl dehydrogenases, which utilize prephenate, l-arogenate, or both substrates, respectively. The molecular mechanism responsible for TyrA substrate selectivity and regulation is unknown. To further our understanding of TyrA-catalyzed reactions, we have determined the crystal structures of Aquifex aeolicus prephenate dehydrogenase bound with NAD(+) plus either 4-hydroxyphenylpyuvate, 4-hydroxyphenylpropionate, or l-tyrosine and have used these structures as guides to target active site residues for site-directed mutagenesis. From a combination of mutational and structural analyses, we have demonstrated that His-147 and Arg-250 are key catalytic and binding groups, respectively, and Ser-126 participates in both catalysis and substrate binding through the ligand 4-hydroxyl group. The crystal structure revealed that tyrosine, a known inhibitor, binds directly to the active site of the enzyme and not to an allosteric site. The most interesting finding though, is that mutating His-217 relieved the inhibitory effect of tyrosine on A. aeolicus prephenate dehydrogenase. The identification of a tyrosine-insensitive mutant provides a novel avenue for designing an unregulated enzyme for application in metabolic engineering.

  12. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  13. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Sharma Pushpa

    2009-01-01

    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  14. Cloning and expression of bacterial genes coding amino acid dehydrogenases (oxidoreductases)

    Full text: The synthesis of 15N-labeled amino acids from the corresponding α-ketoacids can be accomplished in vitro using bacterial NAD-dependent amino acid dehydrogenases. The example of alanine dehydrogenase (AlaDH) and leucine dehydrogenase (LeuDH) will be presented here. Both enzymes belong to NAD dependent oxidoreductase family. AlaDH or L-alanine NAD-oxidoreductase (EC 1.4.1.1) promotes the reversible oxidative deamination of L-alanine to pyruvate (pyruvic acid). LeuDH or L-leucine NAD-oxidoreductase (EC 1.4.1.9) catalyses the reversible oxidative deamination of many related L-amino acids to corresponding α-ketoacids. The bacterial genes encoding AlaDH from Bacillus subtilis and LeuDH from Bacillus stearothermophilus were cloned separately in pET21b vector, and overexpressed in Escherichia coli BL21(DE3) strain. The [15N]L-alanine was synthesized by reductive amination of pyruvate, in the presence of 15NH4Cl, NADH, AlaDH and glucose dehydrogenase. The [15N]L-leucine, [15N]L-isoleucine, [15N]L-norleucine, [15N]L-valine and [15N]L-norvaline were produced in the same conditions using LeuDH, as a catalyst, and α- ketoisocaproate, DL-α-keto-β-methyl-n-valerate, α-ketocaproate, α-ketoisovalerate and α-ketovalerate, respectively, as substrates. In all cases, the reaction mixtures included glucose dehydrogenase for NADH regeneration with glucose as electron donor. The NADH renewal is more convenient with glucose dehydrogenase than other methods described before using formate dehydrogenase or alcohol dehydrogenase. The glucose dehydrogenase is very active and do not inhibit 15N-labeled amino acid synthesis. As determined by mass spectroscopy, the 15N-labeled amino acids were synthesized with yields between 60% and 95%. Our results demonstrate the usefulness of recombinant amino acid dehydrogenases for in vitro synthesis of 15N-labeled amino acids. (author)

  15. Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize.

    Brinkmann, H; Martinez, P; Quigley, F; Martin, W; Cerff, R

    1987-01-01

    The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots. PMID:3131533

  16. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.; Corydon, Thomas Juhl; Bolund, Lars; Bartlett, K.; Vockley, J.; Gregersen, N.

    2003-01-01

    type, associate with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas......Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding...... SCAD proteins either triggered proteolytic degradation by mitochondrial proteases or, especially at elevated temperature, aggregation of non-native conformers. The latter finding may indicate that accumulation of aggregated SCAD proteins may play a role in the pathogenesis of SCAD deficiency....

  17. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P;

    2007-01-01

    results may indicate that the two hSCAD folding variants are degraded by the mouse mitochondrial protein quality control system. Indeed, pulse-chase studies with isolated mitochondria revealed that soluble variant hSCAD protein was rapidly eliminated. This is in agreement with the fact that no disease......Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A...... phenotype developed for any of the lines transgenic for the hSCAD folding variants. The indicated remarkable efficiency of the mouse protein quality control system in the degradation of SCAD folding variants should be further substantiated and investigated, since it might indicate ways to prevent disease...

  18. Toxic response caused by a misfolding variant of the mitochondrial protein short-chain acyl-CoA dehydrogenase

    Schmidt, Stinne P; Corydon, Thomas J; Pedersen, Christina B;

    2011-01-01

    disease-associated misfolding variant of SCAD protein, p.Arg107Cys, disturbs mitochondrial function. METHODS: We have developed a cell model system, stably expressing either the SCAD wild-type protein or the misfolding SCAD variant protein, p.Arg107Cys (c.319 C > T). The model system was used for......BACKGROUND: Variations in the gene ACADS, encoding the mitochondrial protein short-chain acyl CoA-dehydrogenase (SCAD), have been observed in individuals with clinical symptoms. The phenotype of SCAD deficiency (SCADD) is very heterogeneous, ranging from asymptomatic to severe, without a clear...... increased demand for the mitochondrial antioxidant SOD2. In addition, we found markers of apoptotic activity in the p.Arg107Cys expressing cells, which points to a possible pathophysiological role of this variant protein....

  19. 11 beta-Hydroxysteroid dehydrogenase activity in hypothalamic obesity.

    Tiosano, Dov; Eisentein, Israel; Militianu, Daniela; Chrousos, George P; Hochberg, Ze'ev

    2003-01-01

    After extensive suprasellar operations for hypothalamic tumor removal, some patients develop Cushing-like morbid obesity while they receive replacement doses of glucocorticoids. In this study, we examined the hypothesis that target tissue conversion of inactive 11-ketosteroids to active 11 beta-OH glucocorticoids might explain the obesity of some patients with hypothalamic lesions. Toward this aim, we studied 10 patients with hypothalamic obesity and secondary adrenal insufficiency and 6 control Addisonian patients while they were on glucocorticoid replacement therapy. Pituitary hormone deficiencies were replaced when medically indicated. Twenty-four-hour urine was collected after a single oral dose of 12 mg/m(2) hydrocortisone acetate. The ratios of free and conjugated cortisol (F) to cortisone (E) and their metabolites, [tetrahydrocortisol (THF)+5 alpha THF]/tetrahyrdocortisone (THE), dihydrocortisols/dihydrocortisones, cortols/cortolones, and (F+E)/(THF+THE+5 alpha THF), were considered to represent 11 beta-hydroxysteroid dehydrogenase (HSD) activity. The 11-OH/11-oxo ratios were significantly higher in the urine of patients with hypothalamic obesity. The 11-OH/11-oxo ratios, however, did not correlate with the degree of obesity, yet a significant correlation was found between conjugated F/E and the ratio of visceral fat to sc fat measured by computerized tomography at the umbilical level. The consequence of increased 11 beta-HSD1 activity and the shift of the interconversion toward cortisol may contribute to the effects of the latter in adipose tissue. We propose that deficiency of hypothalamic messengers after surgical injury induces a paracrine/autocrine effect of enhanced glucocorticoid activity due to up-regulated 11 beta-HSD1 activity. PMID:12519880

  20. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. PMID:26221781

  1. Short-chain dehydrogenases/reductases in cyanobacteria.

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund

    2012-03-01

    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria. PMID:22251568

  2. Furosemide and 11beta-hydroxysteroid dehydrogenase activity, in man.

    Palermo, M; Armanini, D; Shackleton, C H L; Sorba, G; Cossu, M; Roitman, E; Scaroni, C; Delitala, G

    2002-09-01

    Mineralocorticoid receptors possess the same affinity for aldosterone and for cortisol and preferential binding of aldosterone is modulated by the 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) enzyme, which converts cortisol to its inactive metabolite cortisone. Several endogenous or exogenous compounds able to inhibit the enzyme have been described and, as a consequence, produce the syndrome of apparent mineralocorticoid excess (AME) characterized by hypertension, hypokalemia, volume repletion and suppression of the renin-angiotensin-aldosterone system. High doses of furosemide, a diuretic that works in the luminal surface of the thick ascending limb of Henle's loop, have been reported to inhibit 11 beta-OHSD activity to the same extent as licorice in vivo and in vitro, in rat. The aim of our study was to verify the effect of the drug on 11 beta-OHSD activity in man at the doses currently used in clinical practice. We tested the activity of 11 beta-OHSD following both acute and protracted administration of furosemide. In the acute study, the drug was administered at low (40 mg i.v. in bolo) and high doses (infusion of 10 mg/kg bw i.v for six hours); the protracted furosemide administration consisted in 50 mg/day for 20 days, by mouth. The ratios between the cortisol metabolites tetrahydrocortisol plus allo-tetrahydrocortisol to tetra-hydrocortisone and urinary free cortisol to urinary free cortisone were used to measure the activity of 11 beta-OHSD. Urinary cortisol, cortisone and their metabolites were tested by a gas-chromatographic/mass spectrometric method. Neither acute nor prolonged administration of furosemide did affect the activity of 11 beta-OHSD although the drug was able to modify plasma aldosterone and PRA secretion and to determine hypokalemia. Our results suggest that furosemide does not play a significant role in 11 beta-OHSD modulation in humans, at least at the dosage used in clinical practice. PMID:12373630

  3. Screening and Characterization of Proline Dehydrogenase Flavoenzyme Producing Pseudomonas Entomophila

    H Shahbaz- Mohammadi

    2011-12-01

    Full Text Available Background and Objectives: Proline dehydrogenase (ProDH; 1.5.99.8 plays an important role in specific determination of plasma proline level in biosensor and diagnostic kits. The goal of this research was to isolate and characterize ProDH enzyme from Iranian soil microorganisms.Materials and Methods: Screening of L-proline degradative enzymes from soil samples was carried out employing enrichment culture techniques. The isolate was characterized by biochemical reactions and specific PCR amplification. The target ProDH was purified and the effects of pH and temperature on the activity and stability were also tested.Results: Among the 250 isolates recovered from 40 soil samples, only one strain characterized as Pseudomonas entomophila displayed the highest enzyme activity toward L-proline (350 U/l than others. The enzyme of interest was identified as a ProDH and had Km value of 32 mM for L-proline. ProDH exhibited its best activity at temperature range of 25 to 35°C and its highest activity was achieved at 30°C. It was almost stable at temperatures between 25-30°C for 2 hours. The optimum pH activity of ProDH reaction was 8.5 and its activity was stable in pH range of 8.0-9.0 upto 24 hours. The enzyme was purified with a yield of 8.5% and a purification factor of 37.7. The molecular mass of the purified ProDH was about 40 kDa, and determined to be a monomeric protein."nConclusion: This is the first report concerning the ProDH production by a P. entomophila bacterium isolated from soil sample.

  4. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  5. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis.

    Barretto, O C de O; Oshiro, M; Oliveira, R A G; Fedullo, J D L; Nonoyama, K

    2006-05-01

    In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 +/- 38 IU g-1 Hb-1 min-1 at 37 degrees C, compared to the human erythrocyte activity of 12 +/- 2 IU g-1 Hb-1 min-1 at 37 degrees C. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 microM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 microM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate. PMID:16648898

  6. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  7. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [125I]FMIC and [125I]DEIBA were 70±5% and 47±14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  8. Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution

    Frishman Dmitrij

    2011-06-01

    Full Text Available Abstract Background Glyceraldehyde-3-phosphate dehydrogenase (GAPD catalyses one of the glycolytic reactions and is also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain some insights into specialization of GAPD-2 as a testis-specific protein. Results A dataset of GAPD sequences was assembled from public databases and used for phylogeny reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different regions of the same sequences. Conclusions The obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing.

  9. Triazaspirodimethoxybenzoyls as Selective Inhibitors of Mycobacterial Lipoamide Dehydrogenase

    Bryk, Ruslana; Arango, Nancy; Venugopal, Aditya; Warren, J. David; Park, Yun-Hee; Patel, Mulchand S.; Lima, Christopher D.; Nathan, Carl (Weill-Med); (SKI); (SUNYB)

    2010-06-25

    Mycobacterium tuberculosis (Mtb) remains the leading single cause of death from bacterial infection. Here we explored the possibility of species-selective inhibition of lipoamide dehydrogenase (Lpd), an enzyme central to Mtb's intermediary metabolism and antioxidant defense. High-throughput screening of combinatorial chemical libraries identified triazaspirodimethoxybenzoyls as high-nanomolar inhibitors of Mtb's Lpd that were noncompetitive versus NADH, NAD{sup +}, and lipoamide and >100-fold selective compared to human Lpd. Efficacy required the dimethoxy and dichlorophenyl groups. The structure of an Lpd-inhibitor complex was resolved to 2.42 {angstrom} by X-ray crystallography, revealing that the inhibitor occupied a pocket adjacent to the Lpd NADH/NAD{sup +} binding site. The inhibitor did not overlap with the adenosine moiety of NADH/NAD{sup +} but did overlap with positions predicted to bind the nicotinamide rings in NADH and NAD{sup +} complexes. The dimethoxy ring occupied a deep pocket adjacent to the FAD flavin ring where it would block coordination of the NADH nicotinamide ring, while the dichlorophenyl group occupied a more exposed pocket predicted to coordinate the NAD{sup +} nicotinamide. Several residues that are not conserved between the bacterial enzyme and its human homologue were predicted to contribute both to inhibitor binding and to species selectivity, as confirmed for three residues by analysis of the corresponding mutant Mtb Lpd proteins. Thus, nonconservation of residues lining the electron-transfer tunnel in Mtb Lpd can be exploited for development of species-selective Lpd inhibitors.

  10. Structural basis of cooperativity in human UDP-glucose dehydrogenase.

    Venkatachalam Rajakannan

    Full Text Available BACKGROUND: UDP-glucose dehydrogenase (UGDH is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY: Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION: In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.

  11. Maize cytokinin dehydrogenase isozymes are localized predominantly to the vacuoles.

    Zalabák, David; Johnová, Patricie; Plíhal, Ondřej; Šenková, Karolina; Šamajová, Olga; Jiskrová, Eva; Novák, Ondřej; Jackson, David; Mohanty, Amitabh; Galuszka, Petr

    2016-07-01

    The maize genome encompasses 13 genes encoding for cytokinin dehydrogenase isozymes (CKXs). These enzymes are responsible for irreversible degradation of cytokinin plant hormones and thus, contribute regulating their levels. Here, we focus on the unique aspect of CKXs: their diverse subcellular distribution, important in regulating cytokinin homeostasis. Maize CKXs were tagged with green fluorescent protein (GFP) and transiently expressed in maize protoplasts. Most of the isoforms, namely ZmCKX1, ZmCKX2, ZmCKX4a, ZmCKX5, ZmCKX6, ZmCKX8, ZmCKX9, and ZmCKX12, were associated with endoplasmic reticulum (ER) several hours after transformation. GFP-fused CKXs were observed to accumulate in putative prevacuolar compartments. To gain more information about the spatiotemporal localization of the above isoforms, we prepared stable expression lines of all ZmCKX-GFP fusions in Arabidopsis thaliana Ler suspension culture. All the ER-associated isoforms except ZmCKX1 and ZmCKX9 were found to be targeted primarily to vacuoles, suggesting that ER-localization is a transition point in the intracellular secretory pathway and vacuoles serve as these isoforms' final destination. ZmCKX9 showed an ER-like localization pattern similar to those observed in the transient maize assay. Apoplastic localization of ZmCKX1 was further confirmed and ZmCKX10 showed cytosolic/nuclear localization due to the absence of the signal peptide sequence as previously reported. Additionally, we prepared GFP-fused N-terminal signal deletion mutants of ZmCKX2 and ZmCKX9 and clearly demonstrated that the localization pattern of these mutant forms was cytosolic/nuclear. This study provides the first complex model for spatiotemporal localization of the key enzymes of the cytokinin degradation/catabolism in monocotyledonous plants. PMID:27031423

  12. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  13. Identification of Mutation of Glucose-6-Phosphate Dehy-drogenase (G6PD in Iran: Meta- analysis Study

    Mahmood Moosazadeh

    2013-09-01

    Full Text Available Background: Glucose-6-phosphate dehydrogenase is one of the most common genetic deficiencies, which approximately 400 million people in the world suffer from. According to authors' initial search, numerous studies have been carried out in Iran regarding molecular variants of this enzyme. Thus, this meta-analysis presented a reliable estimation about prevalence of different types of molecular mutations of G6PD Enzyme in Iran.Methods: Keywords "glucose 6 phosphate dehydrogenase or G6PD, Mediterranean or Chatham or Cosenza and mutation, Iran or Iranian and their Persian equivalents" were searched in different databases. Moreover, reference list of the published studies were examined to increase sensitivity and to select more studies. After studying titles and abstracts of retrieved articles, excluding the repeated and unrelated ones, and evaluating quality of articles, documents were selected. Data was analyzed using STATA.Results: After performing systematic review, 22 papers were entered this meta-analysis and 1698 subjects were examined concerning G6PD molecular mutation. In this meta-analysis, prevalence of Mediterranean mutation, Chatham mutation and Cosenza mutation in Iran was estimated 78.2%, 9.1% and 0.5% respectively.Conclusions: This meta-analysis showed that in spite of prevalence of different types of G6PD molecular mutations in center, north, north-west and west of Iran, the most common molecular mutations in people with G6PD deficiency in Iran, like other Mediterranean countries and countries around Persian Gulf, were Mediterranean mutation, Chatham mutation and Cosenza mutation. It is also recommended that future studies may focus on races and regions which haven't been taken into consideration up to now.

  14. [Aldehyde dehydrogenase activity and level of dopamine in certain sections of the brain of rats preferring and refusing ethanol].

    Kharchenko, N K

    2000-01-01

    Aldehyde dehydrogenase activity (KF 1.2.1.3) of cytosol fractions of brain structures (hypothalamus, midbrain and new cortex) as well as dophamine content in these structures were studied in comparative aspect in rats preferring and rejection ethanol. It has been shown that there were two isoforms of aldehyde dehydrogenases (aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2) in cytosol fractions of all investigated brain structures of animals preferring ethanol while only aldehyde dehydrogenase 2 has been found in the new cotex of rats rejecting ethanol. Thus, aldehyde-dehydrogenase activity is higher in the animals preferring ethanol than in those ones rejecting ethanol. Content of dophamine in the rats preferring ethanol is higher than in those ones rejecting ethanol both in the hypothalamus and new cortex. Differences between the studied groups of animals can underlie the pathologic attraction to alcohol. PMID:10979563

  15. Structural and catalytic properties of L-alanine dehydrogenase from Bacillus cereus.

    Porumb, H; Vancea, D; Mureşan, L; Presecan, E; Lascu, I; Petrescu, I; Porumb, T; Pop, R; Bârzu, O

    1987-04-01

    Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species. PMID:3104322

  16. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    Dolferus, R; Osterman, J. C.; Peacock, W. J.; Dennis, E.S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved fr...

  17. Solution structures of lipoyl domains of the 2-oxo acid dehydrogenase complexes from Azotobacter vinelandii. Implications for molecular recognition.

    Berg, A.

    1997-01-01

    The 2-oxo acid dehydrogenase complexes are large multienzyme complexes that catalyse the irreversible oxidative decarboxylation of a specific 2-oxo acid to the corresponding acyl-CoA derivative. The pyruvate dehydrogenase complex (PDHC) converts the product of the glycolysis, pyruvate, to acetyl-CoA, which enters the tricarboxylic acid cycle. The 2-oxoglutarate dehydrogenase complex (OGDHC functions in the tricarboxylic acid cycle itself by converting 2-oxoglutarate to succinyl-CoA. The branc...

  18. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity.

    Bonam, D; Lehman, L.; Roberts, G P; Ludden, P W

    1989-01-01

    Exposure of the photosynthetic bacterium Rhodospirillum rubrum to carbon monoxide led to increased carbon monoxide dehydrogenase and hydrogenase activities due to de novo protein synthesis of both enzymes. Two-dimensional gels of [35S]methionine-pulse-labeled cells showed that induction of CO dehydrogenase synthesis was rapidly initiated (less than 5 min upon exposure to CO) and was inhibited by oxygen. Both CO dehydrogenase and the CO-induced hydrogenase were inactivated by oxygen in vivo an...

  19. Purification and characterization of ribitol-5-phosphate and xylitol-5-phosphate dehydrogenases from strains of Lactobacillus casei.

    Hausman, S Z; London, J

    1987-01-01

    A simple three-step procedure is described which yields electrophoretically homogeneous preparations of ribitol-5-phosphate dehydrogenase and xylitol-5-phosphate dehydrogenase. The former enzyme is a 115,000-molecular-weight protein composed of two subunits of identical size and is specific for its substrate, ribitol. The xylitol-5-phosphate dehydrogenase exists as a tetrameric protein with a molecular weight of 180,000; this enzyme oxidizes the phosphate esters of both xylitol and D-arabitol...

  20. Congenital fiber type disproportion.

    Kissiedu, Juliana; Prayson, Richard A

    2016-04-01

    Type I muscle fiber atrophy in childhood can be encountered in a variety of neuromuscular disorders. Congenital fiber type disproportion (CFTD) is one such condition which presents as a nonprogressive muscle weakness. The diagnosis is often made after excluding other differential diagnostic considerations. We present a 2-year-9-month-old full term boy who presented at 2 months with an inability to turn his head to the right. Over the next couple of years, he showed signs of muscle weakness, broad based gait and a positive Gower's sign. He had normal levels of creatine kinase and normal electromyography. A biopsy of the vastus lateralis showed a marked variation in muscle fiber type. The adenosine triphosphate (ATP)-ase stains highlighted a marked type I muscle atrophy with rare scattered atrophic type II muscle fibers. No abnormalities were observed on the nicotinamide adenine dinucleotide (NADH), succinate dehydrogenase (SDH) or cytochrome oxidase stained sections. Ragged red fibers were not present on the trichrome stain. Abnormalities of glycogen or lipid deposition were not observed on the periodic acid-Schiff or Oil-Red-O stains. Immunostaining for muscular dystrophy associated proteins showed normal staining. Ultrastructural examination showed a normal arrangement of myofilaments, and a normal number and morphology for mitochondria. A diagnosis of CFTD was made after excluding other causes of type I atrophy including congenital myopathy. The lack of specific clinical and genetic disorder associated with CFTD suggests that it is a spectrum of a disease process and represents a diagnosis of exclusion. PMID:26526626

  1. Tear Malate Dehydrogenase,Lactate Dehydrogenase and Their Isoenzymes in Normal Chinese Subjects and Patients of Ocular Surface Disorders

    QingGuo; HanchengZhang

    1995-01-01

    Purose:To determine levels of malate dehydrogenase(MDH),lactate dehydroge-nase(LDH)and their isoenzymes in tears of normal Chinese subjects and patients with ocular surface disorders.Methods:The age range of normal subjects was10-88,with136mal and 128fe-male subjects.123patients suffered from ocular surface disorders.Tears were col-lected from lower fornix on Xinghua filter disc(0.1mm thick,5mm in diameter).The values of tearMDHand LDHwere determined by MONARCH-2000Ana-lyzer(U.S.A)Their isoenzymes were separated by acetate cellulose elec-trophoresis and were determined by Model CDS-200light densitometer.Results:The normal values of tear LDH and MDH were 45.51+23.00-81.35+37.84umol·s-1/Land11.00+5.33-19.50+9.17umol·s-1/Lrespectively,dis-regarding sex or eye distriction(P>0.05).The values of tear LDHandMDH in the group aged10-19were significantly lower than in another groups(P<0.05),95%normal ranges of tearMDHaged below19and above20were3.63-19.90umol·s-1/L.THe MDH isoenzymes comprised MDHs and MDHm,the former accounting for80.0-89.1%.The LDH isoenzymes comprised 5varieties.of which the ratioH/Mof subunit H tosubunit Mwas0.196+0.02.Levels of tear LDH,MDHand their isoenzymes in different diseases were various.Conclusions;Tear LDH/MDHratio reflected sensitively the matabolism of corneae and conjunetival epithelium.The changes in LDH isoenzymes were hel-ful to the differential diagnosis of external eye diseases,and the increase of MDHm reflected sensitively the degree of injury to the corneal epithelium.

  2. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation.

    Wodara, C; Bardischewsky, F; Friedrich, C G

    1997-01-01

    A 13-kb genomic region of Paracoccus dentrificans GB17 is involved in lithotrophic thiosulfate oxidation. Adjacent to the previously reported soxB gene (C. Wodara, S. Kostka, M. Egert, D. P. Kelly, and C. G. Friedrich, J. Bacteriol. 176:6188-6191, 1994), 3.7 kb were sequenced. Sequence analysis revealed four additional open reading frames, soxCDEF. soxC coded for a 430-amino-acid polypeptide with an Mr of 47,339 that included a putative signal peptide of 40 amino acids (Mr of 3,599) with a RR...

  3. Molecular genetics of the glucose-6-phosphate dehydrogenase (G6PD) Mediterranean variant and description of a new G6PD mutant, G6PD Andalus1361A.

    Vives-Corrons, J L; Kuhl, W; Pujades, M A; Beutler, E

    1990-01-01

    Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has b...

  4. Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide

    The inhibition of purified carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide was investigated in both the presence and absence of CO and electron acceptor. The inhibition was a time-dependent process exhibiting pseudo-first-order kinetics under both sets of conditions. The true second-order rate constants for inhibition were 72.2 M-1 s-1 with both substrates present and 48.9 and 79.5 M-1 s-1, respectively, for the reduced and oxidized enzymes incubated with cyanide. CO partially protected the enzyme against inhibition after 25-min incubation with 100 μM KCN. Dissociation constants of 8.46 μM (KCN) and 4.70 μM (CO) were calculated for the binding of cyanide and CO to the enzyme. Cyanide inhibition was fully reversible under an atmosphere of CO after removal of unbound cyanide. N2 was unable to reverse the inhibition. The competence of nickel-deficient (apo) CO dehydrogenase to undergo activation by NiCl2 was unaffected by prior incubation with cyanide. Cyanide inhibition of holo-CO dehydrogenase was not reversed by addition of NiCl2. 14CN- remained associated with holoenzyme but not with apoenzyme through gel filtration chromatography. These findings suggest that cyanide is a slow-binding, active-site-directed, nickel-specific, reversible inhibitor of CO dehydrogenase. The authors propose that cyanide inhibits CO dehydrogenase by being a analogue of CO and by binding through enzyme-bound nickel

  5. D- and L-lactate dehydrogenases during invertebrate evolution

    Stillman Jonathon H

    2008-10-01

    Full Text Available Abstract Background The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(--lactate and D(+-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. Results Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. Conclusion The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by

  6. Relationship Between Polymorphism of Methylenetetrahydrofolate Dehydrogenase and Congenital Heart Defect

    JUN CHENG; WEN-LI ZHU; JING-JING DAO; SHU-QING LI; YONG LI

    2005-01-01

    Objective To investigate the relationship between G1958A gene polymorphism of methylenetetrahydrofolate dehydrogenase (MTHFD) and occurrence of congenital heart disease (CHD) in North China. Methods One hundred and ninety-two CHD patients and their parents were included in this study as case group in Liaoning Province by birth defect registration cards, and 124 healthy subjects (age and gender matched) and their parents were simultaneously selected from the same geographic area as control. Their gene polymorphism of MTHFD G1958A locus was examined with PCR-RFLP, and serum folic acid and homocysteine (Hcy) levels were tested with radio-immunoassay and fluorescence polarization immunoassay (FPIA). Results There existed gene polymorphism at MTHFD G1958A locus in healthy subjects living in North China. The percentages of GG, GA, and AA genotype were 57.98%, 35.57%, and 6.45% respectively, and the A allele frequency was 24.23%, which was significantly different from Western population. No difference was observed when comparing genotype distribution and allele frequency between the case and control groups, so was the result from the comparison between genders. The A allele frequency of arterial septal defect patients' mothers (10.87%) was significantly lower than that of controls (28.15%) (P=0.014), with OR=0.31 (95% CI: 0.09-0.84), and no difference in the other subgroups. The percentage of at least one parent carrying A allele in arterial septal defect subgroup (43.48%) was significantly lower than that in controls (69.64%) (P=0.017), with OR=0.34 (95% CI: 0.12-0.92). The analysis of genetic transmission indicated that there was no transmission disequillibrium in CHD nuclear families. Their serum folic acid level was significantly higher than that of controls (P=0.000), and Hcy level of the former was higher than that of the latter with no statistical significance (P>0.05). Serum Hcy and folic acid levels of mothers with gene mutation were lower than those of mothers

  7. Microbial and xanthine dehydrogenase inhibitory activity of some flavones.

    Khobragade, C N; Bodade, Ragini G; Shinde, M S; Jaju, Deepa R; Bhosle, R B; Dawane, B S

    2008-06-01

    Xanthine dehydrogenase (XDH) is responsible for the pathological condition called Gout. In the present study different flavones synthesized from chalcone were evaluated in vitro for their inhibitory activity. Inhibitory activity of flavones on XDH was determined in terms of inhibition of uric acid synthesis from Xanthine. The enzymatic activity was found maximum at pH 7.5 and temperature 40 degrees C. The flavones 6-chloro-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(1)) and 6-chloro-7methyl-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(2)),were noncompetitive and competitive inhibitor with Ki values 1.1 and 0.22 respectively. The flavones (F(1)), (F(2)), 6-chloro-2-[3-(4-chloro-phenyl)-1phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(3)), 8-bromo-6-chloro-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(4)), 2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(5)) and 6-methyl-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(6)) were also screened for their antimicrobial activity, measured in terms of zone of inhibition. A broad spectrum antifungal activity was obtained against Trichoderma viridae, Candida albicans, Microsporum cannis, Penicillium chrysogenum and Fusarium moniliformae. In case of Aspergillus niger and Aspergillus flavous only spore formation was affected, while antibacterial activity was observed against Staphylococcus aureus, Bacillus subtilis and Serratia marsecens only. The flavones were further analyzed for quantitative structural activity relationship study (QSAR) by using PASS, online software to determine their Pa value. Toxicity and drug relevant properties were revealed by PALLAS software in terms of their molecular weight. Log P values were also studied. The result showed both the F(1) and F(2) flavones as antigout and therefore supports the development of novel drugs for the treatment of gout. PMID:18569337

  8. Structure of a highly NADP+-specific isocitrate dehydrogenase.

    Sidhu, Navdeep S; Delbaere, Louis T J; Sheldrick, George M

    2011-10-01

    Isocitrate dehydrogenase catalyzes the first oxidative and decarboxylation steps in the citric acid cycle. It also lies at a crucial bifurcation point between CO2-generating steps in the cycle and carbon-conserving steps in the glyoxylate bypass. Hence, the enzyme is a focus of regulation. The bacterial enzyme is typically dependent on the coenzyme nicotinamide adenine dinucleotide phosphate. The monomeric enzyme from Corynebacterium glutamicum is highly specific towards this coenzyme and the substrate isocitrate while retaining a high overall efficiency. Here, a 1.9 Å resolution crystal structure of the enzyme in complex with its coenzyme and the cofactor Mg2+ is reported. Coenzyme specificity is mediated by interactions with the negatively charged 2'-phosphate group, which is surrounded by the side chains of two arginines, one histidine and, via a water, one lysine residue, forming ion pairs and hydrogen bonds. Comparison with a previous apoenzyme structure indicates that the binding site is essentially preconfigured for coenzyme binding. In a second enzyme molecule in the asymmetric unit negatively charged aspartate and glutamate residues from a symmetry-related enzyme molecule interact with the positively charged arginines, abolishing coenzyme binding. The holoenzyme from C. glutamicum displays a 36° interdomain hinge-opening movement relative to the only previous holoenzyme structure of the monomeric enzyme: that from Azotobacter vinelandii. As a result, the active site is not blocked by the bound coenzyme as in the closed conformation of the latter, but is accessible to the substrate isocitrate. However, the substrate-binding site is disrupted in the open conformation. Hinge points could be pinpointed for the two molecules in the same crystal, which show a 13° hinge-bending movement relative to each other. One of the two pairs of hinge residues is intimately flanked on both sides by the isocitrate-binding site. This suggests that binding of a relatively

  9. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  10. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection. PMID:23874768

  11. Burst of succinate dehydrogenase and α-ketoglutarate dehydrogenase activity in concert with the expression of genes coding for respiratory chain proteins underlies short-term beneficial physiological stress in mitochondria.

    Zakharchenko, Marina V; Zakharchenko, A V; Khunderyakova, N V; Tutukina, M N; Simonova, M A; Vasilieva, A A; Romanova, O I; Fedotcheva, N I; Litvinova, E G; Maevsky, E I; Zinchenko, V P; Berezhnov, A V; Morgunov, I G; Gulayev, A A; Kondrashova, M N

    2013-01-01

    Conditions for the realization in rats of moderate physiological stress (PHS) (30-120 min) were selected, which preferentially increase adaptive restorative processes without adverse responses typical of harmful stress (HST). The succinate dehydrogenase (SDH) and α-ketoglutarate dehydrogenase (KDH) activity and the formation of reactive oxygen species (ROS) in mitochondria were measured in lymphocytes by the cytobiochemical method, which detects the regulation of mitochondria in the organism with high sensitivity. These mitochondrial markers undergo an initial 10-20-fold burst of activity followed by a decrease to a level exceeding the quiescent state 2-3-fold by 120 min of PHS. By 30-60 min, the rise in SDH activity was greater than in KDH activity, while the activity of KDH prevailed over that of SDH by 120 min. The attenuation of SDH hyperactivity during PHS occurs by a mechanism other than oxaloacetate inhibition developed under HST. The dynamics of SDH and KDH activity corresponds to the known physiological replacement of adrenergic regulation by cholinergic during PHS, which is confirmed here by mitochondrial markers because their activity reflects these two types of nerve regulation, respectively. The domination of cholinergic regulation provides the overrestoration of expenditures for activity. In essence, this phenomenon corresponds to the training of the organism. It was first revealed in mitochondria after a single short-time stress episode. The burst of ROS formation was congruous with changes in SDH and KDH activity, as well as in ucp2 and cox3 expression, while the activity of SDH was inversely dependent on the expression of the gene of its catalytic subunit in the spleen. As the SDH activity enhanced, the expression of the succinate receptor decreased with subsequent dramatic rise when the activity was becoming lower. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaption and therapy. PMID:22814171

  12. The Prevalence of Mediterranean Mutation of Glucose-6-Phosphate Dehydrogenase (G6PD in Zahedan

    Alireza Nakhaee

    2012-03-01

    Full Text Available Background: glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common genetic defects in the world, so that more than 400 million people in worldwide are affected with it, but its prevalence varies from 1-65% in different populations. Clinical manifestation of this defect is acute hemolytic anemia, neonatal hyperbilirubinemia and chronic nonspherocytic haemolytic anaemia. So far, almost 140 mutations have been identified in the gene of G6PD enzyme. Mediterranean is the most common mutation. The purpose of this study is to determine the prevalence of G6PD Mediterranean mutation in the deficient people in the city of Zahedan.Materials and Methods: In this descriptive cross-sectional study, blood samples of 1440 male individuals, who were referred to Zahedan Reference Laboratory for premarital testing, were examined for G6PD deficiency using fluorescent spot test. Genomic DNA from blood of people with G6PD deficiency was extracted by DNA extraction kit. Mediterranean mutation was identified using PCR-RFLP method.Results: 101 out of 1440 subjects had G6PD deficiency. Therefore prevalence of G6PD deficiency in Zahedan city was estimated about 7%. Mediterranean mutation frequency in patients with defect of G6PD was estimated 84.2% (85 out of 101 patients and 15.8% (16 out of 101 patients did not have mutation Mediterranean. The frequency of G6PD deficiency was expressed as a percentage of total cases and Mediterranean mutation prevalence was expressed as a percentage of total impaired individuals.Conclusion: The result of this study showed that the frequency of G6PD deficiency in Zahedan city is lower than other cities of sistan and baluchestan province. Dominant mutation in present study was Mediterranean type and its frequency was very similar with prevalence of this mutation in other parts of Iran.

  13. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    Highlights: ► Isolated ALDHHi PC3 cells preferentially form primitive holoclone-type colonies. ► Primitive holoclone colonies are predominantly ALDHLo but contain rare ALDHHi cells. ► Holoclone-forming cells are not restricted to the ALDHHi population. ► ALDH phenotypic plasticity occurs in PC3 cells (ALDHLo to ALDHHi and vice versa). ► ALDHHi cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDHLo cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDHHi population, or whether all ALDHHi cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDHHi cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDHHi cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDHLo population can develop ALDHHi populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDHHi cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in defined medium favouring stem cell characteristics. Although ALDHHi status enriches for holoclone formation, this activity may be mediated by a minority of ALDHHi cells.

  14. Disruption of NAD~+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions

    Manali; Phadke; Natalia; Krynetskaia; Anurag; Mishra; Carlos; Barrero; Salim; Merali; Scott; A; Gothe; Evgeny; Krynetskiy

    2015-01-01

    AIM:To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase(GAPDH),and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS:We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters(diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching(FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding.RESULTS:Using MALDI-TOF analysis,we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94,S98,and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH,we demonstrated accumulation of phospho-T99-GAPDH inthe nuclear fractions of A549,HCT116,and SW48 cancer cel s after cytotoxic stress. We performed site-mutagenesis,and estimated enzymatic properties,intranuclear distribution,and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+(Km = 741 ± 257 μmol/L in T99 I vs 57 ± 11.1 μmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP(fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION:Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners.

  15. Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development

    Storm, Janet

    2011-07-14

    Abstract Background Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target. Methods The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated. Results No growth defect under low and elevated oxygen tension, no up- or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10Δgdha parasite lines. Further, the fate of the carbon skeleton of [13C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of α-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites. Conclusions First, the data support the conclusion that D10Δgdha parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)-dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra

  16. Evaluation of Glucose-6-Phosphate Dehydrogenase Deficiency without Hemolysis in Icteric Newborns

    Farzaneh Eghbalian

    2007-04-01

    Full Text Available Objective: Glucose-6- phosphate dehydrogenase (G6PD deficiency is an inherited deficiency that may be the cause of neonatal jaundice. Our aim was to study the prevalence of G6PD deficiency without hemolysis in relation to neonatal jaundice. Material & Methods: This prospective descriptive study has been conducted on 272 icteric newborns admitted to the Ekbatan Hospital from October 2002 to September 2004. The dataset included: age, sex, total and direct bilirubin, hemoglobin, reticulocyte count, blood group and Rh of mother and newborn, direct Coombs, G6PD level and the type of treatment. All data was analyzed by using statistical method. Findings: From 272 neonates, 12 neonates (4.4% were found to have G6PD deficiency. The male to female ratio was 5 to 1 (10 male and 2 female neonates. From 12 neonates with G6PD deficiency, hemolysis was seen in 5 neonates (41.7% and the rate of G6PD deficiency without hemolysis was 2.6%. There was no difference in the mean bilirubin level, hemoglobin level and also reticulocyte count between patients with G6PD deficiency and those without G6PD deficiency (p>0.05. Out of 12 patients with G6PD deficiency, 2 patients (16.7% had blood exchange transfusion. Rh and ABO incompatibility were not seen in any of the12 patients with G6PD deficiency. Conclusion: In this study the prevalence of G6PD deficiency in icteric newborns was considerably high and most of them were non hemolytic, so we recommend G6PD test as a screening program for every newborn at the time of delivery.

  17. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris

    2011-01-01

    Background FAD dependent glucose dehydrogenase (GDH) currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum) spp. Results Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L-1 of GDH activity (57 mg L-1). Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source. Conclusions The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies. PMID:22151971

  18. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates.

    Graf, Michael M H; Sucharitakul, Jeerus; Bren, Urban; Chu, Dinh Binh; Koellensperger, Gunda; Hann, Stephan; Furtmüller, Paul G; Obinger, Christian; Peterbauer, Clemens K; Oostenbrink, Chris; Chaiyen, Pimchai; Haltrich, Dietmar

    2015-11-01

    Monomeric Agaricus meleagris pyranose dehydrogenase (AmPDH) belongs to the glucose-methanol-choline family of oxidoreductases. An FAD cofactor is covalently tethered to His103 of the enzyme. AmPDH can double oxidize various mono- and oligosaccharides at different positions (C1 to C4). To study the structure/function relationship of selected active-site residues of AmPDH pertaining to substrate (carbohydrate) turnover in more detail, several active-site variants were generated, heterologously expressed in Pichia pastoris, and characterized by biochemical, biophysical and computational means. The crystal structure of AmPDH shows two active-site histidines, both of which could take on the role as the catalytic base in the reductive half-reaction. Steady-state kinetics revealed that His512 is the only catalytic base because H512A showed a reduction in (kcat /KM )glucose by a factor of 10(5) , whereas this catalytic efficiency was reduced by two or three orders of magnitude for His556 variants (H556A, H556N). This was further corroborated by transient-state kinetics, where a comparable decrease in the reductive rate constant was observed for H556A, whereas the rate constant for the oxidative half-reaction (using benzoquinone as substrate) was increased for H556A compared to recombinant wild-type AmPDH. Steady-state kinetics furthermore indicated that Gln392, Tyr510, Val511 and His556 are important for the catalytic efficiency of PDH. Molecular dynamics (MD) simulations and free energy calculations were used to predict d-glucose oxidation sites, which were validated by GC-MS measurements. These simulations also suggest that van der Waals interactions are the main driving force for substrate recognition and binding. PMID:26284701

  19. Human Aldehyde Dehydrogenase Genes: Alternatively-Spliced Transcriptional Variants and Their Suggested Nomenclature

    Black, William J.; Stagos, Dimitrios; Marchitti, Satori A.; Nebert, Daniel W.; Tipton, Keith F.; Bairoch, Amos; Vasiliou, Vasilis

    2011-01-01

    OBJECTIVE The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)+-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer’s disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. METHODS Data-mining methods were used to retrieve all human ALDH sequences. Alternatively-spliced transcriptional variants were determined based upon: a) criteria for sequence integrity and genomic alignment; b) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and c) if available, empirical evidence of variants from the literature. RESULTS AND CONCLUSION Alternatively-spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. In order to avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily. PMID:19823103

  20. Cloning and characterization of two novel chloroplastic glycerol-3-phosphate dehydrogenases from Dunaliella viridis.

    He, Yunxia; Meng, Xiangzong; Fan, Qianlan; Sun, Xiaoliang; Xu, Zhengkai; Song, Rentao

    2009-09-01

    Dunaliella, a unicellular green alga, has the unusual ability to survive dramatic osmotic stress by accumulating high concentrations of intracellular glycerol as a compatible solute. The chloroplastic glycerol-3-phosphate dehydrogenase (GPDH) has been considered to be the key enzyme that produces glycerol for osmoregulation in Dunaliella. In this study, we cloned the two most prominent GPDH cDNAs (DvGPDH1 and DvGPDH2) from Dunaliella viridis, which encode two polypeptides of 695 and 701 amino acids, respectively. Unlike higher plant GPDHs, both proteins contained extra phosphoserine phosphatase (SerB) domains at their N-termini in addition to C-terminal GPDH domains. Such bi-domain GPDHs represent a novel type of GPDH and are found exclusively in the chlorophyte lineage. Transient expression of EGFP fusion proteins in tobacco leaf cells demonstrated that both DvGPDH1 and DvGPDH2 are localized in the chloroplast. Overexpression of DvGPDH1 or DvGPDH2 could complement a yeast GPDH mutant (gpd1Delta), but not a yeast SerB mutant (ser2Delta). In vitro assays with purified DvGPDH1 and DvGPDH2 also showed apparent GPDH activity for both, but no SerB activity was detected. Surprisingly, unlike chloroplastic GPDHs from plants, DvGPDH1 and DvGPDH2 could utilize both NADH and NADPH as coenzymes and exhibited significantly higher GPDH activities when NADH was used as the coenzyme. Q-PCR analysis revealed that both genes exhibited transient transcriptional induction of gene expression upon hypersalinity shock, followed by a negative feedback of gene expression. These results shed light on the regulation of glycerol synthesis during salt stress in Dunaliella. PMID:19551475

  1. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola.

    Gabriel Scalliet

    Full Text Available A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1 is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness. We used a UV mutagenesis approach in Mycosphaerella graminicola, a key pathogen of wheat to compare the nature, frequencies and impact of target mutations towards five subclasses of carboxamides. From this screen we identified 27 amino acid substitutions occurring at 18 different positions on the 3 subunits constituting the ubiquinone binding (Qp site of the enzyme. The nature of substitutions and cross resistance profiles indicated significant differences in the binding interaction to the enzyme across the different inhibitors. Pharmacophore elucidation followed by docking studies in a tridimensional SDH model allowed us to propose rational hypotheses explaining some of the differential behaviors for the first time. Interestingly all the characterized substitutions had a negative impact on enzyme efficiency, however very low levels of enzyme activity appeared to be sufficient for cell survival. In order to explore the impact of mutations on pathogen fitness in vivo and in planta, homologous recombinants were generated for a selection of mutation types. In vivo, in contrast to previous studies performed in yeast and other organisms, SDH mutations did not result in a major increase of reactive oxygen species levels and did not display any significant fitness penalty. However, a number of Qp site mutations affecting enzyme efficiency were shown to have a biological impact in planta.Using the combined approaches described here, we have significantly improved our understanding of possible resistance mechanisms to carboxamides and performed preliminary fitness penalty assessment in an economically important plant pathogen

  2. Regulation of human alcohol dehydrogenase gene ADH7: importance of an AP-1 site.

    Kotagiri, S; Edenberg, H J

    1998-07-01

    The structure and function of the human alcohol dehydrogenase 7 (ADH7) promoter were analyzed. A promoter fragment extending to bp -232 functioned well in H4IIE-C3, CV-1, and HeLa cells, whereas the region extending further upstream to bp -799 had no significant effect on activity. We identified cis-acting elements in the proximal 232 bp and examined their effect on promoter activity. Mutation of site A, where c-Jun bound, caused a drastic decrease in the promoter activity in H4IIE-C3 and CV-1 cells, suggesting that AP-1 plays an important role in the regulation of ADH7. Mutation of site B also caused a large drop in promoter activity in both cell lines; C/EBPalpha can bind to this site, but because the site affects activity approximately equally in CV-1 cells that lack C/EBPalpha and in H4IIE-C3 cells that contain low levels, other proteins are likely to play the major roles in vivo. Mutation of site C, where C/EBP bound and c-Jun bound weakly, had different effects in the two cell lines: in H4IIE-C3 cells, the site C mutation did not significantly increase promoter activity, whereas in CV-1 cells, which lack C/EBPalpha, it led to a doubling of activity. Surprisingly, cotransfection of the wild-type promoter with C/EBPa or C/EBPbeta led to a decrease in promoter activity, which might in part explain the lack of activity of ADH7 in adult liver. PMID:9703017

  3. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-01-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci. PMID:2917788

  4. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  5. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    Potassium tellurite (K2TeO3) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  6. Structural and biochemical insights into 7β-hydroxysteroid dehydrogenase stereoselectivity.

    Savino, Simone; Ferrandi, Erica Elisa; Forneris, Federico; Rovida, Stefano; Riva, Sergio; Monti, Daniela; Mattevi, Andrea

    2016-06-01

    Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo- and regio-selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active-site accessibility, the bases of the specificity for NADP(+) , and the general architecture of the steroid binding site. Comparison with 7α-hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C-terminal extension reshapes the substrate site of the β-selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859-865. © 2016 Wiley Periodicals, Inc. PMID:27006087

  7. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. alpha-15 in Escherichia coli.

    Kojima, K; Tsugawa, W; Sode, K

    2001-03-23

    The gene encoding glucose 3-dehydrogenase (G3DH) from Halomonas sp. alpha-15 was cloned and expressed in Escherichia coli. An open reading frame of 1686 nucleotides was shown to encode G3DH. The flavine adenine dinucleotide binding motif was found in the N-terminal region of G3DH. The deduced primary structure of G3DH showed about 30% identity to sorbitol dehydrogenase from Gluconobacter oxydans and 2-keto-d-gluconate dehydrogenases from Erwinia herbicola and Pantoea citrea. The folding prediction of G3DH suggested that the 3D structure of G3DH was similar with cholesterol oxidase from Brevibacterium sterolicum or glucose oxidase from Aspergillus niger. PMID:11263965

  8. Combination therapy of normobaric oxygen with hypothermia or ethanol modulates pyruvate dehydrogenase complex in thromboembolic cerebral ischemia.

    Cai, Lipeng; Thibodeau, Alexa; Peng, Changya; Ji, Xunming; Rastogi, Radhika; Xin, Ruiqiang; Singh, Sunpreet; Geng, Xiaokun; Rafols, Jose A; Ding, Yuchuan

    2016-08-01

    Pyruvate dehydrogenase complex (PDH) is a brain mitochondrial matrix enzyme. PDH impairment after stroke is particularly devastating given PDH's critical role in the link between anaerobic and aerobic metabolism. This study evaluates the restoration of oxidative metabolism and energy regulation with a therapeutic combination of normobaric oxygen (NBO) plus either therapeutic hypothermia (TH) or ethanol. Sprague-Dawley rats were subjected to middle cerebral artery occlusion with an autologous embolus. One hour after occlusion, tissue-type plasminogen activator (t-PA) was administered alone or with NBO (60%), EtOH (1.0 g/kg), or TH (33°C), either singly or in combination. Neurological deficit score and infarct volume were assessed 24 hr after t-PA-induced reperfusion. PDH activity and reactive oxygen species (ROS) levels were measured 3 and 24 hr after t-PA. Western blotting was used to detect PDH and pyruvate dehydrogenase kinase (PDK) protein expression. After t-PA in ischemic rats, NBO combined with TH or EtOH most effectively decreased infarct volume and neurological deficit. The combined therapies produced greater increases in PDH activity and protein expression as well as greater decreases in PDK expression. Compared with the monotherapeutic approaches, the combined therapies provided the most significant declines in ROS generation. Reperfusion with t-PA followed by 60% NBO improves the efficacy of EtOH or TH in neuroprotection by ameliorating oxidative injury and improving PDH regulation. Comparable neuroprotective effects were found when treating with either EtOH or TH, suggesting a similar mechanism of neuroprotection and the possibility of substituting EtOH for TH in clinical settings. © 2016 Wiley Periodicals, Inc. PMID:27027410

  9. The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation.

    Cerniglia, George J; Dey, Souvik; Gallagher-Colombo, Shannon M; Daurio, Natalie A; Tuttle, Stephen; Busch, Theresa M; Lin, Alexander; Sun, Ramon; Esipova, Tatiana V; Vinogradov, Sergei A; Denko, Nicholas; Koumenis, Constantinos; Maity, Amit

    2015-08-01

    Inhibition of the PI3K/Akt pathway decreases hypoxia within SQ20B human head and neck cancer xenografts. We set out to understand the molecular mechanism underlying this observation. We measured oxygen consumption using both a Clark electrode and an extracellular flux analyzer. We made these measurements after various pharmacologic and genetic manipulations. Pharmacologic inhibition of the PI3K/mTOR pathway or genetic inhibition of Akt/PI3K decreased the oxygen consumption rate (OCR) in vitro in SQ20B and other cell lines by 30% to 40%. Pharmacologic inhibition of this pathway increased phosphorylation of the E1α subunit of the pyruvate dehydrogenase (PDH) complex on Ser293, which inhibits activity of this critical gatekeeper of mitochondrial respiration. Expressing wild-type PTEN in a doxycycline-inducible manner in a cell line with mutant PTEN led to an increase in PDH-E1α phosphorylation and a decrease in OCR. Pretreatment of SQ20B cells with dichloroacetate (DCA), which inhibits PDH-E1α phosphorylation by inhibiting dehydrogenase kinases (PDK), reversed the decrease in OCR in response to PI3K/Akt/mTOR inhibition. Likewise, introduction of exogenous PDH-E1α that contains serine to alanine mutations, which can no longer be regulated by phosphorylation, also blunted the decrease in OCR seen with PI3K/mTOR inhibition. Our findings highlight an association between the PI3K/mTOR pathway and tumor cell oxygen consumption that is regulated in part by PDH phosphorylation. These results have important implications for understanding the effects of PI3K pathway activation in tumor metabolism and also in designing cancer therapy trials that use inhibitors of this pathway. PMID:25995437

  10. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...

  11. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations

    Peng Giia-Sheun

    2009-01-01

    Full Text Available Abstract Alcoholism is a complex behavioural disorder. Molecular genetics studies have identified numerous candidate genes associated with alcoholism. It is crucial to verify the disease susceptibility genes by correlating the pinpointed allelic variations to the causal phenotypes. Alcohol dehydrogenase (ADH and aldehyde dehydrogenase (ALDH are the principal enzymes responsible for ethanol metabolism in humans. Both ADH and ALDH exhibit functional polymorphisms among racial populations; these polymorphisms have been shown to be the important genetic determinants in ethanol metabolism and alcoholism. Here, we briefly review recent advances in genomic studies of human ADH/ALDH families and alcoholism, with an emphasis on the pharmacogenetic consequences of venous blood acetaldehyde in the different ALDH2 genotypes following the intake of various doses of ethanol. This paper illustrates a paradigmatic example of phenotypic verifications in a protective disease gene for substance abuse.

  12. Three-dimensional structures of the three human class I alcohol dehydrogenases

    Niederhut, Monica S.; Gibbons, Brian J.; Perez-Miller, Samantha; Hurley, Thomas D.

    2001-01-01

    In contrast with other animal species, humans possess three distinct genes for class I alcohol dehydrogenase and show polymorphic variation in the ADH1B and ADH1C genes. The three class I alcohol dehydrogenase isoenzymes share ∼93% sequence identity but differ in their substrate specificity and their developmental expression. We report here the first three-dimensional structures for the ADH1A and ADH1C*2 gene products at 2.5 and 2.0 Å, respectively, and the structure of the ADH1B*1 gene produ...

  13. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592.

    Yan, R T; Chen, J S

    1990-01-01

    Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol...

  14. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene

    Tanaka, K; Yokota, I; Coates, P M; Strauss, A W; Kelly, D P; Zhang, Z; Gregersen, N; Andresen, B S; Matsubara, Y; Curtis, D

    1992-01-01

    Medium chain acyl-CoA dehydrogenase (MCAD) catalyzes the first reaction of the beta-oxidation cycle for 4-10-carbon fatty acids. MCAD deficiency is one of the most frequent inborn metabolic disorders in populations of northwestern European origin. In the compilation of data from a worldwide study......, which causes impairment of tetramer assembly and instability of the protein. Three of 7 rarer mutations have been identified in a few unrelated patients, while the remaining 4 have each been found in only a single pedigree. In addition to tabulating the mutations, the acyl-CoA dehydrogenase gene family...

  15. NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenases from bacteroides fragilis.

    Macdonald, I A; Williams, C N; Mahony, D E; Christie, W M

    1975-03-28

    Twenty strains of Bacteroides fragilis were screened for hydroxysteroid oxidoreductase activity in cell-free preparations. Eighteen strains were shown to contain NAD-dependent 7alpha-hydroxysteroid dehydrogenase. Sixteen of the strains containing the NAD-dependent enzyme also contained NADP-depedent 7alpha-hydroxysteroid dehydrogenase, but invariably in lesser amounts. A strain particulary rich in both 7alpha-hydroxysteroid dehydrogenase activities was selected for further study. Measurement of activity as a function of pH revealed a fairly sharp optimal activity range of 9.5--10.0 for the NAD-dependent enzyme and a broad flat optimal range of 7.0--9.0 for the NADP-dependent enzyme. Michaelis constants for trihydroxy-bile acids for the NAD-dependent enzyme were in the range of 0.32--0.34 mM, whereas dihydroxy-bile acids gave a Km of 0.1 mM. Thin-layer chromatography studies on the oxidation product of 3alpha, 7alpha-dihydroxy-5beta-cholanoic acid (chenodeoxycholic acid) by the dehydrogenase revealed a band corresponding to that of synthetic 3alpha-hydroxy, 7-keto-5beta-cholanoic acid. Similarly the oxidation product of chenodeoxycholic acid by both 7alpha-hydroxysteroid dehydrogenase and commercially available 3alpha-hy-droxysteroid dehydrogenase revealed a band corresponding to that of synthetic 3,7-diketo-5beta-cholanoic acid. Neither of these two oxidation products could be distinguished from those by the Escherichia coli dehydrogenase oxidation previously reported. Disc-gel electrophoresis of a cell-free lyophilized preparation indicated one active band for NAD-dependent activity of mobility similar to that for the NADP-dependent E. coli enzyme. The NADP-dependent dehydrogenase was unstable and rapidly lost activity after polyacylamide disc-gel electrophoresis, ultracentrifugation, freezing on refrigeration at 4 degrees C. No 3 alpha- or 12alpha-oriented oxidoreductase activity was demonstrated in any of the strains examined. PMID:236764

  16. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  17. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil;

    2007-01-01

    changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. CONCLUSION: This mutation was also found in two......ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a...

  18. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented. PMID:3593337

  19. Simulated ischaemia-reperfusion conditions increase xanthine dehydrogenase and oxidase activities in rat brain slices.

    Battelli, M G; Buonamici, L; Virgili, M; Abbondanza, A; Contestabile, A

    1998-01-01

    Xanthine dehydrogenase and oxidase activities increased by 87% in rat brain slices after 30 min in vitro ischaemia. A further 41% increase was induced by 30 min simulated reperfusion of ischaemic slices. No conversion from the dehydrogenase to the oxidase activity was observed. The increment of enzyme activity was not due to neosynthesis of the enzyme, since it was not affected by the addition of cycloheximide during the ischaemic incubation. The increased oxygen-dependent form of the enzyme could aggravate the ischaemic brain injury by free radicals production, in particular after reperfusion. PMID:9460697

  20. Excitotoxic increase of xanthine dehydrogenase and xanthine oxidase in the rat olfactory cortex.

    Battelli, M G; Buonamici, L; Abbondanza, A; Virgili, M; Contestabile, A; Stirpe, F

    1995-05-26

    Excitotoxic lesions induced by systemic injection of kainic acid, resulted in 2-3-fold increase of xanthine dehydrogenase and xanthine oxidase activities in the rat olfactory cortex 48-72 h after drug administration. A significant increase of the xanthine oxidase/dehydrogenase ratio was also observed at 4 and 48 h post-injection. No similar changes were noticed in the hippocampus. The enhancement of enzyme activity seems to be primarily a consequence of the altered cell composition in damaged area. Free radicals produced by the increased oxygen-dependent form of the enzyme could in turn aggravate the excitotoxic brain injury. PMID:7656426

  1. Preliminary X-ray crystallographic study of glucose dehydrogenase from Thermus thermophilus HB8

    The glucose dehydrogenase (GDH) protein from T. thermophilus HB8 was cloned, expressed, purified and crystallized. GDH crystals belong to space group P21 and diffract to 1.9 Å resolution. Thermus thermophilus is an aerobic chemoorganotroph that has been found to grow anaerobically in the presence of nitrate. Crystals of glucose dehydrogenase (GDH) from T. thermophilus HB8 belong to space group P21, with unit-cell parameters a = 36.90, b = 132.96, c = 60.78 Å, β = 97.2°. Preliminary studies and molecular-replacement calculations reveal that the asymmetric unit contains two monomers

  2. Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis

    Müller Gudrun; Eckard Sonja; Funck Dietmar

    2010-01-01

    Abstract Background Proline (Pro) accumulation is a widespread response of prokaryotic and eukaryotic cells subjected to osmotic stress or dehydration. When the cells are released from stress, Pro is degraded to glutamate by Pro-dehydrogenase (ProDH) and Pyrroline-5-carboxylate dehydrogenase (P5CDH), which are both mitochondrial enzymes in eukaryotes. While P5CDH is a single copy gene in Arabidopsis, two ProDH genes have been identified in the genome. Until now, only ProDH1 (At3g30775) had be...

  3. Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

    Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to

  4. Increasing stability of water-soluble PQQ glucose dehydrogenase by increasing hydrophobic interaction at dimeric interface

    Ferri Stefano

    2005-02-01

    Full Text Available Abstract Background Water-soluble quinoprotein glucose dehydrogenase (PQQGDH-B from Acinetobacter calcoaceticus has a great potential for application as a glucose sensor constituent. Because this enzyme shows no activity in its monomeric form, correct quaternary structure is essential for the formation of active enzyme. We have previously reported on the increasing of the stability of PQQGDH-B by preventing the subunit dissociation. Previous studies were based on decreasing the entropy of quaternary structure dissociation but not on increasing the interaction between the two subunits. We therefore attempted to introduce a hydrophobic interaction in the dimeric interface to increase the stability of PQQGDH-B. Results Amino acid residues Asn340 and Tyr418 face each other at the dimer interface of PQQGDH-B, however no interaction exists between their side chains. We simultaneously substituted Asn340 to Phe and Tyr418 to Phe or Ile, to create the two mutants Asn340Phe/Tyr418Phe and Asn340Phe/Tyr418Ile. Furthermore, residues Leu280, Val282 and Val342 form a hydrophobic region that faces, on the other subunit, residues Thr416 and Thr417, again without any specific interaction. We simultaneously substituted Thr416 and Thr417 to Val, to create the mutant Thr416Val/Thr417Val. The temperatures resulting in lose of half of the initial activity of the constructed mutants were increased by 3–4°C higher over wild type. All mutants showed 2-fold higher thermal stability at 55°C than the wild-type enzyme, without decreasing their catalytic activities. From the 3D models of all the mutant enzymes, the predicted binding energies were found to be significantly greater that in the wild-type enzyme, consistent with the increases in thermal stabilities. Conclusions We have achieved via site-directed mutagenesis the improvement of the thermal stability of PQQGDH-B by increasing the dimer interface interaction. Through rational design based on the quaternary

  5. Single arginine mutation in two yeast isocitrate dehydrogenases: biochemical characterization and functional implication.

    Ping Song

    Full Text Available Isocitrate dehydrogenase (IDH, a housekeeping gene, has drawn the attention of cancer experts. Mutation of the catalytic Arg132 residue of human IDH1 (HcIDH eliminates the enzyme's wild-type isocitrate oxidation activity, but confer the mutant an ability of reducing α-ketoglutarate (α-KG to 2-hydroxyglutarate (2-HG. To examine whether an analogous mutation in IDHs of other eukaryotes could cause similar effects, two yeast mitochondrial IDHs, Saccharomyces cerevisiae NADP+-IDH1 (ScIDH1 and Yarrowia lipolytica NADP+-IDH (YlIDH, were studied. The analogous Arg residues (Arg148 of ScIDH1 and Arg141 of YlIDH were mutated to His. The Km values of ScIDH1 R148H and YlIDH R141H for isocitrate were determined to be 2.4-fold and 2.2-fold higher, respectively, than those of the corresponding wild-type enzymes. The catalytic efficiencies (kcat/Km of ScIDH1 R148H and YlIDH R141H for isocitrate oxidation were drastically reduced by 227-fold and 460-fold, respectively, of those of the wild-type enzymes. As expected, both ScIDH1 R148H and YlIDH R141H acquired the neomorphic activity of catalyzing α-KG to 2-HG, and the generation of 2-HG was confirmed using gas chromatography/time of flight-mass spectrometry (GC/TOF-MS. Kinetic analysis showed that ScIDH1 R148H and YlIDH R141H displayed 5.2-fold and 3.3-fold higher affinities, respectively, for α-KG than the HcIDH R132H mutant. The catalytic efficiencies of ScIDH1 R148H and YlIDH R141H for α-KG were 5.5-fold and 4.5-fold, respectively, of that of the HcIDH R132H mutant. Since the HcIDH Arg132 mutation is associated with the tumorigenesis, this study provides fundamental information for further research on the physiological role of this IDH mutation in vivo using yeast.

  6. Lactate dehydrogenase from Streptococcus mutans: purification, characterization, and crossed antigenicity with lactate dehydrogenases from Lactobacillus casei, Actinomyces viscosus, and Streptococcus sanguis.

    Sommer, P; Klein, J P; Schöller, M; Van Frank, R M

    1985-01-01

    A cytoplasmic fructose-1,6-diphosphate-dependent lactate dehydrogenase (LDH; EC 1.1.1.27) from Streptococcus mutans OMZ175 was purified to homogeneity as judged by sodium dodecyl sulfate-gel electrophoresis. The purification consisted of ammonium sulfate precipitation of the cytoplasmic fraction, DEAE-Sephacel and Blue-Sepharose CL.6B chromatography, and Sephacryl S200 gel permeation. The catalytic activity of the purified enzyme required the presence of fructose-1,6-diphosphate with a broad ...

  7. Two Zebrafish Alcohol Dehydrogenases Share Common Ancestry with Mammalian Class I, II, IV, and V Alcohol Dehydrogenase Genes but Have Distinct Functional Characteristics*

    Reimers, Mark J.; Hahn, Mark E.; Tanguay, Robert L.

    2004-01-01

    Ethanol is teratogenic to many vertebrates. We are utilizing zebrafish as a model system to determine whether there is an association between ethanol metabolism and ethanol-mediated developmental toxicity. Here we report the isolation and characterization of two cDNAs encoding zebrafish alcohol dehydrogenases (ADHs). Phylogenetic analysis of these zebrafish ADHs indicates that they share a common ancestor with mammalian class I, II, IV, and V ADHs. The genes encoding these zebrafish ADHs have...

  8. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase

    Tóshiko TAKAHASHI-ÍÑIGUEZ; Nelly ABURTO-RODRÍGUEZ; Ana Laura VILCHIS-GONZÁLEZ; María Elena FLORES

    2016-01-01

    题目:微生物苹果酸脱氢酶的功能、动力学特征、晶体结构以及调控概苹果酸脱氢酶(MDH)广泛存在于动物、植物以及微生物体内,是生物体进行糖代谢的关键酶之一。在辅酶I(NAD+)或辅酶II(NADP+)的作用下,能够催化草酰乙酸和苹果酸之间相互转化。虽然目前真核微生物中MDH已被广泛研究,但是对原核生物中的这种酶却鲜有报道。因此,有必要对MDH的相关研究信息进行综述,以期更好地了解这种酶的功能。本文综述了细菌相关研究的各种数据信息,进一步挖掘MDH的分子多样性,包括分子量、低聚态、辅因子与底物的结合力,以及酶反应方向的差异等。通过对不同细菌来源的MDH的晶体结构的分析,可鉴别底物与辅因子结合的部位以及形成二聚体的重要残基。对这些结构信息的了解将有利于指导研究人员对酶的结构进行修饰从而提高其催化能力,比如增加酶的活性、辅助因子的结合能力、底物特异性和热稳定性等。另外,本文通过分析比较MDH 系统发生树的重建,将其蛋白超家族分成两个主分支,同时在古生菌、细菌和真核微生物等不同细胞的MDH之间建立联系。%Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as wel as differ-ences in the direction

  9. Analysis of Quaternary Structure of a [LDH-like] Malate Dehydrogenase of Plasmodium falciparum with Oligomeric Mutants

    L-Malate dehydrogenase (PfMDH) from Plasmodium falciparum, the causative agent for the most severe form of malaria, has shown remarkable similarities to L-lactate dehydrogenase (PfLDH). PfMDH is more closely related to [LDH-like] MDHs characterized in archea and other prokaryotes. Initial sequence a...

  10. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard; Yennawar, Neela

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...

  11. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf; Reich, Horst; Steuerwald, Ulrike; Schirrmacher, Oliver; Engel, Katharina; Häberle, Johannes; Andresen, Brage Storstein; Mégarbané, André; Lehnert, Willy; Zschocke, Johannes

    2007-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem-mass s...

  12. Altered Lignin Biosynthesis Improves Cellulosic Bioethanol Production in Transgenic Maize Plants Down-Regulated for Cinnamyl Alcohol Dehydrogenase

    Silvia Fornalé; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz; Montserrat Capellades; Antonio Encina; Kan Wang; Sami Irar; Catherine Lapierre; Katia Ruel; Jean-Paul Joseleau; Jordi Berenguer

    2012-01-01

    Cinnamyl alcohol dehydrogenase(CAD)is a key enzyme involved in the last step of monolignol biosynthesis.The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize.Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition.Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content.In addition,these cell walls accumulate higher levels of cellulose and arabinoxylans.In contrast,cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides.In vitro degradability assays showed that,although to a different extent,the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants.CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass.Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type,making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.

  13. Lactate dehydrogenase A as a highly abundant eye lens protein in platypus (Ornithorhynchus anatinus): upsilon (upsilon)-crystallin.

    van Rheede, Teun; Amons, Reinout; Stewart, Niall; de Jong, Wilfried W

    2003-06-01

    Vertebrate eye lenses mostly contain two abundant types of proteins, the alpha-crystallins and the beta/gamma-crystallins. In addition, certain housekeeping enzymes are highly expressed as crystallins in various taxa. We now observed an unusual approximately 41-kd protein that makes up 16% to 18% of the total protein in the platypus eye lens. Its cDNA sequence was determined, which identified the protein as muscle-type lactate dehydrogenase A (LDH-A). It is the first observation of LDH-A as a crystallin, and we designate it upsilon (upsilon)-crystallin. Interestingly, the related heart-type LDH-B occurs as an abundant lens protein, known as epsilon-crystallin, in many birds and crocodiles. Thus, two members of the ldh gene family have independently been recruited as crystallins in different higher vertebrate lineages, suggesting that they are particularly suited for this purpose in terms of gene regulatory or protein structural properties. To establish whether platypus LDH-A/upsilon-crystallin has been under different selective constraints as compared with other vertebrate LDH-A sequences, we reconstructed the vertebrate ldh-a gene phylogeny. No conspicuous rate deviations or amino acid replacements were observed. PMID:12716980

  14. Correlation of viral RNA biosynthesis with glucose-6-phosphate dehydrogenase activity and host resistance

    Šindelář, Luděk; Šindelářová, Milada

    2002-01-01

    Roč. 215, - (2002), s. 862-869. ISSN 0032-0935 R&D Projects: GA ČR GA522/99/1264 Institutional research plan: CEZ:AV0Z5038910 Keywords : Glucose 6 phosphate dehydrogenase * Nicotiana (viral infection) * Plant viruses Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.960, year: 2002

  15. Cloning and characterization of a thermostable xylitol dehydrogenase from Rhizobium etli CFN42

    Tiwari, Manish Kumar; Moon, Hee-Jung; Jeya, Marimuthu;

    2010-01-01

    An NAD(+)-dependent xylitol dehydrogenase from Rhizobium etli CFN42 (ReXDH) was cloned and overexpressed in Escherichia coli. The DNA sequence analysis revealed an open reading frame of 1,044 bp, capable of encoding a polypeptide of 347 amino acid residues with a calculated molecular mass of 35...

  16. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    Kruhøffer Mogens; Vainer Ben; Jensen Søren A; Sørensen Jens B

    2009-01-01

    Abstract Background Microsatellite instability (MSI) refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR). Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. Met...

  17. Modification of Rhizopus lactate dehydrogenase for improved resistance to fructose 1,6-bisphosphate

    Rhizopus oryzae is frequently used for fermentative production of lactic acid. We determined that one of the key enzymes, lactate dehydrogenase (LDH), involved in synthesis of lactic acid by R. oryzae was significantly inhibited by fructose 1,6-bisphosphate (FBP) at physiological concentrations. Thi...

  18. The intracellular localization of malate dehydrogenase isoenzymes in Pisum arvense roots

    Genowefa Kubik-Dorosz

    2014-02-01

    Full Text Available Mitochondria and plastids were isolated from Pisum arvense root cells by sucrose density gradient centrifugation. The individual subcellular fractions so obtained were subjected to isoelectric focusing on cellulose acetate strips. Mitochondria and plastids each contained one NAD -malate dehydrogenase, while three isoenzymes were associated with the supernatant.

  19. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  20. Immunolocalization of succinate dehydrogenase in the esophagus epithelium of domesticated mammals

    Meyer, W.; Kacza, J.; I. N. Hornickel; Schoennagel, B.

    2013-01-01

    Using immunohistochemistry and transmission electron microscopy (TEM), the esophagus epithelia of seven domesticated mammals (horse, cattle, goat, pig, dog, laboratory rat, cat) of three nutrition groups (herbivorous, omnivorous, carnivorous) were studied to get first information about energy generation, as demonstrated by succinate dehydrogenase (SDH) activities. Distinct reaction intensities could be observed in all esophageal cell layers of the different species studied reflecting moderate...

  1. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    The direct and indirect effects of 5 MeV electron beam irradiation at various low temperatures, as well as the influence of the presence or absence of deuterium ions in the suspending medium of the enzyme, on the global enzymatic activity of lactate dehydrogenase have been studied. Frozen lactate dehydrogenase suspensions at 0 degC, -3 degC and -196 degC temperatures have been irradiated with the 5 MeV electron beam of a linear accelerator in the dose range 0-400 Gy. Liquid lactate dehydrogenase suspensions in D2O (99.98 %) and ultrapure water (17 ppm) at 0 degC have been irradiated in the dose range 0 -15 Gy. An exponential decrease was found in the enzymatic activity of irradiated lactate dehydrogenase, at all irradiation temperatures. The drastic decrease in the activity for the enzyme irradiated at 0 degC (total inhibition for a final dose of 100 Gy) indicate that at this temperature the indirect effects of radiation (due to the water radicals induced by radiation in the samples) are predominant. At -3 degC irradiation temperature the indirect effects of radiation are smaller but still present (a total decrease in the enzymatic activity for a dose of 250 Gy), while at -196 degC they are orders of magnitude reduced and the decrease in the enzymatic activity is due almost to the direct interaction of electrons with the macromolecules (70 % for a dose of 400 Gy)

  2. Optimization, Application, and Interpretation of Lactate Dehydrogenase Measurements in Microwell Determination of Cell Number and Toxicity

    Wolterbeek, H.T.; Van der Meer, A.J.G.M.

    2005-01-01

    The lactate dehydrogenase (LDH) assay was addressed for its sensitivity, disturbances by foaming, and cell number and size. Cells were from a U-251 MG grade IV human glioblastoma brain tumor cell line used in 100-µl well volumes. Cells were counted by microscopy and Coulter counting; assays were LDH

  3. Corticosterone metabolism in chicken tissues: evidence for tissue-specific distribution of steroid dehydrogenases

    Kučka, Marek; Vagnerová, Karla; Klusoňová, Petra; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 147, č. 3 (2006), s. 377-383. ISSN 0016-6480 R&D Projects: GA AV ČR(CZ) IAA6011201; GA ČR(CZ) GA203/03/1062 Institutional research plan: CEZ:AV0Z50110509 Keywords : hydroxysteroid dehydrogenases * corticosterone metabolism * aves Subject RIV: CE - Biochemistry Impact factor: 2.487, year: 2006

  4. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  5. The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells

    Smolková, Katarína; Ježek, Petr

    2012-01-01

    Roč. 2012, č. 2012 (2012), ID273947. ISSN 1687-8876 R&D Projects: GA ČR GPP301/12/P381; GA ČR(CZ) GAP302/10/0346 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : isocitrate dehydrogenase 2 * Krebs cycle * cancer cells Subject RIV: ED - Physiology

  6. Mechanism-Based Inhibitors of Cytokinin Oxidase/Dehydrogenase Attack FAD Cofactor

    Kopečný, D.; Šebela, M.; Briozzo, P.; Spíchal, Lukáš; Houba-Hérin, N.; Mašek, V.; Joly, N.; Madzak, C.; Anzenbacher, P.; Laloue, M.

    2008-01-01

    Roč. 380, č. 5 (2008), s. 886-899. ISSN 0022-2836 R&D Projects: GA ČR(CZ) GP522/08/P113 Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokinin oxidase/dehydrogenase * cytokinin signaling * protein structure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.146, year: 2008

  7. Expression of Cellobiose Dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization

    A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a his6-tag (rNC-...

  8. The role of the pyruvate dehydrogenase complex in the regulation of human skeletal muscle fuel metabolism

    Laithwaite, David

    2009-01-01

    The pyruvate dehydrogenase complex (PDC) is the rate limiting step in the entry of glucose derived pyruvate into the tricarboxylic acid (TCA) cycle. As such it plays an important role in the control of the use of carbohydrate as the source of oxidative energy for skeletal muscle contraction. The first experimental chapter investigates the effect of dichloroacetate pre-treatment during low-intensity (

  9. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase.

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B; Pedersen, Per Dedenroth; Dal Bello, Fabio; Mora, Diego

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  10. ISOZYME PROFILES OF LACTIC DEHYDROGENASE AND CREATINE PHOSPHOKINASE IN NEONATAL MOUSE HEARTS

    Isozyme profiles of lactic dehydrogenase (LDH) and creatine phosphokinase (CPK) were determined in cardiac tissue of mice during postnatal development. LDH isozymes 1 and 5 showed a definite developmental change, achieving the adult values by 20 days of age, while the other three...

  11. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    Nellemann, Birgitte; Vendelbo, Mikkel H; Nielsen, Thomas S;

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  12. Medium chain acyl-CoA dehydrogenase deficiency and fatal valproate toxicity

    Njolstad, PR; Skjeldal, OH; Agsteribbe, E; Huckriede, A; Wannag, E; Sovik, O; Waaler, PE

    1997-01-01

    A boy with delayed psychomotor development, attention deficit disorder, and therapy-resistant epilepsy was treated with valproate. The patient died of liver failure after 4 months of valproate treatment. Postmortem investigation of cultured fibroblasts suggested medium chain acyl-CoA dehydrogenase d

  13. Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction: correlations with the crystal structure

    Popelková, H.; Fraaije, M. W.; Novák, Ondřej; Frébortová, Jitka; Bilyeu, K. D.; Frébort, I.

    2006-01-01

    Roč. 398, č. 1 (2006), s. 113-124. ISSN 0264-6021 Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokinin * cytokinin dehydrogenase (CKX) * flavoprotein Subject RIV: CE - Biochemistry Impact factor: 4.100, year: 2006

  14. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase

    Krejčík, Zdeněk; Denger, K.; Weinitschke, S.; Hollemeyer, K.; Pačes, Václav; Cook, A.M.; Smits, T.H.M.

    2008-01-01

    Roč. 190, č. 2 (2008), s. 159-168. ISSN 0302-8933 Institutional research plan: CEZ:AV0Z50520514 Keywords : assimilation of taurine -nitrogen * sulfoacetaldehyde dehydrogenase * sulfoacetate exporter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.975, year: 2008

  15. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    Scholte, H R; Van Coster, R N; de Jonge, P C;

    1999-01-01

    A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase...

  16. Ultrastructure of Cytoplasmic and Nuclear Inosine-5 '-Monophosphate Dehydrogenase 2 "Rods and Rings" Inclusions

    Juda, P.; Šmigová, J.; Kováčik, L.; Bártová, Eva; Raška, I.

    2014-01-01

    Roč. 62, č. 10 (2014), s. 739-750. ISSN 0722-186X R&D Projects: GA ČR(CZ) GBP302/12/G157 Institutional support: RVO:68081707 Keywords : Inosine-5-monophosphate dehydrogenase * inhibitors of IMPDH * Rods and Rings Subject RIV: BO - Biophysics

  17. Communication between L-galactono-¿-lactone dehydrogenase and cytochrome c.

    Hervas, M.; Bashir, Q.; Leferink, N.G.H.; Ferreira, P.; Moreno-Beltran, J.B.; Westphal, A.H.; Diaz Moreno, I.; Medina, M.; La Rosa, De M.A.; Ubbink, M.; Navarro, J.A.; Berkel, van W.J.H.

    2013-01-01

    l-galactono-1,4-lactone dehydrogenase (GALDH) catalyzes the terminal step of vitamin C biosynthesis in plant mitochondria. Here we investigated the communication between Arabidopsis thaliana GALDH and its natural electron acceptor cytochrome c (Cc). Using laser-generated radicals we observed the for

  18. Biochemical characterization of recombinant dihydroorotate dehydrogenase from the opportunistic pathogenic yeast Candida albicans

    Zameitat, E.; Gojkovic, Zoran; Knecht, Wolfgang;

    2006-01-01

    Candida albicans is the most prevalent yeast pathogen in humans, and recently it has become increasingly resistant to the current antifungal agents. In this study we investigated C. albicans dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), which catalyzes the fourth step of de novo pyrimidine ...

  19. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme

    The analysis of a wheat lysine ketoglutarate reductase – saccharopine dehydrogenase (LKR/SDH) gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes...

  20. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027 is essential for growth of Corynebacterium glutamicum on D-lactate

    Oikawa Tadao

    2010-12-01

    Full Text Available Abstract Background Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Results Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer. Conclusions Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer.

  1. Functional characterization and expression analysis of rice δ1-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar

    2015-01-01

    While intracellular proline accumulation in response to various stress conditions has been investigated in great detail, the biochemistry and physiological relevance of proline degradation in plants is much less understood. Moreover, the second and last step in proline catabolism, the oxidation of δ1-pyrroline-5-carboxylic acid (P5C) to glutamate, is shared with arginine catabolism. Little information is available to date concerning the regulatory mechanisms coordinating these two pathways. Expression of the gene coding for P5C dehydrogenase was analyzed in rice by real-time PCR either following the exogenous supply of amino acids of the glutamate family, or under hyperosmotic stress conditions. The rice enzyme was heterologously expressed in E. coli, and the affinity-purified protein was thoroughly characterized with respect to structural and functional properties. A tetrameric oligomerization state was observed in size exclusion chromatography, which suggests a structure of the plant enzyme different from that shown for the bacterial P5C dehydrogenases structurally characterized to date. Kinetic analysis accounted for a preferential use of NAD+ as the electron acceptor. Cations were found to modulate enzyme activity, whereas anion effects were negligible. Several metal ions were inhibitory in the micromolar range. Interestingly, arginine also inhibited the enzyme at higher concentrations, with a mechanism of uncompetitive type with respect to P5C. This implies that millimolar levels of arginine would increase the affinity of P5C dehydrogenase toward its specific substrate. Results are discussed in view of the involvement of the enzyme in either proline or arginine catabolism. PMID:26300893

  2. Functional characterization and expression analysis of rice δ(1)-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism.

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar

    2015-01-01

    While intracellular proline accumulation in response to various stress conditions has been investigated in great detail, the biochemistry and physiological relevance of proline degradation in plants is much less understood. Moreover, the second and last step in proline catabolism, the oxidation of δ(1)-pyrroline-5-carboxylic acid (P5C) to glutamate, is shared with arginine catabolism. Little information is available to date concerning the regulatory mechanisms coordinating these two pathways. Expression of the gene coding for P5C dehydrogenase was analyzed in rice by real-time PCR either following the exogenous supply of amino acids of the glutamate family, or under hyperosmotic stress conditions. The rice enzyme was heterologously expressed in E. coli, and the affinity-purified protein was thoroughly characterized with respect to structural and functional properties. A tetrameric oligomerization state was observed in size exclusion chromatography, which suggests a structure of the plant enzyme different from that shown for the bacterial P5C dehydrogenases structurally characterized to date. Kinetic analysis accounted for a preferential use of NAD(+) as the electron acceptor. Cations were found to modulate enzyme activity, whereas anion effects were negligible. Several metal ions were inhibitory in the micromolar range. Interestingly, arginine also inhibited the enzyme at higher concentrations, with a mechanism of uncompetitive type with respect to P5C. This implies that millimolar levels of arginine would increase the affinity of P5C dehydrogenase toward its specific substrate. Results are discussed in view of the involvement of the enzyme in either proline or arginine catabolism. PMID:26300893

  3. Physiological covalent regulation of rat liver branched-chain alpha-ketoacid dehydrogenase

    A radiochemical assay was developed for measuring branched-chain alpha-ketoacid dehydrogenase activity of Triton X-100 extracts of freeze-clamped rat liver. The proportion of active (dephosphorylated) enzyme was determined by measuring enzyme activities before and after activation of the complex with a broad-specificity phosphoprotein phosphatase. Hepatic branched-chain alpha-ketoacid dehydrogenase activity in normal male Wistar rats was 97% active but decreased to 33% active after 2 days on low-protein (8%) diet and to 13% active after 4 days on the same diet. Restricting protein intake of lean and obese female Zucker rats also caused inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex. Essentially all of the enzyme was in the active state in rats maintained for 14 days on either 30 or 50% protein diets. This was also the case for rats maintained on a commercial chow diet (minimum 23% protein). However, maintaining rats on 20, 8, and 0% protein diets decreased the percentage of the active form of the enzyme to 58, 10, and 7% of the total, respectively. Fasting of chow-fed rats for 48 h had no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e., 93% of the enzyme remained in the active state compared to 97% for chow-fed rats. However, hepatic enzyme of rats maintained on 8% protein diet was 10% active before starvation and 83% active after 2 days of starvation. Thus, dietary protein deficiency results in inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex, presumably as a consequence of low hepatic levels of branched-chain alpha-ketoacids

  4. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan [2 to 4 mg/kg intravenously (IV) x 3] was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells

  5. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1, in human epithelial cancers.

    Shan Deng

    Full Text Available Aldehyde dehydrogenase isoform 1 (ALDH1 has been proved useful for the identification of cancer stem cells. However, our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore, we characterized ALDH1 expression in 24 types of normal tissues and a large collection of epithelial tumor specimens (six cancer types, n = 792 by immunohistochemical staining. Using the ALDEFUOR assay, ALDH1 activity was also examined in 16 primary tumor specimens and 43 established epithelial cancer cell lines. In addition, an ovarian cancer transgenic mouse model and 7 murine ovarian cancer cell lines were analyzed. We found that the expression levels and patterns of ALDH1 in epithelial cancers are remarkably distinct, and they correlate with their corresponding normal tissues. ALDH1 protein expression levels are positively correlated with ALDH1 enzymatic activity measured by ALDEFLUOR assay. Long-term in vitro culture doesn't significantly affect ALDH1 activity in epithelial tumor cells. Consistent with research on other cancers, we found that high ALDH1 expression is significantly associated with poor clinical outcomes in serous ovarian cancer patients (n = 439, p = 0.0036. Finally, ALDH(br tumor cells exhibit cancer stem cell properties and are resistant to chemotherapy. As a novel cancer stem cell marker, ALDH1 can be used for tumors whose corresponding normal tissues express ALDH1 in relatively restricted or limited levels such as breast, lung, ovarian or colon cancer.

  6. Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states.

    Spangler, N J; Meyers, M R; Gierke, K L; Kerby, R L; Roberts, G P; Ludden, P W

    1998-02-13

    In carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum, histidine 265 was replaced with valine by site-directed mutagenesis of the cooS gene. The altered form of CODH (H265V) had a low nickel content and a dramatically reduced level of catalytic activity. Although treatment with NiCl2 and CoCl2 increased the activity of H265V CODH by severalfold, activity levels remained more than 1000-fold lower than that of wild-type CODH. Histidine 265 was not essential for the formation and stability of the Fe4S4 clusters. The Km and KD for CO as well as the KD for cyanide were relatively unchanged as a result of the amino acid substitution in CODH. The time-dependent reduction of the [Fe4S4]2+ clusters by CO occurred on a time scale of hours, suggesting that, as a consequence of the mutation, a rate-limiting step had been introduced prior to the transfer of electrons from CO to the cubanes in centers B and C. EPR spectra of H265V CODH lacked the gav = 1.86 and gav = 1.87 signals characteristic of reduced forms of the active site (center C) of wild-type CODH. This indicates that the electronic properties of center C have been modified possibly by the disruption or alteration of the ligand-mediated interaction between the nickel site and Fe4S4 chromophore. PMID:9461598

  7. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum.

    Wang, Yong; Duan, Yabing; Wang, Jianxin; Zhou, Mingguo

    2015-09-01

    Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid-resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid-sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild-type strains, BR and GSM (SdhB gene in the wild-type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron-sulfur subunit of SDH. These results suggest that resistance based on non-conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs. PMID:25441450

  8. Suppression of the External MitochondrialNADPH Dehydrogenase, NDB1, in Arabidopsisthaliana Affects Central Metabolism andVegetative Growth

    2014-01-01

    Ca2+-dependent oxidation of cytosolic NADPH is mediated by NDB1, which is an external type II NADPHdehydrogenase in the plant mitochondrial electron transport chain. Using RNA interference, the NDB1 transcript wassuppressed by 80% in Arabidopsis thaliana plants, and external Ca2+-dependent NADPH dehydrogenase activity becameundetectable in isolated mitochondria. This was linked to a decreased level of NADP+ in rosettes of the transgenic lines.Sterile-grown transgenic seedlings displayed decreased growth specifically on glucose, and respiratory metabolism of 14C-glucose was increased. On soil, NDBl-suppressing plants had a decreased vegetative biomass, but leaf maximumquantum efficiency of photosystem Ⅱ and CO2 assimilation rates, as well as total respiration, were similar to the wild-type. The in vivo alternative oxidase activity and capacity were also similar in all genotypes. Metabolic profiling revealeddecreased levels of sugars, citric acid cycle intermediates, and amino acids in the transgenic lines. The NDBl-suppressioninduced transcriptomic changes associated with protein synthesis and glucosinolate and jasmonate metabolism. Thetranscriptomic changes also overlapped with changes observed in a mutant lacking ABAINSENSITIVE4 and in A. thalianaoverexpressing stress tolerance genes from rice. The results thus indicate that A. thaliana NDB1 modulates NADP(H)reduction levels, which in turn affect central metabolism and growth, and interact with defense signaling.

  9. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    Opdenaker, Lynn M; Arnold, Kimberly M; Pohlig, Ryan T; Padmanabhan, Jayasree S; Flynn, Daniel C; Sims-Mourtada, Jennifer

    2014-01-01

    In many types of tumors, especially breast tumors, aldehyde dehydrogenase (ALDH) activity has been used to identify cancer stem-like cells within the tumor. The presence and quantity of these cells are believed to predict the response of tumors to chemotherapy. Therefore, identification and eradication of these cells would be necessary to cure the patient. However, there are 19 different ALDH isoforms that could contribute to the enzyme activity. ALDH1A1 and ALDH1A3 are among the isoforms mostly responsible for the increased ALDH activity observed in these stem-like cells, although the main isoforms vary in different tissues and tumor types. In the study reported here, we attempted to determine if ALDH1A1 or ALDH1A3, specifically, correlate with tumor stage, grade, and hormone-receptor status in breast-cancer patients. While there was no significant correlation between ALDH1A1 and any of the parameters tested, we were able to identify a positive correlation between ALDH1A3 and tumor stage in triple-negative cancers. In addition, ALDH1A3 was negatively correlated with estrogen-receptor status. Our data suggest that ALDH1A3 could be utilized as a marker to identify stem-like cells within triple-negative tumors. PMID:25540596

  10. Assessment of freshness and freeze-thawing of sea bream fillets (Sparus aurata) by a cytosolic enzyme: Lactate dehydrogenase.

    Diop, Mamadou; Watier, Denis; Masson, Pierre-Yves; Diouf, Amadou; Amara, Rachid; Grard, Thierry; Lencel, Philippe

    2016-11-01

    The evaluation of freshness and freeze-thawing of fish fillets was carried out by assessment of autolysis of cells using a cytosolic enzyme lactate dehydrogenase. Autolysis plays an important role in spoilage of fish and postmortem changes in fish tissue are due to the breakdown of the cellular structures and release of cytoplasmic contents. The outflow of a cytosolic enzyme, lactate dehydrogenase, was studied in sea bream fillets and the Sparus aurata fibroblasts (SAF-1) cell-line during an 8day storage period at +4°C. A significant increase of lactate dehydrogenase release was observed, especially after 5days of storage. The ratio between the free and the total lactate dehydrogenase activity is a promising predictive marker to measure the quality of fresh fish fillets. The effect of freeze-thawing on cytosolic lactate dehydrogenase and lysosomal α-d-glucosidase activities was also tested. Despite the protecting effect of the tissue compared to the cell-line, a loss of lactate dehydrogenase activity, but not of α-d-glucosidase, was observed. In conclusion, lactate dehydrogenase may be used as a marker to both assess freshness of fish and distinguish between fresh and frozen-thawed fish fillets. PMID:27211667

  11. Mutational Analyses of Glucose Dehydrogenase and Glucose-6-Phosphate Dehydrogenase Genes in Pseudomonas fluorescens Reveal Their Effects on Growth and Alginate Production

    Maleki, Susan; Mærk, Mali; Valla, Svein

    2015-01-01

    The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell. PMID:25746989

  12. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents.

    Saunier, Elise; Benelli, Chantal; Bortoli, Sylvie

    2016-02-15

    Cancer cells exhibit an altered metabolism which is characterized by a preference for aerobic glycolysis more than mitochondrial oxidation of pyruvate. This provides anabolic support and selective growth advantage for cancer cells. Recently, a new concept has arisen suggesting that these metabolic changes may be due, in part, to an attenuated mitochondrial function which results from the inhibition of the pyruvate dehydrogenase complex (PDC). This mitochondrial complex links glycolysis to the Krebs cycle and the current understanding of its regulation involves the cyclic phosphorylation and dephosphorylation by specific pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs). PMID:25868605

  13. Cryopreservation of glucose-6-phosphate dehydrogenase activity inside red blood cells: developing a specimen repository in support of development and evaluation of glucose-6-phosphate dehydrogenase deficiency tests

    Kahn, Maria; LaRue, Nicole; Bansil, Pooja; Kalnoky, Michael; McGray, Sarah; Domingo, Gonzalo J

    2013-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzyme deficiency. It is characterized by abnormally low levels of G6PD activity. Individuals with G6PD deficiency are at risk of undergoing acute haemolysis when exposed to 8‒aminoquinoline-based drugs, such as primaquine. For this reason it is imperative to identify individuals with G6PD deficiency prior to administering these anti-malarial drugs. There is a need for the development and evaluation of point-of-c...

  14. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase.

    Klimacek, Mario; Kavanagh, Kathryn L; Wilson, David K; Nidetzky, Bernd

    2003-10-01

    X-ray structure of the Pseudomonas fluorescens mannitol 2-dehydrogenase ternary complex with NAD+ and D-mannitol suggests that Lys-295 provides catalytic base assistance to secondary alcohol group oxidation. We have replaced Lys-295 by site-directed mutagenesis with alanine or methionine and evaluated the catalytic significance of side-chain substitution by kinetic analysis of restoration of activity with external amines, and from pH and solvent isotope effects on the reaction catalysed by K295A (Lys-295-->Ala mutant). K295A and K295M (Lys-295-->Met mutants) show 3x10(4)- and 2x10(6)-fold lower turnover numbers respectively for D-mannitol oxidation (kcatO) at pH 10.0 than the wild-type. The second-order rate constant for non-covalent rescue of activity (kB) by free methylamine base is 31 M(-1) x s(-1) for K295A, but only 0.021 M(-1) x s(-1) for K295M. A Brønsted relationship of log kB (corrected for molecular size effects) and pKa of the external amine is linear (slope beta=0.66+/-0.16; r2=0.99) for K295A-catalysed D-mannitol oxidation at pH 10.0. The kcatO values of K295A in H2O and 2H2O are linearly dependent on [OL-] in the pL range 7.5-10.5 (where L is 1H or 2H). The solvent isotope effect on kcatO is 0.69. The time course of D-fructose reduction by K295A at pH 8.2 displays a pre-steady-state burst of NADH consumption. These data support a mechanism in which the epsilon -NH2 group of Lys-295 participates in an obligatory pH-dependent, pre-catalytic equilibrium which may control alcohol/alkoxide equilibration of enzyme-bound D-mannitol and activates the C2 atom for subsequent catalytic oxidation by NAD+. PMID:12826012

  15. An optimised system for refolding of human glucose 6-phosphate dehydrogenase

    Engel Paul C

    2009-03-01

    Full Text Available Abstract Background Human glucose 6-phosphate dehydrogenase (G6PD, active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP, providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins. Results The effects of different chemical and physical variables on the refolding of human recombinant G6PD have been extensively investigated. L-Arg, NADP+ and DTT are all major positive influences on refolding, and temperature, protein concentration, salt types and other additives also have significant impacts. With the method described here, ~70% enzyme activity could be regained, with good reproducibility, after denaturation with Gdn-HCl, by rapid dilution of the protein, and the refolded enzyme displays kinetic and CD properties indistinguishable from those of the native protein. Refolding under these conditions is relatively slow, taking about 7 days to complete at room temperature even in the presence of cyclophilin A, a peptidylprolyl isomerase reported to increase refolding rates. The refolded protein intermediates shift from dominant monomer to dimer during this process, the gradual emergence of dimer correlating well with the regain of enzyme activity. Conclusion L-Arg is the key player in the refolding of human G6PD, preventing the aggregation of folding intermediate, and NADP+ is essential for the folding intermediate to adopt native structure. The refolding protocol can be applied to produce high recovery yield of folded protein with

  16. Structure-function studies of the peroxisomal multifunctional enzyme type 2 (MFE-2)

    Ylianttila, M. (Mari)

    2005-01-01

    Abstract Multifunctional enzyme type 2 (MFE-2) catalyses the second and the third reactions in the eukaryotic peroxisomal β-oxidation cycle, which degrades fatty acids by removing a two-carbon unit per each cycle. In addition to the 2-enoyl-CoA hydratase 2 and (3R)-hydroxyacyl-CoA dehydrogenase activities, mammalian MFE-2 has also a sterol carrier protein type 2-like (SCP-2L) domain. In contrast, yeast MFE-2 has two (3R)-hydroxyacyl-CoA dehydrogenases, one 2-enoyl-CoA hydratase 2 and no SC...

  17. L-pantoyl lactone dehydrogenase from Rhodococcus erythropolis: genetic analyses and application to the stereospecific oxidation of L-pantoyl lactone.

    Si, Dayong; Urano, Nobuyuki; Nozaki, Shinya; Honda, Kohsuke; Shimizu, Sakayu; Kataoka, Michihiko

    2012-07-01

    The 1,2-propanediol (1,2-PD) inducible membrane-bound L-pantoyl lactone (L-PL) dehydrogenase (LPLDH) has been isolated from Rhodococcus erythropolis AKU2103 (Kataoka et al. in Eur J Biochem 204:799, 1992). Based on the N-terminal amino acid sequence of LPLDH and the highly conserved amino acid sequence in homology search results, the LPLDH gene (lpldh) was cloned. The gene consists of 1,179 bases and encodes a protein of 392 amino acid residues. The deduced amino acid sequence showed high similarity to the proteins of the FMN-dependent α-hydroxy acid dehydrogenase/oxidase family. The overexpression vector pKLPLDH containing lpldh with its upstream region (1,940 bp) was constructed and introduced into R. erythropolis AKU2103. The recombinant R. erythropolis AKU2103 harboring pKLPLDH showed six times higher LPLDH activity than the wild-type strain. Conversion of L-PL to ketopantoyl lactone was achieved with 92% or 80% conversion yield when the substrate concentration was 0.768 or 1.15 M, respectively. Stereoinversion of L-PL to D-PL was also carried out by using the combination of recombinant R. erythropolis AKU2103 harboring pKLPLDH and ketopantoic acid-reducing Escherichia coli. PMID:22398860

  18. The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase.

    Anoman, Armand Djoro; Flores-Tornero, María; Rosa-Telléz, Sara; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc

    2016-03-01

    The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate dehydrogenase double mutant background (gapcp1gapcp2). We showed that GAPCp is not functionally significant in photosynthetic cells, while it plays a crucial function in heterotrophic cells. We also showed that (i) GAPCp activity expression in root tips is necessary for primary root growth, (ii) its expression in heterotrophic cells of aerial parts and roots is necessary for plant growth and development, and (iii) GAPCp is an important metabolic connector of carbon and nitrogen metabolism through the phosphorylated pathway of serine biosynthesis (PPSB). We discuss here the role that this pathway could play in the control of plant growth and development. PMID:26953506

  19. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Benedito Barraviera

    1988-10-01

    female were also studied. The G6PD and glutathione reductase were partially activated, the change being more intense in males. On the basis of race and of the laboratory characteristics observed, it is possible to suggest that the G6PD deficiency of these individuals is of the African type and that the female is heterozygous for this deficiency. Analysis of the results as a whole permitted us to conclude that the methods proposed here were efficient for evaluating the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The latter is dependent on the pentose pathway, which generates NADPH, and on riboflavin, a FAD precursor vitamin.

  20. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.