WorldWideScience

Sample records for 119sn probe atoms

  1. Multinuclear (67Zn, 119Sn and 65Cu) NMR spectroscopy--an ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials.

    Choubrac, Léo; Paris, Michaël; Lafond, Alain; Guillot-Deudon, Catherine; Rocquefelte, Xavier; Jobic, Stéphane

    2013-07-14

    For the very first time, (67)Zn, (119)Sn and (65)Cu NMR investigations have been carried out on Cu2ZnSnS4 derivatives (CZTS) for photovoltaic applications. NMR spectroscopy is shown to be sensitive enough to probe the Cu/Zn disorder within the kesterite structure of the studied compounds. In addition, reference spectra of Cu2ZnSnS4 are provided, and experimental (67)Zn and (65)Cu parameters are compared with ab initio calculations. PMID:23728239

  2. Magnetic hyperfine fields on 119Sn nuclei in uranium compounds

    119Sn Moessbauer spectroscopy studies were performed on 12 uranium intermetallic compounds in order to investigate correlations between the formation of the magnetic moment on the U atom and the magnetic hyperfine field transferred to 119Sn nuclei in magnetically ordered materials. The measured hyperfine fields (Hhf) are related to the values of the ordered U magnetic moments (μB) by μoHhf/n=A μU. The parameter A varies between 0.73 (UGa2) and 1.55 (UGe2). It seems to correlate with the extent of the hybridization of the 5f states with the conduction electron states. (orig.)

  3. Tuneable anisotropy and magnetism in Sn2Co3S2-xSex - probed by (119)Sn Mößbauer spectroscopy and DFT studies.

    Weihrich, Richard; Yan, Wenjie; Rothballer, Jan; Peter, Philipp; Rommel, Stefan Michael; Haumann, Sebastian; Winter, Florian; Schwickert, Christian; Pöttgen, Rainer

    2015-09-28

    The half metal (HFM) Sn2Co3S2 shows a fascinating S = 1/2 magnetism. Anisotropic coupling of spins in and between Co Kagomé layers by Sn sites is now studied from the substitution effects of S by Se by systematic and local experimental and first principles data. Trends in crystal structure changes (c/a ratio) as retrieved from XRD data on the solid solution Sn2Co3S2-xSex are complemented by DFT modelling on Sn2Co3SeS and hitherto unknown Sn2Co3Se2. The relationship of crystal structure effects with changes in Curie temperatures and magnetic hysteresis is shown from susceptibility measurements. An insight into the role of the Sn sites in magnetism and bonding is gained from (119)Sn Mössbauer spectroscopic measurements. Isomer shifts, quadrupole splitting, and magnetic hyperfine fields are interpreted by DFT calculations on chemical bonding, electric field gradients (EFG), Fermi contact, and spin polarization. PMID:26270145

  4. Further Test of Internal-conversion Theory with a Measurement in 119Sn

    Nica, N.; Hardy, J. C.; Iacob, V. E.

    2014-06-01

    Precise measurements are being used to test theoretical K-shell internal conversion coefficients (ICCs): in particular, our program has focused on examining whether the atomic K-vacancy formed during the conversion process must be incorporated into the calculations. We report here a measurement on the 65.66-keV, M4 isomeric transition in 119Sn. Our preliminary result is αK = 1610 (27), which confirms the importance of including the vacancy in the ICC calculations.

  5. Intermolecular (119)Sn,(31)P Through-Space Spin-Spin Coupling in a Solid Bivalent Tin Phosphido Complex.

    Arras, Janet; Eichele, Klaus; Maryasin, Boris; Schubert, Hartmut; Ochsenfeld, Christian; Wesemann, Lars

    2016-05-01

    A bivalent tin complex [Sn(NP)2] (NP = [(2-Me2NC6H4)P(C6H5)](-)) was prepared and characterized by X-ray diffraction and solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. In agreement with the X-ray structures of two polymorphs of the molecule, (31)P and (119)Sn CP/MAS NMR spectra revealed one crystallographic phosphorus and tin site with through-bond (1)J((117/119)Sn,(31)P) and through-space (TS)J((117/119)Sn,(31)P) spin-spin couplings. Density functional theory (DFT) calculations of the NMR parameters confirm the experimental data. The observation of through-space (TS)J((117/119)Sn,(31)P) couplings was unexpected, as the distances of the phosphorus atoms of one molecule and the tin atom of the neighboring molecule (>4.6 Å) are outside the sum of the van der Waals radii of the atoms P and Sn (4.32 Å). The intermolecular Sn···P separations are clearly too large for bonding interactions, as supported by a natural bond orbital (NBO) analysis. PMID:27071033

  6. Further Test of Internal-conversion Theory with a Measurement in {sup 119}Sn

    Nica, N., E-mail: nica@comp.tamu.edu; Hardy, J.C.; Iacob, V.E.

    2014-06-15

    Precise measurements are being used to test theoretical K-shell internal conversion coefficients (ICCs): in particular, our program has focused on examining whether the atomic K-vacancy formed during the conversion process must be incorporated into the calculations. We report here a measurement on the 65.66-keV, M4 isomeric transition in {sup 119}Sn. Our preliminary result is α{sub K}=1610(27), which confirms the importance of including the vacancy in the ICC calculations.

  7. THE ORNL ATOM PROBE

    Miller, M

    1986-01-01

    The ORNL Atom Probe is a microanalytical tool for studies in materials science. The instrument is a combination of a customized version of the vacuum system of the VG FIM-100 atom probe, an ORNL-designed microcomputer-controlled digital timing system, and a double curved CEMA Imaging Atom Probe detector. The atom probe combines four instruments into one - namely a field ion microscope, an energy compensated time-of-flight mass spectrometer, an imaging atom probe, and a pulsed laser atom probe.

  8. {sup 119}Sn Moessbauer spectroscopy in the heavy - fermion ferrimagnet UCu{sub 5}Sn

    Latka, K [Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Kruk, R [Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, PO Box 3640, D-76021 Karlsruhe (Germany); Kmiec, R [Henryk Niewodniczanski Institute of Physics, Radzikowskiego 152, 31-342 Krakow (Poland); Troc, R; Tran, V H, E-mail: uflatka@cyf-kr.edu.p [Wlodzimierz Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Sciences, PO Box 937, 50-950 Wroclaw (Poland)

    2010-03-01

    {sup 119}Sn Moessbauer studies of UCu{sub 5}Sn compound have been performed in a wide temperature range between 4.2 K and 78 K. Magnetic hyperfine split spectra observed below T=54 K indicate the onset of magnetic ordering. The temperature dependence of the average transferred effective magnetic hyperfine field at the tin site can be surprisingly well fitted using the Brillouin function for S = 1/2. A rather small distribution of magnetic hyperfine fields {delta}{sub H} obtained from the fitting procedure is in favour with the assumption that atomic mixing between Cu and Sn position can be neglected. The value of {theta} = 10(2){sup 0} shows that the direction of the effective magnetic hyperfine field H{sub eff} is close to the c-axis being in accord with the uranium magnetic moment direction.

  9. 119Sn Moessbauer spectroscopy in the heavy - fermion ferrimagnet UCu5Sn

    119Sn Moessbauer studies of UCu5Sn compound have been performed in a wide temperature range between 4.2 K and 78 K. Magnetic hyperfine split spectra observed below T=54 K indicate the onset of magnetic ordering. The temperature dependence of the average transferred effective magnetic hyperfine field eff> at the tin site can be surprisingly well fitted using the Brillouin function for S = 1/2. A rather small distribution of magnetic hyperfine fields δH obtained from the fitting procedure is in favour with the assumption that atomic mixing between Cu and Sn position can be neglected. The value of θ = 10(2)0 shows that the direction of the effective magnetic hyperfine field Heff is close to the c-axis being in accord with the uranium magnetic moment direction.

  10. 119Sn Moessbauer spectroscopy of tin containing float glass

    According to the production process of float glasses tin is used as a common refining agent. Since the surface quality of the glass strongly depends on the local distribution of Sn-redox states, the influence of process parameters on Sn2+/Sn4+ ratios and the assignment to their structural role in the glass network is extremely helpful. Therefore, glass compositions based on SiO2-Al2O3-B2O3-CaO-SnO2 were molten with additions of 0,1, 0,3 and 0,5 wt% SnO2. All samples were tempered for 7 days at 1400 C in N2 and N2-air mixtures with controlled pO2-values of 10-2 and 10-5 bar, respectively. Hyperfine parameters for the tin nucleus in different structural units and their oxidation states were calculated from 119Sn Moessbauer spectra, using theoretical simulations of electron densities and electric field gradients with the Wien2k software. Finally, the thermochemical impact of oxygen on the structure of Sn-bearing glasses is discussed

  11. Application of (119)Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural (119)Sn Isotope Abundance.

    Kolyagin, Yury G; Yakimov, Alexander V; Tolborg, Søren; Vennestrøm, Peter N R; Ivanova, Irina I

    2016-04-01

    (119)Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5-40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders of magnitude in the case of dehydrated Sn-BEA samples as compared to conventional methods. In the latter case, the reconstruction of the quantitative spectrum without the loss of sensitivity is shown to be possible. The method proposed allows obtaining (119)Sn MAS NMR spectra with improved resolution for Sn-BEA zeolites with natural (119)Sn isotope abundance using conventional MAS NMR equipment. PMID:26978430

  12. Atom Probe Tomography

    Atom probe tomography (APT) is a lens-less point-projection microscopy that resolves individual atoms on the surface of a sharply pointed tip (radius of curvature R < 100 nm), at a magnification of the order of ⁓106. The specimen tip is pulsed to a positive potential V with respect to ground, thereby generating electric fields E ⁓ V/R of some 10 V/nm. Ions released from the apex due to field evaporation are sent flying to a position sensitive detector where they are identified by time-of-flight mass spectrometry. Continuous removal of single atoms provides the possibility of a 3D elemental characterization of solids with sub-nm spatial resolution. The basic principles of the technique and some selected analytical applications will be discussed. (author)

  13. Pion-Induced Fission of 209Bi and 119Sn:. Measurements, Calculations, Analyses and Comparison

    Rana, Mukhtar Ahmed; Sher, Gul; Manzoor, Shahid; Shehzad, M. I.

    Cross-sections for the π--induced fission of 209Bi and 119Sn have been measured using the most sensitive CR-39 solid-state nuclear track detector. In experiments, target-detector stacks were exposed to negative pions of energy 500, 672, 1068, and 1665 MeV at the Brookhaven National Laboratory, USA. An important aspect of the present paper is the comparison of pion-induced fission fragment spectra of above mentioned nuclei with the spontaneous fission fragment spectra of 252Cf. This comparison is made in terms of fission fragment track lengths in the CR-39 detectors. Measurement results are compared with calculations of Monte Carlo and statistical weight functions methods using the computer code CEM95. Agreement between measurements and calculations is fairly good for 209Bi target nuclei whereas it is indigent for the case of 119Sn. The possibilities of the trustworthy calculations, using the computer code CEM95, comparable with measurements of pion-induced fission in intermediate and heavy nuclei are explored by employing various systematics available in the code. Energy dependence of pion-induced fission in 119Sn and 209Bi is analyzed employing a newly defined parameter geometric-size-normalized fission cross-section (χfg). It is found that the collective nuclear excitations, which may lead to fission, become more probable for both 209Bi and 119Sn nuclei with increasing energy of negative pions from 500 to 1665 MeV.

  14. Development of 119Sn nuclear resonance scattering of synchrotron radiation and first applications

    In the framework of this thesis the NRS technique has been developed and applied, for the first time at the European Synchrotron Radiation Facility, at the resonance of 119Sn. Elastic nuclear forward scattering (NFS) is ideal for studies of hyperfine interactions, where information about the electronic and magnetic properties of solids is obtained. On the other hand nuclear inelastic scattering (NIS) allows one to study the phonon density of states (DOS) of Moessbauer isotopes in various kinds of systems. In the first stage, technical developments have been made, particularly with regards the used optical elements. A key point has been the construction of a high resolution monochromator (HRM) for the resonance of 119Sn, with an energy resolution of about 0.65 meV, perfectly suited to perform NIS experiments. A second HRM optimised in throughput has been constructed and used, in combination with focussing elements (bent crystals and compound refractive lenses), to perform NFS experiments at very high pressure. For the first applications of 119Sn NIS, the phonon DOS of β-Sn has been directly determined from the NIS spectra measured at T = 100 K and T = 300 K. An excellent agreement has been found with the phonon DOS obtained theoretically by previous calculations. Moreover, dynamical and thermodynamical properties of β-Sn extracted from the determined DOS, such as the Lamb-Moessbauer factor and the specific heat, are found to be in good agreement with previously published results. As a first application of 119Sn NFS experiments at high pressure, the system U(In1-xSnx)3 has been chosen. (orig.)

  15. Investigation of transferred hyperfine interactions from 129I and 119Sn by Moessbauer spectroscopy

    The hyperfine parameters at 129I have been measured in the series of compounds CrI3, CsCrI3, MI2 (M=V, Cr, Mn, Fe, Co, Ni, Cd) and NR4FeI4 (R=ethyl, butyl). They have been interpreted in terms of the charge and spin densities in the ligand valence orbitals. Information about the spin polarization mechanisms as well as about the local magnetic and crystallographic structural arrangements have been furthermore deduced. The 119Sn hyperfine data in the series of RESn3 intermetallics have provided information about the magnetic structure and the spin polarization mechanisms

  16. 119Sn Moessbauer spectroscopy in the magnetically diluted Heusler-type systems

    119Sn Moessbauer investigations of the ferromagnetically diluted Nisub(2)Mnsub(x)Bsub(1-x)Sn(B=Ti, V) and Pdsub(2)Mnsub(x)Vsub(1-x)Sn Heusler-type systems have been performed and the results are reviewed and discussed. It has been found that distributions of the transferred hyperfine magnetic field as seen by a tin nucleus are very sensitive for a type of the local magnetic interaction in these simple ferromagnets, especially when studied versus the sample temperature. This sensitivity allows to reach some conclusions about the coupling mechanism between localised manganese magnetic moments. Namely, it is concluded that the interaction beyond the second neighbour shell is practically irrelevant for the magnetic ordering process. This very fact means that the free electron approach to the calculation of exchange integrals can not be applied for these particular systems. (Author)

  17. YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy

    Hoeting, Christoph [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Eckert, Hellmut [Institut fuer Physikalische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Langer, Thorsten; Schellenberg, Inga [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Poettgen, Rainer, E-mail: pottgen@uni-muenster.de [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany)

    2012-06-15

    The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination and additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.

  18. Atomic probes of new physics

    Frugiuele, Claudia; Perez, Gilad; Schlaffer, Matthias

    2016-01-01

    Precise isotope shift spectroscopy in various atomic systems can provide a sensitive tool to constrain new physics, in particular new physics that couples to electrons and neutrons [1]. We present an analysis for estimating the reach of such measurements in the framework of effective field theory and various benchmark models for SM extensions: color neutral vector resonances, leptoquarks and the $750\\,\\textrm{GeV}$ scalar diphoton resonance. We also provide a comparison with the reach of the LHC, $e^+e^-$ colliders and $g-2$ of the electron. Isotope shift spectroscopy can compete and possibly even improve the sensitivity to probe a broad variety of Standard Model extensions.

  19. Enhanced 119Sn Moessbauer quadrupole interactions below the magnetic phase transition of UPt2Sn

    119Sn Moessbauer effect measurements (4.2 K 2Sn and UCu2Sn. For temperatures above TN we find that the quadrupole splitting (ΔEQ) in UPt2Sn is about 3 times larger than in UCu2Sn. This difference in ΔEQ is suggested to be due to a large electronic contribution from the Pt-ligands in UPt2Sn. Upon decreasing temperature below TN, we find only in UPt2Sn an anomalous increase of ΔEQ relative to the extrapolated ΔEQ values in the paramagnetic phase (4% increase at 4.2 K). In addition, we have measured the thermal expansion coefficient (α) of a polycrystalline UPt2Snsample (4.2 K N of Δα ∼ 1.1 x 10-6 K-1. It is shown that the enhancement of ΔEQ is of electronic origin and related to the onset of AF order in UPt2Sn. (orig.)

  20. Probing The Atomic Higgs Force

    Delaunay, Cédric; Perez, Gilad; Soreq, Yotam

    2016-01-01

    We propose an approach to probe Higgs boson couplings to the building blocks of matter: the electron and the up and down quarks, with precision measurement of isotope shifts in atomic clock transitions. We show that the attractive Higgs force between nuclei and their bound electrons induces measurable non-linearities in a King plot of two isotope shifts. We present an experimental method which, given state-of-the-art accuracy in frequency comparison, competes with and potentially surpasses the Large Hadron Collider in bounding the Higgs-to-light-fermion couplings. Better knowledge of the latter is an important test of the Standard Model which could lead, besides the establishment of new physics above the weak scale, to an alternative understanding of the flavor puzzle.

  1. 119Sn hyperfine fields in RMn6Sn6 (R = Mg, Zr, Hf). Experimental and theoretical study

    We performed both 119Sn Moessbauer experiments and electronic structure calculations using the Korringa-Kohn-Rostoker method on the hexagonal RMn6Sn6 (R = Mg, Zr, and Hf) compounds. According to previous neutron diffraction results two types of commensurate magnetic order are investigated: ferromagnetic for R = Mg and antiferromagnetic for R = Zr and Hf. From 119Sn Moessbauer measurements, high transferred hyperfine fields on the tin nuclei are observed. The Hhf values are well supported by the Korringa-Kohn-Rostoker results. Moreover, the calculated μMn are in good agreement with the neutron diffraction data. When observing the density of states, ZrMn6Sn6 is found near semimetallic limit. (author)

  2. Dynamic Nuclear Polarization NMR Enables the Analysis of Sn-Beta Zeolite Prepared with Natural Abundance 119Sn Precursors

    Gunther, William R.; Michaelis, Vladimir K.; Caporini, Marc A.; Griffin, Robert G.; Román-Leshkov, Yuriy

    2014-01-01

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with 119Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites contai...

  3. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    The magnetic hyperfine fields in the Heusler alloys Rh2 Mn .98 Ge Sn 02, Rh2 Mn Ge.98 Sn.02, Rh2 Mn Pb .98 Sn .02 and Rh2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  4. Role of neutron transfer processes on the 6Li+120Sn and 7Li+119Sn fusion reactions

    Fisichella M.

    2015-01-01

    Full Text Available The results concerning the study of 6Li+120Sn and 7Li+119Sn systems are presented. These two sistems are characterised by very similar structures of the interacting nuclei and by different Q-value for one-and two- neutron transfer. Our aim is to disentangle the possible effects due to the different n-transfer Q-values, at sub-barriers energies, by comparing the two fusion excitation function. In these experiments the fusion cross section has been measured by using a stack activation technique. No particular differences in the two fusion excitation functions have been observed.

  5. The prediction of the nuclear quadrupole splitting of 119Sn Mössbauer spectroscopy data by scalar relativistic DFT calculations.

    Krogh, Jesper W; Barone, Giampaolo; Lindh, Roland

    2006-06-23

    The electric field gradient components for the tin nucleus of 34 tin compounds of experimentally known structures and (119)Sn Mössbauer spectroscopy parameters were computed at the scalar relativistic density functional theory level of approximation. The theoretical values of the electric field gradient components were used to determine a quantity, V, which is proportional to the nuclear quadrupole splitting parameter (DeltaE). In a subsequent linear regression analysis the effective nuclear quadrupole moment, Q, was evaluated. The value of (11.9+/-0.1) fm(2) is a significant improvement over the non-relativistic result of (15.2+/-4.4) fm(2) and is in agreement with the experimental value of (10.9+/-0.8) fm(2). The average mean square error DeltaE(calcd)-DeltaE(exptl)=+/-0.3 mm s(-1) is a factor of two smaller than in the non-relativistic case. Thus, the approach has a quality which provides accurate support for the structure interpretation by (119)Sn spectroscopy. It was noted that geometry optimization at the relativistic level does not significantly increase the quality of the results compared with non-relativistic optimized structures. The accuracy in the approach called on us to consider the singlet-triplet state nature of the electronic structure of one of the investigated compounds. PMID:16671047

  6. Moessbauer study of the lattice dynamics in 119Sn-doped superconducting and nonsuperconducting YBa2Cu3O7√/sub δ/

    The temperature dependence of the relative recoil-free fraction of the 119Sn Moessbauer absorption has been measured in the orthorhombic superconducting and in the tetragonal nonsuperconducting phase of 119Sn doped YBa2Cu3O7√/sub δ/. For the superconducting YBa2Cu3O7√/sub δ/ phase, the recoil-free fraction shows softening which appears for T2Cu3O7√/sub δ/ phase, it agrees with that obtained using the measured phonon spectrum without any evidence of softening

  7. Magnetic properties of UTSn compounds (T=Co, Rh, Ir, Ru) studied by 119Sn Moessbauer spectroscopy

    Detailed 119Sn Moessbauer studies were performed on the ferromagnetic uranium intermetallic compounds UTSn (T=Co, Rh, Ir, Ru) both above and below their Curie temperatures. The analysis of the experimental results allowed to determine the direction of magnetization which coincides with the crystallographic c axis for all these compounds as well as to define the orientations of the principal axes of the electric field gradient tensor with respect to the crystallographic axes. For UCoSn, URhSn, and UIrSn, the Vyy component is parallel to the c axis while in the case of URuSn, the Vzz component is parallel to this axis. The Moessbauer spectra taken at higher temperatures demonstrate a considerable distribution of magnitudes of the transferred magnetic hyperfine fields as well as a coexistence of magnetic and nonmagnetic contributions close to the Curie temperatures. copyright 1997 The American Physical Society

  8. Ag-Sn alloys and dental amalgams: A 119Sn Moessbauer, X-ray diffraction and scanning electron microscopy study

    Examination has been made on aged and fresh Ag-Sn alloys and on commercial Cu-Ag-Sn dental alloys. Although x-ray diffractograms of aged Ag-Sn showed only γ Ag-Sn and free silver, 119Sn Moessbauer spectra exhibited Sn(IV) oxide also. A low Debye temperature showed the oxide to be in intimate dynamical contact with the metallic matrix. Upon adding mercury, the phases γ1 Ag-Hg and η' Cu-Sn were observed in a commercial specimen. Conversion-electron spectra of a mercury-coated disk showed the presence of γ2 Sn-Hg and a distribution of line positions smaller than that for particulate amalgams. Internal oxidation was found to prevent amalgamation. (orig.)

  9. A 119Sn Moessbauer Study of Tin(IV) Complexes of 2- and 4-Benzoylpyridine Thiosemicarbazone and 4-Benzoylpyridine Semicarbazone

    A 119Sn Moessbauer study was carried out of tin(IV) complexes with 2-benzoylpyridine thiosemicarbazone (H2Bz4DH) and its N(4)-methyl (H2Bz4M) and N(4)-phenyl (H2Bz4Ph) derivatives: [Sn(2Bz4DH)Cl3] (1), [Sn(2Bz4DH)PhCl2] (2), [Sn(2Bz4M)Cl3] (3), [H22Bz4M]2[Ph2SnCl4] (4), [Sn(2Bz4Ph)PhCl2] (5), [Sn(2Bz4Ph)Ph2Cl] (6), in which H2Bz4R stands for the neutral ligand and 2Bz4R stands for the anionic thiosemicarbazone. In addition, 119Sn Moessbauer studies of the tin(IV) complexes [Sn(H4Bz4DH)2Cl4H2O] (7), [Sn(H4BzPS)2Cl4H2O] (8) with 4-benzoylpyridine thiosemicarbazone (H4Bz4DH) and the correspondent semicarbazone (H4BzPS) were performed. The isomer shifts decrease upon coordination due to the variation in the percentage of s character as tin changes from approximately sp3 hybridization in the tin salts to sp3d2 in the octahedral or sp3d3 in the heptahedral complexes. The Moessbauer parameters of compound (4) showed the existence of two tin(IV) sites, which have been attributed to the presence of the cis and trans isomers.

  10. Pragmatic reconstruction methods in atom probe tomography

    Data collected in atom probe tomography have to be carefully analysed in order to give reliable composition data accurately and precisely positioned in the probed volume. Indeed, the large analysed surfaces of recent instruments require reconstruction methods taking into account not only the tip geometry but also accurate knowledge of geometrical projection parameters. This is particularly crucial in the analysis of multilayers materials or planar interfaces. The current work presents a simulation model that enables extraction of the two main projection features as a function of the tip and atom probe instrumentation geometries. Conversely to standard assumptions, the image compression factor and the field factor vary significantly during the analysis. An improved reconstruction method taking into account the intrinsic shape of a sample containing planar features is proposed to overcome this shortcoming. -- Highlights: → Tomographic reconstructions in atom probe tomography. → Model of field evaporation in a 2D non-regular geometry with cylindrical symmetry. → Calculation of the field factor and of the image compression factor. → New algorithm of reconstruction for specimen composed of flat layer structures.

  11. Carbon nanotube atomic force microscopy probes

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  12. Atom Probe Tomography of Nanoscale Electronic Materials

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  13. Atom probe tomography (APT) of carbonate minerals.

    Pérez-Huerta, Alberto; Laiginhas, Fernando; Reinhard, David A; Prosa, Ty J; Martens, Rich L

    2016-01-01

    Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry. PMID:26519815

  14. Spatial resolution in atom probe tomography

    Gault, Baptiste; de Geuser, Frederic; La Fontaine, Alex; Stephenson, Leigh T; Haley, Daniel; Ringer, Simon P

    2015-01-01

    This article addresses gaps in definitions and a lack of standard measurement techniques to assess the spatial resolution in atom probe tomography. This resolution is known to be anisotropic, being better in the depth than laterally. Generally the presence of atomic planes in the tomographic reconstruction is considered as being a sufficient proof of the quality of the spatial resolution of the instrument. Based on advanced spatial distribution maps, an analysis methodology that interrogates the local neighborhood of the atoms within the tomographic reconstruction, it is shown how both the in-depth and the lateral resolution can be quantified. The influences of the crystallography and the temperature are investigated, and models are proposed to explain the observed results. We demonstrate that the absolute value of resolution is specimenspecific.

  15. Atomic level analysis of biomolecules by the scanning atom probe

    Utilizing the unique features of the scanning atom probe (SAP) the binding states of the biomolecules, leucine and methionine, are investigated at atomic level. The molecules are mass analyzed by detecting a single atom and/or clustering atoms field evaporated from a specimen surface. Since the field evaporation is a static process, the evaporated clustering atoms are closely related with the binding between atoms forming the molecules. For example, many thiophene radicals are detected when polythiophene is mass analyzed by the SAP. In the present study the specimens are prepared by immersing a micro cotton ball of single walled carbon nanotubes (SWCNT) in the leucine or methionine solution. The mass spectra obtained by analyzing the cotton balls exhibit singly and doubly ionized carbon ions of SWCNT and the characteristic fragments of the molecules, CH3, CHCH3, C4H7, CHNH2 and COOH for leucine and CH3, SCH3, C2H4, C4H7, CHNH2 and COOH for methionine.

  16. Atom probe microanalysis: Principles and applications to materials problems

    A historical background and general introduction to field emission and field-ionization, field-ion microscopy, and the atom probe is given. Physical principles of field ion microscopy are explained, followed by interpretation of images. Types of atom probes are discussed, as well as the instrumentation used in atomic probe microanalysis. Methods of atom probe analysis and data representation are covered, along with factors affecting performance and statistical analysis of atom probe data. Finally, some case studies and special types of analyses are presented

  17. Full tip imaging in atom probe tomography

    Du, Sichao [School of Physics, The University of Sydney, NSW 2006 (Australia); Burgess, Timothy [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Tjing Loi, Shyeh [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Gault, Baptiste [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Department of Materials Science and Engineering, McMaster University, 1280 Main St W, Hamilton, ON, Canada L8S 4L8 (Canada); Gao, Qiang [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Bao, Peite; Li, Li [School of Physics, The University of Sydney, NSW 2006 (Australia); Cui, Xiangyuan; Kong Yeoh, Wai [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Hoe Tan, Hark; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Zheng, Rongkun, E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-01-15

    Atom probe tomography (APT) is capable of simultaneously revealing the chemical identities and three dimensional positions of individual atoms within a needle-shaped specimen, but suffers from a limited field-of-view (FOV), i.e., only the core of the specimen is effectively detected. Therefore, the capacity to analyze the full tip is crucial and much desired in cases that the shell of the specimen is also the region of interest. In this paper, we demonstrate that, in the analysis of III-V nanowires epitaxially grown from a substrate, the presence of the flat substrate positioned only micrometers away from the analyzed tip apex alters the field distribution and ion trajectories, which provides extra image compression that allows for the analysis of the entire specimen. An array of experimental results, including field desorption maps, elemental distributions, and crystallographic features clearly demonstrate the fact that the whole tip has been imaged, which is confirmed by electrostatic simulations. -- Highlights: Black-Right-Pointing-Pointer The full tip has been imaged by atom probe tomography. Black-Right-Pointing-Pointer The conductive substrate close to specimen tip introduces extra image compression. Black-Right-Pointing-Pointer The apex of the tip is far from a hemispherical shape. Black-Right-Pointing-Pointer This work demonstrates a way to increase the FOV of APT.

  18. A {sup 119}Sn Moessbauer study of heptacoordinated tin complexes with multidentate ligands

    Abras, A. [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Fisica; Sousa, G.F. de [Dept. de Quimica, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil); Filgueiras, C.A.L. [Dept. de Quimica, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil)

    1994-11-01

    Three novel heptacoordinated tin complexes with multidentate ligands were prepared and studied by Moessbauer spectroscopy. The complexes were identified as [MeSnCl(Hdaptsc)]Cl . MeOH, [MeSnCl(H{sub 2}dapsc)]Cl{sub 2} . 2H{sub 2}O and [ClSnCl(Hdaptsc)]Cl, where H{sub 2}daptsc = 2,6-diacetylpyridinebis (thiosemicarbazone) and H{sub 2}dapsc = 2,6-diacetylpyridinebis (semicarbazone). The structures of the first two complexes were determined by X-ray crystallography. The ligand H{sub 2}dapsc originated a fourth complex, which was characterised as [(Me{sub 2}SnCl{sub 2}){sub 2}(H{sub 2}dapsc)] in which the two Sn atoms are probably hexacoordinated, as suggested by Moessbauer data. The isomer shifts and the quadrupole splittings of the complexes are consistent with the structural interpretation, and correlate well with other literature examples and with X-ray data whenever available. The correlation between Moessbauer results and structural information is important considering the paucity of published data for heptacoordinated species. (orig.)

  19. Preparation of Regular Specimens for Atom Probes

    Kuhlman, Kim; Wishard, James

    2003-01-01

    A method of preparation of specimens of non-electropolishable materials for analysis by atom probes is being developed as a superior alternative to a prior method. In comparison with the prior method, the present method involves less processing time. Also, whereas the prior method yields irregularly shaped and sized specimens, the present developmental method offers the potential to prepare specimens of regular shape and size. The prior method is called the method of sharp shards because it involves crushing the material of interest and selecting microscopic sharp shards of the material for use as specimens. Each selected shard is oriented with its sharp tip facing away from the tip of a stainless-steel pin and is glued to the tip of the pin by use of silver epoxy. Then the shard is milled by use of a focused ion beam (FIB) to make the shard very thin (relative to its length) and to make its tip sharp enough for atom-probe analysis. The method of sharp shards is extremely time-consuming because the selection of shards must be performed with the help of a microscope, the shards must be positioned on the pins by use of micromanipulators, and the irregularity of size and shape necessitates many hours of FIB milling to sharpen each shard. In the present method, a flat slab of the material of interest (e.g., a polished sample of rock or a coated semiconductor wafer) is mounted in the sample holder of a dicing saw of the type conventionally used to cut individual integrated circuits out of the wafers on which they are fabricated in batches. A saw blade appropriate to the material of interest is selected. The depth of cut and the distance between successive parallel cuts is made such that what is left after the cuts is a series of thin, parallel ridges on a solid base. Then the workpiece is rotated 90 and the pattern of cuts is repeated, leaving behind a square array of square posts on the solid base. The posts can be made regular, long, and thin, as required for samples

  20. The emergence of local electrode/scanning atom probes

    Full text: Professor Nishikawa's idea of a scanning atom probe was first presented a little more than one decade ago. This concept spurred new thinking into the fundamentals of atom probe design. In the first five years after that presentation, three academic groups (Nishikawa et al., Kelly et al., and Cerezo et al.) built atom probes which incorporated his ideas. Over the ensuing 5 years, a commercial instrument based on these concepts, the local electrode atom probe or LEAP, was developed by Imago. This basic concept has enabled a major change in how atom probes may be utilized. In particular, the geometry of the specimen can take radically different forms and major performance improvements are possible. These changes have elevated the atom probe from a laboratory instrument to a viable commercial tool suitable for industrial applications. In this overview talk, a brief history of the scanning atom probe/local electrode atom probe will be given. The performance and application of the commercial atom probe which is based on Professor Nishikawa's basic concept will be described. Refs. 6 (author)

  1. Dynamic reconstruction for atom probe tomography

    Gault, Baptiste, E-mail: baptiste.gault@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006 (Australia); Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia); Loi, Shyeh Tjing; Araullo-Peters, Vicente J.; Stephenson, Leigh T.; Moody, Michael P.; Shrestha, Sachin L.; Marceau, Ross K.W.; Yao, Lan; Cairney, Julie M.; Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006 (Australia)

    2011-11-15

    Progress in the reconstruction for atom probe tomography has been limited since the first implementation of the protocol proposed by Bas et al. in 1995. This approach and those subsequently developed assume that the geometric parameters used to build the three-dimensional atom map are constant over the course of an analysis. Here, we test this assumption within the analyses of low-alloyed materials. By building upon methods recently proposed to measure the tomographic reconstruction parameters, we demonstrate that this assumption can introduce significant limitations in the accuracy of the analysis. Moreover, we propose a strategy to alleviate this problem through the implementation of a new reconstruction algorithm that dynamically accommodates variations in the tomographic reconstruction parameters. -- Highlights: Black-Right-Pointing-Pointer Variation of main reconstruction parameters, namely image compression and field factors, quantified. Black-Right-Pointing-Pointer A new protocol to build the tomographic reconstruction is proposed where reconstruction parameters are dynamically adjusted. Black-Right-Pointing-Pointer Integrity of reconstructions obtained from the standard and dynamic reconstruction protocols compared.

  2. Soft-landing deposition of radioactive probe atoms on surfaces

    Laurens, C.R; Rosu, M.F; Pleiter, F; Niesen, L

    1999-01-01

    We present a method to deposit a wide range of radioactive probe atoms on surfaces, without introducing lattice damage or contaminating the surface with other elements or isotopes. In this method, the probe atoms are mass-separated using an isotope separa-tor, decelerated to 5 eV, and directly depos

  3. Investigation of Interfaces by Atom Probe Tomography

    Balogh, Zoltán; Stender, Patrick; Chellali, Mohammed Reda; Schmitz, Guido

    2013-10-01

    We investigated the thermodynamic and transport properties of buried interfaces with atom probe tomography. Owing to the 3D subnanometer resolution and single atom sensitivity of the method, it is possible to obtain composition profiles with high accuracy both along or normal to the interfaces. We have shown that the width of the chemical interface between the Fe and Cr system follows the Cahn-Hilliard relation with a gradient energy coefficient of 1.86 × 10-22 J nm2. Sharpening of the Ni/Cu interface as a result of kinetic control was directly observed. We investigated the grain boundary and triple junction transport in Fe/Cr and Ni/Cu. Cr segregation enthalpy into Fe triple junctions was found to be 0.076 eV, which falls in between the surface (0.159 eV) and grain boundary (0.03 eV) segregation enthalpies. In the investigated 563 K to 643 K (290 °C to 370 °C) range, Ni transport is 200 to 300 times faster in the triple junctions of Cu than in the grain boundaries. The diffusion activation enthalpy in the triple junctions is two-thirds that of the grain boundaries (0.86 and 1.24 eV, respectively). These investigations have shown that triple junctions are defects in their own right with characteristic segregation and diffusion properties: They are preferred segregation sites and can be considered as a diffusion shortcut in the grain boundary network.

  4. Synthesis and multinuclear (1H, 13C, 31P, 119Sn) NMR study of trimethyland; triphenyl-tin (IV) with cyclic dithiophosphate ligands

    Patricia García y García; Marcela López Cardoso; María del Carmen Pérez Redondo; Patricia Martínez Salas; Ave María Cotero Villegas; Raymundo Cea Olivares

    2004-01-01

    En este trabajo se informa la síntesis y caracterización; estructural de seis nuevos ditiofosfatos de trimetil- y trifenil-estaño (IV).; Los compuestos 1-6 fueron caracterizados por IR, EM IE y RMN multinuclear,; (1H, 13C, 19P y 119Sn). Los seis compuestos manifiestan un; comportamiento monomérico, con una penta-coordinación del átomo de; estaño y un comportamiento monometálico biconectivo de los ligantes.; Los compuestos 1-4 presentan en solución una rápida interconversión;...

  5. Fabrication of an all-metal atomic force microscope probe

    Rasmussen, Jan Pihl; Tang, Peter Torben; Hansen, Ole;

    1997-01-01

    This paper presents a method for fabrication of an all-metal atomic force microscope probe (tip, cantilever and support) for optical read-out, using a combination of silicon micro-machining and electroforming. The paper describes the entire fabrication process for a nickel AFM-probe. In addition...

  6. Coaxial atomic force microscope probes for imaging with dielectrophoresis

    Brown, Keith; Berezovsky, Jesse; Westervelt, Robert M.

    2011-01-01

    We demonstrate atomic force microscope (AFM) imaging using dielectrophoresis (DEP) with coaxial probes. DEP provides force contrast allowing coaxial probes to image with enhanced spatial resolution. We model a coaxial probe as an electric dipole to provide analytic formulas for DEP between a dipole, dielectric spheres, and a dielectric substrate. AFM images taken of dielectric spheres with and without an applied electric field show the disappearance of artifacts when imaging with DEP. Quantit...

  7. Atomic probes of surface structure and dynamics

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He+ and Ar+ ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H2 on Cu(110) are being studied. (R.W.R.) 64 refs

  8. Atom probe tomography of a commercial light emitting diode

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device

  9. Probing a Bose-Einstein Condensate with an Atom Laser

    Döring, D.; Robins, N. P.; Figl, C.; Close, J. D.

    2008-01-01

    A pulsed atom laser derived from a Bose-Einstein condensate is used to probe a second target condensate. The target condensate scatters the incident atom laser pulse. From the spatial distribution of scattered atoms, one can infer important properties of the target condensate and its interaction with the probe pulse. As an example, we measure the s-wave scattering length that, in low energy collisions, describes the interaction between the |F=1,m_F=-1> and |F=2,m_F=0> hyperfine ground states ...

  10. A {sup 119}Sn Moessbauer Study of Tin(IV) Complexes of 2- and 4-Benzoylpyridine Thiosemicarbazone and 4-Benzoylpyridine Semicarbazone

    Perez-Rebolledo, Anayive [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Ardisson, Jose D., E-mail: jdr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear, Laboratorio de Fisica Aplicada (LFA/CDTN) (Brazil); Lima, Geraldo M. de [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Macedo, Waldemar A. A. [Centro de Desenvolvimento da Tecnologia Nuclear, Laboratorio de Fisica Aplicada (LFA/CDTN) (Brazil); Beraldo, Heloisa, E-mail: hberaldo@ufmg.br [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil)

    2005-06-15

    A {sup 119}Sn Moessbauer study was carried out of tin(IV) complexes with 2-benzoylpyridine thiosemicarbazone (H2Bz4DH) and its N(4)-methyl (H2Bz4M) and N(4)-phenyl (H2Bz4Ph) derivatives: [Sn(2Bz4DH)Cl{sub 3}] (1), [Sn(2Bz4DH)PhCl{sub 2}] (2), [Sn(2Bz4M)Cl{sub 3}] (3), [H{sub 2}2Bz4M]{sub 2}[Ph{sub 2}SnCl{sub 4}] (4), [Sn(2Bz4Ph)PhCl{sub 2}] (5), [Sn(2Bz4Ph)Ph{sub 2}Cl] (6), in which H2Bz4R stands for the neutral ligand and 2Bz4R stands for the anionic thiosemicarbazone. In addition, {sup 119}Sn Moessbauer studies of the tin(IV) complexes [Sn(H4Bz4DH){sub 2}Cl{sub 4}H{sub 2}O] (7), [Sn(H4BzPS){sub 2}Cl{sub 4}H{sub 2}O] (8) with 4-benzoylpyridine thiosemicarbazone (H4Bz4DH) and the correspondent semicarbazone (H4BzPS) were performed. The isomer shifts decrease upon coordination due to the variation in the percentage of s character as tin changes from approximately sp{sup 3} hybridization in the tin salts to sp{sup 3}d{sup 2} in the octahedral or sp{sup 3}d{sup 3} in the heptahedral complexes. The Moessbauer parameters of compound (4) showed the existence of two tin(IV) sites, which have been attributed to the presence of the cis and trans isomers.

  11. A 119Sn Mössbauer Study of Tin(IV) Complexes of 2- and 4-Benzoylpyridine Thiosemicarbazone and 4-Benzoylpyridine Semicarbazone

    Pérez-Rebolledo, Anayive; Ardisson, José D.; de Lima, Geraldo M.; Macedo, Waldemar A. A.; Beraldo, Heloisa

    2005-06-01

    A 119Sn Mössbauer study was carried out of tin(IV) complexes with 2-benzoylpyridine thiosemicarbazone (H2Bz4DH) and its N(4)-methyl (H2Bz4M) and N(4)-phenyl (H2Bz4Ph) derivatives: [Sn(2Bz4DH)Cl3] (1), [Sn(2Bz4DH)PhCl2] (2), [Sn(2Bz4M)Cl3] (3), [H22Bz4M]2[Ph2SnCl4] (4), [Sn(2Bz4Ph)PhCl2] (5), [Sn(2Bz4Ph)Ph2Cl] (6), in which H2Bz4R stands for the neutral ligand and 2Bz4R stands for the anionic thiosemicarbazone. In addition, 119Sn Mössbauer studies of the tin(IV) complexes [Sn(H4Bz4DH)2Cl4H2O] (7), [Sn(H4BzPS)2Cl4H2O] (8) with 4-benzoylpyridine thiosemicarbazone (H4Bz4DH) and the correspondent semicarbazone (H4BzPS) were performed. The isomer shifts decrease upon coordination due to the variation in the percentage of s character as tin changes from approximately sp3 hybridization in the tin salts to sp3d2 in the octahedral or sp3d3 in the heptahedral complexes. The Mössbauer parameters of compound (4) showed the existence of two tin(IV) sites, which have been attributed to the presence of the cis and trans isomers.

  12. Probing Dark Energy with Atom Interferometry

    Burrage, Clare; Hinds, E A

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  13. The stannides RE{sub 3}Au{sub 6}Sn{sub 5} (RE = La, Ce, Pr, Nd, Sm). Synthesis, structure, magnetic properties and {sup 119}Sn Moessbauer spectroscopy

    Fickenscher, Thomas; Rodewald, Ute C.; Niehaus, Oliver; Gerke, Birgit; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Haverkamp, Sandra; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie

    2015-07-01

    The Ce{sub 3}Pd{sub 6}Sb{sub 5}-type rare earth stannides RE{sub 3}Au{sub 6}Sn{sub 5} (RE = La, Ce, Pr, Nd, Sm) were synthesized by arc-melting of the elements and subsequent annealing in open tantalum crucibles within sealed evacuated silica ampoules. The polycrystalline samples were studied by powder X-ray diffraction. The structures of three crystals were refined from single crystal X-ray diffractometer data: Pmmn, a = 1360.3(9), b = 455.9(2), c = 1023.6(4) pm, wR2 = 0.0275, 1069 F{sup 2} values, 48 variables for Ce{sub 3}Au{sub 6}Sn{sub 5}, a = 1352.4(4), b = 455.1(1), c = 1023.7(3) pm, wR2 = 0.0367, 1160 F{sup 2} values, 48 variables for Nd{sub 3}Au{sub 6}Sn{sub 5}, and a = 1339.8(2), b = 452.80(7), c = 1012.4(2) pm, wR2 = 0.1204, 1040 F{sup 2} values, 49 variables for Sm{sub 3}Au{sub 5.59(2)}Sn{sub 5.41(2)}. One of the gold sites of the samarium compound shows a significant degree of Au/Sn mixing. The RE{sub 3}Au{sub 6}Sn{sub 5} structures are composed of three-dimensional [Au{sub 6}Sn{sub 5}] polyanionic networks with the two crystallographically independent rare earth atoms in larger cages, i.e., RE1 rate at Au{sub 10}Sn{sub 6} and RE2 rate at Au{sub 8}Sn{sub 8}. The [Au{sub 6}Sn{sub 5}] network is stabilized by Au-Sn (266-320 pm), Au-Au (284-301 pm) as well as Sn-Sn (320 pm; distances given for the cerium compound) interactions. Temperature-dependent magnetic susceptibility measurements reveal an antiferromagnetic ordering only for Sm{sub 3}Au{sub 6}Sn{sub 5}, while the other compounds exhibit Curie-Weiss paramagnetism. {sup 119}Sn Moessbauer spectroscopy shows resonances in the typical range for intermetallic tin compounds where tin takes part in the polyanionic network [isomer shifts between 1.73(1) and 2.28(1) mm . s{sup -1}]. With the help of theoretical electric field gradient calculations using the WIEN2k code it was possible to resolve the spectroscopic contributions of all three crystallographically independent atomic tin sites in the {sup 119}Sn

  14. Atom probe tomography of lithium-doped network glasses

    Greiwe, Gerd-Hendrik, E-mail: g_grei01@uni-muenster.de [Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany); Balogh, Zoltan; Schmitz, Guido [Institute of Material Science, University of Stuttgart, Heisenberg Straße 3, D-70569 Stuttgart (Germany)

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. - Highlights: • Atom probe tomography is performed on ion conducting glasses. • Redistribution of ions during the measurement is observed. • An electrostatic model is applied to describe the electric field and ion diffusion. • Measurement is conducted of the absolute temperature during laser pulses.

  15. Surface forces studied with colloidal probe atomic force microscopy

    Giesbers, M.

    2001-01-01

    Forces between surfaces are a determining factor for the performance of natural as well as synthetic colloidal systems, and play a crucial role in industrial production processes. Measuring these forces is a scientific and experimental challenge and over the years several techniques have been developed to measure the interaction between surfaces directly as a function of their separation distance. Colloidal probe atomic force microscopy (colloidal probe AFM) offers the possibility to study su...

  16. ATOM PROBE STUDY OF TITANIUM BASE ALLOYS : PRELIMINARY RESULTS

    Menand, A.; Chambreland, S.; Martin, C

    1986-01-01

    Two different titanium base alloys, Ti46 Al54 and Ti88.8 Cu2.3, Al8.9, have been studied by atom probe microanalysis. A precipitate of Ti2 Al was analysed in the binary alloys. Micro-analysis of Ti Cu Al alloy revealed the presence of Copper enriched zones. The study has also exhibited a penetration of Hydrogen in the samples, probably due to preparation technique. The results demonstrate the feasibility of studies on titanium base alloys by mean of atom probe.

  17. Atom probe field ion microscopy characterizations of VVER steels

    An atom probe field ion microscopy (APFIM) characterization of Soviet types 15Kh2MFA Cr-Mo-V (VVER 440) and 15Kh2NMFA Ni-Cr-Mo-V (VVER 1000) pressure vessel steels has been performed. Field ion microscopy has revealed that the lath boundaries in unirradiated VVER 440 and VVER 1000 steels are decorated with a thin film of brightly-imaging molybdenum carbonitride precipitates and some coarser vanadium carbides. Atom probe analysis has revealed significant enrichments of phosphorous at the lath boundaries

  18. Semiconductor studies by radioactive probe atoms

    There are a growing number of experimental techniques that have in common the usage of radioactive isotopes for the characterization of semiconductors. These techniques deliver atomistic information about identity, formation, lattice environment, and electronic structure, as well as dynamics of defects and defect complexes. The results obtained by different hyperfine techniques are discussed in context with the study of intrinsic and extrinsic defects, i.e. of vacancies or self-interstitials and dopant or impurity atoms, respectively. In addition, the employment of electrical and optical techniques in combination with radioactive isotopes is presented

  19. FIM AND ATOM-PROBE STUDY OF POLYMERS

    Maruyama, T.; Y. Hasegawa; Nishi, T; T. Sakurai

    1987-01-01

    A field ion microscope makes it possible to observe the surface structures of metals and semiconductors at the atomic level and an atom-probe (FIM), which is a FIM with a mass spectrometer, has been widely used to study the chemical compositions of specimens. Some attempts were made previously to visualize polymers such as biological molecules. They are usually insulators and, thus, are difficult to be imaged by the FIM. Furthermore, molecules are known to decompose or desorb before a needed ...

  20. Max Auwaerter Price lecture: building and probing atomic structures

    Full text: The control of the geometric, electronic, and magnetic properties of atomic-scale nanostructures is a prerequisite for the understanding and fabrication of new materials and devices. Two routes lead towards this goal: Atomic manipulation of single atoms and molecules by scanning probe microscopy, or patterning using self-assembly. Atomic manipulation has been performed since almost 20 years, but it has been difficult to answer the simple question: how much force does it take to manipulate atoms and molecules on surfaces? To address this question, we used a combined atomic force and scanning tunneling microscope to simultaneously measure the force and the current between an adsorbate and a tip during atomic manipulation. We found that the force it takes to move an atom depends crucially on the binding between adsorbate and surface. Our results indicate that for moving metal atoms on metal surfaces, the lateral force component plays the dominant role. Measuring the forces during manipulation yielded the full potential energy landscape of the tip-sample interaction. Surprisingly, the potential energy barriers are comparable to diffusion barriers, which are obtained in the absence of a probe tip. Furthermore, we used the scanning tunneling microscope to assemble magnetic structures on a thin insulator. We found, that the spin of the atom is influenced by the magnetocrystalline anisotropy of the supporting surface which lifts the spin degeneracy of the ground state and enables the identification of individual atoms. The ground state of atoms with half-integer spin remains always degenerated at zero field due to Kramers theorem. We found that if these states differ by an orbital momentum of m = ±1 the localized spin is screened by the surrounding conducting electrons of the non-magnetic host and form a many-electron spin-singlet at sufficiently low temperature. (author)

  1. Design of cantilever probes for Atomic Force Microscopy (AFM)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again kee...

  2. Data mining for isotope discrimination in atom probe tomography

    Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. - Highlights: ► Atom probe tomography and statistical learning were combined for data enhancement. ► Multiple eigenvalue decompositions decomposed a spectrum with overlapping peaks. ► The isotope of each atom was determined by kinetic energy discrimination. ► Eigenspectra were identified and new chemical information was identified

  3. Atom Probe Tomographic Mapping Directly Reveals the Atomic Distribution of Phosphorus in Resin Embedded Ferritin

    Perea, Daniel E.; Liu, Jia; Bartrand, Jonah AG; Dicken, Quinten G.; Thevuthasan, Suntharampillai; Browning, Nigel D.; Evans, James E.

    2016-02-29

    Here we report the atomic-scale analysis of biological interfaces using atom probe tomography. Embedding the protein ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualize atomic distributions and distinguish organic-organic and organic-inorganic interfaces. The sample preparation method can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment.

  4. Visualization of deuterium dead layer by atom probe tomography

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. THE ATOM PROBE ANALYSIS OF A CAST DUPLEX STAINLESS STEEL

    Godfrey, T.; G. Smith

    1986-01-01

    Atom probe analysis is reported of a low Mo CF8 duplex stainless steel aged for 105,000h at 280°C, 3,000h or 70,000h at 300°C, or 3,000h at 400°C. Definite evidence for a spinodal reaction in the α phase has been found at all the temperatures studied. This reaction process is most regular and pronounced in the material aged at 400°C but is detectable after the other heat treatments. No evidence of G-phase precipitation is apparent from the FIM micrographs, but statistical analysis of the atom...

  6. Probing stem cell differentiation using atomic force microscopy

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  7. Scanning probe microscopy of oxide surfaces: atomic structure and properties

    The intersection of two fields, oxide surface science and scanning probe microscopy (SPM), has yielded considerable insight on atomic processes at surfaces. Oxide surfaces, especially those containing transition metals, offer a rich variety of structures and localized physical phenomena that are exploited in a wide range of applications. Nonlinear optics, superconductivity, ferroelectricity and chemical catalytic activity are but a few. Furthermore, the challenges and solutions associated with the chemistry of these surfaces and particularly the solutions to these problems have led to important understanding of tip-surface interactions that can inform SPM studies of all materials. Here, the development of understanding of the model systems TiO2 and SrTiO3 are considered in detail, to demonstrate the role of nonstoichiometry in surface structure evolution and the approach to interpreting structure at the atomic level. Then a combination of scanning tunneling microscopy, noncontact atomic force microscopy and theory are applied to a variety of oxide systems including Al2O3, NiO, ferroelectric BaTiO3, tungstates and molybdates. Recently developed sophisticated probes of local properties include spin-polarized tunneling, Fourier mapping of charge density waves, band gap mapping of superconductors and ultra fast imaging of atomic diffusion. The impact of these studies on our understanding of the behavior of oxides and of tip-surface interactions is summarized

  8. Manipulating collective quantum states of ultracold atoms by probing

    Wade, Andrew Christopher James

    2015-01-01

    The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory of...... measurements on quantum systems has grown into a well established field. Experimental demonstrations of nondestructive continuous measurements on individual quantum systems now occur in many laboratories. Such experiments with ultracold atoms have shown great progress, but the exploitation of the quantum...... nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies and...

  9. Contact resonances of U-shaped atomic force microscope probes

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu [Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, Nebraska 68588 (United States)

    2016-01-21

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  10. Contact resonances of U-shaped atomic force microscope probes

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes

  11. Contact resonances of U-shaped atomic force microscope probes

    Rezaei, E.; Turner, J. A.

    2016-01-01

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  12. Probing charges on the atomic scale by means of atomic force microscopy

    Albrecht, F.; Repp, J.; Fleischmann, M.; Scheer, M.; Ondráček, Martin; Jelínek, Pavel

    2015-01-01

    Roč. 115, č. 7 (2015), "076101-1"-"076101-5". ISSN 0031-9007 R&D Projects: GA ČR(CZ) GC14-16963J Institutional support: RVO:68378271 Keywords : Kelvin probe force microscopy * atomic force microscopy * bond polarity * surface dipole * adsorbates on surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.512, year: 2014

  13. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 9500C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  14. New atom probe approaches to studying segregation in nanocrystalline materials

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  15. New atom probe approaches to studying segregation in nanocrystalline materials

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess

  16. New atom probe approaches to studying segregation in nanocrystalline materials.

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. PMID:23485412

  17. Multifunctional hydrogel nano-probes for atomic force microscopy

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  18. Atom chip microscopy: A novel probe for strongly correlated materials

    Lev, Benjamin L

    2011-11-03

    Improved measurements of strongly correlated systems will enable the predicative design of the next generation of supermaterials. In this program, we are harnessing recent advances in the quantum manipulation of ultracold atomic gases to expand our ability to probe these technologically important materials in heretofore unexplored regions of temperature, resolution, and sensitivity parameter space. We are working to demonstrate the use of atom chips to enable single-shot, large area detection of magnetic flux at the 10^-7 flux quantum level and below. By harnessing the extreme sensitivity of atomic clocks and Bose-Einstein condensates (BECs) to external perturbations, the cryogenic atom chip technology developed here will provide a magnetic flux detection capability that surpasses other techniques---such as scanning SQUIDs---by a factor of 10--1000. We are testing the utility of this technique by using rubidium BECs to image the magnetic fields emanating from charge transport and magnetic domain percolation in strongly correlated materials as they undergo temperature-tuned metal--to--insulator phase transitions. Cryogenic atom chip microscopy introduces three very important features to the toolbox of high-resolution, strongly correlated material microscopy: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level); no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic spatial resolution; freedom from 1/f flicker noise at low frequencies; and, perhaps most importantly, the complete decoupling of probe and sample temperatures. The first of these features will play an important role in studying the interplay between magnetic and electric domain structure. The last two are crucial for low frequency magnetic noise detection in, e.g., the cuprate pseudogap region and for precision measurements of transport in the high temperature, technologically relevant regime inaccessible to other techniques

  19. Design of cantilever probes for Atomic Force Microscopy (AFM)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again...... keeping the stiffness constant. The resulting design of the beam from the latter optimization gives almost the same result as when maximizing the first eigenfrequency. Adding a restriction on the second eigenfrequency result in a significant change of the optimal design. The beam is modelled with 12 DOF...

  20. Clustered field evaporation of metallic glasses in atom probe tomography.

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. PMID:26724469

  1. Reflections on the projection of ions in atom probe tomography

    De Geuser, Frédéric

    2016-01-01

    There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three-dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison to the more widely used and well-established point-projection, which underpins data reconstruction in the only commercial software package available currently. After an overview of the reconstruction methodology, we demonstrate that the azimuthal equidistant is not only more accurate, but also more robust with regards to errors on the parameters used to perform the reconstruction and is therefore more likely to yield more accurate tomographic reconstructions.

  2. Towards an accurate volume reconstruction in atom probe tomography.

    Beinke, Daniel; Oberdorfer, Christian; Schmitz, Guido

    2016-06-01

    An alternative concept for the reconstruction of atom probe data is outlined. It is based on the calculation of realistic trajectories of the evaporated ions in a recursive refinement process. To this end, the electrostatic problem is solved on a Delaunay tessellation. To enable the trajectory calculation, the order of reconstruction is inverted with respect to previous reconstruction schemes: the last atom detected is reconstructed first. In this way, the emitter shape, which controls the trajectory, can be defined throughout the duration of the reconstruction. A proof of concept is presented for 3D model tips, containing spherical precipitates or embedded layers of strongly contrasting evaporation thresholds. While the traditional method following Bas et al. generates serious distortions in these cases, a reconstruction with the proposed electrostatically informed approach improves the geometry of layers and particles significantly. PMID:27062338

  3. Atom Probe Tomographic Mapping Directly Reveals the Atomic Distribution of Phosphorus in Resin Embedded Ferritin

    Perea, Daniel E.; Liu, Jia; Bartrand, Jonah; Dicken, Quinten; Thevuthasan, S. Theva; Browning, Nigel D.; Evans, James E.

    2016-02-01

    Here we report the atomic-scale analysis of biological interfaces within the ferritin protein using atom probe tomography that is facilitated by an advanced specimen preparation approach. Embedding ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualise atomic distributions and distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell, as well as the organic-organic interface between the ferritin protein shell and embedding resin. In addition, we definitively show the atomic-scale distribution of phosphorus as being at the surface of the ferrihydrite mineral with the distribution of sodium mapped within the protein shell environment with an enhanced distribution at the mineral/protein interface. The sample preparation method is robust and can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment.

  4. Multifunctional hydrogel nano-probes for atomic force microscopy

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  5. Atomic force microscope probe-based nanometric scribing

    Miniaturization of machine components is recognized by many as a significant technological development for a vast spectrum of products. An atomic force microscope (AFM) probe that can exert forces onto a variety of engineering materials is used to perform mechanical scribing at the nanoscale. The success of nanomechanical machining at such fine scales is based on the understanding of microstructural machining mechanics. This paper investigates the cutting behaviour in the nanoscale of a chromium workpiece by using a retrofitted commercial AFM with an acoustic emission sensor, in order to scratch the surface and measure forces. The calibration procedure for acquiring the forces is discussed. The cutting force model, which incorporates the flow stress and friction coefficient in the nano-scale machining, is also presented

  6. Investigation on nanocomposite magnets by three-dimensional atom probe

    WANG Zhanyong; ZHOU Bangxin; NI Jiansen; XU Hui

    2006-01-01

    With the fast development in nano materials, to obtain the detailed microstructure information, microscopes with much higher resolution than the conventional ones are required. A three-dimensional atom probe (3DAP), an instrument with nearatomic resolutions of about 0.06 and 0.2 nm in depth and transverse direction, respectively, has been employed to map out the elemental distribution of some conductive materials within a nano-scale volume.This instrument is fit to analyze the elemental distribution in nano materials and nano precipitation in common materials. 3DAP is applied to investigate the microstructure of Nd2Fe14B/α-Fe nanocomposite magnets. B, Fe-enriched, Zr-enriched and Nd,Fe-enriched clusters have been found, which cannot be identified by any other instrument.

  7. Atom probe analysis of Sn in Zr-based alloys

    We have extensively used atom-probe field ion microscopy (APFIM) for microanalyses of a heat-treated Zircaloy-4 and Zr-Sn alloys containing 0.6 or 1.39 wt% Sn and clarified as to whether Sn is fully dissolved or not in the α-Zr matrix. It is found that Sn dissolves in the matrix of both Zircaloy-4 and Zr-0.6 wt% Sn alloy upon annealing at 723 K. For Zr-1.39 wt% Sn alloy, after annealing for more than 200 h, the symptom of phase separation has been found. The distribution of Sn in the matrix is changed from the α-quenched state, and local regions enriched with Sn are formed in the matrix. (orig.)

  8. Accuracy of analyses of microelectronics nanostructures in atom probe tomography

    Vurpillot, F.; Rolland, N.; Estivill, R.; Duguay, S.; Blavette, D.

    2016-07-01

    The routine use of atom probe tomography (APT) as a nano-analysis microscope in the semiconductor industry requires the precise evaluation of the metrological parameters of this instrument (spatial accuracy, spatial precision, composition accuracy or composition precision). The spatial accuracy of this microscope is evaluated in this paper in the analysis of planar structures such as high-k metal gate stacks. It is shown both experimentally and theoretically that the in-depth accuracy of reconstructed APT images is perturbed when analyzing this structure composed of an oxide layer of high electrical permittivity (higher-k dielectric constant) that separates the metal gate and the semiconductor channel of a field emitter transistor. Large differences in the evaporation field between these layers (resulting from large differences in material properties) are the main sources of image distortions. An analytic model is used to interpret inaccuracy in the depth reconstruction of these devices in APT.

  9. Estimation of the reconstruction parameters for Atom Probe Tomography

    Gault, Baptiste; Stephenson, Leigh T; Moody, Michael P; Muddle, Barry C; Ringer, Simon P

    2015-01-01

    The application of wide field-of-view detection systems to atom probe experiments emphasizes the importance of careful parameter selection in the tomographic reconstruction of the analysed volume, as the sensitivity to errors rises steeply with increases in analysis dimensions. In this paper, a self-consistent method is presented for the systematic determination of the main reconstruction parameters. In the proposed approach, the compression factor and the field factor are determined using geometrical projections from the desorption images. A 3D Fourier transform is then applied to a series of reconstructions and, comparing to the known material crystallography, the efficiency of the detector is estimated. The final results demonstrate a significant improvement in the accuracy of the reconstructed volumes.

  10. Probing Modified Gravity with Atom-Interferometry: a Numerical Approach

    Schlogel, Sandrine; Fuzfa, Andre

    2015-01-01

    Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to one order of magnitude. In the thin-shell regime, significant deviations from the analytical estimations are found, even when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncerta...

  11. Probe knots and Hopf insulators with ultracold atoms

    Deng, Dong-Ling; Wang, Sheng-Tao; Sun, Kai; Duan, Lu-Ming

    2015-05-01

    Knots and links are fascinating and intricate topological objects that have played a prominent role in physical and life sciences. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here, we show that knotted structures also exist in a peculiar class of three dimensional topological insulators--the Hopf insulators. In particular, we demonstrate that the spin textures of Hopf insulators in momentum space are twisted in a nontrivial way, which implies various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in cold atoms and may have potential applications in spintronics and quantum information processings. We thank X.-J. Liu and G. Ortiz for helpful discussions. S.T.W., D.L.D., and L.M.D. are supported by the NBRPC 2011CBA00300, the IARPA MUSIQC program, the ARO and the AFOSR MURI program. K.S. acknowledges support from NSF under Grant No. PHY1402971.

  12. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips

    Gross, Leo; Schuler, Bruno; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Steurer, Wolfram; Scivetti, Ivan; Kotsis, Konstantinos; Persson, Mats; Meyer, Gerhard

    2014-01-01

    Noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM) have become important tools for nanotechnology; however, their contrast mechanisms on the atomic scale are not entirely understood. Here we used chlorine vacancies in NaCl bilayers on Cu(111) as a model system to investigate atomic contrast as a function of applied voltage, tip height, and tip functionalization. We demonstrate that the AFM contrast on the atomic scale decisively depends on both the tip termin...

  13. Soft-landing ion deposition of isolated radioactive probe atoms on surfaces : A novel method

    Laurens, CR; Rosu, MF; Pleiter, F; Niesen, L

    1997-01-01

    We present a method to deposit a wide range of radioactive probe atoms on surfaces, without introducing lattice damage or contaminating the surface with other elements or isotopes. In this method, the probe atoms are mass separated using an isotope separator, decelerated to 5 eV, and directly deposi

  14. Effect of Laser Power on Atom Probe Tomography of Silicates

    Parman, S. W.; Gorman, B.; Jackson, C.; Cooper, R. F.; Diercks, D.

    2011-12-01

    Atom probe tomography (APT) is an emerging analytical method that has the potential to produce nm-scale spatial resolution of atom positions with ppm-level detection limits. Until recently, APT has been limited to analysis of conducting samples due to the high pulsed electrical fields previously required. The recent development of laser-assisted APT now allows much lower laser powers to be used, opening the door to analysis of geologic minerals. The potential applications are many, ranging from diffusion profiles to the distribution of nano-phases to grain boundary chemical properties. We reported the first analysis of natural olivine using APT last year (Parman et al, 2010). While the spatial resolution was good (nm-scale), the accuracy of the compositional analysis was not. Two of the primary barriers to accurate ion identification in APT are: 1) Specimen overheating - This is caused by the interaction of the laser with the low thermal conductivity insulating specimens. Ions are assumed to have left the surface of the sample at the time the laser is pulsed during the analysis (laser pulse width = 12 ps). If the laser power is too high, the surface remains heated for an appreciable time (greater than 5 ns in some cases) after the laser pulse, causing atoms to field evaporate from the surface well after the laser pulse. Since they hit the detector later than the atoms that were released during the pulse, they are interpreted to be higher mass. Thus overheating appears in the analysis as a smearing of mass/charge peaks to higher mass/charge ratios (thermal tails). For well separated peaks, this is not a substantial problem, but for closely spaced peaks, overheating causes artificial mass interferences. 2) Molecular evaporation or clustering - This is also caused by overheating by the laser. Ideally, atoms are field evaporated individually from the surface of the cylindrical specimen. However, if the absorbed energy is high enough, clusters of atoms will be formed

  15. Conductive-probe atomic force microscopy characterization of silicon nanowire

    Yu Linwei

    2011-01-01

    Full Text Available Abstract The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs were investigated using a conductive-probe atomic force microscopy (AFM. Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V. Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

  16. New Methods of Sample Preparation for Atom Probe Specimens

    Kuhlman, Kimberly, R.; Kowalczyk, Robert S.; Ward, Jennifer R.; Wishard, James L.; Martens, Richard L.; Kelly, Thomas F.

    2003-01-01

    Magnetite is a common conductive mineral found on Earth and Mars. Disk-shaped precipitates approximately 40 nm in diameter have been shown to have manganese and aluminum concentrations. Atom-probe field-ion microscopy (APFIM) is the only technique that can potentially quantify the composition of these precipitates. APFIM will be used to characterize geological and planetary materials, analyze samples of interest for geomicrobiology; and, for the metrology of nanoscale instrumentation. Prior to APFIM sample preparation was conducted by electropolishing, the method of sharp shards (MSS), or Bosch process (deep reactive ion etching) with focused ion beam (FIB) milling as a final step. However, new methods are required for difficult samples. Many materials are not easily fabricated using electropolishing, MSS, or the Bosch process, FIB milling is slow and expensive, and wet chemistry and the reactive ion etching are typically limited to Si and other semiconductors. APFIM sample preparation using the dicing saw is commonly used to section semiconductor wafers into individual devices following manufacture. The dicing saw is a time-effective method for preparing high aspect ratio posts of poorly conducting materials. Femtosecond laser micromachining is also suitable for preparation of posts. FIB time required is reduced by about a factor of 10 and multi-tip specimens can easily be fabricated using the dicing saw.

  17. A Nanostructual Microwave Probe Used for Atomic Force Microscope

    Ju, Y; Kobayashi, T; Soyama, H

    2008-01-01

    In order to develop a new structure microwave probe, the fabrication of AFM probe on the GaAs wafer was studied. A waveguide was introduced by evaporating Au film on the top and bottom surfaces of the GaAs AFM probe. A tip having 8 micrometers high, and curvature radius about 50 nm was formed. The dimensions of the cantilever are 250x30x15 micrometers. The open structure of the waveguide at the tip of the probe was introduced by using FIB fabrication. AFM topography of a grating sample was measured by using the fabricated GaAs microwave probe. The fabricated probe was found having nanometer scale resolution, and microwave emission was detected successfully at the tip of the probe by approaching Cr-V steel and Au wire samples.

  18. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong covalen

  19. Atom probe characterization of yttria particles in ODS Eurofer steel

    Oxide dispersion strengthened steels exhibit higher temperature and radiation resistance than conventionally produced ferritic/martensitic steels. Such behaviour, as believed, is mainly caused by presence of highly dispersed and extremely stable oxide particles with sizes of few nanometers. It was shown that the most promising oxide additive was yttria (Y2O3) and as mechanical parameters were strongly depended on size and number density of formed peculiarities it is required to reduce their dimensions to few nanometers and drastically increase their number. At present, considerable effort is focused on investigation of behaviour and properties of such particles. Recent studies of Eurofer ODS steel (9%-CrWVTa) by SANS and PoAS revealed the presence of high number density structural peculiarities with size approximately one nanometer. At the same time, previous studies by TEM identified only high number of small (5-10 nm) Y2O3 particles. So, the purpose of this work was to look into this material by means of tomographic atom probe and find out the chemistry and origin of peculiarities with sizes less than 5 nm. These investigations revealed fine (∼ 2 nm) particles that were enriched not only in yttrium and oxygen but also in vanadium and nitrogen. Concentration of vanadium in them is approximately at the same level as yttrium. Moreover, some particles were found to be enriched in only three or even two elements mentioned above. However, total concentration of chemical elements in these particles is considerably less than that of iron. Estimated number density for detected particles is (1 / 5) x 1023 m-3. (author)

  20. Atom probe field ion microscopy and related topics: A bibliography 1991

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory

  1. Atom probe field ion microscopy and related topics: A bibliography 1991

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory.

  2. Cage motion of a probe atom in a vacancy complex in Pt

    The perturbation function of a Cd probe atom bound in a hydrogen-decorated vacancy complex in Pt is found to exhibit dynamical relaxation at 294 K, as measured by the technique of perturbed γ-γ angular correlations. Based on other characteristics of the complex, a model is proposed for the structure of the complex. In the undecorated state, it consists of a probe atom at the center of a tetrahedron of vacancies in the fcc structure. In the decorated state at low temperature, the probe atom returns to one of the four vacant lattice sites. The relaxation at room temperature is attributed to motion of the probe atom in a cage formed by the four vacant sites. (orig.)

  3. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    Rusz, Jan; Idrobo, Juan-Carlos; Bhowmick, Somnath

    2014-01-01

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase distribution using the aberration-corrected optics of an scanning transmission electron microscope. The required phase di...

  4. H atom probes of radiation chemistry: Solids and liquids

    H atoms are ubiquitous in radiation chemistry. Radiolysis of most substances yield H atoms and studies of the mechanisms of their production are as old as the field of radiation chemistry. The problem is that study or products does not easily reveal the chemical mechanisms involved even with the clever use of isotopes. Time-resolved pulsed electron paramagnetic resonance (EPR) was used to study formation and decay kinetics of spin-polarized mobile H atoms in radiolysis of wet fused silica containing ∼ 1,200 ppm of SiOH groups. Two reactions of H atoms can be distinguished: a slow component corresponding to scavenging of H atoms by metastable paramagnetic centers and a fast component which is ascribed to a reaction of a short-lived small polaron (intrinsic hole) with H atoms

  5. Atomic quantum superposition state generation via optical probing

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio;

    2009-01-01

    We analyze the performance of a protocol to prepare an atomic ensemble in a superposition of two macroscopically distinguishable states. The protocol relies on conditional measurements performed on a light field, which interacts with the atoms inside an optical cavity prior to detection, and we...

  6. Probing angular momentum coherence in a twin-atom interferometer

    de Carvalho, Carlos R; Impens, François; Robert, J; Medina, Aline; Zappa, F; Faria, N V de Castro

    2014-01-01

    We propose to use a double longitudinal Stern-Gerlach atom interferometer in order to investigate quantitatively the angular momentum coherence of molecular fragments. Assuming that the dissociated molecule has a null total angular momentum, we investigate the propagation of the corresponding atomic fragments in the apparatus. We show that the envisioned interferometer enables one to distinguish unambiguously a spin-coherent from a spin-incoherent dissociation, as well as to estimate the purity of the angular momentum density matrix associated with the fragments. This setup, which may be seen as an atomic analogue of a twin-photon interferometer, can be used to investigate the suitability of molecule dissociation processes -- such as the metastable hydrogen atoms H($2^2 S$)-H($2^2 S$) dissociation - for coherent twin-atom optics.

  7. Understanding proton-conducting perovskite interfaces using atom probe tomography

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3

  8. Atomic Resolution Imaging with a sub-50 pm Electron Probe

    Erni, Rolf P.; Rossell, Marta D.; Kisielowski, Christian; Dahmen, Ulrich

    2009-03-02

    Using a highly coherent focused electron probe in a 5th order aberration-corrected transmission electron microscope, we report on resolving a crystal spacing less than 50 pm. Based on the geometrical source size and residual coherent and incoherent axial lens aberrations, an electron probe is calculated, which is theoretically capable of resolving an ideal 47 pm spacing with 29percent contrast. Our experimental data show the 47 pm spacing of a Ge 114 crystal imaged with 11-18percent contrast at a 60-95percent confidence level, providing the first direct evidence for sub 50-pm resolution in ADF STEM imaging.

  9. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted. PMID:19775815

  10. Dopant distributions in n-MOSFET structure observed by atom probe tomography

    Inoue, K., E-mail: koji.inoue@hs3.ecs.kyoto-u.ac.jp [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yano, F.; Nishida, A. [MIRAI-Selete, Tsukuba, Ibaraki 305-8569 (Japan); Takamizawa, H. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Tsunomura, T. [MIRAI-Selete, Tsukuba, Ibaraki 305-8569 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hasegawa, M. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan)

    2009-11-15

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  11. Understanding the Atomic-Scale Contrast in Kelvin Probe Force Microscopy

    Nony, Laurent; Foster, Adam S.; Bocquet, Franck; Loppacher, Christian

    2009-01-01

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a noncontact atomic force microscope simulator including a Kelvin module. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and contact potential difference contrasts were reported. The local...

  12. Understanding the atomic-scale contrast in Kelvin Probe Force Microscopy

    Nony, Laurent; Foster, Adam; Bocquet, Franck; Loppacher, Christian

    2009-01-01

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy (KPFM) is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a non-contact Atomic Force Microscope/KPFM simulator. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and Contact Potential Difference (CPD) contrasts were reported. The local CPD do...

  13. Probing the Planck Scale in Low-Energy Atomic Physics

    Bluhm, Robert

    2001-01-01

    Experiments in atomic physics have exceptional sensitivity to small shifts in energy in an atom, ion, or bound particle. They are particularly well suited to search for unique low-energy signatures of new physics, including effects that could originate from the Planck scale. A number of recent experiments have used CPT and Lorentz violation as a candidate signal of new physics originating from the Planck scale. A discussion of these experiments and their theoretical implications is presented.

  14. IMPROVED FABRICATION METHOD FOR CARBON NANOTUBE PROBE OF ATOMIC FORCE MICROSCOPY(AFM)

    XU Zongwei; DONG Shen; GUO Liqiu; ZHAO Qingliang

    2006-01-01

    An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function.Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.

  15. Photoelectron imaging, probe of the dynamics: from atoms... to clusters

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (Wn-, Cn-, C60). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  16. Laser-cooled atomic ions as probes of molecular ions

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca+ [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed

  17. Generating and probing entangled states for optical atomic clocks

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  18. Distributed force probe bending model of critical dimension atomic force microscopy bias

    Ukraintsev, Vladimir A.; Orji, Ndubuisi G.; Vorburger, Theodore V.; Dixson, Ronald G.; Fu, Joseph; Silver, Rick M.

    2013-04-01

    Critical dimension atomic force microscopy (CD-AFM) is a widely used reference metrology technique. To characterize modern semiconductor devices, small and flexible probes, often 15 to 20 nm in diameter, are used. Recent studies have reported uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements. To understand the source of these variations, tip-sample interactions between high aspect ratio features and small flexible probes, and their influence on measurement bias, should be carefully studied. Using theoretical and experimental procedures, one-dimensional (1-D) and two-dimensional (2-D) models of cylindrical probe bending relevant to carbon nanotube (CNT) AFM probes were developed and tested. An earlier 1-D bending model was refined, and a new 2-D distributed force (DF) model was developed. Contributions from several factors were considered, including: probe misalignment, CNT tip apex diameter variation, probe bending before snapping, and distributed van der Waals-London force. A method for extracting Hamaker probe-surface interaction energy from experimental probe-bending data was developed. Comparison of the new 2-D model with 1-D single point force (SPF) model revealed a difference of about 28% in probe bending. A simple linear relation between biases predicted by the 1-D SPF and 2-D DF models was found. The results suggest that probe bending can be on the order of several nanometers and can partially explain the observed CD-AFM probe-to-probe variation. New 2-D and three-dimensional CD-AFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  19. Scanning probeatomic force microscopy: new developments and applications

    Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at a nanometric level at the surfaces of materials. They range, for instance, from physical properties such as surface potential and electric field topological determination to chemical, nanomechanical, catalytic and spectroscopic analysis in air in liquid or in a gaseous environment. After a brief introduction to new SPM technological developments, we present recent achievements in the characterisation and application of nanomorphology, electrostatic surface potential, dielectric properties, shear force microscopy and radiofrequency measurements, scanning microwave microscopy, nanomechanical properties mapping, frequency modulation SPM in air, liquid, vacuum, and finally high-speed SPM

  20. Atomic resolution in noncontact AFM by probing cantilever frequency shifts

    Hong Yong Xie

    2007-01-01

    Rutile TiO2(001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.

  1. Fabrication of specimens of metamorphic magnetite crystals for field ion microscopy and atom probe microanalysis.

    Kuhlman, K R; Martens, R L; Kelly, T F; Evans, N D; Miller, M K

    2001-10-01

    Field ion specimens have been successfully fabricated from samples of metamorphic magnetite crystals (Fe3O4) extracted from a polymetamorphosed, granulite-facies marble with the use of a focused ion beam. These magnetite crystals contain nanometer-scale, disk-shaped inclusions making this magnetite particularly attractive for investigating the capabilities of atom probe field ion microscopy (APFIM) for geological materials. Field ion microscope images of these magnetite crystals were obtained in which the observed size and morphology of the precipitates agree with previous results. Samples were analyzed in the energy compensated optical position-sensitive atom probe. Mass spectra were obtained in which peaks for singly ionized 16O, 56Fe and 56FeO and doubly ionized 54Fe, 56Fe and 57Fe peaks were fully resolved. Manganese and aluminum were observed in a limited analysis of a precipitate in an energy compensated position sensitive atom probe. PMID:11770743

  2. Nitride semiconductors studied by atom probe tomography and correlative techniques

    Bennett, Samantha

    2011-01-01

    Optoelectronic devices fabricated from nitride semiconductors include blue and green light emitting diodes (LEDs) and laser diodes (LDs). To design efficient devices, the structure and composition of the constituent materials must be well-characterised. Traditional microscopy techniques used to examine nitride semiconductors include transmission electron microscopy (TEM), and atomic force microscopy (AFM). This thesis describes the study of nitride semiconductor materials using these tradi...

  3. Influence of the wavelength on the spatial resolution of pulsed-laser atom probe

    Gault, B. [Australian Centre for Microscopy and Microanalysis, Madsen Building F09, University of Sydney, NSW 2006 (Australia); Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia); Chen, Y. M.; Hono, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); National Institute for Materials Science, Tsukuba 305-0047 (Japan); Moody, M. P.; Ringer, S. P. [Australian Centre for Microscopy and Microanalysis, Madsen Building F09, University of Sydney, NSW 2006 (Australia); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2011-11-01

    Modern atom probes typically incorporate an ultrafast pulsed-laser source with wavelength ranging from infrared (IR) to ultraviolet (UV) depending on the specific instrument. In order to estimate the influence of the wavelength on the accuracy of the technique, the achievable in-depth spatial resolution has been measured for atom probe analyses of the same pure W specimen using three different wavelengths and across a range of laser pulse energies. UV illumination is shown to yield superior spatial resolution to both IR and visible (green) wavelengths. We propose that this improvement relates to a faster decay of temperature enabled by light absorption confined to the near apex region.

  4. Atom-scale compositional distribution in InAlAsSb-based triple junction solar cells by atom probe tomography.

    Hernández-Saz, J; Herrera, M; Delgado, F J; Duguay, S; Philippe, T; Gonzalez, M; Abell, J; Walters, R J; Molina, S I

    2016-07-29

    The analysis by atom probe tomography (APT) of InAlAsSb layers with applications in triple junction solar cells (TJSCs) has shown the existence of In- and Sb-rich regions in the material. The composition variation found is not evident from the direct observation of the 3D atomic distribution and because of this a statistical analysis has been required. From previous analysis of these samples, it is shown that the small compositional fluctuations determined have a strong effect on the optical properties of the material and ultimately on the performance of TJSCs. PMID:27306098

  5. Atom-scale compositional distribution in InAlAsSb-based triple junction solar cells by atom probe tomography

    Hernández-Saz, J.; Herrera, M.; Delgado, F. J.; Duguay, S.; Philippe, T.; Gonzalez, M.; Abell, J.; Walters, R. J.; Molina, S. I.

    2016-07-01

    The analysis by atom probe tomography (APT) of InAlAsSb layers with applications in triple junction solar cells (TJSCs) has shown the existence of In- and Sb-rich regions in the material. The composition variation found is not evident from the direct observation of the 3D atomic distribution and because of this a statistical analysis has been required. From previous analysis of these samples, it is shown that the small compositional fluctuations determined have a strong effect on the optical properties of the material and ultimately on the performance of TJSCs.

  6. A new systematic framework for crystallographic analysis of atom probe data

    Araullo-Peters, Vicente J., E-mail: vicente.araullopeters@gmail.com [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Breen, Andrew; Ceguerra, Anna V. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Gault, Baptiste [Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia)

    2015-07-15

    In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon. Data was collected both in DC voltage mode and laser-assisted mode (in the latter of which extracting crystallographic information is known to be more difficult due to distortions). The nature of the atomic planes in both datasets was extracted and analysed. - Highlights: • A new analysis method was designed that determines if reconstructed planes are present in atom probe data. • The location, orientation, and planar spacing of these planes are obtained. • This method was applied to simulated, aluminium alloy and silicon data where the extent of planes was shown to vary considerably. • This method can be used to examine atom probe reconstruction quality.

  7. A new systematic framework for crystallographic analysis of atom probe data

    In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon. Data was collected both in DC voltage mode and laser-assisted mode (in the latter of which extracting crystallographic information is known to be more difficult due to distortions). The nature of the atomic planes in both datasets was extracted and analysed. - Highlights: • A new analysis method was designed that determines if reconstructed planes are present in atom probe data. • The location, orientation, and planar spacing of these planes are obtained. • This method was applied to simulated, aluminium alloy and silicon data where the extent of planes was shown to vary considerably. • This method can be used to examine atom probe reconstruction quality

  8. Adhesive properties of Staphylococcus epidermidis probed by atomic force microscopy

    Hu, Yifan; Ulstrup, Jens; Zhang, Jingdong;

    2011-01-01

    (biofilm positive and biofilm negative strains) were analyzed using in situ atomic force microscopy (AFM). Force measurements performed using bare hydrophilic silicon nitride tips disclosed similar adhesive properties for each strain. However, use of hydrophobic tips showed that hydrophobic forces are not......Mapping of the surface properties of Staphylococcus epidermidis and of biofilm forming bacteria in general is a key to understand their functions, particularly their adhesive properties. To gain a comprehensive view of the structural and chemical properties of S. epidermidis, four different strains...

  9. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  10. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy.

    Cai, Jiandong; Wang, Michael Yu; Zhang, Li

    2015-12-01

    In multifrequency atomic force microscopy (AFM), probe's characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude's sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement. PMID:26724066

  11. Muonium as a probe of hydrogen-atom reactions

    Muonium is a light isotope of hydrogen and can be used as a tracer substitute for hydrogen to investigate liquid-phase hydrogen-atom reactions not amenable to study by more conventional means. The residual polarization method of muon spin rotation is illustrated by an investigation of the reaction of muonium with sodium thiosulphate in aqueous solution. The rate constant has been determined directly from measurements of muonium decay rates in very dilute solutions, ksub(M) =(1.5 +-0.4) x 1010 dm3 mol-1 s-1. Possible reaction mechanisms have been explored by analysis of the field and concentration dependence of the diamagnetic signal amplitude in concentrated solutions. The conclusion is that hydrogen atoms react with thiosulphate, probably first forming a radical adduct HSSO32- which decomposes in 1 ns or less to give HS- + SO3-, or possibly H+ + .S- + SO32-. The consequences of time-dependent rate constants on the residual-polarization analysis are discussed in an appendix. (author)

  12. Probing electronic and structural properties of single molecules on the atomic scale

    Mohn, Fabian

    2012-01-01

    In this thesis work, a combination of low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) was used to study single atoms and molecules on thin insulating films. We show that noncontact-AFM can yield important additional information for these systems, which had previously been studied only with STM. In particular, we demonstrate that the charge states of single gold adatoms can be detected with Kelvin probe force microscopy (KPFM). Furthermore, it is descr...

  13. Single-atom aided probe of the decoherence of a Bose-Einstein condensate

    Ng, H. T.; Bose, S.

    2008-01-01

    We study a two-level atom coupled to a Bose-Einstein condensate. We show that the rules governing the decoherence of mesoscopic superpositions involving different classical-like states of the condensate can be probed using this system. This scheme is applicable irrespective of whether the condensate is initially in a coherent, thermal or more generally in any mixture of coherent states. The effects of atom loss and finite temperature to the decoherence can therefore be studied. We also discus...

  14. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ceguerra, A.V., E-mail: anna.ceguerra@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ringer, S.P., E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)

    2015-03-15

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms.

  15. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  16. Atomic resolution probe for allostery in the regulatory thin filament.

    Williams, Michael R; Lehman, Sarah J; Tardiff, Jil C; Schwartz, Steven D

    2016-03-22

    Calcium binding and dissociation within the cardiac thin filament (CTF) is a fundamental regulator of normal contraction and relaxation. Although the disruption of this complex, allosterically mediated process has long been implicated in human disease, the precise atomic-level mechanisms remain opaque, greatly hampering the development of novel targeted therapies. To address this question, we used a fully atomistic CTF model to test both Ca(2+)binding strength and the energy required to remove Ca(2+)from the N-lobe binding site in WT and mutant troponin complexes that have been linked to genetic cardiomyopathies. This computational approach is combined with measurements of in vitro Ca(2+)dissociation rates in fully reconstituted WT and cardiac troponin T R92L and R92W thin filaments. These human disease mutations represent known substitutions at the same residue, reside at a significant distance from the calcium binding site in cardiac troponin C, and do not affect either the binding pocket affinity or EF-hand structure of the binding domain. Both have been shown to have significantly different effects on cardiac function in vivo. We now show that these mutations independently alter the interaction between the Ca(2+)ion and cardiac troponin I subunit. This interaction is a previously unidentified mechanism, in which mutations in one protein of a complex indirectly affect a third via structural and dynamic changes in a second to yield a pathogenic change in thin filament function that results in mutation-specific disease states. We can now provide atom-level insight that is potentially highly actionable in drug design. PMID:26957598

  17. ATOM-PROBE RESULTS SUPPORT THE SKELETON MODEL FOR WC-Co

    Henjered, A.; Hellsing, M.; Andrén, H.; Nordén, H.

    1984-01-01

    WC/WC boundaries in WC-Co type cemented carbides have been analysed with the atom-probe instrument. The boundaries contained about half a monolayer of cobalt (or Co + Cr) and can therefore be described as grain boundaries with cobalt segregation. The results support the "continuous skeleton" mode1 of WC-Co.

  18. High sensitivity probe absorption technique for time-of-flight measurements on cold atoms

    A K Mohapatra; C S Unnikrishnan

    2006-06-01

    We report on a phase-sensitive probe absorption technique with high sensitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms. We demonstrate the high sensitivity and figure of merit of the simple method by measuring the time-of-flight of atoms moving upwards from a magneto-optical trap released in the gravitational field.

  19. A variable-width harmonic probe for multifrequency atomic force microscopy

    Cai, Jiandong; Zhang, Li [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Xia, Qi, E-mail: qxia@mail.hust.edu.cn, E-mail: michael.wang@nus.edu.sg [State Key Laboratory of Digital Manufacturing Equipment of Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Luo, Yangjun [State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Michael Yu, E-mail: qxia@mail.hust.edu.cn, E-mail: michael.wang@nus.edu.sg [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Department of Mechanical Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-02-16

    In multifrequency atomic force microscopy (AFM) to simultaneously measure topography and material properties of specimens, it is highly desirable that the higher order resonance frequencies of the cantilever probe are assigned to be integer harmonics of the excitation frequency. The harmonic resonances are essential for significant enhancement of the probe's response at the specified harmonic frequencies. In this letter, a structural optimization technique is employed to design cantilever probes so that the ratios between one or more higher order resonance frequencies and the fundamental natural frequency are ensured to be equal to specified integers and, in the meantime, that the fundamental natural frequency is maximized. Width profile of the cantilever probe is the design variable in optimization. Thereafter, the probes were prepared by modifying a commercial probe through the focused ion beam (FIB) milling. The resonance frequencies of the FIB fabricated probes were measured with an AFM. Results of the measurement show that the optimal design of probe is as effective as design prediction.

  20. Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe.

    Mönig, Harry; Hermoso, Diego R; Díaz Arado, Oscar; Todorović, Milica; Timmer, Alexander; Schüer, Simon; Langewisch, Gernot; Pérez, Rubén; Fuchs, Harald

    2016-01-26

    In scanning probe microscopy, the imaging characteristics in the various interaction channels crucially depend on the chemical termination of the probe tip. Here we analyze the contrast signatures of an oxygen-terminated copper tip with a tetrahedral configuration of the covalently bound terminal O atom. Supported by first-principles calculations we show how this tip termination can be identified by contrast analysis in noncontact atomic force and scanning tunneling microscopy (NC-AFM, STM) on a partially oxidized Cu(110) surface. After controlled tip functionalization by soft indentations of only a few angstroms in an oxide nanodomain, we demonstrate that this tip allows imaging an organic molecule adsorbed on Cu(110) by constant-height NC-AFM in the repulsive force regime, revealing its internal bond structure. In established tip functionalization approaches where, for example, CO or Xe is deliberately picked up from a surface, these probe particles are only weakly bound to the metallic tip, leading to lateral deflections during scanning. Therefore, the contrast mechanism is subject to image distortions, artifacts, and related controversies. In contrast, our simulations for the O-terminated Cu tip show that lateral deflections of the terminating O atom are negligible. This allows a detailed discussion of the fundamental imaging mechanisms in high-resolution NC-AFM experiments. With its structural rigidity, its chemically passivated state, and a high electron density at the apex, we identify the main characteristics of the O-terminated Cu tip, making it a highly attractive complementary probe for the characterization of organic nanostructures on surfaces. PMID:26605698

  1. Overcoming challenges in the study of nitrided microalloyed steels using atom probe

    Nitrided steels are widely used in the engineering field due to their superior hardness and other attractive properties. Atom probe tomography (APT) was employed to study two Nb-microalloyed CASTRIP steels with different N contents. A major challenge of using APT to study this group of materials is the presence of tails after Fe peaks in the mass spectra, which overestimates the composition for alloying elements such as Nb and Cu in the steels. One important factor that contributes to the tails is believed to be delayed field evaporation from Fe2+. This artefact of the mass spectrum was observed to be the most severe when voltage pulsing was used. The application of laser pulses with energy ranging from 0.2 to 1.2 nJ successfully reduced the tails and lead to better compositional measurement accuracy. Spatial resolution in the z-direction (along the tip direction) was observed to be less affected by changing laser energy but deteriorates in x–y direction with increasing laser energy. This investigation suggests that pulsed-laser atom probe with ∼0.4 nJ laser energy can be used to study this group of materials with improved mass resolution while still maintaining high spatial resolution. -- Highlights: ► Degradation of mass resolution in the nitrided steel using voltage pulsed atom probe was identified. ► The origin of the degradation was explored and considered to be associated with delayed evaporation. ► The artifact caused by mass resolution degradation was successfully removed by the application of laser pulsed atom probe. ► The effect of laser energy on mass resolution, composition measurement and spatial resolution was investigated. ► Laser energy ∼0.4 nJ was recommended to study this group of materials using laser pulsed atom probe.

  2. A FIM-atom probe investigation of the bainite transformation in CrMo steel

    To obtain a better understanding of the role played by Cr and Mo in the bainite transformation a Field-Ion Microscope - Atom Probe was constructed in order to study the distribution of the alloying elements near various types of boundaries on atomic scale. The distribution of alloying elements measured with this instrument is not so smooth on atomic scale as suggested by microprobe analysis. In a coherent twin boundary, formed during the bainite transformation, a depletion of the substitutionals Cr and Mo and an enhancement of the C content is observed, which is in accordance with the atomic model of a B.C.C. twin. In the twin plane the interstitial sites are even larger than the F.C.C. octahedral sites and this plane can act as an effective sink for the carbon atoms from bainitic ferrite. The depletion of Cr and Mo from the twin plane is due to interface coherency. (Auth.)

  3. Electromagnetically induced transparency with cold Rydberg atoms: Superatom model beyond the weak-probe approximation

    Liu, Yi-Mou; Yan, Dong; Tian, Xue-Dong; Cui, Cui-Li; Wu, Jin-Hui

    2014-03-01

    We present an improved superatom model for examining nonlinear optical responses of cold Rydberg atoms in the regime of electromagnetically induced transparency (EIT). By going beyond the weak-probe approximation, we find that several higher-order collective states should be included to correctly describe the coherent Rydberg excitation of superatoms. Otherwise, numerical results based on the simple ladder system of superatoms will contribute wrong predictions on light intensity and photon correlation of the transmitted probe field. In particular, a great photon-bunching effect will be improperly expected somewhere out of the EIT window in one dilute atomic sample. The essence of this improved superatom model lies in that it can provide reliable predictions on the nonlinear Rydberg-EIT phenomena even in dense atomic samples and may be extended to realize lossless conditional light interactions in appropriate multilevel systems exhibiting dipole blockade.

  4. A new systematic framework for crystallographic analysis of atom probe data.

    Araullo-Peters, Vicente J; Breen, Andrew; Ceguerra, Anna V; Gault, Baptiste; Ringer, Simon P; Cairney, Julie M

    2015-07-01

    In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon. Data was collected both in DC voltage mode and laser-assisted mode (in the latter of which extracting crystallographic information is known to be more difficult due to distortions). The nature of the atomic planes in both datasets was extracted and analysed. PMID:25747179

  5. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3He and 4He in tungsten

  6. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    In multifrequency atomic force microscopy (AFM), probe’s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude’s sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement

  7. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    Cai, Jiandong; Zhang, Li [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Wang, Michael Yu, E-mail: michael.wang@nus.edu.sg [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Department of Mechanical Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-12-15

    In multifrequency atomic force microscopy (AFM), probe’s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude’s sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  8. Conductive transparent fiber probes for shear-force atomic force microscopes

    New conductive transparent (CT) probes that can inject currents into nanometer-sized regions and collect light from them have been developed for shear-force atomic force microscopy (SF-AFM) of partially isolative regions. The CT probe consists of a straight elastic silica fiber with one end tapered to a point. The taper is coated with an indium-tin-oxide film as a transparent electrode, and the probe apex has a nanometer-scale radius. The essential feature of the CT probes is coaxial nickel plating on the shaft of the isolative silica fiber, which is adjusted to obtain suitable elasticity for smooth shear-force feedback as well as for supplying currents to the transparent electrode. Experimental results clarified that nickel thickness between 0.5 and 15 μm on 20 mm-long fibers makes resistance low enough for supplying current to the probe apex and also makes the Q curves smooth enough for shear-force feedback. Clear SF-AFM and current images were successfully obtained for a sample containing both conductive and isolative regions. The CT probes for SF-AFM can expand applications of probe-current-induced luminescence measurements to samples that contain highly resistive and isolative regions, for which scanning tunneling microscopy cannot be applied

  9. Spatial decomposition of molecular ions within 3D atom probe reconstructions

    Breen, Andrew [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006 (Australia); Moody, Michael P. [Department of Materials, University of Oxford, Parks Road, OX13PH, Oxford (United Kingdom); Gault, Baptiste [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ont. L8S4L8 (Canada); Ceguerra, Anna V. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006 (Australia); Xie, Kelvin Y. [Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD 21218 (United States); Du, Sichao [Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006 (Australia); School of Physics, The University of Sydney, NSW 2006 (Australia); Ringer, Simon P., E-mail: simon.ringer@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Two methods for separating the constituent atoms of molecular ions within atom probe tomography reconstructions are presented. The Gaussian Separation Method efficiently deconvolutes molecular ions containing two constituent atoms and is tested on simulated data before being applied to an experimental HSLA steel dataset containing NbN. The Delaunay Separation Method extends separation to larger complex ions and is also tested on simulated data before being applied to an experimental GaAs dataset containing many large (>3 atoms) complex ions. First nearest neighbour (1NN) distributions and images of the reconstruction before and after the separations are used to show the effect of the algorithms and their validity and practicality are also discussed. - Highlights: ► The need to deconvolute molecular ions within atom probe data is discussed. ► Two algorithms to separate the constituent atoms of molecular ions are proposed. ► The algorithms developed are tested on simulated and experimental data. ► Nearest neighbour distributions are used to highlight the improvements.

  10. Spatial decomposition of molecular ions within 3D atom probe reconstructions

    Two methods for separating the constituent atoms of molecular ions within atom probe tomography reconstructions are presented. The Gaussian Separation Method efficiently deconvolutes molecular ions containing two constituent atoms and is tested on simulated data before being applied to an experimental HSLA steel dataset containing NbN. The Delaunay Separation Method extends separation to larger complex ions and is also tested on simulated data before being applied to an experimental GaAs dataset containing many large (>3 atoms) complex ions. First nearest neighbour (1NN) distributions and images of the reconstruction before and after the separations are used to show the effect of the algorithms and their validity and practicality are also discussed. - Highlights: ► The need to deconvolute molecular ions within atom probe data is discussed. ► Two algorithms to separate the constituent atoms of molecular ions are proposed. ► The algorithms developed are tested on simulated and experimental data. ► Nearest neighbour distributions are used to highlight the improvements

  11. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy.

    Gullo, Maurizio R; Frederix, Patrick L T M; Akiyama, Terunobu; Engel, Andreas; deRooij, Nico F; Staufer, Urs

    2006-08-01

    A combined atomic force and scanning electrochemical microscope probe is presented. The probe is electrically insulated except at the very apex of the tip, which has a radius of curvature in the range of 10-15 nm. Steady-state cyclic voltammetry measurements for the reduction of Ru(NH3)6Cl3 and feedback experiments showed a distinct and reproducible response of the electrode. These experimental results agreed with finite element simulations for the corresponding diffusion process. Sequentially topographical and electrochemical studies of Pt lines deposited onto Si3N4 and spaced 100 nm apart (edge to edge) showed a lateral electrochemical resolution of 10 nm. PMID:16878880

  12. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  13. Development of atomic radical monitoring probe and its application to spatial distribution measurements of H and O atomic radical densities in radical-based plasma processing

    Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfully measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.

  14. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  15. Spatial decomposition of molecular ions within 3D atom probe reconstructions.

    Breen, Andrew; Moody, Michael P; Gault, Baptiste; Ceguerra, Anna V; Xie, Kelvin Y; Du, Sichao; Ringer, Simon P

    2013-09-01

    Two methods for separating the constituent atoms of molecular ions within atom probe tomography reconstructions are presented. The Gaussian Separation Method efficiently deconvolutes molecular ions containing two constituent atoms and is tested on simulated data before being applied to an experimental HSLA steel dataset containing NbN. The Delaunay Separation Method extends separation to larger complex ions and is also tested on simulated data before being applied to an experimental GaAs dataset containing many large (>3 atoms) complex ions. First nearest neighbour (1NN) distributions and images of the reconstruction before and after the separations are used to show the effect of the algorithms and their validity and practicality are also discussed. PMID:23522847

  16. Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy.

    Albrecht, F; Repp, J; Fleischmann, M; Scheer, M; Ondráček, M; Jelínek, P

    2015-08-14

    Kelvin probe force spectroscopy was used to characterize the charge distribution of individual molecules with polar bonds. Whereas this technique represents the charge distribution with moderate resolution for large tip-molecule separations, it fails for short distances. Here, we introduce a novel local force spectroscopy technique which allows one to better disentangle electrostatic from other contributions in the force signal. It enables one to obtain charge-related maps at even closer tip-sample distances, where the lateral resolution is further enhanced. This enhanced resolution allows one to resolve contrast variations along individual polar bonds. PMID:26317733

  17. Atom probe field ion microscopy investigation of boron containing martensitic 9 Pct chromium steel

    Hofer, P.; Miller, M. K.; Babu, S. S.; David, S. A.; Cerjak, H.

    2000-03-01

    The chemical compositions of the ferrite matrix and various other phases in an Fe-0.17 C-9 Cr-1.55 Mo-0.27 V-0.015 N-0.01B (mass pct) steel in as-received and crept conditions were measured with atom probe field ion microscopy (APFIM). The results showed the presence of some residual boron within the ferrite matrix. Analyses showed that boron was distributed within M23C6, M6C, MX, and Laves phases. Phosphor atoms were detected at the M23C6-ferrite interface in the crept condition. The results are compared to predictions from thermodynamic calculations.

  18. Interference Effects on the Probe Absorption in a Driven Three-Level Atomic System by a Coherent Pumping Field

    In this work we analyze the properties of weak probe absorption in a closed three-level atomic system driven by a coherent driving field. The effects of quantum interference from spontaneous emission on the refractive properties in a closed three-level atomic system driven by a coherent pumping field are included into the gain modeling. The density-matrix equations of motion are solved by following perturbation approach and the probe response function is constructed. The probe absorption is obtained by solving Maxwell's equation for propagation of the probe field of slowly varying amplitude. Analytical and numerical simulation of quantum interference effect between the spontaneous decay channels on the absorptive response of a weak probe field in a closed three-level atomic system driven by a coherent driving field, as well as the evolution of probe gain under coherent pumping mode is studied in laser-produced carbon and aluminum plasma with laser intensity > 1010W/cm2. (author)

  19. Challenges in the study of Fe/MgO/Fe interfaces using 3D Atom Probe

    Mazumder, B. [Groupe de Physique des Materiaux, UMR CNRS 6634, CORIA UMR CNRS 6614, UFR Sciences Site du Madrillet, Avenue de l' Université, B.P. 12 76801, Saint Etienne du Rouvray Cedex (France); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Purohit, Viswas, E-mail: vishwas.purohit@gmail.com [Groupe de Physique des Materiaux, UMR CNRS 6634, CORIA UMR CNRS 6614, UFR Sciences Site du Madrillet, Avenue de l' Université, B.P. 12 76801, Saint Etienne du Rouvray Cedex (France); Department of Plasma Physics, Alliance College of Engineering and Design, Chikkahagade Cross, Chandapura, Anekal Main Road, Anekal, Bangalore 562106, Karnataka (India); Gruber, M.; Vella, A.; Vurpillot, F.; Deconihout, B. [Groupe de Physique des Materiaux, UMR CNRS 6634, CORIA UMR CNRS 6614, UFR Sciences Site du Madrillet, Avenue de l' Université, B.P. 12 76801, Saint Etienne du Rouvray Cedex (France)

    2015-08-31

    Detailed interface studies were conducted on two Fe/MgO/Fe systems having different thicknesses of MgO layers, using a laser assisted 3D atom probe. In conjunction with a detailed 3D reconstruction, the system exhibited an additional oxide formation at the interface between MgO and Fe of the multilayer structure. This oxide formation was found to be independent of the laser wavelength, laser fluence and the thickness of the intermediate layers. By using numerical simulations of field evaporation of two layers having two different evaporation fields, we discuss the possible oxidation mechanisms. - Highlights: • MgO layers (4, 32 nm) between Fe layers were analysed using a laser assisted atom probe. • Varying field evaporation voltages responsible for interfacial oxide layer (bottom) • Numerical simulation used to determine the phenomena taking place at the interfaces • Lasers of wavelengths 515 nm and 343 nm were used for this study.

  20. Dicke superradiance as nondestructive probe for the state of atoms in optical lattices

    Brinke, Nicolai ten; Schützhold, Ralf

    2016-05-01

    We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.

  1. A computational geometry framework for the optimisation of atom probe reconstructions.

    Felfer, Peter; Cairney, Julie

    2016-10-01

    In this paper, we present pathways for improving the reconstruction of atom probe data on a coarse (>10nm) scale, based on computational geometry. We introduce a way to iteratively improve an atom probe reconstruction by adjusting it, so that certain known shape criteria are fulfilled. This is achieved by creating an implicit approximation of the reconstruction through a barycentric coordinate transform. We demonstrate the application of these techniques to the compensation of trajectory aberrations and the iterative improvement of the reconstruction of a dataset containing a grain boundary. We also present a method for obtaining a hull of the dataset in both detector and reconstruction space. This maximises data utilisation, and can be used to compensate for ion trajectory aberrations caused by residual fields in the ion flight path through a 'master curve' and correct for overall shape deviations in the data. PMID:27449275

  2. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography.

    Al-Kassab, T; Kompatscher, M; Kirchheim, R; Kostorz, G; Schönfeld, B

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3 at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ' state. PMID:24981213

  3. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    Al-Kassab, Talaat

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ\\' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ\\' state. © 2014 Elsevier Ltd.

  4. Atomic force microscope based Kelvin probe measurements : application to an electrochemical reaction

    Böhmisch, Mathias; Burmeister, Frank; Rettenberger, Armin; Zimmermann, Jörg; Boneberg, Johannes; Leiderer, Paul

    1997-01-01

    An atomic force microscope (AFM) was utilized as a Kelvin probe to determine work functions of several metals and semiconductors quantitarively. Most of the experimental data show excellent agreement with published values measured by photoemission. Variations in work functions as low as 5 mV could be detected with a typical lateral resolution of 20 nm. This method allowed us to analyze and explain the energetics of an electrochemical reaction on the surface of WSe2, which could be in situ ind...

  5. Interface study of FeMgOFe magnetic tunnel junctions using 3D Atom Probe

    Mazumder, B; Vella, A; Vurpillot, F; Deconihout, B

    2011-01-01

    A detailed interface study was conducted on a Fe/MgO/Fe system using laser assisted 3D atom probe. It exhibits an additional oxide formation at the second interface of the multilayer structure independent of laser wavelength, laser fluence and the thickness of the tunnel barrier. We have shown with the help of simulation that this phenomena is caused by the field evaporation of two layers having two different evaporation

  6. ATOM PROBE MICROANALYSIS OF WELD METAL IN A SUBMERGED ARC WELDED CHROMIUM-MOLYBDENUM STEEL

    Josefsson, B.; Kvist, A.; Andrén, H.

    1987-01-01

    A submerged arc welded 2.25Cr - 1Mo steel has been investigated using electron microscopy and atom probe field ion microscopy. The bainitic microstructure of the as-welded steel consisted of ferrite and martensite. During heat treatment at 690°C the martensite transformed to ferrite and cementite and needle-shaped (Cr,Mo)2C carbides precipitated. Together with a substantial decrease in dislocation density, this resulted in an improvement of the toughness.

  7. Atom probe field ion microscopy and related topics: A bibliography 1989

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  8. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    Christensen, Thomas; Yan, Wei; Raza, Søren;

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii. For...

  9. Atom-probe tomography of tribological boundary films resulting from boron-based oil additives

    Kim, Yoon-Jun; Baik, Sung-Il; Bertolucci-Coelho, Leonardo; Mazzaferro, Lucca; Ramirez, Giovanni; Erdemir, Ali; Seidman, D K

    2016-01-15

    Correlative characterization using atom-probe tomography (APT) and transmission electron microscopy (TEM) was performed on a tribofilm formed during sliding frictional testing with a fully formulated engine oil, which also contains a boron-based additive. The tribofilm formed is ~15 nm thick and consists of oxides of iron and compounds of B, Ca, P, and S, which are present in the additive. This study provides strong evidence for boron being embedded in the tribofilm, which effectively reduces friction and wear losses.

  10. Atom probe study of chromium oxide spinels formed during intergranular corrosion

    Atom probe microscopy has been used to study the inhomogeneous nature of chromium oxide spinels in intergranular corrosion of a 253 MA austenitic stainless steel after thermal cycling up to 970 °C in air. The results indicate that the non-continuous character of the spinel layers originates from nanoscale phases such as iron-rich oxides along the chromite grain boundaries and silicate particles. Their role in the rate of intergranular corrosion is discussed

  11. Atom probe field-ion microscopy and related topics: A bibliography, 1988

    This bibliography includes references related to the following topics: field-ion microscopy (FIM), field emission microscopy (FEM), atom probe field-ion microscopy (APFIM), and liquid metal ion sources (LMIS). Technique-orientated studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles

  12. Atom probe field ion microscopy and related topics: A bibliography 1989

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications

  13. Resistance of single polyaniline fibers and their junctions measured by double-probe atomic force microscopy

    Higuchi, Rintaro; Shingaya, Yoshitaka; Nakayama, Tomonobu

    2016-08-01

    Electrical properties of polyaniline (PANI) fibers are of our interest as a component of network materials. Using a multiple-probe atomic force microscope with tuning fork probes, we investigated the resistance of single PANI fibers and their cross-point junction where the fibers contact each other. The resistivity of single PANI fibers was measured to be on the order of 10 Ω cm, and the contact resistance between PANI fibers was on the order of GΩ. The resistances through single cross-point junctions between two PANI fibers were very much dependent on the experimental condition, that is, the cross-point junction is stabilized or destabilized by physically placing the probes onto the two fibers. This suggests the nanomechanical instability of the cross-point junctions and a possibility to construct strain-responsive PANI fiber networks.

  14. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  15. Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels

    London, A. J.; Lozano-Perez, S.; Santra, S.; Amirthapandian, S.; Panigrahi, B. K.; Sundar, C. S.; Grovenor, C. R. M.

    2014-06-01

    Oxide dispersion strengthened steels owe part of their high temperature stability to the nano-scale oxides they contain. These yttrium-titanium oxides are notoriously difficult to characterise since they are embedded in a magnetic-ferritic matrix and often atom probe tomography on the same material to explore the kind of information that can be gained on the character of the oxide particles. The influence of chromium in these alloys is of interest, therefore two model ODS steels Fe-(14Cr)-0.2Ti-0.3Y2O3 are compared. TEM is shown to accurately measure the size of the oxide particles and atom probe tomography is necessary to observe the smallest sub-1.5 nm particles. Larger Y2Ti2O7 and Y2TiO5 structured particles were identified by high-resolution transmission electron microscopy, but the smallest oxides remain difficult to index. Chemical data from energy-filtered TEM agreed qualitatively with the atom probe findings. It was found that the majority of the oxide particles exhibit an unoxidised chromium shell which may be responsible for reducing the ultimate size of the oxide particles.

  16. Probe spectrum of multilevel atoms in a damped, weakly driven two-mode cavity

    We calculate the probe spectrum for multilevel atoms in a damped, weakly driven cavity supporting two degenerate orthogonally polarized modes. One mode is weakly driven by a linearly polarized external field. The atoms, initially prepared in a mF=0 hyperfine ground state, couple to the driven mode by making a ΔmF=0 transition and to the orthogonally polarized mode by making ΔmF=±1 transitions to other hyperfine sublevels. We compare probe spectra, the intensity of the driven mode, the undriven mode, and the atomic excitation probability as a function of the detuning of the driving laser from the cavity resonance for three- and four-level atomic models. In both cases the spectrum of the driven mode is a vacuum Rabi doublet familiar from the driven, damped Jaynes-Cummings model. The undriven mode spectrum is a triplet with the maximum on resonance for the three-level model while the four-level model has a four-peaked spectrum. We discuss the role of strong coupling to the undriven mode in accounting for the qualitative difference between the models.

  17. Understanding the atomic-scale contrast in Kelvin Probe Force Microscopy

    Nony, Laurent; Bocquet, Franck; Loppacher, Christian; 10.1103/PhysRevLett.103.036802

    2009-01-01

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy (KPFM) is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a non-contact Atomic Force Microscope/KPFM simulator. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and Contact Potential Difference (CPD) contrasts were reported. The local CPD does reflect the periodicity of the ionic crystal, but not the magnitude of its Madelung surface potential. The imaging mechanism relies on the induced polarization of the ions at the tip-surface interface owing to the modulation of the applied bias voltage. Our findings are in excellent agreement with previous theoretical expectations and experimental observations.

  18. Electron Affinity Calculations for Atoms: Sensitive Probe of Many-Body Effects

    Felfli, Z.; Msezane, A. Z.

    2016-05-01

    Electron-electron correlations and core-polarization interactions are crucial for the existence and stability of most negative ions. Therefore, they can be used as a sensitive probe of many-body effects in the calculation of the electron affinities (EAs) of atoms. The importance of relativistic effects in the calculation of the EAs of atoms has recently been assessed to be insignificant up to Z of 85. Here we use the complex angular momentum (CAM) methodology wherein is embedded fully the electron-electron correlations, to investigate core-polarization interactions in low-energy electron elastic scattering from the atoms In, Sn, Eu, Au and At through the calculation of their EAs. For the core-polarization interaction we use the rational function approximation of the Thomas-Fermi potential, which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the CAM calculated low-energy electron-atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlations and core polarization interactions (both major many-body effects) are accounted for adequately the importance of relativity on the calculation of the EAs of atoms can be assessed. Even for the high Z (85) At atom relativistic effects are estimated to contribute a maximum of 3.6% to its EA calculation.

  19. CHEMISORPTION OF CO AND METHANATION ON Rh SURFACES AT LOW TEMPERATURE AND LOW PRESSURE, AN ATOM-PROBE FIM STUDY

    W. Liu; Ren, D.; Bao, C.; Tsong, T.

    1987-01-01

    Pulsed-laser imaging atom-probe and high resolution voltage pulsed atom-probe were employed to study the chemisorption behavior of CO on rhodium surfaces at low temperature and low pressure. The results are consistent and interesting. Our results support dissociative chemisorption on stepped surfaces of Rh and the effect of the surface structures. We also carried out methanation on Rh surfaces under adverse conditions and identified the intermediates of methanation with an isotope exchange te...

  20. Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images

    The physical basis for using a probe-position integrated cross section (PICS) for a single column of atoms as an effective way to compare simulation and experiment in high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) is described, and the use of PICS in order to make quantitative use of image intensities is evaluated. It is based upon the calibration of the detector and the measurement of scattered intensities. Due to the predominantly incoherent nature of HAADF STEM, it is found to be robust to parameters that affect probe size and shape such as defocus and source coherence. The main imaging parameter dependencies are on detector angle and accelerating voltage, which are well known. The robustness to variation in other parameters allows for a quantitative comparison of experimental data and simulation without the need to fit parameters. By demonstrating the application of the PICS to the chemical identification of single atoms in a heterogeneous catalyst and in thin, layered-materials, we explore some of the experimental considerations when using this approach. - Highlights: • Probe-position integrated cross section (PICS) used to quantitatively compare experimental images of HAADF STEM to simulations. • Theoretical treatment based on the object function approximation is presented. • PICS shown to be robust to experimental parameters. • Considerations for accuracy of experimental analysis and simulations discussed. • Application of PICS analysis to low dimensional, beam sensitive samples show excellent agreement between experiment and simulations

  1. Study of defects, radiation damage and implanted gases in solids by field-ion and atom-probe microscopy

    The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3He and 4He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail

  2. Probing the rupture of a Ag atomic junction in a Ag-Au mixed electrode

    Kim, Taekyeong

    2015-09-01

    We probed that the atomic junction in Ag part ruptures during stretching of atomic sized contacts of Ag-Au mixed electrodes, resulting in Ag-Ag electrodes through a scanning tunneling microscope breaking junction (STM-BJ) technique. We observed that the conductance and tunneling decay constant for a series of amine-terminated oligophenyl molecular junctions are essentially the same for the Ag-Au mixed and the Ag-Ag electrodes. We also found the molecular plateau length and the evolution patterns with the Ag-Au mixed electrodes are similar to those with Ag-Ag electrodes rather than the Au-Au electrodes in the molecular junction elongation. This result is attributed to the smaller binding energy of Ag atoms compared to that of Au atoms, so the Ag junction part is more easily broken than that of Au part in stretching of Ag-Au mixed electrodes. Furthermore, we successfully observed that the rupture force of the atomic junction for the Ag-Au mixed electrodes was identical to that for the Ag-Ag electrodes and smaller than that for the Au-Au electrodes. This study may advance the understanding of the electrical and the mechanical properties in molecular devices with Ag and Au electrodes in future.

  3. Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels

    Highlights: • Quantitative study of 3D features such as grain boundary oxides and Ni enrichment. • Features can be related to their distance from the crack tip. • Local measurement of compositions in very small volumes and specific regions. • Complementary analytical TEM data was recorded to correlate to APT results. • Both matrix elements (Fe, Cr, Ni) and oxygen diffuse along the grain boundary. - Abstract: Novel atom probe tomography (APT) data of an intergranular stress corrosion crack tip has been acquired. Using APT for stress corrosion cracking research, very small, localized features and their distribution around the crack tip can be studied in 3D. This work details the development of a technique for the preparation of atom probe needles. Initial characterization via analytical transmission electron microscopy provides with a complementary analysis and accurately locates features that can be correlated with the reconstructed APT data. Ni enrichment and intergranular oxidation ahead of the crack tip have been studied with APT in 3D and with near-atomic resolution

  4. Applying computational geometry techniques for advanced feature analysis in atom probe data

    In this paper we present new methods for feature analysis in atom probe tomography data that have useful applications in materials characterisation. The analysis works on the principle of Voronoi subvolumes and piecewise linear approximations, and feature delineation based on the distance to the centre of mass of a subvolume (DCOM). Based on the coordinate systems defined by these approximations, two examples are shown of the new types of analyses that can be performed. The first is the analysis of line-like-objects (i.e. dislocations) using both proxigrams and line-excess plots. The second is interfacial excess mapping of an InGaAs quantum dot. - Highlights: • Computational geometry is used to detect and analyse features within atom probe data. • Limitations of conventional feature detection are overcome by using atomic density gradients. • 0D, 1D, 2D and 3D features can be analysed by using Voronoi tessellation for spatial binning. • New, robust analysis methods are demonstrated, including line and interfacial excess mapping

  5. Improved in situ spring constant calibration for colloidal probe atomic force microscopy

    In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a new in situ spring constant calibration method based upon the residuals, namely, the difference between experimental force-distance data and V-theory is presented and contrasted with two other popular spring constant determination methods. In this residuals calibration method, V-theory is fitted to the experimental force-distance data for a range of systematically varied spring constants where the only adjustable parameter in V-theory is the slip length b. The optimal spring constant k is that value where the residuals are symmetrically displaced about zero for all colloidal probe separations. This residual spring constant calibration method is demonstrated by studying three different liquids (n-decanol, n-hexadecane, and n-octane) and two different silane coated colloidal probe-silicon wafer systems (n-hexadecyltrichlorosilane and n-dodecyltrichlorosilane).

  6. Pump-probe spectroscopy of cold rubidium atoms in an integrating sphere

    Wang, Wen-Li; Dong, Ri-Chang; Deng, Jian-Liao; Wang, Yu-Zhu

    2016-05-01

    Absorption spectra of cold rubidium atoms in an integrating sphere under the influence of a diffuse laser field have been systematically investigated. A pronounced dispersionlike structure centered at the light-shifted pump frequency is observed with a subnatural linewidth. In particular, two clearly resolved absorption resonances on the 5 S1 /2(F =2 ) →5 P3 /2(F'=3 ) transitions occur with variable probe beam intensity, which is consistent with our proposed theoretical model. Based on the two absorption resonances,we measure the dependence of light shifts, from which we can directly extract the effective Rabi frequency in a diffuse laser field, on the probe laser intensity, pump laser intensity, and pump laser detuning. Our work helps to identify the physical mechanisms behind these spectral features and is beneficial for studying the corresponding effect in a cold sample.

  7. Correlated ion analysis and the interpretation of atom probe mass spectra

    Several techniques are presented for extracting information from atom probe mass spectra by investigating correlations within multiple-ion detector events. Analyses of this kind can provide insights into the origins of noise, the shape of mass peaks, or unexpected anomalies within the spectrum. Data can often be recovered from within the spectrum noise by considering the time-of-flight differences between ions within a multiple event. Correlated ion detection, particularly when associated with shifts in ion energies, may be used to probe the phenomenon of molecular ion dissociation, including the questions of data loss due to ion pile-up or the generation of neutrals in the dissociation process. -- Research Highlights: → Multiple-ion detection events may contain information not seen in the mass spectrum. → Analysis of multiple events can yield information on molecular ion dissociation. → Neutral species may be generated by dissociation subsequent to field evaporation.

  8. Atom probe study of grain boundary segregation in technically pure molybdenum

    Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitive techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of

  9. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The...... calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  10. Local electrode atom probe analysis of silicon nanowires grown with an aluminum catalyst

    Local electrode atom probe (LEAP) tomography of Al-catalyzed silicon nanowires synthesized by the vapor–liquid–solid method is presented. The concentration of Al within the Al-catalyzed nanowire was found to be 2 × 1020 cm−3, which is higher than the expected solubility limit for Al in Si at the nanowire growth temperature of 550 °C. Reconstructions of the Al contained within the nanowire indicate a denuded region adjacent to the Al catalyst/Si nanowire interface, while Al clusters are distributed throughout the rest of the silicon nanowire. (paper)

  11. Initial study on Z-phase strengthened 9-12% Cr steels by atom probe tomography

    Liu, Fang; Andren, Hans-Olof [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2010-07-01

    The microstructure of two different types of Z-phase strengthened experimental steels, CrNbN-based or CrTaN-based, was investigated. Both steels underwent aging at 650 C for relatively short period of time, 24 hours or 1005 hours. Atom probe tomography was used to study the chemical composition of the matrix and precipitates, and the size and number density of the small precipitates. Both steels contain Laves phase at prior austenite grain boundaries and martensitic lath boundaries. The CrTaN-based steel was found more promising due to its finer and more densely distributed precipitates after 1005 hour aging. (orig.)

  12. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. FIELD ION MICROSCOPE AND ATOM-PROBE STUDIES OF SCANNING TUNNELING MICROSCOPE TIPS

    Nishikawa, O.; K. Hattori; Katsuki, F.; Tomitori, M.

    1988-01-01

    Tungsten and platinum-iridium alloy tips were observed by field emission and ion microscopes and were atom-probe mass analyzed to examine the tip surfaces corroded by exposure to air and by immersion into aqueous solutions. Although the A-P analysis indicates that the corroded layer is less than monoatomic thick for both W and Pt-Ir, the FEM and FIM observation indicates that exposure to air and immersion into solutions often result in the formation of a small protrusion at the tip apex. The ...

  14. Atom probe field ion microscopy and related topics: A bibliography 1990

    Russell, K.F.; Miller, M.K.

    1991-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

  15. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy [Corrigendum

    Lee SY; Zaske AM; Novellino T; Danila D; Ferrari M.; Conyers J; Decuzzi P

    2014-01-01

    Lee SY, Zaske AM, Novellino T, et al. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy. Int J Nanomedicine. 2011;6:179–195.The authors apologize that the referencing for Table 1 on page 186 was incorrect, the following corrections should be noted:   8 should be 4240 should be 4318 should be 4442 should be 45  9 should be 4612 should be 4729 should be 4844 should be 4923 should be 5036 should be 1637 should be 18Read th...

  16. Atom probe field ion microscopy and related topics: A bibliography 1993

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included

  17. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced. PMID:19167824

  18. Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors

    Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.

    2012-02-01

    Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.

  19. A STUDY OF TIN IMPURITY ATOMS IN AMORPHOUS SILICON

    Rabchanova, Tatiana

    2013-01-01

    Using the Mössbauer spectroscopy method for the 119 Sn isotope the state of tin impurity atoms in amorphous a-Si silicon is studied. The electrical and optical properties of tin doped films of thermally spray-coated amorphous silicon have been studied. It is shown that in contrast to the crystalline silicon where tin is an electrically inactive substitution impurity, in vacuum deposited amorphous silicon it produces an acceptor band near the valence band and a fraction of the tin atoms become...

  20. Attosecond probing of state-resolved ionization and superpositions of atoms and molecules

    Leone, Stephen

    2016-05-01

    Isolated attosecond pulses in the extreme ultraviolet are used to probe strong field ionization and to initiate electronic and vibrational superpositions in atoms and small molecules. Few-cycle 800 nm pulses produce strong-field ionization of Xe atoms, and the attosecond probe is used to measure the risetimes of the two spin orbit states of the ion on the 4d inner shell transitions to the 5p vacancies in the valence shell. Step-like features in the risetimes due to the subcycles of the 800 nm pulse are observed and compared with theory to elucidate the instantaneous and effective hole dynamics. Isolated attosecond pulses create massive superpositions of electronic states in Ar and nitrogen as well as vibrational superpositions among electronic states in nitrogen. An 800 nm pulse manipulates the superpositions, and specific subcycle interferences, level shifting, and quantum beats are imprinted onto the attosecond pulse as a function of time delay. Detailed outcomes are compared to theory for measurements of time-dynamic superpositions by attosecond transient absorption. Supported by DOE, NSF, ARO, AFOSR, and DARPA.

  1. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min-1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  2. Quantitative dopant distributions in GaAs nanowires using atom probe tomography

    Du, Sichao [School of Physics, The University of Sydney, NSW 2006 (Australia); Burgess, Timothy [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Gault, Baptiste [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Department of Materials Science and Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S4L8 (Canada); Gao, Qiang [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Bao, Peite; Li, Li [School of Physics, The University of Sydney, NSW 2006 (Australia); Cui, Xiangyuan; Kong Yeoh, Wai; Liu, Hongwei; Yao, Lan [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Ceguerra, Anna V. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Hoe Tan, Hark; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Zheng, Rongkun, E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Controllable doping of semiconductor nanowires is critical to realize their proposed applications, however precise and reliable characterization of dopant distributions remains challenging. In this article, we demonstrate an atomic-resolution three-dimensional elemental mapping of pristine semiconductor nanowires on growth substrates by using atom probe tomography to tackle this major challenge. This highly transferrable method is able to analyze the full diameter of a nanowire, with a depth resolution better than 0.17 nm thanks to an advanced reconstruction method exploiting the specimen's crystallography, and an enhanced chemical sensitivity of better than 8-fold increase in the signal-to-noise ratio. - Highlights: ► Probing pristine semiconductor NWs from growth substrate has been demonstrated. ► Analyzing the full diameter of a nanowire has been achieved. ► A spatial resolution better than 0.17 nm in depth has been obtained for GaAs. ► An enhanced SNR 100:2 has been achieved.

  3. Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments

    Folcke, E.; Larde, R. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Le Breton, J.M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Gruber, M.; Vurpillot, F. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Shield, J.E.; Rui, X. [Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska, N104 WSEC, Lincoln, NE 68588 (United States); Patterson, M.M. [Department of Physics, University of Wisconsin-Stout, Menomonie, WI 54751 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FePt nanoclusters dispersed in a Cr matrix were studied by atom probe tomography. Black-Right-Pointing-Pointer Simulated experiments were conducted to study the artefacts of the analysis. Black-Right-Pointing-Pointer In FePt nanoclusters, Fe and Pt are present in equiatomic proportions. Black-Right-Pointing-Pointer FePt nanoclusters are homogeneous, no core-shell structure is observed. - Abstract: FePt nanoclusters dispersed in a Cr matrix have been investigated by laser-assisted atom probe tomography. The results were analysed according to simulated evaporation experiments. Three-dimensional (3D) reconstructions reveal the presence of nanoclusters roughly spherical in shape, with a size in good agreement with previous transmission electron microscopy observations. Some clusters appear to be broken up after the evaporation process due to the fact that the Cr matrix has a lower evaporation field than Fe and Pt. It is thus shown that the observed FePt nanoclusters are chemically homogeneous. They contain Fe and Pt in equiatomic proportions, with no core-shell structure observed.

  4. Quantitative dopant distributions in GaAs nanowires using atom probe tomography

    Controllable doping of semiconductor nanowires is critical to realize their proposed applications, however precise and reliable characterization of dopant distributions remains challenging. In this article, we demonstrate an atomic-resolution three-dimensional elemental mapping of pristine semiconductor nanowires on growth substrates by using atom probe tomography to tackle this major challenge. This highly transferrable method is able to analyze the full diameter of a nanowire, with a depth resolution better than 0.17 nm thanks to an advanced reconstruction method exploiting the specimen's crystallography, and an enhanced chemical sensitivity of better than 8-fold increase in the signal-to-noise ratio. - Highlights: ► Probing pristine semiconductor NWs from growth substrate has been demonstrated. ► Analyzing the full diameter of a nanowire has been achieved. ► A spatial resolution better than 0.17 nm in depth has been obtained for GaAs. ► An enhanced SNR 100:2 has been achieved

  5. The study of quantitativeness in atom probe analysis of alloying elements in steel

    The quantitativeness in atom probe analysis of dilute solute alloying elements in steel was systematically investigated. The samples of binary Fe-Si, Fe-Ti, Fe-Cr, Fe-Cu, Fe-Mn and Fe-Mo alloys were prepared for present study. The apparent compositions of alloying elements were examined by three-dimensional atom probe (3DAP) under various experimental conditions. The temperature dependence of the apparent compositions varied largely with the alloys, which indicated that the degree of preferential evaporation or retention varied with the alloying elements. Furthermore, the analysis direction dependence of the apparent Mn composition was examined in the Fe-Mn alloy. The experimental results indicated that the order of the field evaporation rate of elements in steel was Cu>Cr>Mn∼Mo>Fe>Ti∼Si. The field evaporability of alloying elements in steel was discussed in terms of the solution enthalpy of the alloying elements and the phase types of the binary Fe alloys.

  6. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  7. Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography

    In many cases, the three-dimensional reconstructions from atom probe tomography (APT) are not sufficiently accurate to resolve crystallographic features such as lattice planes, shear bands, stacking faults, dislocations or grain boundaries. Hence, correlative crystallographic characterization is required in addition to APT at the exact same location of the specimen. Also, for the site-specific preparation of APT tips containing regions of interest (e.g. grain boundaries) correlative electron microscopy is often inevitable. Here we present a versatile experimental setup that enables performing correlative focused ion beam milling, transmission electron microscopy (TEM), and APT under optimized characterization conditions. The setup was designed for high throughput, robustness and practicability. We demonstrate that atom probe tips can be characterized by TEM in the same way as a standard TEM sample. In particular, the use of scanning nanobeam diffraction provides valuable complementary crystallographic information when being performed on atom probe tips. This technique enables the measurement of orientation and phase maps as known from electron backscattering diffraction with a spatial resolution down to one nanometer. - Highlights: • Atom probe tips can be characterized in TEM like any standard TEM sample. • In principal all TEM techniques can be performed on atom probe tips. • Scanning NBD enables the measurement of orientation maps on AP tips with a lateral spatial resolution of 2 nm or better. • Grain orientations can be measured by NBD even in the topmost 10 nm of an AP tip

  8. 39Ar as a probe of the fast-neutron fluence of the Hiroshima atomic bomb

    A new method to estimate the fast-neutron fluence of the Hiroshima atomic bomb is proposed. Recent studies on the thermal-neutron fluence of the Hiroshima atomic bomb have suggested a systematic discrepancy from DS86. On the other hand most of the neutron dose for human was due to fast-neutrons, which is a basis of the radiation-risk estimation. Therefore, a direct measurement of the fast-neutron fluence has been required. This paper points out that the 39Ar produced by the 39K(n,p)39Ar reaction would be a unique probe to estimate the fast-neutron fluence of the atomic bomb. This is because the half life of 39Ar is 269 years, which is sufficiently long to exist for a period of 50 years after the explosion, and the threshold of the 39K(n,p)39Ar reaction is 1 MeV. The feasibility of the 39Ar method is discussed in this report. (author)

  9. Analysis of medical device materials with the local electrode atom probe

    Full text: As medical technology advances towards microsurgical and minimally invasive techniques, there is a drive to produce ever-smaller devices that demand higher material performance and hence enhanced nano and micro-scale control of material structure. These devices are made from stainless steel alloys, Nitinol, titanium, CoCrMo, and non-metals such as pyrolytic carbon and silicon. These applications are made possible due to suitable physical and mechanical properties, good corrosion resistance in biological environments, reasonable biocompatibility, and good manufacturability. With respect to the metals, the nano-structure and composition of the material surface, typically an oxide, is especially critical since biological responses and corrosion occur at the material-environment interface. Thus, there is an increasing need to understand the 3-D structure and composition of metallic biomaterials at the atomic scale. Three-dimensional atom probe microscopy can uniquely provide such atomic-level structural information. In the present study several of these medical device materials were examined. These include a 316L stainless steel alloy which is widely used in implanted spinal fixation devices, bone screws, cardiovascular and neurological stents, a cast CoCrMo acetabular hip cup of a Cormet metal-on-metal Hip Resurfacing System (Corin Group, Cirencester, England) that was rejected for clinical use, Nitinol wires specimens such as are used for stents and guide wires, and low temperature pyrolytic carbon as used in clinical heart valve prosthetics. (author)

  10. Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy

    The relation between surface structure and friction and adhesion is a long-standing question in tribology. Tuning the surface structure of the exposed facets of metal nanoparticles is enabled by shape control. We investigated the effect of the shape of Au nanoparticles on friction and adhesion. Two nanoparticle systems, cubic nanoparticles with a low-index (100) surface and hexoctahedral nanoparticles with a high-index (321) surface, were used as model nanoparticle surfaces. Atomic force microscopy was used to probe the nanoscale friction and adhesion on the nanoparticle surface. Before removing the capping layers, the friction results include contributions from both the geometric factor and the presence of capping layers. After removing the capping layers, we can see the exclusive effect of the surface atomic structure while the geometric effect is maintained. We found that after removing the capping layer, the cubic Au nanoparticles exhibited higher adhesion and friction, compared with cubes capped with layers covering 25% and 70%, respectively. On the other hand, the adhesion and friction of hexoctahedral Au nanoparticles decreased after removing the capping layers, compared with nanoparticles with capping layers. The difference in adhesion and friction forces between the bare Au surfaces and Au nanoparticles with capping layers cannot be explained by geometric factors, such as the slope of the nanoparticle surfaces. The higher adhesion and friction forces on cubic nanoparticles after removing the capping layers is associated with the atomic structure of (100) and (321) (i.e., the flat (100) surfaces of the cubic nanoparticles have a larger contact area, compared with the rough (321) surfaces of the hexoctahedral nanoparticles). This study implies an intrinsic relation between atomic structure and nanomechanical properties, with potential applications for controlling nanoscale friction and adhesion via colloid chemistry. (paper)

  11. Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy

    Yuk, Youngji; Hong, Jong Wook; Lee, Hyunsoo; Han, Sang Woo; Park, Jeong Young

    2015-03-01

    The relation between surface structure and friction and adhesion is a long-standing question in tribology. Tuning the surface structure of the exposed facets of metal nanoparticles is enabled by shape control. We investigated the effect of the shape of Au nanoparticles on friction and adhesion. Two nanoparticle systems, cubic nanoparticles with a low-index (100) surface and hexoctahedral nanoparticles with a high-index (321) surface, were used as model nanoparticle surfaces. Atomic force microscopy was used to probe the nanoscale friction and adhesion on the nanoparticle surface. Before removing the capping layers, the friction results include contributions from both the geometric factor and the presence of capping layers. After removing the capping layers, we can see the exclusive effect of the surface atomic structure while the geometric effect is maintained. We found that after removing the capping layer, the cubic Au nanoparticles exhibited higher adhesion and friction, compared with cubes capped with layers covering 25% and 70%, respectively. On the other hand, the adhesion and friction of hexoctahedral Au nanoparticles decreased after removing the capping layers, compared with nanoparticles with capping layers. The difference in adhesion and friction forces between the bare Au surfaces and Au nanoparticles with capping layers cannot be explained by geometric factors, such as the slope of the nanoparticle surfaces. The higher adhesion and friction forces on cubic nanoparticles after removing the capping layers is associated with the atomic structure of (100) and (321) (i.e., the flat (100) surfaces of the cubic nanoparticles have a larger contact area, compared with the rough (321) surfaces of the hexoctahedral nanoparticles). This study implies an intrinsic relation between atomic structure and nanomechanical properties, with potential applications for controlling nanoscale friction and adhesion via colloid chemistry.

  12. Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination

    Narchi, Paul; Alvarez, José; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod’homme, Patricia; Kleider, Jean-Paul; i Cabarrocas, Pere Roca

    2016-01-01

    Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 10...

  13. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    Todorov, Petko; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel

    2013-01-01

    The velocity distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth angle {\\theta} should evolve as cos {\\theta}, in spite of the fact that there is no microscopic basis to justify such a law. The contribution of atoms moving at a grazing incidence towards or from the surface, i.e. atoms with a small normal velocity, here called "slow" atoms, reveals essential in the development of spectroscopic methods probing a dilute atomic vapor in the vicinity of a surface, enabling a sub-Doppler resolution under a normal incidence irradiation. The probability for such "slow" atoms may be reduced by surface roughness and atom-surface interaction. Here, we describe a method to observe and to count these slow atoms relying on a mechanical discrimination, through spatially separated pump and probe beams. We also report on our experimental progresses toward such a g...

  14. Self-consistent determination of line-width and probe shape using atomic force microscopy

    A self-consistent method for determining line-width and probe shape using an atomic force microscope (AFM) has been developed. Through acquisition of three images in which one tip images the other, and each tip images the sample a least-squares determination of the shapes of both tips, and the parameters that define the line-width standard can be determined. Application of the self-consistent method produces measurements that can be made traceable to the definition of the metre through appropriate calibration of the AFM. A comparison between the line-width determined by the method and a calibrated line-width standard shows good agreement. Sources of uncertainty specific to the self-consistent method are discussed. (paper)

  15. Probing dark energy with an atom interferometer in an optical cavity

    Jaffe, Matthew; Haslinger, Philipp; Hamilton, Paul; Mueller, Holger; Khoury, Justin; Elder, Benjamin

    2016-05-01

    If dark energy -- which drives the accelerated expansion of the universe -- consists of a light scalar field, it might be detectable as a ``fifth force'' between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms can evade such tests by suppressing this force in regions of high density, such as the laboratory. Our experiments constrain these dark energy models using atoms in an ultrahigh-vacuum chamber as probes to expose the screened fields. Using a cesium matter wave interferometer in an optical cavity, we set stringent bounds on coupling screened theories to matter. A further 4 to 5 orders of magnitude would completely rule out chameleon and f(R) theories. I will describe this first tabletop dark energy search, and present the hundredfold boost in sensitivity we have since achieved.

  16. Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications

    A novel dual tip nanomanipulation atomic force microscope (AFM) platform operating in ambient conditions is presented. The system is equipped with a high frequency quartz piezoelectric self-sensing scanning probe for fast imaging and a passive cantilever for manipulation. The system is validated by imaging and selective pushing/pulling of gold colloid beads (diameters from 80 to 180 nm). This provides a more compact integration compared to an external optical lever and avoids several of its drawbacks such as optical interference and noise, and recalibration in the case of a moving cantilever and a fixed laser source and photodiode sensor. Moreover, as the quartz oscillator exhibits oscillation amplitudes in the sub-picometer range with a resonant frequency in the megahertz range, this dynamic force sensor is ideal for fast AFM imaging. Experiments show an increase by five times in imaging speed compared to a classical AFM system. (paper)

  17. Atomic scale properties of magnetic Mn-based alloys probed by Emission Mössbauer spectroscopy

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys at the most atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  18. On low temperature bainite transformation characteristics using in-situ neutron diffraction and atom probe tomography

    Rakha, Khushboo, E-mail: krakha@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Beladi, Hossein; Timokhina, Ilana [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Xiong, Xiangyuan [Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Kabra, Saurabh; Liss, Klaus-Dieter [Australian Nuclear Science and Technology Organisation, The Bragg Institute, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia)

    2014-01-01

    In-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenisation, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was then used to confirm that, despite the presence of 1.5 mass% Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels.

  19. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    Gemma, Ryota

    2011-09-01

    V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations. © 2010 Elsevier B.V. All rights reserved.

  20. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  1. Graphene Coatings: Probing the Limits of the One Atom Thick Protection Layer

    Nilsson, Louis; Andersen, Mie; Balog, Richard; Lægsgaard, Erik; Hofmann, Philip; Besenbacher, Flemming; Hammer, Bjørk; Stensgaard, Ivan; Hornekær, Liv

    2012-01-01

    against CO is observed at CO pressures below 106 mbar. However, at higher pressures CO is observed to intercalate under the graphene coating layer, thus lifting the reconstruction. The limitations of the coating effect are further tested by exposure to hot atomic hydrogen. While the coating can withstand......The limitations of graphene as an effective corrosion-inhibiting coating on metal surfaces, here exemplified by the hex-reconstructed Pt(100) surface, are probed by scanning tunneling microscopy measurements and density functional theory calculations. While exposure of small molecules directly onto...... these extreme conditions for a limited amount of time, after substantial exposure, the Pt(100) reconstruction is lifted. Annealing experiments and density functional theory calculations demonstrate that the basal plane of the graphene stays intact and point to a graphene-mediated mechanism for the H...

  2. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  3. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography.

    Meher, S; Rojhirunsakool, T; Nandwana, P; Tiley, J; Banerjee, R

    2015-12-01

    The analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L12-ordered γ' precipitates to form Ni3(Al,Cr) precipitates in a Ni-14Al-7Cr (at%) alloy. Interestingly, the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within γ' precipitates to form (Ni,Al)3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes. PMID:25952611

  4. The probe gain with and without inversion in a four-level atomic model: light amplification at a short wavelength

    吴金辉; 王登攀; 张惠芳; 肖志宏; 高锦岳

    2003-01-01

    We propose a new four-level atomic model for achieving light amplification at a short wavelength, where direct incoherent pumping into the top level is avoided by the advantage of coherent pumping. In this model, the lower level of the probe transition is an excited state but not the usual ground state. By analytical as well as numerical calculations, we find that the probe gain, either with or without population inversion, which depends on the relation between spontaneous decay rates γ42 and γ21, can be achieved with proper parameters. We note that the Raman scattering gain always plays an important role in achieving the probe amplification.

  5. Complementary use of transmission electron microscopy and atom probe tomography for the investigation of steels nanostructured by severe plastic deformation

    The properties of bulk nanostructured materials are often controlled by atomic-scale features such as segregation along defects or composition gradients. Here we discuss the complementary use of transmission electron microscopy and atom probe tomography to obtain a full description of nanostructures. The advantages and limitations of both techniques are highlighted on the basis of experimental data collected in severely deformed steels with a special emphasis on carbon spatial distribution.

  6. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography.

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M

    2016-01-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials. PMID:26868040

  7. Growth rate model and doping metrology by atom probe tomography in silicon nanowire

    Chen, W.H.; Larde, R.; Cadel, E.; Pareige, P. [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, Av. de l' Universite, BP 12, 76801 Saint Etienne du Rouvray (France); Xu, T.; Grandidier, B.; Nys, J.P.; Stievenard, D. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, UMR CNRS 8520, Departement ISEN, 41 bd Vauban, 59046 Lille Cedex (France)

    2011-03-15

    Silicon nanowires (SiNWs) with different surface number density are fabricated using Chemical Vapor Deposition (CVD) method by controlling the catalyst droplet number density with in-situ evaporation. For comparison, another type of SiNWs is fabricated by Molecular Beam Epitaxy (MBE) method. To study these two types of SiNWs a general growth rate model is presented. The fit curves from this model are consistent with our experimental data. In both growing conditions the SiNW growth rate as a function of their diameter are compared and discussed. The p-type SiNWs have also been prepared by adding diborane into precursor. The doping metrology in an individual SiNW is realized by laser assisted Atom Probe Tomography (APT). We have shown that the doping atoms (e.g. B) can incorporate into SiNW and an accurate quantification can be given (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M.

    2016-02-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials.

  9. INVESTIGATIONS OF SUPERCONDUCTING AND NON-SUPERCONDUCTING YBa2 Cu3 O7-x BY FIELD ION MICROSCOPY, ATOM-PROBE MASS SPECTROSCOPY AND FIELD ELECTRON EMISSION

    Kellogg, G.; Brenner, S

    1988-01-01

    The structure and composition of superconducting and non-superconducting samples of YBa2Cu3O7-x were examined by field ion microscopy, atom-probe mass spectroscopy and field-electron emission techniques. Field ion microscope images from both types of material exhibited ring structures associated with atomic or multiatomic layers and uniform, layer-by-layer field evaporation was possible. Atom-probe mass spectra contained signals corresponding to atomic and molecular oxygen, all three metals, ...

  10. Atom probe tomography of the austenite-ferrite interphase boundary composition in a model alloy Fe-C-Mn

    A tomographic atom probe analysis has been developed to study the interfacial conditions during isothermal austenite transformation to ferrite at 700 deg. C in an Fe-C-Mn model alloy. The interfacial conditions lead to different alloying element profiles across the interface, and a comparison is made between this experimental result and the DICTRA software predictions under the various conditions

  11. Shaping the lens of the atom probe: Fabrication of site specific, oriented specimens and application to grain boundary analysis

    The random sampling provided by classical atom probe sample preparation methods is one of the major factors limiting the types of problems that can be addressed using this powerful technique. A focused ion beam enables not only site-specific preparation, but can also be used to give the specimen, which acts as the lens in an atom probe experiment, a specific shape. In this paper we present a technique that uses low accelerating voltages (10 and 5 kV) in the focused ion beam (FIB) to reproducibly produce specimens with selected grain boundaries <100 nm from the tip at any desired orientation. These tips have a high rate of successfully running in the atom probe and no Ga contamination within the region of interest. This technique is applied to the analysis of grain boundaries in a high purity iron wire and a strip-cast steel. Lattice resolution is achieved around the boundary in certain areas. Reconstruction of these datasets reveals the distribution of light and heavy elements around the boundary. Issues surrounding the uneven distribution of certain solute elements as a result of field-induced diffusion are discussed. -- Research highlights: → Damage free site specific samples can be made using FIB. → Crystallographic relationships across grain boundaries can be obtained from field desorption patterns. → Lattice resolution can be achieved at grain boundaries for matrix atoms. → Field evaporation artifacts are observed at grain boundaries for solute atoms.

  12. Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy.

    Schön, Peter; Kutnyanszky, Edit; ten Donkelaar, Bas; Santonicola, M Gabriella; Tecim, Tugba; Aldred, Nick; Clare, Anthony S; Vancso, G Julius

    2013-02-01

    The protein repellency and biofouling resistance of zwitterionic poly(sulfobetaine methacrylate)(pSBMA) brushes grafted via surface initiated polymerization (SIP) from silicon and glass substrata was assessed using atomic force microscopy (AFM) adherence experiments. Laboratory settlement assays were conducted with cypris larvae of the barnacle Balanus amphitrite. AFM adherence includes the determination of contact rupture forces when AFM probe tips are withdrawn from the substratum. When the surface of the AFM tip is modified, adherence can be assessed with chemical specifity using a method known as chemical force microscopy (CFM). In this study, AFM tips were chemically functionalized with (a) fibronectin- here used as model for a nonspecifically adhering protein - and (b) arginine-glycine-aspartic acid (RGD) peptide motifs covalently attached to poly(methacrylic acid) (PMAA) brushes as biomimics of cellular adhesion receptors. Fibronectin functionalized tips showed significantly reduced nonspecific adhesion to pSBMA-modified substrata compared to bare gold (2.3±0.75 nN) and octadecanethiol (ODT) self-assembled monolayers (1.3±0.75 nN). PMAA and PMAA-RGD modified probes showed no significant adhesion to pSBMA modified silicon substrata. The results gathered through AFM protein adherence studies were complemented by laboratory fouling studies, which showed no adhesion of cypris larvae of Balanus amphitrite on pSBMA. With regard to its unusually high non-specific adsorption to a wide variety of materials the behavior of fibronectin is analogous to the barnacle cyprid temporary adhesive that also binds well to surfaces differing in polarity, charge and free energy. The antifouling efficacy of pSBMA may, therefore, be directly related to the ability of this surface to resist nonspecific protein adsorption. PMID:23138001

  13. Tomographic atom probe characterization of the microstructure of a cold worked 316 austenitic stainless steel after neutron irradiation

    For the first time, chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after 17 years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa (7.81 x 1025 neutrons.m-2, E > 1 MeV). The samples were analysed with a laser assisted tomographic atom probe. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A high number density (6 x 1023 m-3) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. Mo and P segregations at the interfaces of these clusters were also observed. Finally, Si enriched atmospheres were seen

  14. Large Enhancement of Probe Amplification with Population Inversion in a Four-Level Atomic System with Vacuum-Induced Coherence

    LI Jia-Hua; YANG Wen-Xing; LUO Jin-Ming; PENG Ju-Cun

    2005-01-01

    In this paper, we discuss and analyze theoretically probe absorption-amplification response in a four-level coherent atomic system with vacuum-induced coherence via changing the sign of the parameter f, with f denoting the ratio of a pair of dipole moments associated with a doublet of closely upper hyperfine sublevels. We find that the amplitude of the probe amplification for the case f = -1 can be about one order of magnitude larger than that achievable for the case f = 1. In addition, with respect to the case f = -1 the probe amplification can be maintained all the time with weak incoherent pumping for a wide range of the probe detuning.

  15. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs). The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impack 41-J shifts and the corresponding fluences are 192 deg C at 5.0 x 1023 n/m2 (>1 MeV) for Unit 3 and 162 deg C at 6.0 x 1023 n/m2 (1 MeV) for unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ∼2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.

  16. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel–manganese–silicon phases. Atom probe tomography measurements have revealed ∼2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese–nickel–silicon-enriched precipitates rather than changes in their size or number density

  17. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe–Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe–Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100–10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni–Mn–Si–Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni–Mn–Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core–shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby–Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30–36). ).

  18. An atom probe perspective on phase separation and precipitation in duplex stainless steels.

    Guo, Wei; Garfinkel, David A; Tucker, Julie D; Haley, Daniel; Young, George A; Poplawsky, Jonathan D

    2016-06-24

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α') phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α' interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). PMID:27181108

  19. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. -- Research Highlights: →Field evaporation properties of bulk MgO are compared with thin film. →MgO sandwiched between Fe layers. →Evaporation process in two steps in two different time scales. →The change in the thickness of the MgO layer(from 4 to 32nm) does not change the evaporation behavior.

  20. Atom probe study of vanadium interphase precipitates and randomly distributed vanadium precipitates in ferrite.

    Nöhrer, M; Zamberger, S; Primig, S; Leitner, H

    2013-01-01

    Atom probe tomography and transmission electron microscopy were used to examine the precipitation reaction in the austenite and ferrite phases in vanadium micro-alloyed steel after a thermo-mechanical process. It was observed that only in the ferrite phase precipitates could be found, whereupon two different types were detected. Thus, the aim was to reveal the difference between these two types. The first type was randomly distributed precipitates from V supersaturated ferrite and the second type V interphase precipitates. Not only the arrangement of the particles was different also the chemical composition. The randomly distributed precipitates consisted of V, C and N in contrast to that the interphase precipitates showed a composition of V, C and Mn. Furthermore the randomly distributed precipitates had maximum size of 20 nm and the interphase precipitates a maximum size of 15 nm. It was assumed that the reason for these differences is caused by the site in which they were formed. The randomly distributed precipitates were formed in a matrix consisting mainly of 0.05 at% C, 0.68 at% Si, 0.03 at% N, 0.145 at% V and 1.51 at% Mn. The interphase precipitates were formed in a region with a much higher C, Mn and V content. PMID:24041583

  1. Atom Probe Tomography Examination of Carbon Redistribution in Quenched and Tempered 4340 Steel

    Clarke, Amy J. [Los Alamos National Laboratory; Miller, Michael K. [ORNL; Alexander, David J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Clarke, Kester D. [Los Alamos National Laboratory

    2012-08-07

    Quenching and tempering produces a wide range of mechanical properties in medium carbon, low alloyed steels - Study fragmentation behavior as a function of heat-treatment. Subtle microstructural changes accompany the mechanical property changes that result from quenching and tempering - Characterize the location and distribution of carbon and alloying elements in the microstructure using atom probe tomography (APT). Perform complementary transmission electron microscopy (TEM). Tempering influences the mechanical properties and fragmentation of quenched 4340 (hemi-shaped samples). APT revealed carbon-enriched features that contain a maximum of {approx}12-14 at.% carbon after quenching to RT (the level of carbon is perhaps associated with the extent of autotempering). TEM confirmed the presence of twinned martensite and indicates {var_epsilon} ({eta}) transition carbides after oil quenching to RT. Tempering at 325 C resulted in carbon-enriched plates (> 25 at.% C) with no significant element partitioning (transition carbides?). Tempering at 450 C and 575 C resulted in cementite ({approx} 25 at.% C) during late stage tempering; Cr, Mn, Mo partitioned to cementite and Si partitioned to ferrite. Tempering at 575 C resulted in P segregation at cementite interfaces and the formation of Cottrell atmospheres.

  2. Diffusivity and solubility of Cu in a reactor pressure vessel steel studied by atom probe tomography

    The diffusivity and solubility limit of Cu in A533B steel, which is used in reactor pressure vessels, were studied by atom probe tomography (APT). Cu-A533B steel diffusion couples were annealed at temperatures of 550, 600, and 700°C, and the resulting Cu concentration profiles were measured. At the temperature of 700°C, the diffusivity of Cu in A533B steel was about 3 times higher than that in pure Fe, whereas at the temperature of 550°C, the diffusivity of Cu in A533B steel is almost closer to that in pure Fe. The solubility limit of Cu in A533B steel was similar to pure Fe. APT was also used to study the effect of the grain boundary (GB) diffusion. The results indicated that no Cu segregation occurred at GB near the Cu/A533B steel interface, which may imply that GB diffusion of Cu was not effective in A533B steel. (author)

  3. Fusion boundary precipitation in thermally aged dissimilar metal welds studied by atom probe tomography and nanoindentation

    Choi, Kyoung Joon; Kim, Taeho; Yoo, Seung Chang; Kim, Seunghyun; Lee, Jae Hyuk; Kim, Ji Hyun

    2016-04-01

    In this study, microstructural and mechanical characterizations were performed to investigate the effect of long-term thermal aging on the fusion boundary region between low-alloy steel and Nickel-based weld metal in dissimilar metal welds used in operating power plant systems. The effects of thermal aging treatment on the low-alloy steel side near the fusion boundary were an increase in the ratio of Cr constituents and Cr-rich precipitates and the formation and growth of Cr23C6. Cr concentrations were calculated using atom probe tomography. The accuracy of simulations of thermal aging effects of heat treatment was verified, and the activation energy for Cr diffusion in the fusion boundary region was calculated. The mechanical properties of fusion boundary region changed based on the distribution of Cr-rich precipitates, where the material initially hardened with the formation of Cr-rich precipitates and then softened because of the reduction of residual strain or coarsening of Cr-rich precipitates.

  4. Thermal stability of TiAlN/CrN multilayer coatings studied by atom probe tomography.

    Choi, Pyuck-Pa; Povstugar, Ivan; Ahn, Jae-Pyeong; Kostka, Aleksander; Raabe, Dierk

    2011-05-01

    This study is about the microstructural evolution of TiAlN/CrN multilayers (with a Ti:Al ratio of 0.75:0.25 and average bilayer period of 9 nm) upon thermal treatment. Pulsed laser atom probe analyses were performed in conjunction with transmission electron microscopy and X-ray diffraction. The layers are found to be thermally stable up to 600 °C. At 700 °C TiAlN layers begin to decompose into Ti- and Al-rich nitride layers in the out-of-plane direction. Further increase in temperature to 1000 °C leads to a strong decomposition of the multilayer structure as well as grain coarsening. Layer dissolution and grain coarsening appear to begin at the surface. Domains of AlN and TiCrN larger than 100 nm are found, together with smaller nano-sized AlN precipitates within the TiCrN matrix. Fe and V impurities are detected in the multilayers as well, which diffuse from the steel substrate into the coating along columnar grain boundaries. PMID:21146308

  5. Uranium Isotopic Ratio Measurements of U3O8 Reference Materials by Atom Probe Tomography

    Fahey, Albert J.; Perea, Daniel E.; Bartrand, Jonah AG; Arey, Bruce W.; Thevuthasan, Suntharampillai

    2016-01-01

    We report results of measurements of isotopic ratios obtained with atom probe tomography on U3O8 reference materials certified for their isotopic abundances of uranium. The results show good agreement with the certified values. High backgrounds due to tails from adjacent peaks complicate the measurement of the integrated peak areas as well as the fact that only oxides of uranium appear in the spectrum, the most intense of which is doubly charged. In addition, lack of knowledge of other instrumental parameters, such as the dead time, may bias the results. Isotopic ratio measurements can be performed at the nanometer-scale with the expectation of sensible results. The abundance sensitivity and mass resolving power of the mass spectrometer are not sufficient to compete with magnetic-sector instruments but are not far from measurements made by ToF-SIMS of other isotopic systems. The agreement of the major isotope ratios is more than sufficient to distinguish most anthropogenic compositions from natural.

  6. Characterization of designed cobaltacarborane porphyrins using conductive probe atomic force microscopy

    Venetia D. Lyles

    2016-03-01

    Full Text Available Porphyrins and metalloporphyrins have unique chemical and electronic properties and thus provide useful model structures for studies of nanoscale electronic properties. The rigid planar structures and -conjugated backbones of porphyrins convey robust electrical characteristics. For our investigations, cobaltacarborane porphyrins were synthesized using a ring-opening zwitterionic reaction to produce isomers with selected arrangements of carborane clusters on each macrocycle. Experiments were designed to investigate how the molecular structure influences the self-organization, surface assembly, and conductive properties of three molecular structures with 2, 4, or 8 cobaltacarborane substituents. Current versus voltage (I-V spectra for designed cobaltacarborane porphyrins deposited on conductive gold substrates were acquired using conductive probe atomic force microscopy (CP-AFM. Characterizations with CP-AFM provide capabilities for obtaining physical measurements and structural information with unprecedented sensitivity. We found that the morphology of cobaltacarborane porphyrin structures formed on surfaces depends on a complex interplay of factors such as the solvent used for dissolution, the nature of the substrate, and the design of the parent molecule. The conductive properties of cobaltacarborane porphyrins were observed to change according to the arrangement of cobaltacarborane substituents. Specifically, the number and placement of the cobaltacarborane ligands on the porphyrin macrocycle affect the interactions that drive porphyrin self-assembly and crystallization. Interestingly, coulombic staircase I-V profiles were detected for a porphyrin with two cobaltacarborane substituents.

  7. Atom probe tomography analysis of high dose MA957 at selected irradiation temperatures

    Bailey, Nathan A. [University of California at Berkeley, 3117 Etcheverry Hall, Berkeley, CA 94720 (United States); Stergar, Erich [University of California at Berkeley, 3117 Etcheverry Hall, Berkeley, CA 94720 (United States); SCK-CEN, BE-2400, Mol (Belgium); Toloczko, Mychailo [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Hosemann, Peter [University of California at Berkeley, 3117 Etcheverry Hall, Berkeley, CA 94720 (United States)

    2015-04-15

    Oxide dispersion strengthened (ODS) alloys are meritable structural materials for nuclear reactor systems due to the exemplary resistance to radiation damage and high temperature creep. Summarized in this work are atom probe tomography (APT) investigations on a heat of MA957 that underwent irradiation in the form of in-reactor creep specimens in the Fast Flux Test Facility–Materials Open Test Assembly (FFTF–MOTA) for the Liquid Metal Fast Breeder Reactor (LMFBR) program. The oxide precipitates appear stable under irradiation at elevated temperature over extended periods of time. Nominally, the precipitate chemistry is unchanged by the accumulated dose; although, evidence suggests that ballistic dissolution and reformation processes are occurring at all irradiation temperatures. At 412 °C–109 dpa, chromium enrichments – consistent with the α′ phase – appear between the oxide precipitates, indicating radiation induced segregation. Grain boundaries, enriched with several elements including nickel and titanium, are observed at all irradiation conditions. At 412 °C–109 dpa, the grain boundaries are also enriched in molecular titanium oxide (TiO)

  8. Atomic force microscopy deep trench and sidewall imaging with an optical fiber probe

    Xie, Hui, E-mail: xiehui@hit.edu.cn; Hussain, Danish; Yang, Feng [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Sun, Lining [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Robotics and Microsystems Center, Soochow University, 215021 Suzhou (China)

    2014-12-15

    We report a method to measure critical dimensions of micro- and nanostructures using the atomic force microscope (AFM) with an optical fiber probe (OFP). This method is capable of scanning narrow and deep trenches due to the long and thin OFP tip, as well as imaging of steep sidewalls with unique profiling possibilities by laterally tilting the OFP without any modifications of the optical lever. A switch control scheme is developed to measure the sidewall angle by flexibly transferring feedback control between the Z- and Y-axis, for a serial scan of the horizontal surface (raster scan on XY-plane) and sidewall (raster scan on the YZ-plane), respectively. In experiments, a deep trench with tapered walls (243.5 μm deep) and a microhole (about 14.9 μm deep) have been imaged with the orthogonally aligned OFP, as well as a silicon sidewall (fabricated by deep reactive ion etching) has been characterized with the tilted OFP. Moreover, the sidewall angle of TGZ3 (AFM calibration grating) was accurately measured using the switchable scan method.

  9. Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al

    Marceau, R.K.W., E-mail: r.marceau@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ceguerra, A.V.; Breen, A.J. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Raabe, D. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)

    2015-10-15

    Short-range-order (SRO) has been quantitatively evaluated in an Fe–18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D0{sub 3} ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity. - Highlights: • Short-range-order (SRO) is quantitatively evaluated using atom probe tomography data. • Chemical species-specific SRO parameters have been calculated. • The accuracy of this method is tested against simulated D0{sub 3} ordered data. • Imperfect spatial resolution combined with finite detector efficiency causes a randomising effect. • Lattice rectification of the data prior to GM-SRO analysis is demonstrated to improve information sensitivity.

  10. Attosecond XUV probing of strong field ionization dynamics from one- and two-electron 1D atoms

    Full text: The probing of strong field ionization dynamics by a 250 attosecond XUV pulse is considered, first, for a one-electron 1D atom, and second, for a two-electron 1D atom. In the one-electron case, the XUV ionization yield as a function of time delay between the laser pulse and the XUV pulse is seen to reflect the time-dependence of the field-dressed neutral atomic population. The depletion of the ground state, and hence the dynamics of strong field ionization, can be inferred on sub-cycle timescales. Furthermore, it is suggested that this XUV probing also reveals the sub-cycle distortions of the atomic ground state near the peaks of the strong laser field. In the two electron case, both the neutral and singly-ionized populations in the strong field can be probed by the XUV pulse. The time-dependent yield of XUV ionization from the ionic population reflects the time-dependence of the ionization from the strong laser field. This shows directly the strong field ionization dynamics on sub-cycle timescales. (author)