WorldWideScience

Sample records for 118-h-3 solid waste

  1. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  2. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  3. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  4. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  5. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  6. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  7. Solid waste

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  8. Solid waste management

    Srebrenkoska, Vineta; Golomeova, Saska; Krsteva, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  9. Management of solid waste

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  10. Management of solid waste

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  11. Solid waste treatment technologies

    Golomeova, Saska; Srebrenkoska, Vineta; Krsteva, Silvana; Spasova, Sanja

    2013-01-01

    Environmental pollution is the major problem associated with rapid industrialization, urbanization and rise in living standards of people. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce advanced approach to effectively managing of solid waste. This advanced approach includes technologies for solid waste treatment, that fall into the category of "Renewable". This paper put emphasis on technologies for material and energy u...

  12. Municipal Solid Waste Resources

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  13. Characterization of Solid Waste

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Despodov, Zoran; Doneva, Nikolinka; Mijalkovski, Stojance

    2011-01-01

    In order for any community is to formulate an integrated solid waste management program, accurate and reliable data on waste composition and quantities are essential. Such data will encourage well-organized and smoothly functioning recycling programs; foster the optimal design and operation of materials recovery facilities and municipal incinerators; and, ultimately, reduce the amount of waste generated and keep the overall waste management costs low. In order to apply it more effective st...

  14. Solid waste handling

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  15. Lyophilization -Solid Waste Treatment

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  16. Solid waste study

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ''Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel

  17. Solid Waste Program Plan

    The objective of the Solid Waste Program Plan (SWPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving applicable regulations and orders [federal, state, local, and Westinghouse Hanford Company (Westinghouse Hanford)]. A previous version of the SWPP (entitled Solid Waste Management Program Plan) was drafted in 1990 and released as WHC-EP-0363 (WHC 1990c). The SWPP also presents activities required for disposal of selected wastes currently in retrievable storage. The SWPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities and provides a vehicle for ready communication of the scope of these activities to onsite and offsite organizations. This SWPP represents the most complete description available of Hanford Site solid waste activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the solid waste mission. 26 refs., 11 figs., 1 tabs

  18. Solid Waste Treatment Technology

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  19. Solid-Waste Management

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  20. Solid waste management: an overview

    The source, effect and characterization of solid wastes are discussed. Constituents of municipal solid wastes and a comparative compositions of municipal solid waste with some data on Lebanon are given. Collection, transport and processing practices are next introduced. Finally treatment and disposal techniques are presented with emphasis on the solid waste as energy source and as material source. Methods of recycling are evaluated in respect with their environmental impact. 7 refs. 2 tabs

  1. Solid Waste Management Plan. Revision 4

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  2. Electrodialytic remediation of solid waste

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil;

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...... fly ash waste deposits from polluting the ground water....

  3. Solid waste management in Malaysia

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  4. Solid waste utilization: pyrolysis

    Boegly, W.J. Jr.; Mixon, W.R.; Dean, C.; Lizdas, D.J.

    1977-08-01

    As a part of the Integrated Community Energy System (ICES) Program, a number of technology evaluations are being prepared on various current and emerging sources of energy. This evaluation considers the use of pyrolysis as a method of producing energy from municipal solid waste. The energy can be in the form of a gas, oil, chars, or steam. Pyrolysis, the decomposition of organic matter in the absence of oxygen (or in an oxygen-deficient atmosphere), has been used to convert organic matter to other products or fuels. This process is also described as ''destructive distillation''. Four processes are described in detail: the ''Landgard'' System (Monsanto Environ-Chem Systems, Inc.); the Occidental Research Corporation Process (formerly the Garrett Research and Development Company; The ''Purox'' System (Union Carbide Corporation); and the ''Refu-Cycler'' (Hamilton Standard Corporation). ''Purox'' and ''Refu-Cycler'' produce a low-Btu gas; the Occidental process produces an oil, and the ''Landgard'' process produces steam using on-site auxiliary boilers to burn the fuel gases produced by the pyrolysis unit. Also included is a listing of other pyrolysis processes currently under development for which detailed information was not available. The evaluation provides information on the various process flowsheets, energy and material balances, product characteristics, and economics. Pyrolysis of municipal solid waste as an energy source can be considered a potential for the future; however little operational or economic information is available at this time.

  5. From Solid Waste to Energy.

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  6. Solid Waste Management in Jordan

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  7. Municipal Solid Waste management

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  8. Solid waste electron beam treatment

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  9. Municipal solid waste incineration

    Twelve municipal solid waste incinerators, ranging in size from 80 to 1,212 tons per day, have started operating in Minnesota since 1982. The operating incinerators include modular, refuse derived fuel, field erected and fluidized bed facilities. Air pollution control equipment utilized consists of electrostatic precipitators (ESP), spray dryer/fabric filter (SD/FF) and wet scrubber systems. In this paper, results are presented for more than 30 tests completed since 1984. Results include measurements of particulate, acid gases, metals and polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF). Tests at facilities using ESPs include measurements of removal efficiencies for particulate, metals and PCDD/PCDFs. An extended series of mercury test results are presented for one facility using SD/FF control. Results were reviewed for the purposes of determining permit compliance, characterizing combustion/air pollution control equipment performance and providing information for rulemaking activities. Performance trends and a discussion of future prospects for regulation of incinerators in Minnesota are also presented

  10. Business Plan : Residential Solid Waste Collection

    Mazengo, Dorice

    2013-01-01

    Residential solid waste means all the solid wastes produced in household level, which includes bio-waste, metal, mixed wastes, organic and inorganic waste. The inability of municipalities to handle the increasing amount of waste generated in Tanzania is a growing problem which gives opportunities to create an idea of starting a waste collection company. The aim of this work was to study the market trend on residential solid waste collection and the chances to create a business which will ...

  11. Solid waste management - Pakistan's perspective

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  12. Municipal solid wastes management

    TEMIRKHANOV K.K.; KENZHEBAYEV N.N.

    2014-01-01

    Waste utilization problems are of current importance and they are relatedtothe principles of Green Economy and, thus, present one of the most important ecologic factors for improving environmental quality.

  13. Environmental pollution from solid wastes

    Research completed under the CRP during the past two years has encompassed several related aspects of environmental problems associated with solid wastes: assessment of major sources of toxic elements in a variety of solid waste forms, their leachability by simulated groundwater or rain/acid rain and the determination of the contribution of hospital incinerator to atmospheric releases. The summary of the findings of these investigations are given in this report. Unexpected high levels of cadmium have been found in many solid wastes. Leaching tests indicate that, in some cases, over 70% of this can be leached out into the nearby waterways. Combustibility tests indicated that 35 to 45% of it is emitted to the atmosphere during burning. This explains the increased levels of cadmium in air particulates sampled downwind from waste incinerators. Plastic items in municipal and hospital wastes were particularly elevated in Cd, Cl, Cr, Ba and Zn. Up to 1300 μg/g of Cd was found in some domestic items. By inference, Pb also is found in some common plastics but the current studies did not permit Pb determination in solid wastes, but only in aerosols. (author). 8 tabs

  14. Regional solid waste management study

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  15. Targeting Lead in Solid Waste

    Sigman, Hilary

    2003-01-01

    This paper explores policy options for reducing lead in municipal solid waste. It focuses on policies that rely on economic incentives, such as taxes, deposit-refunds, and recycled content standards. The paper addresses the relative cost effectiveness of these approaches and also considers the overall desirability of government intervention to reduce lead disposal.

  16. Mathematical Modeling of Solid Waste Incinerators

    Arash Asgharinejad

    2013-01-01

    Population growth, technological progress and changes in consumption patterns in recent years have led to an increase in the solid waste. On the other hand, limit energy resources and raw materials caused waste to be considered as a waste material and also recyclable at the high level of scientific and applied research. In solid waste management, waste burning is regarded as one of ways for eliminating waste. In this study, municipal waste in one of the districts of Tehran was taken into acco...

  17. Energy and solid/hazardous waste

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  18. Energy and solid/hazardous waste

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  19. Composting of municipal solid waste.

    Kumar, Sunil

    2011-06-01

    This paper reviews the literature on the composting process, which is one of the technological options for the processing of municipal solid wastes (MSWs). The process assumes a great significance, particularly from the point of its economic viability, capability for recycling of nutrients and waste minimization with minimum environmental problems. A number of studies on various aspects of the composting process, including process control and monitoring parameters such as temperature, pH, moisture content, aeration, and porosity are reviewed. Salient observations on microbial properties of composting are described and details of vermicomposting, as well as a detailed analysis of patents on composting of MSW, are presented. PMID:20854128

  20. What a Waste : A Global Review of Solid Waste Management

    Hoornweg, Daniel; Bhada-Tata, Perinaz

    2012-01-01

    Solid waste management is the one thing just about every city government provides for its residents. While service levels, environmental impacts and costs vary dramatically, solid waste management is arguably the most important municipal service and serves as a prerequisite for other municipal action. As the world hurtles toward its urban future, the amount of municipal solid waste (MSW), one ...

  1. Solid waste management in Khartoum industrial area

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  2. Biostabilization of municipal solid waste.

    Adani, Fabrizio; Tambone, Fulvia; Gotti, Andrea

    2004-01-01

    A mechanical-biological process for municipal solid waste (MSW) treatment was monitored for one year. Mechanical pre-treatment provided two fractions. The oversize fraction (diameter > 50 mm) (yield of 600 g kg(-1) ww) (46 Mg day(-1)) was used for refuse derived fuel production, after undergoing a mechanical refining processes, because of low moisture content (200-250 g kg(-1)) and high calorific value (2500-2800 kcal kg ww(-1)). The undersize fraction (diameter MSW organic matter. This fraction was biologically treated using an aerobic process with an organic waste fraction from separate collection (77 Mg day(-1)) and recycled stabilized material (62 Mg day(-1)) obtained from end-product sieve (diameter biogas production and fermentable volatile solids were also used as parameters to describe the potential impact of treated waste, providing further useful information. Nevertheless, all of these methods revealed analytical or interpretative limits. A complete mass balance of the biological treatment section showed that, from a net input of 107 Mg day(-1), only 250 g kg(-1) (27 Mg day(-1)) of the waste needed to be landfilled, with 750 g kg(-1) (80 Mg day(-1)) being lost as CO2 and H2O. PMID:15381229

  3. Good Practices Regarding Solid Waste Management Recycling

    Doru Alexandru Pleşea; Smaranda Vişan

    2010-01-01

    Waste is a continually growing problem at global and regional as well as at local levels. Solid wastes arise from human activities that are normally discarded as useless or unwanted. As the result of rapid increase in production and consumption, urban society rejects and generates solid material regularly which leads to considerable increase in the volume of waste generated from several sources. Solid wastes have the potential to pollute all the vital components of living environment at local...

  4. Instructive for radioactive solid waste management

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM

  5. Solid Waste Management in Recreational Forest Areas.

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  6. Composition of municipal solid waste in Denmark

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte;

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested that...... standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  7. Management Of Solid Waste Matter

    This book is written with data from, 84 Karlsruhe symposium, which tells US general introduction of waste disposal such as actualization of waste disposal, related law and direction of waste disposal, collect and transportation of waste matter, preconditioning of waste, collect of waste and recirculation, cases of recirculation, optimal process of waste incineration of waste, composting of waste, disposal of harmful waste, RDF with pilot and operational plant and sanitary landfill method.

  8. Hanford Site Solid Waste Landfill permit application

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  9. Integrated solid waste management in megacities

    M.A. Abdoli; Rezaee, M.; H. Hasanian

    2016-01-01

    Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated soli...

  10. Solid Waste Management: Status Of Waste Pickers And Government Policies

    K. Naresh Kumar

    2012-01-01

    Management of burgeoning solid wastes has become a critical issue for almost all the major cities in India. Although the responsibility of solid waste management remains primarily with the municipal bodies, several other stakeholder groups play significant roles in the process. In the Indian scenario the so-called waste pickers, who come from highly vulnerable social backgrounds, play a unique role. Waste pickers, scavengers or rag pickers as they are commonly called eke out a living by colle...

  11. Mathematical Modeling of Solid Waste Incinerators

    Arash Asgharinejad

    2013-03-01

    Full Text Available Population growth, technological progress and changes in consumption patterns in recent years have led to an increase in the solid waste. On the other hand, limit energy resources and raw materials caused waste to be considered as a waste material and also recyclable at the high level of scientific and applied research. In solid waste management, waste burning is regarded as one of ways for eliminating waste. In this study, municipal waste in one of the districts of Tehran was taken into account for a case study. Also, in special systems which need special care of temperature such as the system for controlling the temperature of the furnace fuel of burnable solid waste in temperature 950°C. Fuel requirements for design were also calculated. At the end of the project, fluent software was used to confirm the findings obtained from the city incinerator furnace design.

  12. 36 CFR 13.1912 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  13. 36 CFR 13.1118 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  14. 36 CFR 13.1604 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  15. 36 CFR 13.1008 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  16. INTEGRATED SOLID WASTE MANAGEMENT: A MULTICRITERIA APPROACH

    Bazzani, Guido Maria

    1998-01-01

    The paper presents the first results of a long term research aimed at producing a decision support system to deal with the integrated solid waste management planning at regional level. In the last years urban waste management has received a strong attention from the public authority in Italy culminating in a new national law, which has priorities such as waste prevention (waste avoidance and reduction) reuse and recycling. Italian Legislation requires to consider not only a series of waste ma...

  17. Solid Waste Management Holistic Decision Modeling

    World Bank

    2008-01-01

    This study provides support to the Bank's ability to conduct client dialogue on solid waste management technology selection, and will contribute to client decision-making. The goal of the study was to fully explore the use of the United States Environmental Protection Agency and the Research Triangle Institute (EPA/RTI) holistic decision model to study alternative solid waste systems in a ...

  18. 76 FR 53376 - Definition of Solid Waste

    2011-08-26

    ... Resource Conservation and Recovery Act (76 FR 44094). The purpose of these proposed revisions is to ensure... AGENCY 40 CFR Parts 260, 261, and 270 RIN 2050-AG62 Definition of Solid Waste AGENCY: Environmental... definition of solid waste published in the Federal Register on July 22, 2011. EPA is proposing to...

  19. Managing America`s solid waste

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  20. 76 FR 16538 - Solid Waste Rail Transfer Facilities

    2011-03-24

    ... establishments or facilities. (5) Industrial waste means the solid waste generated by manufacturing and...; commercial and retail waste; institutional waste; sludge; industrial waste; and other solid waste, as... Surface Transportation Board 49 CFR Part 1155 Solid Waste Rail Transfer Facilities AGENCY:...

  1. Cadmium complexation by solid waste leachates

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste...... complexes, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter...

  2. Solid waste burial grounds interim safety analysis

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  3. Solid waste burial grounds interim safety analysis

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  4. Solid waste treatment processes for space station

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  5. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-01-01

    Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management ...

  6. The Demand for Solid Waste Disposal

    G. Strathman; Anthony M. Rufolo; Gerard C. S. Mildner

    1995-01-01

    In this paper we estimate the elasticity of demand for landfill disposal of municipal solid waste using data from the Portland, Oregon metropolitan area. Efficiency losses associated with deviations from marginal cost pricing of disposal services are then derived. The efficiency losses of small deviations from long-run marginal disposal costs are not large. However, many municipalities finance solid waste services from general tax revenues, in which case waste generators effectively face zero...

  7. Community Participation in Solid Waste Management, Kathmandu

    Gotame, Manira

    2012-01-01

    Waste management in Nepal is one of the important topics discussed today. Participation of the community is thus,being encouraged to manage solid waste. My study area is Kathmandu (Buddhajyoti, Chamati and Milijuli, Ganesh and Jagriti settlements in Kathmandu). My paper focuses in community participation in solid waste management in these settlements/communities. there are different projects working for this purpose in these settlements. I used household survey...

  8. EXPLAINING COOPERATION IN MUNICIPAL SOLID WASTE MANAGEMENT

    Tiller, Kelly H.; Jakus, Paul M.

    2004-01-01

    As traditional methods of municipal solid waste management (MSWM) become increasingly expensive due to increased regulation, many local governments are considering cooperation as a waste management strategy. A theoretical model is used to specify a partial observability probability model in which the decision Tennessee counties made to form either a single-county solid waste region or a multi-county region. We find that, while economies of scale may be a factor in the consolidation decision, ...

  9. Solid Waste Projection Model: Model user's guide

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  10. Waste to Energy: A Green Paradigm in Solid Waste Management

    Mohamad Danish Anis; Tauseef Zia Siddiqui

    2015-01-01

    The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW) generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without ...

  11. Waterproofing improvement of radioactive waste asphalt solid

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 600C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  12. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  13. Solid Waste Management Practices in EBRP Schools.

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  14. Solid waste 30-year volume summary

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford's Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m3 of LLMW and TRU/TRUM waste will be managed at Hanford's SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m3 of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D ampersand D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford's future solid waste management requirements

  15. Solid Waste Assurance Program Implementation Plan

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixed waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities

  16. Radioactive solid waste storing structure

    Hulls as radioactive solid wastes generated by reprocessing of spent fuels in nuclear facilities are pressed to form circular compressed materials. A pedestal having ventilation holes for communicating the center and the side surfaces of the storage vessel in which the compression materials are sealed and contained while being stacked is disposed to the bottom of the storage vessel. Springs are disposed to the inner circumference of the storage vessel for urging the side surfaces of the compressed materials contained while being stacked on the pedestal. With such a constitution, cooling performance can be improved by spontaneous circulation of the air and sealed gases in the storage vessel thereby enabling to store the storage vessels at a higher density. In addition, since the compressed materials are urged by the disposed springs, rattling of the compression materials can be eliminated, and they can be transported or transferred stably, and since uniform gaps can be formed on the circumference of the compression bodies, they can be cooled uniformly. (T.M.)

  17. Solid waste combustion for alpha waste incineration

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  18. Hanford Site Solid Waste Acceptance Criteria

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  19. Hanford Site Solid Waste Acceptance Criteria

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  20. Solid Waste Management and Nigerian Sustainable Development

    Emma E.O. Chukwuemeka

    2012-09-01

    Full Text Available The problem of solid waste management has become a debilitating factor towards sustainable development in Nigeria. The study therefore was carried out to evaluate the chains of problems militating against solid waste management in Nigeria with particular stress on Enugu State. The study adopted survey research method. Data collected through questionnaire were analyzed and hypotheses tested using Z-test statistical measure. The scientific investigation revealed among other things that resources normally voted by Government year by year to manage solid waste is always very meager. There is no environmental education at all as was observed during the field investigation. Furthermore, some of the waste management staff were poorly trained and no plan in the future to give them further training or to improve already acquired skill. Based on the findings, some of the major recommendations are that solid waste management should be provided with a separate head in the budget for the purpose of adequate revenue allocation, implementation and monitoring. The participation of the local communities in solid waste management should be encouraged. Environmental education should be intensified by both the state and local government. Also primary, secondary and tertiary schools curricula should inculcate detailed topics on solid waste management.

  1. Biodegradation and Recycling of Urban Solid Waste

    S. P. Gautam

    2009-01-01

    Full Text Available Problem statement: Rapid urbanization and population growth are largely responsible for very high increasing rate of solid waste in the urban areas, its proper management and recycling is major problems of Municipal Corporation. The proposed study attempted to proper management, physicochemical analysis of Urban Solid Waste (USW and its conversion to enriched compost by ecofriendly process. Approach: For this study, we used turned windrows method for composting of USW, microbial inoculums added uniformly and temperature, pH, moisture maintained throughout the composting process. The chemical composition of compost obtained at the end of the composting process compare to the United State Environmental Protection Agency (USEPA standards. Results: A study in Jabalpur had shown the 47% of Urban Solid Waste (USW were degradable and 53% non-degradable. The initial compositions of urban waste were indicates an organic carbon status of 38% with the C: N ratio of 950. The additives used in solid urban waste composting such as cow dung and green manure recorded organic carbon content of 25.60 and 34.60 and C:N ratio of 30.11 and 11.23. Conclusion: The results of the study clearly indicate that the recycling of solid urban waste can transform garbage or municipal solid waste to enriched composts. This is practical significance if adopted by urban farmers as a result of soil health and in turn the productivity of soil can be maintained for further agriculture.

  2. Integrated waste management - Looking beyond the solid waste horizon

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  3. Processing method for miscellaneous radioactive solid waste

    Miscellaneous solid wastes are subjected to heat treatment at a temperature not lower than a carbonizing temperature of organic materials in the wastes and not higher than the melting temperature of inorganic materials in the wastes, for example, not lower than 200degC but not higher than 660degC, and then resultant miscellaneous solid wastes are solidified using a water hardening solidification material. With such procedures, the organic materials in the miscellaneous solids are decomposed into gases. Therefore, solid materials excellent in long term stability can be formed. In addition, since the heat treatment is conducted at a relatively low temperature such as not higher than 660degC, the generation amount of off gases is reduced to simplify an off gas processing system, and since molten materials are not formed, handing is facilitated. (T.M.)

  4. Program Planning Concepts in Solid Waste Management

    Brown, Sanford M., Jr.

    1972-01-01

    Presents a brief review of the program planning process, and uses the example of a solid waste program to illustrate what has or has not been accomplished through the use of the planning process. (LK)

  5. Solid and liquid radioactive waste treatment

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author)

  6. Estimation of restaurant solid waste generation rates

    Most solid waste utilities try to create a billing schedule that is proportional to solid waste generation rates. This research was trying to determine if the current billing rate structure was appropriate or if a different rate structure should be implemented. A multiple regression model with forward stepwise addition was developed which accurately predicts weekly solid waste generation rates for restaurants. The model was based on a study of daily solid waste generation at twenty-one different businesses. The weight and volume of solid waste generated was measure daily for two weeks during the winter and two weeks during the summer. Researchers followed the collection truck and measured the volume and weight of the container contents. Data was collected on the following independent variables describing each establishment; weight of waste per collection, volume per collection, container utilization factor, building area, contract haulers bill, yearly property tax, yearly solid waste tax, average number of collections per week, type of restaurant, modal number of collections per week, storage container size, waste density, number of employees, number of hours open per week, and weekly collection capacity (collections per week times storage container size). Independent variables were added to the regression equation based on their partial correlation coefficient and confidence level. The regression equations developed had correlation coefficients of 0.87 to 1.00, which was much better than the correlation coefficient (0.84) of an existing model DeGeare and Ongerth (1971) and a correlation coefficient of 0.54 based on the current solid waste disposal tax. (author)

  7. Biodegradation and Recycling of Urban Solid Waste

    S. P. Gautam; Bundela, P. S.; Pandey, A. K.; Jain, R K; P. R. Deo; S.K. Khare; Awasthi, M.K.; Surendra Sarsaiya

    2009-01-01

    Problem statement: Rapid urbanization and population growth are largely responsible for very high increasing rate of solid waste in the urban areas, its proper management and recycling is major problems of Municipal Corporation. The proposed study attempted to proper management, physicochemical analysis of Urban Solid Waste (USW) and its conversion to enriched compost by ecofriendly process. Approach: For this study, we used turned windrows method for composting of USW, microbial inoculums ad...

  8. SOLID WASTE SEGREGATION BEHAVIOR AMONG URBAN WOMEN

    P. Mohamed Nisha; Raji Sugumar

    2014-01-01

    This study examined the solid waste segregation behavior of the women of Chennai city of Tamil Nadu state. Using a structured, self-developed interview schedule, 120 women were selected randomly for the survey with equal representation from the three regions of Chennai city. Findings revealed that most of the waste that is being generated in the households of the selected samples was organic, recyclable and reusable. The sample women are not highly knowledgeable about the solid...

  9. Solid Waste Management and Nigerian Sustainable Development

    Chukwuemeka, Emma E. O.; Ngozi Ewuim

    2012-01-01

    The problem of solid waste management has become a debilitating factor towards sustainable development in Nigeria. The study therefore was carried out to evaluate the chains of problems militating against solid waste management in Nigeria with particular stress on Enugu State. The study adopted survey research method. Data collected through questionnaire were analyzed and hypotheses tested using Z-test statistical measure. The scientific investigation revealed among other things that resource...

  10. Evaluation of dental solid waste in Hamedan

    Nabizadeh R.; Kulivand A.; Jonidi Jafari A.; Younesian M; GH Omrani

    2009-01-01

    "nBackground and Aim: Today, one of the most important environmental issues is dental solid wastes which are of great importance because of the presence of hazardous, toxic and pathogen agents. In this survey, solid waste produced in Hamedan general dental offices is evaluated. "nMaterials and Methods: In this descriptive study, from 104 general dental offices in Hamedan , 10 offices were selected in simple random way. From each offices, 3 sample at the end of successive working day...

  11. MUSCULOSKELETAL DISORDERS AMONG MUNICIPAL SOLID WASTE WORKERS

    R. Mehrdad

    2008-06-01

    Full Text Available Waste collection is a necessary activity all around the world and the removal of municipal solid waste is a job associated with a variety of biological, chemical, mechanical, physical, and psychosocial hazards. In our country, like many developing countries, municipal solid waste is collected manually and collection of household waste is also a job which requires repeated heavy physical activity such as lifting, carrying, pulling, and pushing. We performed this study to evaluate musculoskeletal disorders among municipal solid waste workers. We designed a cross sectional study. Our survey instrument for measurement of musculoskeletal symptoms was adapted from the Standardized Nordic Questionnaire that translated into Farsi language. A total of 65% (n=142 of participants reported that they had been troubled with musculoskeletal symptoms in one or more of the 9 defined body regions during the last 12 months. Prevalence of symptoms in low back, knees, shoulders, upper back and neck were 45, 29, 24, 23 and 22% respectively. Foreign workers reported more musculoskeletal symptoms in all body parts than Iranian workers. The differences between prevalence of symptoms between two groups were significant in all parts of body except knees. The study found that solid waste workers have more musculoskeletal disorders than general population. Meanwhile these symptoms were more common among foreign workers. The risk of disease was increased with the increasing years of working as solid waste worker and smoking. We didn't find relationship between musculoskeletal disorders and education or marriage status of workers.

  12. Survey of Geothermal Solid Toxic Waste

    Darnell, A.J.; Gay, R.L.; Klenck, M.M.; Nealy, C.L.

    1982-09-30

    This is an early survey and analysis of the types and quantities of solid toxic wastes to be expected from geothermal power systems, particularly at the Salton Sea, California. It includes a literature search (48 references/citations), descriptions of methods for handling wastes, and useful quantitative values. It also includes consideration of reclaiming metals and mineral byproducts from geothermal power systems. (DJE 2005)

  13. Alternative policies for solid waste management

    Percoco Marco

    2004-01-01

    Because of the recent dramatic increase in waste production, solid waste management and control have become one of the central issues in environmental policy. In this paper we review alternative fiscal instruments to control the production of residuals by using the benchmark given by the social optimum. Finnally, we apply the model to theoretically evaluate the TARI.

  14. Utilizing the Biofraction of Municipal Solid Waste

    Bjerre, Louise Rogild; Shapiro, Sara Josefin; Le Royal, Samantha; Rosenquist, Ditte Lyng; de Marée, Michelle

    2014-01-01

    This project takes its point of departure in the Copenhagen Resource and Waste Plan 2018 flagship Biowaste and Heavy Transport Fuelled with Biogas. The background for this project is an interest in resource scarcity and an increased need for efficient use of resources in municipal solid waste. This project researches how to induce trans...

  15. 76 FR 44093 - Definition of Solid Waste

    2011-07-22

    ... wastes for Subtitle C purposes (see 45 FR 33093, May 19, 1980; 50 FR 638-639, January 4, 1985). The U.S... stored on the land to be solid wastes (63 FR 28581, May 26, 1998). The conditional exclusion decreased... promulgated in October 2008 (73 FR 64688, October 30, 2008) and were intended to encourage the recovery...

  16. 1992 Solid waste reference forecast summary

    The report provides a planning-basis forecast which quantifies the volumes of newly generated solid low-level waste, low-level mixed waste, transuranic waste, transuranic mixed waste, and non-radioactive hazardous wastes to be generated or received at the US Department of Energy's Hanford Site during the period spanning FY-1992 through FY-2021. The objective of the report is to present a documented set of data which may be used consistently for both short- and long-term planning for solid waste treatment, storage, and disposal (TSD) activities. In addition to estimating the 30-year waste volume, this forecast delineates the physical characteristics of these wastes, identifies the types of containers that will be used to ship the waste, and discusses the hazardous constituents of mixed and hazardous wastes. In addition, this forecast documents the assumptions used by the major waste generators to prepare their estimates, identifies potential impacts to the current planning basis, discusses data certainty, and addresses data completeness

  17. Assay and RTR of solid waste management received TRU waste

    The Transuranic Storage and Assay Facility (TRUSAF) provides storage of Transuranic (TRU) and Transuranic Mixed (TRUM) waste from U.S. DOD and DOE offsite and onsite generators. In addition to storage, TRUSAF also performs assay and RTR (real time radiography) on each TRU drum with the intent of certification of the waste to WIPP-WAC (Waste Isolation Pilot Plant-Waste Acceptance Criteria) to allow eventual disposal of the TRU waste at WIPP. Due to the uncertainties associated with WIPP-WAC and the potential for all TRU WIPP-WAC certification at the generator or WRAP (Waste Receiving and Processing) facility, this study documents the requirements for TRU assay and RTR of all incoming TRU drums and establishes SWM (Solid Waste Management) policy on future assay and RTR of received TRU waste

  18. Solid Waste Management: Its Sources, Collection, Transportation and Recycling

    Gaurav K. Singh; Kunal Gupta; Shashank Chaudhary

    2014-01-01

    Solid wastes may be defined as useless, unused, unwanted, or discarded material available in solid form. Semisolid food wastes and municipal sludge may also be included in municipal solid waste. The subject of solid wastes came to the national limelight after the passage of the solid waste disposal act of 1965. Today, solid waste is accepted as a major problem of our society. In the United States over 180 million tons of municipal solid waste (MSW) was generated in 1988. At this generation qu...

  19. Cadmium complexation by solid waste leachates

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste...... complexes, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter....... The leachates were spiked with Cd (<100 μg Cd 1−1) to obtain comparable concentrations in the investigated samples. For each sample, at two different Cd concentrations, free divalent Cd and complexed Cd were determined. Furthermore, the complexed fraction was operationally separated into labile...

  20. Energy aspects of solid waste management: Proceedings

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  1. Energy aspects of solid waste management: Proceedings

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  2. Lyophilization for Water Recovery From Solid Waste

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  3. Composition of municipal solid waste in Denmark

    Edjabou, Maklawe Essonanawe

    In response to continuous pressure on resources, and the requirement for secure and sustainable consumption, public authorities are pushing the efficient use of resources. Among other initiatives, the prevention, reduction and recycling of solid waste have been promoted. In this context, reliable...... data for the material and resource content of waste flows are crucial to establishing baselines, setting targets and tracking progress on waste prevention, reduction and recycling goals. Waste data are also a critical basis for the planning, development and environmental assessment of technologies and...... waste management. These data are obtained through the characterisation of waste material. In the absence of standardised and commonly accepted waste sampling and sorting procedures, various approaches have been employed, albeit they limit both the comparability and the applicability of results. Thus...

  4. Inventory and sources of transuranic solid waste

    1978-08-01

    In the past, solid radioactive waste has often been buried in the most accessible and convenient vacant place, without a great deal of thought for the long-term consequences. The transuranium (TRU) elements were very strictly conserved and, at first, solid waste containing separated fission products was not a serious land burial problem. Wartime pressures for production and lack of knowledge or understanding led to siting and operational practices that, in many situations, are unsatisfactory by present day standards. Purpose of this report is to support the development of standards and criteria which will specifically address the problem of TRU contaminated waste generated by Department of Energy (DOE) nuclear programs and commercial application of nuclear technology. This report covers: DOE facilities, commercial disposal sites, commercial nuclear industry, TRU-contaminated waste inventory, and waste projections. (DLC)

  5. Maintenance Implementation Plan for solid waste

    This Maintenance Implementation Plan (MIP) has been developed for. implementation of the US Department of Energy (DOE) Order 4330.4A. Maintenance Implementation Program (DOE 1990) at the Hanford Site Solid Waste complex. It addresses maintenance functions associated with Solid Waste Management, which includes the field operational group and the facilities operational group. An assessment of the existing maintenance programs for Solid Waste was performed, and the results of this assessment were evaluated to determine corrective actions required to bring Solid Waste Maintenance into compliance with the order. The MIP assessment disclosed that most elements defined in the order are currently implemented for Solid Waste. It also identified issues which must be addressed to bring the maintenance function into full compliance with DOE Order 4330.4A. These include documentation of the maintenance training program, expanded scope of inspections to address the As Low As Reasonably Achievable (ALARA) concept, development of a Master Equipment List (MEL), and more adequate facilities to provide enhanced storage and control of tools and equipment

  6. Evaluation of dental solid waste in Hamedan

    Nabizadeh R.

    2009-08-01

    Full Text Available "nBackground and Aim: Today, one of the most important environmental issues is dental solid wastes which are of great importance because of the presence of hazardous, toxic and pathogen agents. In this survey, solid waste produced in Hamedan general dental offices is evaluated. "nMaterials and Methods: In this descriptive study, from 104 general dental offices in Hamedan , 10 offices were selected in simple random way. From each offices, 3 sample at the end of successive working day (Sunday, Monday and Tuesday were analyzed. Samples were manually sorted into different 74 components and measured by means of laboratory scale. Then, measured components were classified in the basis of characteristic and hazardous potential as well as material type. "nResults: Total annual waste produced in general dental offices in Hamadan is 14662.67 Kg (9315.45>95.0% Confidence Interval>20009.88. Production percentages of infectious, domestic type, chemical and pharmaceutical and toxic wastes were 51.93, 38.16, 9.47, 0.44 respectively. Main components of produced dental waste were 14 components that consist of more than 80 percents of total dental solid waste. So, waste reduction, separation and recycling plans in the offices must be concentrated on these main components. "nConclusion: In order to dental waste proper management, it is suggested that in addition to educate dentists for waste reduction, separation and recycling in the offices, each section of dental waste(toxic,chemical and pharmaceutical, infectious and domestic type wastes separately and according to related criteria should be managed.

  7. Electric Energy production through Municipal solid wastes

    The main objective in this investment Project is to improve the integral management of urban solid waste in the city of Salto, Uruguay, obtaining favorable results for the environment and society, contributing moreover in Sustainable Development.First of all, it is recommended the remediation of the current Open air Municipal dumping site. Simultaneously with the Remediation process, a controlled dumping site with daily covers of the compacted solid waste has been designed, as a transition methodology with a lifetime of 3 years approximately.In addition to this, two sanitary landfills are designed wits29h a total lifetime of 7 years, for the operation after the controlled dumping site is closed. There is also a leachate treatment system to process the effluents of the landfills. In order to optimize the use of the landfills, is proposed the simultaneous implementation of a Separated Urban Solid Waste Collection System (SisRReVa). This consist in separating the Valuable Waste (VW) from wet or organic solid waste in origin (home, stores,etc)and collecting it separately.The VW are separated by type (paper, board, glass, plastic and metal) in a Valuable Waste Classification Plant. This plant is designed to process the VW generated in Salto and collected by the SisRReVa for about ten years from now on. (Author)

  8. Solid waste management. Principles and practice

    Chandrappa, Ramesha [Karnataka State Pollution Control Board, Biomedical Waste, Bangalore (India); Bhusan Das, Diganta [Loughborough Univ. of Technology (United Kingdom). Dept. of Chemical Engineering

    2012-11-01

    Solid waste was already a problem long before water and air pollution issues attracted public attention. Historically the problem associated with solid waste can be dated back to prehistoric days. Due to the invention of new products, technologies and services the quantity and quality of the waste have changed over the years. Waste characteristics not only depend on income, culture and geography but also on a society's economy and, situations like disasters that affect that economy. There was tremendous industrial activity in Europe during the industrial revolution. The twentieth century is recognized as the American Century and the twenty-first century is recognized as the Asian Century in which everyone wants to earn 'as much as possible'. After Asia the currently developing Africa could next take the center stage. With transitions in their economies many countries have also witnessed an explosion of waste quantities. Solid waste problems and approaches to tackling them vary from country to country. For example, while efforts are made to collect and dispose hospital waste through separate mechanisms in India it is burnt together with municipal solid waste in Sweden. While trans-boundary movement of waste has been addressed in numerous international agreements, it still reaches developing countries in many forms. While thousands of people depend on waste for their lively hood throughout the world, many others face problems due to poor waste management. In this context solid waste has not remained an issue to be tackled by the local urban bodies alone. It has become a subject of importance for engineers as well as doctors, psychologist, economists, and climate scientists and any others. There are huge changes in waste management in different parts of the world at different times in history. To address these issues, an effort has been made by the authors to combine their experience and bring together a new text book on the theory and practice of the

  9. Treatment of solid waste containing 226Ra

    This work is directed to the treatment of radioactive solid waste containing mainly radium (226Ra) produced from oil and gas production industries in Egypt. The treatment process has been carried out by suspending the clay fraction content in the solid waste in suitable leaching solutions. These compremise aqueous saline solution and aqueous saline solutions containing certain additives, namely, Washing Powder (W.P.), Shell and Span 20 surfactants. Treatment with saline solution containing either W.P. or Shell surfactants, showed an enhancement in the removal of 226Ra compared to that with saline solution alone or containing Span 20. Factors affect the treatment process have been investigated and discussed. The removal percentage of 226Ra was found to depend on the clay fines content in the solid waste. Further sequential treatment schemes have been tested and optimized

  10. Construction of solid waste form test facility

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  11. Waste to Energy: A Green Paradigm in Solid Waste Management

    Mohamad Danish Anis

    2015-12-01

    Full Text Available The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without proper treatment, these wastes emit gases like Methane (CH4, Carbon Dioxide (CO2 etc, resulting in bad odor, emission of green house gases and increase in air and water pollution. This problem can be significantly mitigated through adoption of environment-friendly waste-to-energy technologies for the treatment and processing of wastes before disposal. It will not only reduce the quantity of wastes but also generate substantial quantity of energy. India at present is the world’s fifth biggest energy consumer and is predicted to surpass Japan and Russia to take the third place by 2030. Indian economy has shown a robust growth of around 8% in recent years and is trying to sustain this growth in order to reach goals of poverty alleviation. To achieve the required level of growth, India will need to at least triple its primary energy supply and quintuple its electrical capacity. This will force India, which already imports a majority of its oil, to look beyond its borders for energy resources. In India waste-to-energy has a potential of generating 1700 MW per person and this is scheduled to increase when more types of waste would be encompassed. At present hardly 50 MW power is being generated through waste-to-energy options. Waste combustion provides integrated solutions to the problems of the modern era by: recovering otherwise lost energy and thereby reducing our use of precious natural resources; by cutting down our emissions of greenhouse gases; and by both

  12. Industrial Solid Waste Management and Joint Production

    Stenis, Jan

    2002-01-01

    The study illustrates how joint production theory can be applied in estimating the profitability of fractionating industrial solid wastes, a given product and the wastes produced in connection with its manufacture being regarded as a production-planning unit. Two case studies showing how the approach described can be applied both to bulk manufacturing and to the manufacture of technically complicated products are presented. The realism of this approach and the contribution it can make to opti...

  13. The anaerobic digestion of solid organic waste.

    Khalid, Azeem; Arshad, Muhammad; Anjum, Muzammil; Mahmood, Tariq; Dawson, Lorna

    2011-08-01

    The accumulation of solid organic waste is thought to be reaching critical levels in almost all regions of the world. These organic wastes require to be managed in a sustainable way to avoid depletion of natural resources, minimize risk to human health, reduce environmental burdens and maintain an overall balance in the ecosystem. A number of methods are currently applied to the treatment and management of solid organic waste. This review focuses on the process of anaerobic digestion which is considered to be one of the most viable options for recycling the organic fraction of solid waste. This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields. The involvement of a diverse array of microorganisms and effects of co-substrates and environmental factors on the efficiency of the process has been comprehensively addressed. The recent literature indicates that anaerobic digestion could be an appealing option for converting raw solid organic wastes into useful products such as biogas and other energy-rich compounds, which may play a critical role in meeting the world's ever-increasing energy requirements in the future. PMID:21530224

  14. Solid waste management complex site development plan

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  15. Solid waste management in Mekong Delta

    Nguyen, Xuan Hoang; Le, Hoang Viet

    2012-01-01

    Municipal solid waste (MSW) in Vietnam has been increasing quickly and became one of the most considered environmental problems in Mekong Delta (MD) region covering 13 provinces and municipalities in the south of Vietnam. With a considerably large amount of MSW, the region produces about 5% of the total amount of MSW of the country. The collection rate of solid waste is about quite high (65 - 72%) in the cities and rather low (about 40 - 55%) in the rural areas, with a high content in organic...

  16. The Perception of the Langkawi Community on Solid Waste Management

    Noor Khafazilah Abdullah; Zaini Sakawi; Lukman Ismail

    2014-01-01

    The process of disposing solid wastes should be systematic and efficient. Various pollution may occur if solid wastes are not properly disposed. Pollution would not only affect the naturalenvironment but also exposed the community to various diseases. Therefore the community should be given exposure to practice efficient solid waste disposalfor their own benefits.Given the signficance of proper waste disposal issues for tourism locations, this study investigated the management of solid waste ...

  17. Developing the Decision Making Matrix in Solid Waste Management

    Ph. D. Mohammad Ali Alanbari; Ph. D. Abdul Sahib albagdadi

    2012-01-01

    A majority of local governments and urban institutions identified the subject of solid waste environmental problem has reached proportions requiring practical solutions. It can be noted three main trends governing the matter of solid waste: An increase in the size waste generated from urban housing Change in the quality of waste generated. The discharge process of the wastes collected. Consequently, these trends play an important role in determining the nature of the solid waste management an...

  18. Solid Waste Burial Grounds/Central Waste Complex hazards assessment

    This document establishes the technical basis in support of Emergency Planning Activities for Solid Waste Burial Grounds/Central Waste Complex on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is documented

  19. Municipal Solid Waste Management in China

    Li, Ruofei; Liu, Sibei

    2010-01-01

    As the fast development of the urbanization and the growth of GDP in China, there is and will be more and more demands for energy consumption. In the meantime, it also creates a growing number of municipal solid waste (MSW), especially in the recent years, MSW has experienced a dramatic increase. However, the MSW management system is poor and cause many pollution problems in the cities of China, especially in the middle and small cities, at the aspects of waste collection, waste sorting, recy...

  20. Method of solidifying radioactive solid wastes

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  1. National solid waste management plan for Iraq.

    Knowles, James A

    2009-06-01

    After decades of turmoil and international sanctions much of the key civil infrastructure within Iraq has fallen into disrepair, leading to a considerable decline in the provision of basic and essential municipal services. This is particularly true of waste and resource management services that have seen years of underdevelopment and deterioration. This has resulted in a lack of provision of basic public services in the waste sector which have been replaced by a burgeoning unregulated informal market in waste collection, disposal and recycling. In response, a National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007, to plan for the strategic development of all aspects of waste management in the country over the coming 20 years. In particular, the NSWMP focuses on policy development and integrated planning regarding regulatory framework, economic aspects, institutional capacity, citizen and technical education, and technical and operational development. This paper summarizes the key objectives, challenges and subsequent recommendations contained in the NSWMP for Iraq. PMID:19470543

  2. Melt-processing method for radioactive solid wastes

    Radioactive solid wastes are charged into a water-cooled type cold crucible induction melting furnace disposed in high frequency coils, and high frequency currents are supplied to high frequency coils which surround the melting furnace to melt the solid wastes by induction-heating. In this case, heat plasmas are jetted from above the solid wastes to the solid wastes to conduct initial heating to melt a portion of the solid wastes. Then, high frequency currents are supplied to the high frequency coils to conduct induction heating. According to this method, even when waste components of various kinds of materials are mixed, a portion of the solid wastes in the induction melting furnace can be melted by the initial heating by jetting heat plasmas irrespective of the kinds and the electroconductivity of the materials of the solid wastes. With such procedures, entire solid wastes in the furnace can be formed into a molten state uniformly and rapidly. (T.M.)

  3. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    2011-10-12

    ...: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... reopening the comment period on the proposed rule: Hazardous and Solid Waste Management...

  4. Torrefaction Processing for Human Solid Waste Management

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  5. Cost/Benefits of Solid Waste Reuse

    Schulz, Helmut W.

    1975-01-01

    Municipalities and industry are being forced to seek alternatives to sanitary landfills and incineration as means of eliminating solid wastes. Based on the Columbia study, the two most cost-effective, environmentally acceptable alternatives are the high temperature, oxygen-fed pyrolysis process and the co-combustion of refuse-derived fuel in…

  6. Solid Waste Program technical baseline description

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  7. General survey of solid-waste management

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  8. Solid Waste Management Planning--A Methodology

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  9. Brazil's new national policy on solid waste

    Jabbour, A.B.L.d.S.; Jabbour, C.J.C.; Sarkis, J.;

    2014-01-01

    Brazil, one of the world's largest developing countries, has recently introduced a new solid waste management regulatory policy. This new regulatory policy will have implications for a wide variety of stakeholders and sets the stage for opportunities and lessons to be learned. These issues are...

  10. Municipal solid-waste management in Istanbul

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  11. Municipal solid-waste management in Istanbul.

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. PMID:20185290

  12. CELLULOSE POWDER FROM OLIVE INDUSTRY SOLID WASTE

    Othman A. Hamed,

    2012-07-01

    Full Text Available In the present work, a method for extracting cellulose from olive industry solid waste has been developed. The method involves subjecting solid olive waste to kraft pulping, followed by multistep bleaching processes. The totally free chlorine chemical bleaching sequence APEP was the most effective and gave an average cellulose yield of about 35%. The extracted cellulose was extensively characterized using FTIR, EMS, HPLC, and viscometry. Our key finding in this study is that the extracted cellulose was found to have physio-chemical properties that are similar to those of conventional microcrystalline cellulose (MCC. This is important, as our results show how lignocellulosic agricultural wastes can be utilized to produce high value cellulose powder.

  13. Establishment of verification system for solid waste

    Solid wastes generated from MOX Facility have to be verified as same as nuclear fuel materials according to the IAEA safeguards criteria. On the other hand, from storing efficiency point of view, solid waste drums must be piled up (3 layers). However, it was very difficult to take out the drums randomly selected for verification of piled up drums. So it was necessary to develop new verification system which measures the selected drum easily and speedily without moving it. The system measuring the waste drum directly in narrow space of pallet for forklift-nails. This system consists of NaI(Tl) detector, collimator with wheels, PMCA (Portable Multichannel Analyzer), rails and cables. This system can confirm existence of Pu in drums by counting γ-Ray of Pu-241 (208 keV). This system is very small and light because of easy operating in narrow space and high position. (author)

  14. Integrated solid waste management of Minneapolis, Minnesota

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  15. Power from municipal solid waste

    This paper evaluates the energy production potential from urban wastes for several cities in Latin America. Technologies available for transforming wastes into energy are reviewed and the high efficiency and low pollution levels obtained are discussed based on some very successful examples in the developed countries. Several criteria to help plan a plant and choose its location and appropriate size are presented under the framework of environmental and energy constraints. Economic and financial feasibility, barriers to the introduction of new technologies and their transfer to developing countries, and political obstacles created by the lobby that is taking advantage of the present situation are presented. Management of such plants requires that a social communication program be well designed to touch and inform the public about the importance of the plants; it should also emphasize the gains to society. Marketing strategies are presented that will highlight life quality improvement and preservation of the environment to decision makers and the public. A case study for the city of Sao Paulo, Brazil, will be discussed in detail, showing how several levels of decision makers are involved in the preparation of the feasibility study and in raising financial resources both inside and outside the country. The study is for a large plant with a capacity of 1,800 ton/day and the generation of 27 MW of electric power

  16. Municipal solid waste disposal in Portugal

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  17. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  18. Microwave Enhanced Freeze Drying of Solid Waste Project

    National Aeronautics and Space Administration — Development of technology for Microwave Enhanced Freeze Drying of Solid Waste (MEFDSW) is proposed. The present state of the art for solid waste stabilization using...

  19. Integrated approach to solid waste management in Pune city

    Sanjay RODE

    2010-01-01

    The solid waste is increasing in Pune city due to growth of population, urbanization, higher per capita income and standard of living, changing lifestyle and food habits. The solid waste created by the household units, shops, restaurant and commercial units are higher. Solid waste is inevitable task in urbanization process and it will increase in future. The collection, segregation, storage, transports and processing of solid waste needs planning and more investment. Clean city improves stand...

  20. An integrated approach of composting methodologies for solid waste management

    Kumaresan, K; Balan, R.; Sridhar, A; J. Aravind; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen...

  1. MUNICIPAL SOLID WASTE CHARACTERISTICS AND MANAGEMENT IN NIGERIA

    T. Ch. Ogwueleka

    2009-01-01

    Municipal solid waste management has emerged as one of the greatest challenges facing environmental protection agencies in developing countries. This study presents the current solid waste management practices and problems in Nigeria. Solid waste management is characterized by inefficient collection methods, insufficient coverage of the collection system and improper disposal. The waste density ranged from 280 to 370 kg/m3 and the waste generation rates ranged from 0.44 to 0.66 kg/capita/day....

  2. Solid Waste Management Baling Scheme Economics Methodology

    Jan Stenis,

    2011-06-01

    Full Text Available A cost structure is proposed for evaluating and improving the ecological-economic efficiency of baling sub-scheme units within solid waste management schemes that end with, for example, incineration for heat and power production. The methodology proposed employs the previously introduced WAste Managements’ Efficient Decision model (WAMED and the COmpany STatistical BUSiness Tool forEnvironmental Recovery indicator (COSTBUSTER. The previously introduced equality principle and the Efficient Use of Resources for Optimal Production Economy (EUROPE model are applied so to in monetary terms express the emissions in case of bale related fire (sol, pollutions from leachate (liq and odour (g at a scheme. Previously, the EUROPE model has been applied to residuals from producing industry, the construction sector and whole landfills. A case study presents the practical application of the proposedmethodology. It is concluded that the presented novel methodology for evaluation and improvement of the ecological-economic efficiency of solid waste baling management schemes simultaneously decreases thenegative impact on the environment and the health of the population, provides the foundation of an investment appraisal support tool for the implementation of solid waste management projects and enables comparative analysis of estimated, actual and prevented monetary damages from the implementation of baling plant units.

  3. Pollution of Solid Waste to Agricultural Environment and Preventive Countermeasures

    Yan, Shi

    2014-01-01

    This paper elaborated the pollution and hazards caused by different kinds of agricultural solid wastes to the agro-ecological environment from the aspects of the types of solid wastes and the way they are produced. Besides, it came up with some countermeasures for preventing and controlling solid waste pollution and hazards.

  4. Pollution of Solid Waste to Agricultural Environment and Preventive Countermeasures

    Shi; YAN

    2014-01-01

    This paper elaborated the pollution and hazards caused by different kinds of agricultural solid wastes to the agro-ecological environment from the aspects of the types of solid wastes and the way they are produced. Besides,it came up with some countermeasures for preventing and controlling solid waste pollution and hazards.

  5. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  6. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  7. Hanford solid waste management system simulation

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  8. Solid Wastes Management of Yasuj Hospitals, Iran 2006

    AR Raygan Shirazi

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Unhygienic methods of colleting, storage, transportation and disposal of the hospital wastes results in serious hazards that can endanger the health and environment. These materials are classified as dangerous, and have to be collected and disposed based on special rules. Materials & Methods: In the present study we aimed to evaluate the quality of management of hospital wastes and to estimate the waste constituents in Yasuj hospitals. Density, constituents, methods of collecting, transportation and disposal of hospital wastes were evaluated in 3 consecutive days of every months of the year 2006. Results: Study showed that the daily production of solid wastes was 5.5 Kg per hospital bed and infected solid wastes were estimated to be 1.5 Kg per hospital bed. The total solid waste production was 1350 Kg per day which included 27.2 percent as infected solid wastes. Solid waste density was 160.7 Kg per cubic meter and its constituents were food wastes (19.753%, rubber (47.02%, paper (12.05%, glass (5.211%, metals (3.41% and bandages, gases, clothes, etc (12.556%. Conclusion: The findings suggest that the solid waste management of the studied hospitals is not satisfying and more attention must be paid to the critical issues, such as plans for reducing solid wastes, isolating infected solid wastes at the production site and using safe and updated methods of disposal of solid wastes.

  9. Definitions of solid and hazardous wastes

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  10. Solid Waste Projection Model: Database User's Guide

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  11. Solid Waste Management in Petroleum Refineries

    Jadea S. Alshammari

    2008-01-01

    Full Text Available Waste management became focus of attention of many researchers and scientists in the last half century due to its vital importance. Waste management covered waste source reduction in general, by recycling, reusing, composting, incineration with or without energy recovery, fuel production and land filling. A common approach of waste management models were for specific problems with a limited scope (like assignment of generating sources to landfills, transfer stations sitting, site selection for landfills, etc.. Integrated models have been developed more recently. The latest dynamic network flow models with nonlinear costs for waste management used multi-objective mixed integer programming approach for the management of existing facilities in an industrial complex waste management system. The application of multi-objective mixed integer programming techniques was for reasoning the potential conflict between environmental and economic goals and for evaluating sustainable strategies for waste management. Material recycling exhibited huge indirect benefits in an economic sense, although the emphasis of environmental quality as one of the objectives in decision-making has been inevitably driven the optimal solution toward pro-recycling programs. The enhancement of this modeling analysis by using the grey and fuzzy system theories as uncertainty analysis tools could prove highly beneficial. A multi-objective optimization model based on the goal programming approach was applied for proper management of solid waste generated by the petroleum industries in the state of Kuwait. The analytic hierarchy process, a decision-making approach, incorporating qualitative and quantitative aspects of a problem, has been incorporated in the model to prioritize the conflicting goals usually encountered when addressing the waste management problems of the petroleum industries. An optimization model was formulated based on the goal programming technique to minimize the

  12. Municipal solid waste management in Cartago province

    Silvia M. Soto-Córdoba

    2014-03-01

    Full Text Available This paper resumes the principals results obtained by the grant EUROPEAID/126635/M/ACT/CR”, that was realized by FUNDATEC, and whose bene­ficiary was the “Federación de Municipalidades de Cartago, Costa Rica”, the Project received a funding of 74,920 euros. We work with all the Municipalities of the Cartago Province. In addition, we show the results of the interviews of social actors, visits to the recycle sites, visits of municipalities, during the years 2010, 2011 and 2012, and the review of literature. We describe the actual situation of the management of solid waste in Cartago, determinate the gene­ration rates by person and identified the principal landfill disposes, the recycle companies and deter­minate the main problems associated with the solid waste. It is hope that the information presented here, pro­vides the basis for the future construction of plans of municipal solid waste management, and for the capacitation of community organization in the pro­vince of Cartago.

  13. Production of hydrogen from municipal solid waste

    Coleman, S.L.

    1995-11-01

    The Gasification of Municipal Solid Waste (MSW) includes gasification and the process for producing a gasificable slurry from raw MSW by using high pressures of steam. A potential energy source, MSW is a composite of organic materials such as: paper, wood, food waste, etc. There are different paper grades producing different results with low-quality paper forming better slurries than high-quality papers; making MSW a difficult feedstock for gasification. The objective of the bench-scale laboratory work has been to establish operating conditions for a hydrothermal pre-processing scheme for municipal solid waste (MSW) that produces a good slurry product that can be pumped and atomized to the gasifier for the production of hydrogen. Batch reactors are used to determine product yields as a function of hydrothermal treatment conditions. Various ratios of water-to-paper were used to find out solid product, gas product, and soluble product yields of MSW. Experimental conditions covered were temperature, time, and water to feed ratio. Temperature had the strongest effect on product yields.

  14. Solid Waste Inventory Identification, Sellafield, United Kingdom

    There is a requirement to define the solid wastes that need to be removed prior to decontamination and dismantling of pool structures. As well as the residual active inventory, consideration needs to be given to installed plant, equipment and support structures within the pool, as these items may contribute to a significant proportion of the inventory. The data can be used to support definition of retrieval and treatment techniques, as well as to support safety case development and project planning. Plans should also include campaigns of further data gathering, taking advantage of opportunities for improved characterization, which will come from advancements in the pond cleanup programme. For example, removal of sludge provides an opportunity to gain greater understanding of the inventory that may be partially obscured. Similarly, sorting or handling specific wastes may provide information about the condition and degree of corrosion of other wastes

  15. The Perception of the Langkawi Community on Solid Waste Management

    Noor Khafazilah Abdullah

    2014-08-01

    Full Text Available The process of disposing solid wastes should be systematic and efficient. Various pollution may occur if solid wastes are not properly disposed. Pollution would not only affect the naturalenvironment but also exposed the community to various diseases. Therefore the community should be given exposure to practice efficient solid waste disposalfor their own benefits.Given the signficance of proper waste disposal issues for tourism locations, this study investigated the management of solid waste disposal at the renown Langkawi Island. The focus was on the understanding and awareness of the community of the locals, business people and tourists on the island.The findings indicated that thecommunity inPulau Langkawi was aware of the importance of efficient solid waste management. Yet, theirpractices differed in terms of propriety or impropriety of the method in the perspectives of solid waste management. These practices were found to be influenced by their level of knowledge on waste management issues and their educational background.

  16. Solid Waste Burial Ground Central Waste Complex (CWC) Hazards Assessment

    U.S. Department of Energy (DOE) Orders require that a facility-specific hazards assessment be performed to support emergency planning activities. The Hazard Assessment establishes the technical basis for the Emergency Action Levels (EALs) and the Emergency Planning Zone (EPZ). This document represents the facility-specific hazards assessment for the Hanford Site Solid Waste Storage and Disposal (SWSD) organization as interpreted from DOE guidance (DOE 1992)

  17. Pyrolisis of municipal solid waste derived fuels

    In this study of pyrolytic processes for refuse derived fuel from municipal solid wastes, the main process parameters affecting the yield and the physical-chemical characteristics of products (gases, liquids and solids) were identified and analyzed. From the experimental results, one can observe that the pyrolytic process reduces the volume of produced emissions with respect to the conventional incinerators and allows, at the same time, the recovery of a gas with a significant heat capacity (14,000-19,000 kj/nmc) according to the process temperature, two other fuels, a tar and a solid with low ash content. It seems also that the strong environmental impact associable to this process is due to the water fraction of the produced liquid, whose main pollutants were also identified

  18. Solid Waste/Disease Relationships, A Literature Survey.

    Hanks, Thrift G.

    Presented is a comprehensive survey of the literature on the relationships between disease and solid wastes. Diseases are grouped on the basis of waste type or disease vector, such as chemical waste, human fecal waste, animal fecal waste, rodent-borne disease, mosquito-borne disease and miscellaneous communicable disease. The following format is…

  19. Solid, low-level radioactive waste certification program

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  20. Possible global environmental impacts of solid waste practices

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C. [Pacific Northwest Lab., Richland, WA (United States); Dibari, J.C. [Heritage College, Toppenish, WA (United States)

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  1. Development of a master plan for industrial solid waste management

    Rapid industrial growth in the province of Khuzestan in the south west of Iran has resulted in disposal of about 1750 tons of solid waste per day. Most of these industrial solid wastes including hazardous wastes are disposed without considering environmental issues. This has contributed considerably to the pollution of the environment. This paper introduces a framework in which to develop a master plan for industrial solid waste management. There are usually different criteria for evaluating the existing solid waste pollution loads and how effective the management schemes are. A multiple criteria decision making technique, namely Analytical Hierarchy Process, is used for ranking the industrial units based on their share in solid waste related environmental pollution and determining the share of each unit in total solid waste pollution load. In this framework, a comprehensive set of direct, indirect, and supporting projects are proposed for solid waste pollution control. The proposed framework is applied for industrial solid waste management in the province of Khuzestan in Iran and a databank including GIS based maps of the study area is also developed. The results have shown that the industries located near the capital city of the province, Ahwaz, produce more than 32 percent of the total solid waste pollution load of the province. Application of the methodology also has shown that it can be effectively used for development of the master plan and management of industrial solid wastes

  2. Assessment of LANL solid low-level waste management documentation

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A

  3. Municipal solid waste management in Beijing City

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km2 with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  4. Solid low-level waste forecasting guide

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford's experience within the last six years. Hanford's forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford's annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford's forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data

  5. Solid low-level waste forecasting guide

    Templeton, K.J.; Dirks, L.L.

    1995-03-01

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

  6. Integrated solid waste management of Springfield, Massachusetts

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  7. Integrated solid waste management of Scottsdale, Arizona

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  8. Municipal solid waste management problems: an applied general equilibrium analysis

    BARTELINGS H.

    2003-01-01

    Keywords: Environmental policy; General equilibrium modeling; Negishi format; Waste management policies; Market distortions.About 40% of the entire budget spent on environmental problems in theNetherlandsis reserved for the waste management problem. Regardless of the amount spent on waste management, the quantity of municipal solid waste generated still increases. It has up till now proven impossible to decouple generation of municipal solid waste and income growth.This thesis investigates th...

  9. Obtaining fuel briquets from the solid municipal waste

    Recycling systems for solid waste materials are designed to reduce the amount of solid waste materials going to land fields. Through the Trash Separation Systems, clean municipal waste are reused in production of fuel pellets. Other waste streams such as coal fines, sawdust, wood chips, coke breeze and agricultural waste can be blended with these pellets along with a high thermal value binder and/or used motor oil to form a quality clean burning alternative fuel. (Author)

  10. Municipal solid waste management in Nepal: practices and challenges

    Solid waste management in Kathmandu valley of Nepal, especially concerning the siting of landfills, has been a challenge for over a decade. The current practice of the illegal dumping of solid waste on the river banks has created a serious environmental and public health problem. The focus of this study was to carry out an evaluation of solid waste management in Nepal based on published information. The data showed that 70% of the solid wastes generated in Nepal are of organic origin. As such, composting of the solid waste and using it on the land is the best way of solid waste disposal. This will reduce the waste volume transported to the landfill and will increase its life

  11. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. PMID:26060198

  12. Biogas. Biofuels. Urban waste. Solid biomass

    The European production of primary energy from biogas reached 7.5*106 toe in 2008, it means a 4.4% increase on 2007. The bio-fuel consumption rose to 10.5 Mtoe in 2008, i.e. 2.5 Mtoe more than in 2007, this 31.4% growth seems relatively slow when compared with previous performances of 45.7% (between 2006 and 2007) and 70.9% (between 2005 and 2006). Primary energy production by combustion of renewable municipal solid waste in the European Union rose slightly in 2008 by 3% over 2007 to reach 6806 ktoe. The solid biomass that is made up of wood and its waste in addition to organic and animal waste was one of renewable energy production's safe bets. The primary energy production from this sector rose by 4.6% and reached 70292 ktoe. In all the renewable energy sources we have reviewed Germany ranks first in terms of global production. (A.C.)

  13. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  14. Integrated solid waste management of Sevierville, Tennessee

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  15. Integrated solid waste management of Seattle, Washington

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  16. Chrome recycling from leather solid wastes

    Leather processing is one of the industrial activities that generate chromium bearing wastes in different forms, one of them is chrome shavings which contributes about 10% of the quantum raw skins /hides, and causes on burning dangerous human hazardous. Hydrolysis processes by different alkalis such as (LiOK KOH, NaOH) have been applied to recover chrome from solid wastes. The extent of hydrolysis was studied as a function of alkalis concentrations, in presence and absence of reducing agents, shaking time and temperature. Hydrolysis process exhibits 99%, 98% and 97%, chrome recovery for LiOH, KOH and NaOH respectively. The recovered chrome has been used in retaining process, examined through visual and mechanical tests of leather samples. The evaluation of the tanning process with recovered chrome gave acceptable results

  17. 75 FR 51434 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    2010-08-20

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271, and 302 RIN-2050-AE81 Hazardous and Solid Waste... No. EPA-HQ-RCRA-2009-0640. Mail: Send your comments to the Hazardous and Solid Waste Management... Delivery: Deliver two copies of your comments to the Hazardous and Solid Waste Management...

  18. 78 FR 46940 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    2013-08-02

    ... AGENCY RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and Listing of Special... conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of...) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System:...

  19. Pyrolysis processing for solid waste resource recovery

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  20. Volume reduction techniques for solid radioactive wastes

    This report gives an account of some of the techniques in current use in the UK for the treatment of solid radioactive wastes to reduce their volume prior to storage or disposal. Reference is also made to current research and development projects. It is based on a report presented at a recent International Atomic Energy Agency Technical Committee when this subject was the main theme. An IAEA Technical Series report covering techniques in use in all parts of the world should be published within the next two years. (author)

  1. Plasma Gasification of Municipal Solid Waste: A Review

    Kartik Gonawala

    2014-01-01

    Full Text Available Utilization of plasma gasification in waste to energy is one of the novel applications meeting todays need for waste disposal. In this application, plasma arc, gasifies the carbon based part of waste materials such as municipal solid waste, sludge, agricultural waste, etc. and generating a synthetic gas which can be used to produce energy through engine generators, gas turbines and boilers. The non-carbon based part of the waste materials can be vitrified into glass and reusable metal. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. The paper focuses on plasma gasification technology for waste disposal and energy generation with case study. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  2. Development of new incineration systems for radioactive solid waste

    NGK delivers the incineration systems which can process the radioactive solid waste very safely to all power plants and nuclear facilities. If the radioactive solid waste contains the non-combustible waste and the retardant waste, in order to incinerate the combustible waste very well, we have to sort the non-combustible and the retardant waste from the radioactive soil waste. So, NGK has developed 'Rotary kiln type incinerator' and 'Rotary kiln and stoker type incinerator'. (author)

  3. Engineering properties for high kitchen waste content municipal solid waste

    Wu Gao

    2015-12-01

    Full Text Available Engineering properties of municipal solid waste (MSW depend largely on the waste's initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW. After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW, the following findings were obtained: (1 HKWC MSW has a higher initial water content (IWC than LKWC MSW, but the field capacities of decomposed HKWC and LKWC MSWs are similar; (2 the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3 compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG generation rate but a shorter duration and a lower potential capacity; (4 the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5 the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  4. A Baumol-Oates approach to solid waste taxation

    Andersen, M. S.; Dengsøe, N.

    2002-01-01

    A national Baumol–Oates tax on waste in Denmark helped achieve a reduction of 26% in net solid waste from 1987 to 1998. The tax, which is levied per ton of waste, was particularly effective as regards the heavier waste streams such as construction waste and garden waste. When it comes to industri...... assumption of environmental economics needs to be supplemented by an institutional dimension to interpret responses to environmental taxes correctly....

  5. Plasma Gasification of Municipal Solid Waste: A Review

    Kartik Gonawala

    2014-01-01

    Utilization of plasma gasification in waste to energy is one of the novel applications meeting todays need for waste disposal. In this application, plasma arc, gasifies the carbon based part of waste materials such as municipal solid waste, sludge, agricultural waste, etc. and generating a synthetic gas which can be used to produce energy through engine generators, gas turbines and boilers. The non-carbon based part of the waste materials can be vitrified into glass and reusab...

  6. Management of solid waste in Hyderabad city: problems and solutions

    This research paper is aimed to identify, explore, and disseminate the findings about the collection and transportation of solid waste in the second most populous city of Sindh province, Hyderabad. Working with a thorough understanding of existing system and practices in this city it is found that the imported solid waste management systems can not be successfully adopted. Therefore there is need of an indigenous approach for the management of solid waste in this one of the oldest city of the region. A successful community-involved attempt has been made to reshape the existing system of collection and transfer of solid waste by selecting Gulshan-e-Hali as a model colony. For this purpose a novel solid waste collection vehicle, Garbage Collection Rickshaw, was designed and operated satisfactorily. It is verified that incorporation of enhanced community participation can result ill significant and sustainable solid waste management improvements in the urban communities leading to improved living environment. (author)

  7. Biomedical waste and solid waste management draft rules, 2015: A comment

    Sandeep Sachdeva

    2016-01-01

    Waste management is increasingly being given focus and attention throughout the globe in view of its diverse and adverse consequence to human and environmental health. Recently government has released draft biomedical waste and solid waste management rules, 2015 and invited comments from stakeholders. This brief provides update on bio medical waste, solid waste management especially community disposal of sanitary waste and highlights some of the concerns.

  8. A Baumol-Oates approach to solid waste taxation

    Andersen, M.S.; Dengsøe, N.

    2002-01-01

    A national Baumol–Oates tax on waste in Denmark helped achieve a reduction of 26% in net solid waste from 1987 to 1998. The tax, which is levied per ton of waste, was particularly effective as regards the heavier waste streams such as construction waste and garden waste. When it comes to industrial and commercial waste, there are indications that the waste tax is not sufficiently significant to induce changes in behavior, and that except for very waste-intensive enterprises, companies do not ...

  9. Qinshan phase Ⅱ expansion project to minimize solid waste transformation

    The nuclear power plant in the production and maintenance period usually have a certain amount of radioactive waste, according to the physical state of these wastes, it can be divided into radioactive waste gas, radioactive waste water and solid waste. Radioactive waste gas and water, treated by the waste treatment system, and the corresponding facilities for filtration, purification. compression, storage to meet discharging requirements, discharge to the environment finally. As for solid radioactive waste, common solution in nuclear power plants is to use specially formulated cement to cure and packaged into the barrel, stored in a particular building for naturally decaying. Qinshan NPP have optimized the solid waste treatment process m extension project. As the nuclear power industry prospering, radioactive solid waste generation would increased dramatically,. how to reduce solid waste production volume, how to control the volume of waste bins will become serious issues in future. Qinshan Phase Ⅱ expansion project as 'replica plus improvement' projects, 'solid waste minimization transformation' has received great attention from SEPA (State Environmental Protection Department). (authors)

  10. Recovering method for solid waste and facility therefor

    When recovering solid wastes in a dry-type storage vessel, a crusher is hoisted down from a cask, and the crusher is operated to crush the solid wastes while holding them. The crushed wastes are temporarily stored at the upper portion of the crusher, and recovered as crushed wastes. In this case, the crusher is turned down, and a shielding vessel is laid the recover downwardly to temporary store the crushed wastes in the shielding vessel. Then, the crusher and the shielding vessel are turned 180deg to contain the crushed wastes into the shielding vessel. With such procedures, the stored solid wastes can be recovered reliably, the stored solid wastes can be reduced in the size, and efficiency of recovering operation can be improved. (T.M.)

  11. Management of radioactive wastes (solids and liquids) of CDTN

    Estimates of solid and liquid radioactive wastes produced in CDTN, the foreseen treatment and the responsibilities of various organs of CDTN involved in radioactive waste management are presented. (C.M.)

  12. Is Municipal Solid Waste Recycling Economically Efficient?

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  13. Race, Wealth, and Solid Waste Facilities in North Carolina

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Jay S. Kaufman; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain ...

  14. Municipal solid waste management system: decision support through systems analysis

    Pires, Ana Lúcia Lourenço

    2010-01-01

    The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, covering the four columns: technical, environmental, economic and social aspects. To develop the model an intensive literature review have been conducted. T...

  15. Integrated Solid Waste Management-An Innovative Approach

    Dr.L.Nageswara Rao; D.Kamalakar

    2014-01-01

    Now a day’s Municipal Solid waste management (MSWM) has become an important problem due to enhanced economic activities and rapid urbanization. Solid waste, which is a concern of day-to-day activity of human kind, needs to be accomplished properly. The people from different sectors are face various problems associated with ailing managed solid waste operation. Increased attention has been given by the government in recent years to handle this problem in a safe and clean manner...

  16. Solid waste utilization: incineration with heat recovery

    Boegly, W.J. Jr.

    1978-04-01

    As a part of the Integrated Community Energy Systems (ICES) Program, Technology Evaluations, this evaluation considers the potential utilization of municipal solid wastes as an energy source by use of incineration with heat recovery. Subjects covered include costs, design data, inputs and outputs, and operational problems. Two generic types of heat recovery incinerators are evaluated. The first type, called a waterwall incinerator, is one in which heat is recovered directly from the furnace using water circulated through tubes imbedded in the furnace walls. This design normally is used for larger installations (>200 tons/day). The second type, a starved-air incinerator is used mainly in smaller sizes (<100 tons/day). Burning is performed in the incinerator, and heat recovery is obtained by the use of heat exchangers on the flue gases from the incinerator. Currently there are not many installations of either type in the United States; however, interest in this form of solid-waste handling appears to be increasing.

  17. Municipal Solid Waste Management in Bulgaria from a Systems Perspective

    Kolev, Aleksandar

    2007-01-01

    The European Union membership of Bulgaria since January 2007 imposes higher requirements to the national waste management system and demands changes in the current waste management practices. In this context it is of great interest to study the contemporary and possible future development of the Bulgarian municipal solid waste management system. A systems analysis was carried out to provide better understanding of the Bulgarian municipal solid waste management and to analyze the possibilities...

  18. Spanish solid wastes legislation; Legislacion espanola de Residuos Solidos

    Castrillon Pelaez, L.; Maranon Maison, E.; Rodriguez Iglesias

    2001-07-01

    A review is made of the regulations in the field of solid wastes with the aim of providing a useful working tool for those entities that generate or manage some type of waste. The coming into force of the current Spanish Wastes Law establishes common regulations for all wastes, substituting all previous Municipal Waste and Toxic and Dangerous Waste Laws. For reasons of greater practical applicability, we have preferred in this paper to classify wastes on the basis of their characteristics. The regulations are thus presented in a series of sections: municipal waste, dangerous wastes, sewage plant sludge, cattle waste and specific risk materials, highlighting in each case those areas of the regulations that are of greater interest for the producers and managers of solid wastes. (Author)

  19. An integrated approach of composting methodologies for solid waste management

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  20. Solid Waste Land Applications with Permits by the Iowa DNR

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  1. Solid Waste Management Facilities with Permits by the Iowa DNR

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  2. Anaerobic digestion of municipal solid waste: Technical developments

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  3. Life cycle assessments of energy from solid waste

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  4. Environmental assessment of solid waste systems and technologies: EASEWASTE

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund;

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....

  5. Characterization of urban solid waste in Chihuahua, Mexico

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system

  6. Conceptual Model for the Solid Waste Landfill

    The Solid Waste Landfill (SWL) at the Hanford Site was operated from 1973 to 1996 to receive nonhazardous, nonradioactive sanitary waste generated from Hanford Site operations. Several volatile organic compounds (VOC) have been detected in wells in the SWL groundwater monitoring network since 1986, when groundwater monitoring for VOC was initiated throughout the Hanford Site. Because of the groundwater contamination, the SWL ceased operation in March 1996 and entered a period of interim closure in April 1996. The purpose of this report is to develop a conceptual model of the SWL to assess the nature and extent of the VOC contamination, in support of closure activities. The conceptual model indicates that VOC contamination has been detected in liquid wastes, soil gas, leachate, and groundwater at the SWL; that various transport mechanisms and pathways are available for contaminant migration; and that VOC concentrations are generally decreasing in groundwater. The implications of this conceptual model for closure activities will be discussed separately in the Plan for Closure of the SWL

  7. Evaluation of municipal solid waste management in egyptian rural areas.

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  8. Engineering properties for high kitchen waste content municipal solid waste

    Wu Gao; Yunmin Chen; Liangtong Zhan; Xuecheng Bian

    2015-01-01

    Engineering properties of municipal solid waste (MSW) depend largely on the waste’s initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW). After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings were obtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field ca-pacities of decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3) compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorter duration and a lower potential capacity; (4) the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  9. Municipal solid waste management in Malaysia: Practices and challenges

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  10. Solid Wastes use as an alternate Energy source in Pakistan

    Masood, Farhan

    2013-01-01

    Unfortunately, none of the cities in Pakistan has a proper solid waste management system right from the collection waste up to its proper disposal. Globally, wastes are used to produce electricity or used for recycling. Recently, Europe and United States (US) are recycling waste about 41% and 32%. China is also investing US 6.3 billion dollar to achieve 30% recycling of its waste 2030. The problems arising from the solid waste can be solved by using innovative technologies. Now-a-days differe...

  11. Effect of waste composition on anaerobic methanization of municipal solid waste

    Qu, X; He, P.J.; Shao, L. M.; Bouchez, T.

    2008-01-01

    Batch reactors were applied to study the anaerobic methanization of municipal solid waste (MSW). To compare the difference of methanization process of the majority two compositions of MSW food waste and cellulosic waste,liquid characteristics and biogas production were investigated on the reactors with reconstituted food waste and cellulosic waste respectively.and two kinds of typical MSW with different contents of food waste and cellulosic waste. Methane yield of food waste was...

  12. Producing usable fuel from municipal solid waste

    Ohlsson, O. O.

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  13. Storing solid radioactive wastes at the Savannah River Plant

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate.

  14. Product related solid waste analysis provides communities with reliable data for planing municipal solid waste reduction measurements

    Soth, J.; Pott, I.; Sinn, C.; Schaefer, T. [EPEA Internationale Umweltforschung GmbH, Hamburg (Germany); Braungart, M. [Fachhochschule Nordostniedersachsen, Suderburg (Germany)

    1997-12-31

    On behalf of the German waste management company Rethmann Entsorgungswirtschaft GmbH and Co. KG, EPEA Internationale Umweltforschung GmbH conducted a study for the minimization of municipal solid wastes in a typical rural county, Coesfeld (Germany). The main goal of the study was to answer the following question: Is it possible to implement a solid waste management concept in a typical rural county and to find suitable logistical, technical and organizational tools, thereby making incineration unnecessary? Furthermore the solid waste management concept has taken all technical and legal conditions into account, as recommended in Germany, and fulfills the requirement of leading solid wastes into technical or biological loops. The study is based on the new methodology of product related solid waste analysis. The study showed that a detailed solid waste avoidance plan can be developed which leads to a 90% reduction of municipal solid wastes until the year 2005. Following the results of the study a waste incineration plant has become unnecessary. Consequently the planning of a new waste incinerator was stopped. Thus, economical and ecological disadvantages could be avoided

  15. Leaching behavior of various low-level waste solids

    This report deals with the leaching of radioactive nuclides from low-level wastes solidified with cement, bitumen or plastics. Considerations are made on the effects of type of solidification matrix and waste; type, amount and exchange frequency of leachate; type and conditions of embedding soil; temperature and pressure; and secular deterioration. It is assumed that a waste composite is entirely immersed in leachate and that the amount of the leachate is large compared to the surface area of the waste. Cement solid is characterized by its high alkalinity and porosity while plastic and bitumen solids are dense and neutral. The content of waste in a composite is low for cement and high for plastics. It is generally high in bitumen solid though it should be reduced if the solid is likely to bulge. The leaching of 137Cs from cement solid is slightly dependent on the waste-cement ratio while it increases with increasing waste content in the case of plastic or bitumen solid. For 60Co, the leaching from cement solid depends on the alkalinity of the cement material used though it is not affected by the waste-cement ratio. In the case of plastics and bitumen, on the other hand, the pH value of the waste have some effects on the leaching of 60Co; the leaching decreases with increasing pH. (Nogami, K.)

  16. Process and material that encapsulates solid hazardous waste

    O' Brien, Michael H.; Erickson, Arnold W.

    1997-12-01

    A method is described for encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150 C and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200 C and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  17. Preparation of nonwoven and green composites from tannery solid wastes

    The disposal of solid wastes, such as trimmings and splits generated in various manufacturing processes in a tannery, is a serious challenge to the hides and leather industries. Our effort to address this challenge is to develop new uses and novel biobased products from solid wastes to improve prosp...

  18. Solid Waste Management: Abstracts From the Literature - 1964.

    Connolly, John A.; Stainback, Sandra E.

    The Solid Waste Disposal Act of 1965 (Public Law 89-272, Title II) and its amending legislation, the Resource Recovery Act of 1970 (Public Law 91-512, Title I), authorize collection, storage, and retrieval of information relevant to all aspects of solid-waste management. As part of this effort, the U.S. Environmental Protection Agency's…

  19. Solid Waste Management: A List of Available Literature, October 1972.

    Environmental Protection Agency, Cincinnati, OH.

    Listed are 269 solid waste management publications available from the U. S. Environmental Protection Agency (EPA). There are EPA publications reporting on results of the research, development, and demonstrations in progress as authorized by the Solid Waste Disposal Act of 1965. Certain conference proceedings, findings of various commissions and…

  20. Solid Waste Management: A List of Available Literature.

    Environmental Protection Agency, Cincinnati, OH.

    Information, demonstration projects, and other activities, pertaining to solid-waste-related research, available from the U.S. Environmental Protection Agency (EPA), are contained in this document. These EPA publications are reports of the research, development, and demonstrations in progress as authorized by the Solid Waste Disposal Act of 1965.…

  1. Results-Based Financing for Municipal Solid Waste

    World Bank

    2014-01-01

    Municipal Solid Waste (MSW) management is a crucial service provided by cities around the world, but is often inefficient and underperforming in developing countries. This report provides eight examples of RBF designs, each tailored to the specific context and needs of the solid waste sector in the specific city or country. These projects are currently in various stages of preparation or i...

  2. Assessment of LANL solid low-level mixed waste documentation

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section and the Chemical Waste Operations Section capabilities regarding preparation and maintenance of appropriate criteria, plans, and procedures. Additionally, a comparison is made which identifies areas where these documents are not presently in existence or being fully implemented. The documents being assessed in this report are: Solid Low-Level Mixed Waste Acceptance Criteria, Solid Low-Level Mixed Waste Characterization Plan, Solid Low-Level Mixed waste Certification Plan, Solid Low-Level Mixed Waste Acceptance Procedures, Solid Low-Level Mixed Waste characterization Procedures, Solid Low-Level Mixed Waste Certification Procedures, Solid Low-Level Mixed Waste Training Procedures, and Solid Low-Level Mixed Waste Recordkeeping Requirements. This report compares the current status of preparation and implementation, by the Radioactive Waste Operations Section and the Chemical Waste Operations Section, of these documents to the requirements of DOE 5820.2A,. 40 CFR 260 to 270, and to recommended practice. Chapters 2 through 9 of the report presents the results of the comparison in tabular form for each of the documents being assessed, followed by narrative discussion of all areas which are perceived to be unsatisfactory or out of compliance with respect to the availability and content of the documents. The final subpart of each of the following chapters provides recommendations where documentation practices may be improved to achieve compliance or to follow the recommended practice

  3. Municipal solid waste analysis in Iran

    M Heidari

    2008-09-01

    Full Text Available Background and Objectives: In the recent years Municipal Solid Waste (MSW has been one of the most important environmental concerns to throughout regions of Iran. Sound MSW management for any area needs to the reliable data in which present the actual MSW condition in that area. The aim of this study is express of integrated view of MSW in Iran."nMaterials and Methods:  In this study we collect the data from various municipal regions of Iran, to represent the roughly integrated view of MSW management situation in Iran. In this paper quantity, average generation rate, physical composition, and types of disposal methods in all of municipal regions of Iran also were investigated."nResults: Results from this study has shown that the amount of MSW generated in all of the municipal regions of Iran was 10370798 tons per year, and the average generation rate of MSW was 0.64 kg/capita/day. Results showed that only 6% of MSW was recycled, 10% was treated at organic waste (composting plants, and about 84% was disposed of in landfill."nConclusion: According to obtained results from this study and compare  MSW composition of Iran to some countries, its found that MSW properties in Iran is near to MSW properties in Low-income countries. Since the most of MSW in Iran contain organic fraction, there is a high potential to develop of composting industry.

  4. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the...

  5. Overview of solid radioactive wastes management program for Cernavoda NPP

    The Radioactive Waste Management Concept for Cernavoda Nuclear Power Plant has been established as part of Documentation of Radiation Safety Program for Cernavoda Nuclear Power Plant Solid Radioactive Waste Management - Reference Document RD-01364-RP1. The Program is based on operating experience from nuclear power facilities including CANDU Plants. It is based on operating experience from nuclear power facilities including CANDU Plants. The Radioactive Waste Management Concept for Cernavoda NPP established the general approach required for the collection, handling, conditioning and storage of solid radioactive waste while maintaining acceptable levels of safety for workers, public and environment. The concept developed ensures the necessary facilities to adequately manage solid radioactive waste from Cernavoda NPP Unit 1 and will be capable of expansion when other units will be brought into service. This concept does not address the management of spent nuclear fuel and the permanent disposal of the solid radioactive wastes. For Cernavoda NPP there were defined three types of solid radioactive waste as fallows: - Low Activity Radioactive Waste, type 1, namely, solid radioactive waste with a gamma dose rate of less than 2 mSv/h on contact with the container; - Medium Activity Radioactive Waste, type 2, namely, solid radioactive waste with gamma dose rate of 2 mSv/h to 125 mSv/h on contact with the container; - Medium Activity Radioactive Waste, type 3, namely, solid radioactive waste with gamma dose rate higher than 125 mSv/h on contact with the container. The design objectives for the solid radioactive waste management facilities are defined according to their specific characteristics. Design considerations are presented for solid radioactive waste interim storage facilities as well as the operating program and monitoring program for solid radioactive waste facility. Future plans are presented for short-term strategy including gamma improvement characterisation

  6. Integral urban solid waste management program in a Mexican university

    The Azcapotzalco campus of the Universidad Autonoma Metropolitana (UAM-A) has implemented an Integral Urban Solid Waste Management Program, 'Segregation for a Better UAM Environment' (Separaccion por un mejor UAMbiente). This program is directed to create awareness and involve the academic community of the UAM-A concerning the problem of solid wastes, at the same time fulfilling the local environmental legislation. The program consists in separating solid wastes into two classes: (1) recoverable wastes (glass and PET bottles, aluminum cans, Tetrapak packages) and (2) other wastes (non-recoverable). During the past three years, thanks to this program, the amount of solid wastes delivered monthly to municipal collecting services has been considerably reduced. In this period, UAM-A has sent to recycling: 2.2 tons of glass bottles; 2.3 tons of PET bottles; 1.2 tons of Tetrapak packages and 27.5 kg of aluminum cans

  7. Integral urban solid waste management program in a Mexican university.

    Espinosa, R M; Turpin, S; Polanco, G; De Latorre, A; Delfín, I; Raygoza, I

    2008-01-01

    The Azcapotzalco campus of the Universidad Autónoma Metropolitana (UAM-A) has implemented an Integral Urban Solid Waste Management Program, "Segregation for a Better UAM Environment" (Separacción por un mejor UAMbiente). This program is directed to create awareness and involve the academic community of the UAM-A concerning the problem of solid wastes, at the same time fulfilling the local environmental legislation. The program consists in separating solid wastes into two classes: (1) recoverable wastes (glass and PET bottles, aluminum cans, Tetrapak packages) and (2) other wastes (non-recoverable). During the past three years, thanks to this program, the amount of solid wastes delivered monthly to municipal collecting services has been considerably reduced. In this period, UAM-A has sent to recycling: 2.2 tons of glass bottles; 2.3 tons of PET bottles; 1.2 tons of Tetrapak packages and 27.5 kg of aluminum cans. PMID:18586482

  8. 1995 solid waste 30-year container volume summary

    This report describes a 30-year forecast of the solid waste volumes by container category. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU-TRUM) waste. These volumes and their associated container categories will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company's Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1995 through FY 2024. The data presented in this report establish a baseline for solid waste management both in the present and future. With knowledge of the volumes by container type, decisions on the facility handling and storage requirements can be adequately made. It is recognized that the forecast estimates will vary as facility planning and missions continue to change and become better defined; however, the data presented in this report still provide useful insight into Hanford's future solid waste management requirements

  9. Solid Waste Radioactive Arisings from Nuclear Power Plants Operations

    All kinds of solid waste radioactive from NPP operations have been studied. The amounts and characteristics of waste produced in NPP operations depend on the type, the power and the operating conditions of its. The annual produced of solid waste from operation of NPP 1000 MWe about 1.200 m3 or 300 - 400 drums 200 l. The half life of radionuclide in its maximum is 30 years. (author)

  10. Determinants of municipal solid waste management in Portugal

    Ana Luísa Mota Freitas; Francisco Vitorino Martins; Elizabeth Real Oliveira

    2016-01-01

    Municipal solid waste management has been a topic of interest of several authors over time, in particular the implementation and maintenance of waste collection programmes. Initially, pioneering studies focused on the economic aspects of the provided services. However, many authors later argued the costs of providing solid waste collection services should also be influenced by socio-economic and behavioural factors, exogenous to the municipalities. The present study will be developed in this ...

  11. Do institutional factors matter for improved solid waste management?

    Yalew, Amsalu Woldie

    2012-01-01

    There is non-changing behavior of residents in cooperating and contributing for improved solid waste management in spite of increasing provision of solid waste management services in many urban areas. This paper starts from a hypothesis that institutional factors (interventions) are missing. We considered the case of issuing laws and creating awareness about the health and economic burdens due to improper waste management. We applied a paired-t test to test our hypothesis. We find that instit...

  12. Solid waste management of Jakarta : Indonesia an environmental systems perspective

    Trisyanti, Dini

    2004-01-01

    Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the city has faced serious threat of environmental deterioration andhealth hazard. It relies on one sanitary landfill only, whose capacity is currently beingexceeded, leading to excessive amounts of solid wastes left untreated in the city. An assessment with a system perspective was carried out, aiming to examine thecomplexity ...

  13. SOLID WASTE MANAGEMENT- A CASE STUDY IN DHULE

    Madhavi G. Sharma; Sanjivkumar S. Agrawal

    2016-01-01

    In each and every developing country solid waste management is a major problem. There are several factors behind it, May increasing population, consumption pattern, lifestyle, &structure of city. The quality &consumption of waste is also varied as per the variation. Thus, the solid waste management is based on the resource & the principles for the use which are responsible for the use of resource of planet & environmental protection. Thus, the consciousness must be taken by the public authori...

  14. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Mohammad Aljaradin; Kenneth M. Persson

    2016-01-01

    A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW) streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane c...

  15. Chemical digestion of low level nuclear solid waste material

    A method is described for processing low level, light weight, bulky, combustible nuclear solid waste material comprising the steps of reacting said solid waste material with concentrated sulfuric acid at a temperature within the range of 230 deg - 300 deg C and simultaneously, subsequently, or both simultaneously and subsequently contacting said waste with concentrated nitric acid or nitrogen oxides whereby carbonaceous material is oxidized to gaseous byproducts and a low volume residue. (author)

  16. Municipal Solid Waste Management in Grahamstown, Republic of South Africa

    Etengeneng, Dickson

    2012-01-01

    The studies investigate ways to improve the sanitation system of Grahamstown. It analyses public opinions and the underlying factors impacting effective solid waste management. The research methods used in the studies were: a structured questionnaire with closed ended questions, a review of published materials, informal interviews and physical observations. The following key findings were identified as factors affecting solid waste management in the municipality: poor methods of waste disposa...

  17. Anaerobic digestion of organic solid waste for energy production

    Nayono, Satoto Endar

    2009-01-01

    This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms of its energy recovery, either by investigating the maximum organic loading rate or by co-digestion with other types of wastes for energy recovery. In order to reach the research purpose, several experiments such as characteristics examination of different organic solid wastes, which are potential substrates for anaerobic digestion.

  18. Air Pollution Control in Municipal Solid Waste Incinerators

    Quina, Margarida J.; Bordado, João C.M.; Quinta-Ferreira, Rosa M.

    2011-01-01

    Municipal solid waste (MSW) remains a major problem in modern societies, even though the significant efforts to prevent, reduce, reuse and recycle. At present, municipal solid waste incineration (MSWI) in waste-to-energy (WtE) plants is one of the main management options in most of the developed countries. The technology for recovering energy from MSW has evolved over the years and now sophisticated air pollution control (APC) equipment insures that emissions comply with the st...

  19. Evaluation of the biomethane potential of solid fish waste

    Eiroa, M.; Costa, J. C.; Alves, M.M.; Kennes, C.; Veiga, M. C.

    2012-01-01

    Manufacturing processes in fish canning industries generate a considerable amount of solid waste that can be digested anaerobically. The aim of this research was to study the biochemical methane potential of different solid fish waste. For tuna, sardine and needle fish waste, around 0.47 g COD–CH4/g CODadded was obtained in batch experiments with 1%TS; whereas for mackerel waste, the methane production attained 0.59 g COD–CH4/g CODadded. The increase in the waste/inoculum ratio, f...

  20. Application bar-code system for solid radioactive waste management

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system

  1. Quantity of Municipal Solid Waste Generated and Managed

    p>This indicator describes annual municipal solid waste (MSW) generation and management from 1960 to 2008. This information helps characterize the quantity of waste entering the waste stream in the U.S. and its eventual fate in the environment (e.g., landfill disposal, recovery ...

  2. Source Separation and Composting of Organic Municipal Solid Waste.

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  3. Treatment of low- and intermediate-level solid radioactive wastes

    One of the essential aims in the waste management is to reduce as much as possible the waste volumes to be stored or disposed of, and to concentrate and immobilize as much as possible the radioactivity contained in the waste. This document describes the treatment of low- and intermediate-level solid waste prior to its conditioning for storage and disposal. This report aims primarily at compiling the experience gained in treating low- and intermediate-active solid wastes, one of the major waste sources in nuclear technology. Apart from the description of existing facilities and demonstrated handling schemes, this report provides the reader with the basis for a judgement that facilitates the selection of appropriate solutions for a given solid-waste management problem. It thus aims at providing guidelines in the particular field and indicates new promising approaches that are actually under investigation and development

  4. Research challenges in municipal solid waste logistics management.

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. PMID:26704064

  5. Method and device of decontaminating radioactive solid wastes

    Purpose: To surely enable grinding for the inner surface of hollow radioactive solid wastes such as pipeways or valves, as well as enable to decontaminate these solid wastes to such a level as being capable of processing in the same manner for the ordinary wastes. Method: A grinding piece abutting resiliently against the inner surface of a hollow radioactive solid wastes to be contaminated is attached at the top end of a flexible shaft, and the inner surface of the radioactive solid wastes is ground while rotating and slightly reciprocating, as well as axially moving the flexible shaft. Consequently, since the grinding piece is always abutted against the inner surface of the radioactive solid wastes just following after the profile of the inner surface, and the flexible shaft is resiliently flexed corresponding to the profile of the inner surface of the radioactive solid wastes, even an inner surface of radioactive solid wastes with a complicated configuration can surely be ground entirely. This surely enables to remove radioactive claddings and contaminated layers deposited on the surface. (Yoshihara, H.)

  6. Modules for estimating solid waste from fossil-fuel technologies

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  7. Modules for estimating solid waste from fossil-fuel technologies

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides

  8. Advanced characterisation of municipal solid waste ashes

    Skytte Pedersen, Randi

    2002-12-15

    This report deals with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant Maebjergvaerket, Holstebro. MSW has been used as a fuel since the mid 1960's and since then, the MSW incineration plants have experienced operational problems due to deposit formation and corrosion. Inorganic elements tightly or loosely bound in the waste are the main cause of these problems. The tightly bound elements will mainly stay on the grate during combustion, whereas the loosely bound elements are volatilised and recondensed elsewhere in the furnace. Many of the heavy metals form volatile chlorides during the incineration, and the fly ash fraction thus show enrichment in these elements. Presence of chlorides and heavy metals in deposits may cause severe corrosion due to formation of low-melting eutectics. Chlorine gas in the flue gas is also of major concern with respect to corrosion, due to formation of volatile chlorides when chlorine comes in contact with the tube material. Four different ash fractions (bottom ash, super heater ash, economiser ash and fly ash) taken from Maebjergvaerket have been analysed with respect to particle sizes, structures, shapes and composition. The applied methods were scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX) and mapping, which were used in order to determine sizes, chemical composition and structure of the particles. X-ray powder diffraction (XRD) was used to provide information about crystallography and mineral phases. Chemical analysis was also performed along with a particle size distribution for the fine-grained fractions (economiser and fly ash). The amount of silicates consisting of Ca, Al and Si, were found to decrease through the furnace, whereas the amount of alkali (Na, K) chlorides and heavy metals (Pb, Zn) increased. The bonding in the waste before incineration is the direct cause of this, since silicates are tightly bound and chlorides are loosely bound. There was a

  9. SOLID WASTE DISPOSAL PROBLEMS IN ARIES URBAN COMMUNITY FROM CLUJ COUNTY

    Scortar Lucia-Monica; Mortan MariaVeres Vincentiu; Marin Anamaria

    2010-01-01

    In many technological societies, after the Industrial Revolution the problem of solid waste was appeared because of changing the consumption pattern of society. The part of solid waste which is related to the municipality is called municipal solid waste.

  10. Optimization of municipal solid waste collection and transportation routes

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.