WorldWideScience

Sample records for 118-h-3 solid waste

  1. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  2. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  3. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  4. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  5. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  6. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  7. Solid waste

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  8. Solid waste management

    Srebrenkoska, Vineta; Golomeova, Saska; Krsteva, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  9. Management of solid waste

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  10. Management of solid waste

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  11. Solid waste treatment technologies

    Golomeova, Saska; Srebrenkoska, Vineta; Krsteva, Silvana; Spasova, Sanja

    2013-01-01

    Environmental pollution is the major problem associated with rapid industrialization, urbanization and rise in living standards of people. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce advanced approach to effectively managing of solid waste. This advanced approach includes technologies for solid waste treatment, that fall into the category of "Renewable". This paper put emphasis on technologies for material and energy u...

  12. Municipal Solid Waste Resources

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  13. Characterization of Solid Waste

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Despodov, Zoran; Doneva, Nikolinka; Mijalkovski, Stojance

    2011-01-01

    In order for any community is to formulate an integrated solid waste management program, accurate and reliable data on waste composition and quantities are essential. Such data will encourage well-organized and smoothly functioning recycling programs; foster the optimal design and operation of materials recovery facilities and municipal incinerators; and, ultimately, reduce the amount of waste generated and keep the overall waste management costs low. In order to apply it more effective st...

  14. Solid waste handling

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  15. Lyophilization -Solid Waste Treatment

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  16. Solid waste study

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ''Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel

  17. Solid Waste Program Plan

    The objective of the Solid Waste Program Plan (SWPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving applicable regulations and orders [federal, state, local, and Westinghouse Hanford Company (Westinghouse Hanford)]. A previous version of the SWPP (entitled Solid Waste Management Program Plan) was drafted in 1990 and released as WHC-EP-0363 (WHC 1990c). The SWPP also presents activities required for disposal of selected wastes currently in retrievable storage. The SWPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities and provides a vehicle for ready communication of the scope of these activities to onsite and offsite organizations. This SWPP represents the most complete description available of Hanford Site solid waste activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the solid waste mission. 26 refs., 11 figs., 1 tabs

  18. Solid Waste Treatment Technology

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  19. Solid-Waste Management

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  20. Solid waste management: an overview

    The source, effect and characterization of solid wastes are discussed. Constituents of municipal solid wastes and a comparative compositions of municipal solid waste with some data on Lebanon are given. Collection, transport and processing practices are next introduced. Finally treatment and disposal techniques are presented with emphasis on the solid waste as energy source and as material source. Methods of recycling are evaluated in respect with their environmental impact. 7 refs. 2 tabs

  1. Solid Waste Management Plan. Revision 4

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  2. Electrodialytic remediation of solid waste

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil;

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...... fly ash waste deposits from polluting the ground water....

  3. Solid waste management in Malaysia

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  4. Solid waste utilization: pyrolysis

    Boegly, W.J. Jr.; Mixon, W.R.; Dean, C.; Lizdas, D.J.

    1977-08-01

    As a part of the Integrated Community Energy System (ICES) Program, a number of technology evaluations are being prepared on various current and emerging sources of energy. This evaluation considers the use of pyrolysis as a method of producing energy from municipal solid waste. The energy can be in the form of a gas, oil, chars, or steam. Pyrolysis, the decomposition of organic matter in the absence of oxygen (or in an oxygen-deficient atmosphere), has been used to convert organic matter to other products or fuels. This process is also described as ''destructive distillation''. Four processes are described in detail: the ''Landgard'' System (Monsanto Environ-Chem Systems, Inc.); the Occidental Research Corporation Process (formerly the Garrett Research and Development Company; The ''Purox'' System (Union Carbide Corporation); and the ''Refu-Cycler'' (Hamilton Standard Corporation). ''Purox'' and ''Refu-Cycler'' produce a low-Btu gas; the Occidental process produces an oil, and the ''Landgard'' process produces steam using on-site auxiliary boilers to burn the fuel gases produced by the pyrolysis unit. Also included is a listing of other pyrolysis processes currently under development for which detailed information was not available. The evaluation provides information on the various process flowsheets, energy and material balances, product characteristics, and economics. Pyrolysis of municipal solid waste as an energy source can be considered a potential for the future; however little operational or economic information is available at this time.

  5. From Solid Waste to Energy.

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  6. Solid Waste Management in Jordan

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  7. Municipal Solid Waste management

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  8. Solid waste electron beam treatment

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  9. Municipal solid waste incineration

    Twelve municipal solid waste incinerators, ranging in size from 80 to 1,212 tons per day, have started operating in Minnesota since 1982. The operating incinerators include modular, refuse derived fuel, field erected and fluidized bed facilities. Air pollution control equipment utilized consists of electrostatic precipitators (ESP), spray dryer/fabric filter (SD/FF) and wet scrubber systems. In this paper, results are presented for more than 30 tests completed since 1984. Results include measurements of particulate, acid gases, metals and polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF). Tests at facilities using ESPs include measurements of removal efficiencies for particulate, metals and PCDD/PCDFs. An extended series of mercury test results are presented for one facility using SD/FF control. Results were reviewed for the purposes of determining permit compliance, characterizing combustion/air pollution control equipment performance and providing information for rulemaking activities. Performance trends and a discussion of future prospects for regulation of incinerators in Minnesota are also presented

  10. Business Plan : Residential Solid Waste Collection

    Mazengo, Dorice

    2013-01-01

    Residential solid waste means all the solid wastes produced in household level, which includes bio-waste, metal, mixed wastes, organic and inorganic waste. The inability of municipalities to handle the increasing amount of waste generated in Tanzania is a growing problem which gives opportunities to create an idea of starting a waste collection company. The aim of this work was to study the market trend on residential solid waste collection and the chances to create a business which will ...

  11. Solid waste management - Pakistan's perspective

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  12. Municipal solid wastes management

    TEMIRKHANOV K.K.; KENZHEBAYEV N.N.

    2014-01-01

    Waste utilization problems are of current importance and they are relatedtothe principles of Green Economy and, thus, present one of the most important ecologic factors for improving environmental quality.

  13. Environmental pollution from solid wastes

    Research completed under the CRP during the past two years has encompassed several related aspects of environmental problems associated with solid wastes: assessment of major sources of toxic elements in a variety of solid waste forms, their leachability by simulated groundwater or rain/acid rain and the determination of the contribution of hospital incinerator to atmospheric releases. The summary of the findings of these investigations are given in this report. Unexpected high levels of cadmium have been found in many solid wastes. Leaching tests indicate that, in some cases, over 70% of this can be leached out into the nearby waterways. Combustibility tests indicated that 35 to 45% of it is emitted to the atmosphere during burning. This explains the increased levels of cadmium in air particulates sampled downwind from waste incinerators. Plastic items in municipal and hospital wastes were particularly elevated in Cd, Cl, Cr, Ba and Zn. Up to 1300 μg/g of Cd was found in some domestic items. By inference, Pb also is found in some common plastics but the current studies did not permit Pb determination in solid wastes, but only in aerosols. (author). 8 tabs

  14. Regional solid waste management study

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  15. Targeting Lead in Solid Waste

    Sigman, Hilary

    2003-01-01

    This paper explores policy options for reducing lead in municipal solid waste. It focuses on policies that rely on economic incentives, such as taxes, deposit-refunds, and recycled content standards. The paper addresses the relative cost effectiveness of these approaches and also considers the overall desirability of government intervention to reduce lead disposal.

  16. Mathematical Modeling of Solid Waste Incinerators

    Arash Asgharinejad

    2013-01-01

    Population growth, technological progress and changes in consumption patterns in recent years have led to an increase in the solid waste. On the other hand, limit energy resources and raw materials caused waste to be considered as a waste material and also recyclable at the high level of scientific and applied research. In solid waste management, waste burning is regarded as one of ways for eliminating waste. In this study, municipal waste in one of the districts of Tehran was taken into acco...

  17. Energy and solid/hazardous waste

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  18. Energy and solid/hazardous waste

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  19. What a Waste : A Global Review of Solid Waste Management

    Hoornweg, Daniel; Bhada-Tata, Perinaz

    2012-01-01

    Solid waste management is the one thing just about every city government provides for its residents. While service levels, environmental impacts and costs vary dramatically, solid waste management is arguably the most important municipal service and serves as a prerequisite for other municipal action. As the world hurtles toward its urban future, the amount of municipal solid waste (MSW), one ...

  20. Composting of municipal solid waste.

    Kumar, Sunil

    2011-06-01

    This paper reviews the literature on the composting process, which is one of the technological options for the processing of municipal solid wastes (MSWs). The process assumes a great significance, particularly from the point of its economic viability, capability for recycling of nutrients and waste minimization with minimum environmental problems. A number of studies on various aspects of the composting process, including process control and monitoring parameters such as temperature, pH, moisture content, aeration, and porosity are reviewed. Salient observations on microbial properties of composting are described and details of vermicomposting, as well as a detailed analysis of patents on composting of MSW, are presented. PMID:20854128

  1. Solid waste management in Khartoum industrial area

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  2. Biostabilization of municipal solid waste.

    Adani, Fabrizio; Tambone, Fulvia; Gotti, Andrea

    2004-01-01

    A mechanical-biological process for municipal solid waste (MSW) treatment was monitored for one year. Mechanical pre-treatment provided two fractions. The oversize fraction (diameter > 50 mm) (yield of 600 g kg(-1) ww) (46 Mg day(-1)) was used for refuse derived fuel production, after undergoing a mechanical refining processes, because of low moisture content (200-250 g kg(-1)) and high calorific value (2500-2800 kcal kg ww(-1)). The undersize fraction (diameter MSW organic matter. This fraction was biologically treated using an aerobic process with an organic waste fraction from separate collection (77 Mg day(-1)) and recycled stabilized material (62 Mg day(-1)) obtained from end-product sieve (diameter biogas production and fermentable volatile solids were also used as parameters to describe the potential impact of treated waste, providing further useful information. Nevertheless, all of these methods revealed analytical or interpretative limits. A complete mass balance of the biological treatment section showed that, from a net input of 107 Mg day(-1), only 250 g kg(-1) (27 Mg day(-1)) of the waste needed to be landfilled, with 750 g kg(-1) (80 Mg day(-1)) being lost as CO2 and H2O. PMID:15381229

  3. Good Practices Regarding Solid Waste Management Recycling

    Doru Alexandru Pleşea; Smaranda Vişan

    2010-01-01

    Waste is a continually growing problem at global and regional as well as at local levels. Solid wastes arise from human activities that are normally discarded as useless or unwanted. As the result of rapid increase in production and consumption, urban society rejects and generates solid material regularly which leads to considerable increase in the volume of waste generated from several sources. Solid wastes have the potential to pollute all the vital components of living environment at local...

  4. Instructive for radioactive solid waste management

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM

  5. Solid Waste Management in Recreational Forest Areas.

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  6. Composition of municipal solid waste in Denmark

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte;

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested that...... standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  7. Management Of Solid Waste Matter

    This book is written with data from, 84 Karlsruhe symposium, which tells US general introduction of waste disposal such as actualization of waste disposal, related law and direction of waste disposal, collect and transportation of waste matter, preconditioning of waste, collect of waste and recirculation, cases of recirculation, optimal process of waste incineration of waste, composting of waste, disposal of harmful waste, RDF with pilot and operational plant and sanitary landfill method.

  8. Hanford Site Solid Waste Landfill permit application

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  9. Integrated solid waste management in megacities

    M.A. Abdoli; Rezaee, M.; H. Hasanian

    2016-01-01

    Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated soli...

  10. Solid Waste Management: Status Of Waste Pickers And Government Policies

    K. Naresh Kumar

    2012-01-01

    Management of burgeoning solid wastes has become a critical issue for almost all the major cities in India. Although the responsibility of solid waste management remains primarily with the municipal bodies, several other stakeholder groups play significant roles in the process. In the Indian scenario the so-called waste pickers, who come from highly vulnerable social backgrounds, play a unique role. Waste pickers, scavengers or rag pickers as they are commonly called eke out a living by colle...

  11. Mathematical Modeling of Solid Waste Incinerators

    Arash Asgharinejad

    2013-03-01

    Full Text Available Population growth, technological progress and changes in consumption patterns in recent years have led to an increase in the solid waste. On the other hand, limit energy resources and raw materials caused waste to be considered as a waste material and also recyclable at the high level of scientific and applied research. In solid waste management, waste burning is regarded as one of ways for eliminating waste. In this study, municipal waste in one of the districts of Tehran was taken into account for a case study. Also, in special systems which need special care of temperature such as the system for controlling the temperature of the furnace fuel of burnable solid waste in temperature 950°C. Fuel requirements for design were also calculated. At the end of the project, fluent software was used to confirm the findings obtained from the city incinerator furnace design.

  12. INTEGRATED SOLID WASTE MANAGEMENT: A MULTICRITERIA APPROACH

    Bazzani, Guido Maria

    1998-01-01

    The paper presents the first results of a long term research aimed at producing a decision support system to deal with the integrated solid waste management planning at regional level. In the last years urban waste management has received a strong attention from the public authority in Italy culminating in a new national law, which has priorities such as waste prevention (waste avoidance and reduction) reuse and recycling. Italian Legislation requires to consider not only a series of waste ma...

  13. 36 CFR 13.1912 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  14. 36 CFR 13.1118 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  15. 36 CFR 13.1604 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  16. 36 CFR 13.1008 - Solid waste disposal.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  17. Solid Waste Management Holistic Decision Modeling

    World Bank

    2008-01-01

    This study provides support to the Bank's ability to conduct client dialogue on solid waste management technology selection, and will contribute to client decision-making. The goal of the study was to fully explore the use of the United States Environmental Protection Agency and the Research Triangle Institute (EPA/RTI) holistic decision model to study alternative solid waste systems in a ...

  18. 76 FR 53376 - Definition of Solid Waste

    2011-08-26

    ... Resource Conservation and Recovery Act (76 FR 44094). The purpose of these proposed revisions is to ensure... AGENCY 40 CFR Parts 260, 261, and 270 RIN 2050-AG62 Definition of Solid Waste AGENCY: Environmental... definition of solid waste published in the Federal Register on July 22, 2011. EPA is proposing to...

  19. Managing America`s solid waste

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  20. 76 FR 16538 - Solid Waste Rail Transfer Facilities

    2011-03-24

    ... establishments or facilities. (5) Industrial waste means the solid waste generated by manufacturing and...; commercial and retail waste; institutional waste; sludge; industrial waste; and other solid waste, as... Surface Transportation Board 49 CFR Part 1155 Solid Waste Rail Transfer Facilities AGENCY:...

  1. Cadmium complexation by solid waste leachates

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste...... complexes, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter...

  2. Solid waste burial grounds interim safety analysis

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  3. Solid waste burial grounds interim safety analysis

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  4. Solid waste treatment processes for space station

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  5. Waste to Energy: A Green Paradigm in Solid Waste Management

    Mohamad Danish Anis; Tauseef Zia Siddiqui

    2015-01-01

    The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW) generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without ...

  6. Community Participation in Solid Waste Management, Kathmandu

    Gotame, Manira

    2012-01-01

    Waste management in Nepal is one of the important topics discussed today. Participation of the community is thus,being encouraged to manage solid waste. My study area is Kathmandu (Buddhajyoti, Chamati and Milijuli, Ganesh and Jagriti settlements in Kathmandu). My paper focuses in community participation in solid waste management in these settlements/communities. there are different projects working for this purpose in these settlements. I used household survey...

  7. EXPLAINING COOPERATION IN MUNICIPAL SOLID WASTE MANAGEMENT

    Tiller, Kelly H.; Jakus, Paul M.

    2004-01-01

    As traditional methods of municipal solid waste management (MSWM) become increasingly expensive due to increased regulation, many local governments are considering cooperation as a waste management strategy. A theoretical model is used to specify a partial observability probability model in which the decision Tennessee counties made to form either a single-county solid waste region or a multi-county region. We find that, while economies of scale may be a factor in the consolidation decision, ...

  8. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-01-01

    Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management ...

  9. The Demand for Solid Waste Disposal

    G. Strathman; Anthony M. Rufolo; Gerard C. S. Mildner

    1995-01-01

    In this paper we estimate the elasticity of demand for landfill disposal of municipal solid waste using data from the Portland, Oregon metropolitan area. Efficiency losses associated with deviations from marginal cost pricing of disposal services are then derived. The efficiency losses of small deviations from long-run marginal disposal costs are not large. However, many municipalities finance solid waste services from general tax revenues, in which case waste generators effectively face zero...

  10. Solid Waste Projection Model: Model user's guide

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  11. Waterproofing improvement of radioactive waste asphalt solid

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 600C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  12. Solid Waste Management Practices in EBRP Schools.

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  13. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  14. Solid waste 30-year volume summary

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford's Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m3 of LLMW and TRU/TRUM waste will be managed at Hanford's SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m3 of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D ampersand D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford's future solid waste management requirements

  15. Solid Waste Assurance Program Implementation Plan

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixed waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities

  16. Radioactive solid waste storing structure

    Hulls as radioactive solid wastes generated by reprocessing of spent fuels in nuclear facilities are pressed to form circular compressed materials. A pedestal having ventilation holes for communicating the center and the side surfaces of the storage vessel in which the compression materials are sealed and contained while being stacked is disposed to the bottom of the storage vessel. Springs are disposed to the inner circumference of the storage vessel for urging the side surfaces of the compressed materials contained while being stacked on the pedestal. With such a constitution, cooling performance can be improved by spontaneous circulation of the air and sealed gases in the storage vessel thereby enabling to store the storage vessels at a higher density. In addition, since the compressed materials are urged by the disposed springs, rattling of the compression materials can be eliminated, and they can be transported or transferred stably, and since uniform gaps can be formed on the circumference of the compression bodies, they can be cooled uniformly. (T.M.)

  17. Solid waste combustion for alpha waste incineration

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  18. Hanford Site Solid Waste Acceptance Criteria

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  19. Hanford Site Solid Waste Acceptance Criteria

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  20. Solid Waste Management and Nigerian Sustainable Development

    Emma E.O. Chukwuemeka

    2012-09-01

    Full Text Available The problem of solid waste management has become a debilitating factor towards sustainable development in Nigeria. The study therefore was carried out to evaluate the chains of problems militating against solid waste management in Nigeria with particular stress on Enugu State. The study adopted survey research method. Data collected through questionnaire were analyzed and hypotheses tested using Z-test statistical measure. The scientific investigation revealed among other things that resources normally voted by Government year by year to manage solid waste is always very meager. There is no environmental education at all as was observed during the field investigation. Furthermore, some of the waste management staff were poorly trained and no plan in the future to give them further training or to improve already acquired skill. Based on the findings, some of the major recommendations are that solid waste management should be provided with a separate head in the budget for the purpose of adequate revenue allocation, implementation and monitoring. The participation of the local communities in solid waste management should be encouraged. Environmental education should be intensified by both the state and local government. Also primary, secondary and tertiary schools curricula should inculcate detailed topics on solid waste management.

  1. Biodegradation and Recycling of Urban Solid Waste

    S. P. Gautam

    2009-01-01

    Full Text Available Problem statement: Rapid urbanization and population growth are largely responsible for very high increasing rate of solid waste in the urban areas, its proper management and recycling is major problems of Municipal Corporation. The proposed study attempted to proper management, physicochemical analysis of Urban Solid Waste (USW and its conversion to enriched compost by ecofriendly process. Approach: For this study, we used turned windrows method for composting of USW, microbial inoculums added uniformly and temperature, pH, moisture maintained throughout the composting process. The chemical composition of compost obtained at the end of the composting process compare to the United State Environmental Protection Agency (USEPA standards. Results: A study in Jabalpur had shown the 47% of Urban Solid Waste (USW were degradable and 53% non-degradable. The initial compositions of urban waste were indicates an organic carbon status of 38% with the C: N ratio of 950. The additives used in solid urban waste composting such as cow dung and green manure recorded organic carbon content of 25.60 and 34.60 and C:N ratio of 30.11 and 11.23. Conclusion: The results of the study clearly indicate that the recycling of solid urban waste can transform garbage or municipal solid waste to enriched composts. This is practical significance if adopted by urban farmers as a result of soil health and in turn the productivity of soil can be maintained for further agriculture.

  2. Integrated waste management - Looking beyond the solid waste horizon

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  3. Processing method for miscellaneous radioactive solid waste

    Miscellaneous solid wastes are subjected to heat treatment at a temperature not lower than a carbonizing temperature of organic materials in the wastes and not higher than the melting temperature of inorganic materials in the wastes, for example, not lower than 200degC but not higher than 660degC, and then resultant miscellaneous solid wastes are solidified using a water hardening solidification material. With such procedures, the organic materials in the miscellaneous solids are decomposed into gases. Therefore, solid materials excellent in long term stability can be formed. In addition, since the heat treatment is conducted at a relatively low temperature such as not higher than 660degC, the generation amount of off gases is reduced to simplify an off gas processing system, and since molten materials are not formed, handing is facilitated. (T.M.)

  4. Program Planning Concepts in Solid Waste Management

    Brown, Sanford M., Jr.

    1972-01-01

    Presents a brief review of the program planning process, and uses the example of a solid waste program to illustrate what has or has not been accomplished through the use of the planning process. (LK)

  5. Solid and liquid radioactive waste treatment

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author)

  6. Estimation of restaurant solid waste generation rates

    Most solid waste utilities try to create a billing schedule that is proportional to solid waste generation rates. This research was trying to determine if the current billing rate structure was appropriate or if a different rate structure should be implemented. A multiple regression model with forward stepwise addition was developed which accurately predicts weekly solid waste generation rates for restaurants. The model was based on a study of daily solid waste generation at twenty-one different businesses. The weight and volume of solid waste generated was measure daily for two weeks during the winter and two weeks during the summer. Researchers followed the collection truck and measured the volume and weight of the container contents. Data was collected on the following independent variables describing each establishment; weight of waste per collection, volume per collection, container utilization factor, building area, contract haulers bill, yearly property tax, yearly solid waste tax, average number of collections per week, type of restaurant, modal number of collections per week, storage container size, waste density, number of employees, number of hours open per week, and weekly collection capacity (collections per week times storage container size). Independent variables were added to the regression equation based on their partial correlation coefficient and confidence level. The regression equations developed had correlation coefficients of 0.87 to 1.00, which was much better than the correlation coefficient (0.84) of an existing model DeGeare and Ongerth (1971) and a correlation coefficient of 0.54 based on the current solid waste disposal tax. (author)

  7. Solid Waste Management and Nigerian Sustainable Development

    Chukwuemeka, Emma E. O.; Ngozi Ewuim

    2012-01-01

    The problem of solid waste management has become a debilitating factor towards sustainable development in Nigeria. The study therefore was carried out to evaluate the chains of problems militating against solid waste management in Nigeria with particular stress on Enugu State. The study adopted survey research method. Data collected through questionnaire were analyzed and hypotheses tested using Z-test statistical measure. The scientific investigation revealed among other things that resource...

  8. Biodegradation and Recycling of Urban Solid Waste

    S. P. Gautam; Bundela, P. S.; Pandey, A. K.; Jain, R K; P. R. Deo; S.K. Khare; Awasthi, M.K.; Surendra Sarsaiya

    2009-01-01

    Problem statement: Rapid urbanization and population growth are largely responsible for very high increasing rate of solid waste in the urban areas, its proper management and recycling is major problems of Municipal Corporation. The proposed study attempted to proper management, physicochemical analysis of Urban Solid Waste (USW) and its conversion to enriched compost by ecofriendly process. Approach: For this study, we used turned windrows method for composting of USW, microbial inoculums ad...

  9. SOLID WASTE SEGREGATION BEHAVIOR AMONG URBAN WOMEN

    P. Mohamed Nisha; Raji Sugumar

    2014-01-01

    This study examined the solid waste segregation behavior of the women of Chennai city of Tamil Nadu state. Using a structured, self-developed interview schedule, 120 women were selected randomly for the survey with equal representation from the three regions of Chennai city. Findings revealed that most of the waste that is being generated in the households of the selected samples was organic, recyclable and reusable. The sample women are not highly knowledgeable about the solid...

  10. Evaluation of dental solid waste in Hamedan

    Nabizadeh R.; Kulivand A.; Jonidi Jafari A.; Younesian M; GH Omrani

    2009-01-01

    "nBackground and Aim: Today, one of the most important environmental issues is dental solid wastes which are of great importance because of the presence of hazardous, toxic and pathogen agents. In this survey, solid waste produced in Hamedan general dental offices is evaluated. "nMaterials and Methods: In this descriptive study, from 104 general dental offices in Hamedan , 10 offices were selected in simple random way. From each offices, 3 sample at the end of successive working day...

  11. MUSCULOSKELETAL DISORDERS AMONG MUNICIPAL SOLID WASTE WORKERS

    R. Mehrdad

    2008-06-01

    Full Text Available Waste collection is a necessary activity all around the world and the removal of municipal solid waste is a job associated with a variety of biological, chemical, mechanical, physical, and psychosocial hazards. In our country, like many developing countries, municipal solid waste is collected manually and collection of household waste is also a job which requires repeated heavy physical activity such as lifting, carrying, pulling, and pushing. We performed this study to evaluate musculoskeletal disorders among municipal solid waste workers. We designed a cross sectional study. Our survey instrument for measurement of musculoskeletal symptoms was adapted from the Standardized Nordic Questionnaire that translated into Farsi language. A total of 65% (n=142 of participants reported that they had been troubled with musculoskeletal symptoms in one or more of the 9 defined body regions during the last 12 months. Prevalence of symptoms in low back, knees, shoulders, upper back and neck were 45, 29, 24, 23 and 22% respectively. Foreign workers reported more musculoskeletal symptoms in all body parts than Iranian workers. The differences between prevalence of symptoms between two groups were significant in all parts of body except knees. The study found that solid waste workers have more musculoskeletal disorders than general population. Meanwhile these symptoms were more common among foreign workers. The risk of disease was increased with the increasing years of working as solid waste worker and smoking. We didn't find relationship between musculoskeletal disorders and education or marriage status of workers.

  12. Alternative policies for solid waste management

    Percoco Marco

    2004-01-01

    Because of the recent dramatic increase in waste production, solid waste management and control have become one of the central issues in environmental policy. In this paper we review alternative fiscal instruments to control the production of residuals by using the benchmark given by the social optimum. Finnally, we apply the model to theoretically evaluate the TARI.

  13. Survey of Geothermal Solid Toxic Waste

    Darnell, A.J.; Gay, R.L.; Klenck, M.M.; Nealy, C.L.

    1982-09-30

    This is an early survey and analysis of the types and quantities of solid toxic wastes to be expected from geothermal power systems, particularly at the Salton Sea, California. It includes a literature search (48 references/citations), descriptions of methods for handling wastes, and useful quantitative values. It also includes consideration of reclaiming metals and mineral byproducts from geothermal power systems. (DJE 2005)

  14. 76 FR 44093 - Definition of Solid Waste

    2011-07-22

    ... wastes for Subtitle C purposes (see 45 FR 33093, May 19, 1980; 50 FR 638-639, January 4, 1985). The U.S... stored on the land to be solid wastes (63 FR 28581, May 26, 1998). The conditional exclusion decreased... promulgated in October 2008 (73 FR 64688, October 30, 2008) and were intended to encourage the recovery...

  15. Utilizing the Biofraction of Municipal Solid Waste

    Bjerre, Louise Rogild; Shapiro, Sara Josefin; Le Royal, Samantha; Rosenquist, Ditte Lyng; de Marée, Michelle

    2014-01-01

    This project takes its point of departure in the Copenhagen Resource and Waste Plan 2018 flagship Biowaste and Heavy Transport Fuelled with Biogas. The background for this project is an interest in resource scarcity and an increased need for efficient use of resources in municipal solid waste. This project researches how to induce trans...

  16. 1992 Solid waste reference forecast summary

    The report provides a planning-basis forecast which quantifies the volumes of newly generated solid low-level waste, low-level mixed waste, transuranic waste, transuranic mixed waste, and non-radioactive hazardous wastes to be generated or received at the US Department of Energy's Hanford Site during the period spanning FY-1992 through FY-2021. The objective of the report is to present a documented set of data which may be used consistently for both short- and long-term planning for solid waste treatment, storage, and disposal (TSD) activities. In addition to estimating the 30-year waste volume, this forecast delineates the physical characteristics of these wastes, identifies the types of containers that will be used to ship the waste, and discusses the hazardous constituents of mixed and hazardous wastes. In addition, this forecast documents the assumptions used by the major waste generators to prepare their estimates, identifies potential impacts to the current planning basis, discusses data certainty, and addresses data completeness

  17. Assay and RTR of solid waste management received TRU waste

    The Transuranic Storage and Assay Facility (TRUSAF) provides storage of Transuranic (TRU) and Transuranic Mixed (TRUM) waste from U.S. DOD and DOE offsite and onsite generators. In addition to storage, TRUSAF also performs assay and RTR (real time radiography) on each TRU drum with the intent of certification of the waste to WIPP-WAC (Waste Isolation Pilot Plant-Waste Acceptance Criteria) to allow eventual disposal of the TRU waste at WIPP. Due to the uncertainties associated with WIPP-WAC and the potential for all TRU WIPP-WAC certification at the generator or WRAP (Waste Receiving and Processing) facility, this study documents the requirements for TRU assay and RTR of all incoming TRU drums and establishes SWM (Solid Waste Management) policy on future assay and RTR of received TRU waste

  18. Solid Waste Management: Its Sources, Collection, Transportation and Recycling

    Gaurav K. Singh; Kunal Gupta; Shashank Chaudhary

    2014-01-01

    Solid wastes may be defined as useless, unused, unwanted, or discarded material available in solid form. Semisolid food wastes and municipal sludge may also be included in municipal solid waste. The subject of solid wastes came to the national limelight after the passage of the solid waste disposal act of 1965. Today, solid waste is accepted as a major problem of our society. In the United States over 180 million tons of municipal solid waste (MSW) was generated in 1988. At this generation qu...

  19. Cadmium complexation by solid waste leachates

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste...... complexes, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter....... The leachates were spiked with Cd (<100 μg Cd 1−1) to obtain comparable concentrations in the investigated samples. For each sample, at two different Cd concentrations, free divalent Cd and complexed Cd were determined. Furthermore, the complexed fraction was operationally separated into labile...

  20. Energy aspects of solid waste management: Proceedings

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  1. Lyophilization for Water Recovery From Solid Waste

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  2. Energy aspects of solid waste management: Proceedings

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  3. Composition of municipal solid waste in Denmark

    Edjabou, Maklawe Essonanawe

    In response to continuous pressure on resources, and the requirement for secure and sustainable consumption, public authorities are pushing the efficient use of resources. Among other initiatives, the prevention, reduction and recycling of solid waste have been promoted. In this context, reliable...... data for the material and resource content of waste flows are crucial to establishing baselines, setting targets and tracking progress on waste prevention, reduction and recycling goals. Waste data are also a critical basis for the planning, development and environmental assessment of technologies and...... waste management. These data are obtained through the characterisation of waste material. In the absence of standardised and commonly accepted waste sampling and sorting procedures, various approaches have been employed, albeit they limit both the comparability and the applicability of results. Thus...

  4. Inventory and sources of transuranic solid waste

    1978-08-01

    In the past, solid radioactive waste has often been buried in the most accessible and convenient vacant place, without a great deal of thought for the long-term consequences. The transuranium (TRU) elements were very strictly conserved and, at first, solid waste containing separated fission products was not a serious land burial problem. Wartime pressures for production and lack of knowledge or understanding led to siting and operational practices that, in many situations, are unsatisfactory by present day standards. Purpose of this report is to support the development of standards and criteria which will specifically address the problem of TRU contaminated waste generated by Department of Energy (DOE) nuclear programs and commercial application of nuclear technology. This report covers: DOE facilities, commercial disposal sites, commercial nuclear industry, TRU-contaminated waste inventory, and waste projections. (DLC)

  5. Evaluation of dental solid waste in Hamedan

    Nabizadeh R.

    2009-08-01

    Full Text Available "nBackground and Aim: Today, one of the most important environmental issues is dental solid wastes which are of great importance because of the presence of hazardous, toxic and pathogen agents. In this survey, solid waste produced in Hamedan general dental offices is evaluated. "nMaterials and Methods: In this descriptive study, from 104 general dental offices in Hamedan , 10 offices were selected in simple random way. From each offices, 3 sample at the end of successive working day (Sunday, Monday and Tuesday were analyzed. Samples were manually sorted into different 74 components and measured by means of laboratory scale. Then, measured components were classified in the basis of characteristic and hazardous potential as well as material type. "nResults: Total annual waste produced in general dental offices in Hamadan is 14662.67 Kg (9315.45>95.0% Confidence Interval>20009.88. Production percentages of infectious, domestic type, chemical and pharmaceutical and toxic wastes were 51.93, 38.16, 9.47, 0.44 respectively. Main components of produced dental waste were 14 components that consist of more than 80 percents of total dental solid waste. So, waste reduction, separation and recycling plans in the offices must be concentrated on these main components. "nConclusion: In order to dental waste proper management, it is suggested that in addition to educate dentists for waste reduction, separation and recycling in the offices, each section of dental waste(toxic,chemical and pharmaceutical, infectious and domestic type wastes separately and according to related criteria should be managed.

  6. Maintenance Implementation Plan for solid waste

    This Maintenance Implementation Plan (MIP) has been developed for. implementation of the US Department of Energy (DOE) Order 4330.4A. Maintenance Implementation Program (DOE 1990) at the Hanford Site Solid Waste complex. It addresses maintenance functions associated with Solid Waste Management, which includes the field operational group and the facilities operational group. An assessment of the existing maintenance programs for Solid Waste was performed, and the results of this assessment were evaluated to determine corrective actions required to bring Solid Waste Maintenance into compliance with the order. The MIP assessment disclosed that most elements defined in the order are currently implemented for Solid Waste. It also identified issues which must be addressed to bring the maintenance function into full compliance with DOE Order 4330.4A. These include documentation of the maintenance training program, expanded scope of inspections to address the As Low As Reasonably Achievable (ALARA) concept, development of a Master Equipment List (MEL), and more adequate facilities to provide enhanced storage and control of tools and equipment

  7. Electric Energy production through Municipal solid wastes

    The main objective in this investment Project is to improve the integral management of urban solid waste in the city of Salto, Uruguay, obtaining favorable results for the environment and society, contributing moreover in Sustainable Development.First of all, it is recommended the remediation of the current Open air Municipal dumping site. Simultaneously with the Remediation process, a controlled dumping site with daily covers of the compacted solid waste has been designed, as a transition methodology with a lifetime of 3 years approximately.In addition to this, two sanitary landfills are designed wits29h a total lifetime of 7 years, for the operation after the controlled dumping site is closed. There is also a leachate treatment system to process the effluents of the landfills. In order to optimize the use of the landfills, is proposed the simultaneous implementation of a Separated Urban Solid Waste Collection System (SisRReVa). This consist in separating the Valuable Waste (VW) from wet or organic solid waste in origin (home, stores,etc)and collecting it separately.The VW are separated by type (paper, board, glass, plastic and metal) in a Valuable Waste Classification Plant. This plant is designed to process the VW generated in Salto and collected by the SisRReVa for about ten years from now on. (Author)

  8. Solid waste management. Principles and practice

    Chandrappa, Ramesha [Karnataka State Pollution Control Board, Biomedical Waste, Bangalore (India); Bhusan Das, Diganta [Loughborough Univ. of Technology (United Kingdom). Dept. of Chemical Engineering

    2012-11-01

    Solid waste was already a problem long before water and air pollution issues attracted public attention. Historically the problem associated with solid waste can be dated back to prehistoric days. Due to the invention of new products, technologies and services the quantity and quality of the waste have changed over the years. Waste characteristics not only depend on income, culture and geography but also on a society's economy and, situations like disasters that affect that economy. There was tremendous industrial activity in Europe during the industrial revolution. The twentieth century is recognized as the American Century and the twenty-first century is recognized as the Asian Century in which everyone wants to earn 'as much as possible'. After Asia the currently developing Africa could next take the center stage. With transitions in their economies many countries have also witnessed an explosion of waste quantities. Solid waste problems and approaches to tackling them vary from country to country. For example, while efforts are made to collect and dispose hospital waste through separate mechanisms in India it is burnt together with municipal solid waste in Sweden. While trans-boundary movement of waste has been addressed in numerous international agreements, it still reaches developing countries in many forms. While thousands of people depend on waste for their lively hood throughout the world, many others face problems due to poor waste management. In this context solid waste has not remained an issue to be tackled by the local urban bodies alone. It has become a subject of importance for engineers as well as doctors, psychologist, economists, and climate scientists and any others. There are huge changes in waste management in different parts of the world at different times in history. To address these issues, an effort has been made by the authors to combine their experience and bring together a new text book on the theory and practice of the

  9. Treatment of solid waste containing 226Ra

    This work is directed to the treatment of radioactive solid waste containing mainly radium (226Ra) produced from oil and gas production industries in Egypt. The treatment process has been carried out by suspending the clay fraction content in the solid waste in suitable leaching solutions. These compremise aqueous saline solution and aqueous saline solutions containing certain additives, namely, Washing Powder (W.P.), Shell and Span 20 surfactants. Treatment with saline solution containing either W.P. or Shell surfactants, showed an enhancement in the removal of 226Ra compared to that with saline solution alone or containing Span 20. Factors affect the treatment process have been investigated and discussed. The removal percentage of 226Ra was found to depend on the clay fines content in the solid waste. Further sequential treatment schemes have been tested and optimized

  10. Construction of solid waste form test facility

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  11. Waste to Energy: A Green Paradigm in Solid Waste Management

    Mohamad Danish Anis

    2015-12-01

    Full Text Available The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without proper treatment, these wastes emit gases like Methane (CH4, Carbon Dioxide (CO2 etc, resulting in bad odor, emission of green house gases and increase in air and water pollution. This problem can be significantly mitigated through adoption of environment-friendly waste-to-energy technologies for the treatment and processing of wastes before disposal. It will not only reduce the quantity of wastes but also generate substantial quantity of energy. India at present is the world’s fifth biggest energy consumer and is predicted to surpass Japan and Russia to take the third place by 2030. Indian economy has shown a robust growth of around 8% in recent years and is trying to sustain this growth in order to reach goals of poverty alleviation. To achieve the required level of growth, India will need to at least triple its primary energy supply and quintuple its electrical capacity. This will force India, which already imports a majority of its oil, to look beyond its borders for energy resources. In India waste-to-energy has a potential of generating 1700 MW per person and this is scheduled to increase when more types of waste would be encompassed. At present hardly 50 MW power is being generated through waste-to-energy options. Waste combustion provides integrated solutions to the problems of the modern era by: recovering otherwise lost energy and thereby reducing our use of precious natural resources; by cutting down our emissions of greenhouse gases; and by both

  12. Industrial Solid Waste Management and Joint Production

    Stenis, Jan

    2002-01-01

    The study illustrates how joint production theory can be applied in estimating the profitability of fractionating industrial solid wastes, a given product and the wastes produced in connection with its manufacture being regarded as a production-planning unit. Two case studies showing how the approach described can be applied both to bulk manufacturing and to the manufacture of technically complicated products are presented. The realism of this approach and the contribution it can make to opti...

  13. The anaerobic digestion of solid organic waste.

    Khalid, Azeem; Arshad, Muhammad; Anjum, Muzammil; Mahmood, Tariq; Dawson, Lorna

    2011-08-01

    The accumulation of solid organic waste is thought to be reaching critical levels in almost all regions of the world. These organic wastes require to be managed in a sustainable way to avoid depletion of natural resources, minimize risk to human health, reduce environmental burdens and maintain an overall balance in the ecosystem. A number of methods are currently applied to the treatment and management of solid organic waste. This review focuses on the process of anaerobic digestion which is considered to be one of the most viable options for recycling the organic fraction of solid waste. This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields. The involvement of a diverse array of microorganisms and effects of co-substrates and environmental factors on the efficiency of the process has been comprehensively addressed. The recent literature indicates that anaerobic digestion could be an appealing option for converting raw solid organic wastes into useful products such as biogas and other energy-rich compounds, which may play a critical role in meeting the world's ever-increasing energy requirements in the future. PMID:21530224

  14. Solid waste management in Mekong Delta

    Nguyen, Xuan Hoang; Le, Hoang Viet

    2012-01-01

    Municipal solid waste (MSW) in Vietnam has been increasing quickly and became one of the most considered environmental problems in Mekong Delta (MD) region covering 13 provinces and municipalities in the south of Vietnam. With a considerably large amount of MSW, the region produces about 5% of the total amount of MSW of the country. The collection rate of solid waste is about quite high (65 - 72%) in the cities and rather low (about 40 - 55%) in the rural areas, with a high content in organic...

  15. Solid waste management complex site development plan

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  16. The Perception of the Langkawi Community on Solid Waste Management

    Noor Khafazilah Abdullah; Zaini Sakawi; Lukman Ismail

    2014-01-01

    The process of disposing solid wastes should be systematic and efficient. Various pollution may occur if solid wastes are not properly disposed. Pollution would not only affect the naturalenvironment but also exposed the community to various diseases. Therefore the community should be given exposure to practice efficient solid waste disposalfor their own benefits.Given the signficance of proper waste disposal issues for tourism locations, this study investigated the management of solid waste ...

  17. Developing the Decision Making Matrix in Solid Waste Management

    Ph. D. Mohammad Ali Alanbari; Ph. D. Abdul Sahib albagdadi

    2012-01-01

    A majority of local governments and urban institutions identified the subject of solid waste environmental problem has reached proportions requiring practical solutions. It can be noted three main trends governing the matter of solid waste: An increase in the size waste generated from urban housing Change in the quality of waste generated. The discharge process of the wastes collected. Consequently, these trends play an important role in determining the nature of the solid waste management an...

  18. Solid Waste Burial Grounds/Central Waste Complex hazards assessment

    This document establishes the technical basis in support of Emergency Planning Activities for Solid Waste Burial Grounds/Central Waste Complex on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is documented

  19. Municipal Solid Waste Management in China

    Li, Ruofei; Liu, Sibei

    2010-01-01

    As the fast development of the urbanization and the growth of GDP in China, there is and will be more and more demands for energy consumption. In the meantime, it also creates a growing number of municipal solid waste (MSW), especially in the recent years, MSW has experienced a dramatic increase. However, the MSW management system is poor and cause many pollution problems in the cities of China, especially in the middle and small cities, at the aspects of waste collection, waste sorting, recy...

  20. Method of solidifying radioactive solid wastes

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  1. National solid waste management plan for Iraq.

    Knowles, James A

    2009-06-01

    After decades of turmoil and international sanctions much of the key civil infrastructure within Iraq has fallen into disrepair, leading to a considerable decline in the provision of basic and essential municipal services. This is particularly true of waste and resource management services that have seen years of underdevelopment and deterioration. This has resulted in a lack of provision of basic public services in the waste sector which have been replaced by a burgeoning unregulated informal market in waste collection, disposal and recycling. In response, a National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007, to plan for the strategic development of all aspects of waste management in the country over the coming 20 years. In particular, the NSWMP focuses on policy development and integrated planning regarding regulatory framework, economic aspects, institutional capacity, citizen and technical education, and technical and operational development. This paper summarizes the key objectives, challenges and subsequent recommendations contained in the NSWMP for Iraq. PMID:19470543

  2. Melt-processing method for radioactive solid wastes

    Radioactive solid wastes are charged into a water-cooled type cold crucible induction melting furnace disposed in high frequency coils, and high frequency currents are supplied to high frequency coils which surround the melting furnace to melt the solid wastes by induction-heating. In this case, heat plasmas are jetted from above the solid wastes to the solid wastes to conduct initial heating to melt a portion of the solid wastes. Then, high frequency currents are supplied to the high frequency coils to conduct induction heating. According to this method, even when waste components of various kinds of materials are mixed, a portion of the solid wastes in the induction melting furnace can be melted by the initial heating by jetting heat plasmas irrespective of the kinds and the electroconductivity of the materials of the solid wastes. With such procedures, entire solid wastes in the furnace can be formed into a molten state uniformly and rapidly. (T.M.)

  3. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    2011-10-12

    ...: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... reopening the comment period on the proposed rule: Hazardous and Solid Waste Management...

  4. Torrefaction Processing for Human Solid Waste Management

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  5. Cost/Benefits of Solid Waste Reuse

    Schulz, Helmut W.

    1975-01-01

    Municipalities and industry are being forced to seek alternatives to sanitary landfills and incineration as means of eliminating solid wastes. Based on the Columbia study, the two most cost-effective, environmentally acceptable alternatives are the high temperature, oxygen-fed pyrolysis process and the co-combustion of refuse-derived fuel in…

  6. Solid Waste Program technical baseline description

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  7. General survey of solid-waste management

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  8. Solid Waste Management Planning--A Methodology

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  9. Brazil's new national policy on solid waste

    Jabbour, A.B.L.d.S.; Jabbour, C.J.C.; Sarkis, J.;

    2014-01-01

    Brazil, one of the world's largest developing countries, has recently introduced a new solid waste management regulatory policy. This new regulatory policy will have implications for a wide variety of stakeholders and sets the stage for opportunities and lessons to be learned. These issues are...

  10. Municipal solid-waste management in Istanbul

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  11. Municipal solid-waste management in Istanbul.

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. PMID:20185290

  12. Establishment of verification system for solid waste

    Solid wastes generated from MOX Facility have to be verified as same as nuclear fuel materials according to the IAEA safeguards criteria. On the other hand, from storing efficiency point of view, solid waste drums must be piled up (3 layers). However, it was very difficult to take out the drums randomly selected for verification of piled up drums. So it was necessary to develop new verification system which measures the selected drum easily and speedily without moving it. The system measuring the waste drum directly in narrow space of pallet for forklift-nails. This system consists of NaI(Tl) detector, collimator with wheels, PMCA (Portable Multichannel Analyzer), rails and cables. This system can confirm existence of Pu in drums by counting γ-Ray of Pu-241 (208 keV). This system is very small and light because of easy operating in narrow space and high position. (author)

  13. Integrated solid waste management of Minneapolis, Minnesota

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  14. CELLULOSE POWDER FROM OLIVE INDUSTRY SOLID WASTE

    Othman A. Hamed,

    2012-07-01

    Full Text Available In the present work, a method for extracting cellulose from olive industry solid waste has been developed. The method involves subjecting solid olive waste to kraft pulping, followed by multistep bleaching processes. The totally free chlorine chemical bleaching sequence APEP was the most effective and gave an average cellulose yield of about 35%. The extracted cellulose was extensively characterized using FTIR, EMS, HPLC, and viscometry. Our key finding in this study is that the extracted cellulose was found to have physio-chemical properties that are similar to those of conventional microcrystalline cellulose (MCC. This is important, as our results show how lignocellulosic agricultural wastes can be utilized to produce high value cellulose powder.

  15. Power from municipal solid waste

    This paper evaluates the energy production potential from urban wastes for several cities in Latin America. Technologies available for transforming wastes into energy are reviewed and the high efficiency and low pollution levels obtained are discussed based on some very successful examples in the developed countries. Several criteria to help plan a plant and choose its location and appropriate size are presented under the framework of environmental and energy constraints. Economic and financial feasibility, barriers to the introduction of new technologies and their transfer to developing countries, and political obstacles created by the lobby that is taking advantage of the present situation are presented. Management of such plants requires that a social communication program be well designed to touch and inform the public about the importance of the plants; it should also emphasize the gains to society. Marketing strategies are presented that will highlight life quality improvement and preservation of the environment to decision makers and the public. A case study for the city of Sao Paulo, Brazil, will be discussed in detail, showing how several levels of decision makers are involved in the preparation of the feasibility study and in raising financial resources both inside and outside the country. The study is for a large plant with a capacity of 1,800 ton/day and the generation of 27 MW of electric power

  16. Municipal solid waste disposal in Portugal

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  17. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  18. Microwave Enhanced Freeze Drying of Solid Waste Project

    National Aeronautics and Space Administration — Development of technology for Microwave Enhanced Freeze Drying of Solid Waste (MEFDSW) is proposed. The present state of the art for solid waste stabilization using...

  19. Integrated approach to solid waste management in Pune city

    Sanjay RODE

    2010-01-01

    The solid waste is increasing in Pune city due to growth of population, urbanization, higher per capita income and standard of living, changing lifestyle and food habits. The solid waste created by the household units, shops, restaurant and commercial units are higher. Solid waste is inevitable task in urbanization process and it will increase in future. The collection, segregation, storage, transports and processing of solid waste needs planning and more investment. Clean city improves stand...

  20. MUNICIPAL SOLID WASTE CHARACTERISTICS AND MANAGEMENT IN NIGERIA

    T. Ch. Ogwueleka

    2009-01-01

    Municipal solid waste management has emerged as one of the greatest challenges facing environmental protection agencies in developing countries. This study presents the current solid waste management practices and problems in Nigeria. Solid waste management is characterized by inefficient collection methods, insufficient coverage of the collection system and improper disposal. The waste density ranged from 280 to 370 kg/m3 and the waste generation rates ranged from 0.44 to 0.66 kg/capita/day....

  1. An integrated approach of composting methodologies for solid waste management

    Kumaresan, K; Balan, R.; Sridhar, A; J. Aravind; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen...

  2. Solid Waste Management Baling Scheme Economics Methodology

    Jan Stenis,

    2011-06-01

    Full Text Available A cost structure is proposed for evaluating and improving the ecological-economic efficiency of baling sub-scheme units within solid waste management schemes that end with, for example, incineration for heat and power production. The methodology proposed employs the previously introduced WAste Managements’ Efficient Decision model (WAMED and the COmpany STatistical BUSiness Tool forEnvironmental Recovery indicator (COSTBUSTER. The previously introduced equality principle and the Efficient Use of Resources for Optimal Production Economy (EUROPE model are applied so to in monetary terms express the emissions in case of bale related fire (sol, pollutions from leachate (liq and odour (g at a scheme. Previously, the EUROPE model has been applied to residuals from producing industry, the construction sector and whole landfills. A case study presents the practical application of the proposedmethodology. It is concluded that the presented novel methodology for evaluation and improvement of the ecological-economic efficiency of solid waste baling management schemes simultaneously decreases thenegative impact on the environment and the health of the population, provides the foundation of an investment appraisal support tool for the implementation of solid waste management projects and enables comparative analysis of estimated, actual and prevented monetary damages from the implementation of baling plant units.

  3. Pollution of Solid Waste to Agricultural Environment and Preventive Countermeasures

    Yan, Shi

    2014-01-01

    This paper elaborated the pollution and hazards caused by different kinds of agricultural solid wastes to the agro-ecological environment from the aspects of the types of solid wastes and the way they are produced. Besides, it came up with some countermeasures for preventing and controlling solid waste pollution and hazards.

  4. Pollution of Solid Waste to Agricultural Environment and Preventive Countermeasures

    Shi; YAN

    2014-01-01

    This paper elaborated the pollution and hazards caused by different kinds of agricultural solid wastes to the agro-ecological environment from the aspects of the types of solid wastes and the way they are produced. Besides,it came up with some countermeasures for preventing and controlling solid waste pollution and hazards.

  5. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  6. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  7. Hanford solid waste management system simulation

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  8. Solid Wastes Management of Yasuj Hospitals, Iran 2006

    AR Raygan Shirazi

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Unhygienic methods of colleting, storage, transportation and disposal of the hospital wastes results in serious hazards that can endanger the health and environment. These materials are classified as dangerous, and have to be collected and disposed based on special rules. Materials & Methods: In the present study we aimed to evaluate the quality of management of hospital wastes and to estimate the waste constituents in Yasuj hospitals. Density, constituents, methods of collecting, transportation and disposal of hospital wastes were evaluated in 3 consecutive days of every months of the year 2006. Results: Study showed that the daily production of solid wastes was 5.5 Kg per hospital bed and infected solid wastes were estimated to be 1.5 Kg per hospital bed. The total solid waste production was 1350 Kg per day which included 27.2 percent as infected solid wastes. Solid waste density was 160.7 Kg per cubic meter and its constituents were food wastes (19.753%, rubber (47.02%, paper (12.05%, glass (5.211%, metals (3.41% and bandages, gases, clothes, etc (12.556%. Conclusion: The findings suggest that the solid waste management of the studied hospitals is not satisfying and more attention must be paid to the critical issues, such as plans for reducing solid wastes, isolating infected solid wastes at the production site and using safe and updated methods of disposal of solid wastes.

  9. Definitions of solid and hazardous wastes

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  10. Solid Waste Projection Model: Database User's Guide

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  11. Solid Waste Management in Petroleum Refineries

    Jadea S. Alshammari

    2008-01-01

    Full Text Available Waste management became focus of attention of many researchers and scientists in the last half century due to its vital importance. Waste management covered waste source reduction in general, by recycling, reusing, composting, incineration with or without energy recovery, fuel production and land filling. A common approach of waste management models were for specific problems with a limited scope (like assignment of generating sources to landfills, transfer stations sitting, site selection for landfills, etc.. Integrated models have been developed more recently. The latest dynamic network flow models with nonlinear costs for waste management used multi-objective mixed integer programming approach for the management of existing facilities in an industrial complex waste management system. The application of multi-objective mixed integer programming techniques was for reasoning the potential conflict between environmental and economic goals and for evaluating sustainable strategies for waste management. Material recycling exhibited huge indirect benefits in an economic sense, although the emphasis of environmental quality as one of the objectives in decision-making has been inevitably driven the optimal solution toward pro-recycling programs. The enhancement of this modeling analysis by using the grey and fuzzy system theories as uncertainty analysis tools could prove highly beneficial. A multi-objective optimization model based on the goal programming approach was applied for proper management of solid waste generated by the petroleum industries in the state of Kuwait. The analytic hierarchy process, a decision-making approach, incorporating qualitative and quantitative aspects of a problem, has been incorporated in the model to prioritize the conflicting goals usually encountered when addressing the waste management problems of the petroleum industries. An optimization model was formulated based on the goal programming technique to minimize the

  12. Production of hydrogen from municipal solid waste

    Coleman, S.L.

    1995-11-01

    The Gasification of Municipal Solid Waste (MSW) includes gasification and the process for producing a gasificable slurry from raw MSW by using high pressures of steam. A potential energy source, MSW is a composite of organic materials such as: paper, wood, food waste, etc. There are different paper grades producing different results with low-quality paper forming better slurries than high-quality papers; making MSW a difficult feedstock for gasification. The objective of the bench-scale laboratory work has been to establish operating conditions for a hydrothermal pre-processing scheme for municipal solid waste (MSW) that produces a good slurry product that can be pumped and atomized to the gasifier for the production of hydrogen. Batch reactors are used to determine product yields as a function of hydrothermal treatment conditions. Various ratios of water-to-paper were used to find out solid product, gas product, and soluble product yields of MSW. Experimental conditions covered were temperature, time, and water to feed ratio. Temperature had the strongest effect on product yields.

  13. Municipal solid waste management in Cartago province

    Silvia M. Soto-Córdoba

    2014-03-01

    Full Text Available This paper resumes the principals results obtained by the grant EUROPEAID/126635/M/ACT/CR”, that was realized by FUNDATEC, and whose bene­ficiary was the “Federación de Municipalidades de Cartago, Costa Rica”, the Project received a funding of 74,920 euros. We work with all the Municipalities of the Cartago Province. In addition, we show the results of the interviews of social actors, visits to the recycle sites, visits of municipalities, during the years 2010, 2011 and 2012, and the review of literature. We describe the actual situation of the management of solid waste in Cartago, determinate the gene­ration rates by person and identified the principal landfill disposes, the recycle companies and deter­minate the main problems associated with the solid waste. It is hope that the information presented here, pro­vides the basis for the future construction of plans of municipal solid waste management, and for the capacitation of community organization in the pro­vince of Cartago.

  14. Solid Waste Inventory Identification, Sellafield, United Kingdom

    There is a requirement to define the solid wastes that need to be removed prior to decontamination and dismantling of pool structures. As well as the residual active inventory, consideration needs to be given to installed plant, equipment and support structures within the pool, as these items may contribute to a significant proportion of the inventory. The data can be used to support definition of retrieval and treatment techniques, as well as to support safety case development and project planning. Plans should also include campaigns of further data gathering, taking advantage of opportunities for improved characterization, which will come from advancements in the pond cleanup programme. For example, removal of sludge provides an opportunity to gain greater understanding of the inventory that may be partially obscured. Similarly, sorting or handling specific wastes may provide information about the condition and degree of corrosion of other wastes

  15. The Perception of the Langkawi Community on Solid Waste Management

    Noor Khafazilah Abdullah

    2014-08-01

    Full Text Available The process of disposing solid wastes should be systematic and efficient. Various pollution may occur if solid wastes are not properly disposed. Pollution would not only affect the naturalenvironment but also exposed the community to various diseases. Therefore the community should be given exposure to practice efficient solid waste disposalfor their own benefits.Given the signficance of proper waste disposal issues for tourism locations, this study investigated the management of solid waste disposal at the renown Langkawi Island. The focus was on the understanding and awareness of the community of the locals, business people and tourists on the island.The findings indicated that thecommunity inPulau Langkawi was aware of the importance of efficient solid waste management. Yet, theirpractices differed in terms of propriety or impropriety of the method in the perspectives of solid waste management. These practices were found to be influenced by their level of knowledge on waste management issues and their educational background.

  16. Solid Waste Burial Ground Central Waste Complex (CWC) Hazards Assessment

    U.S. Department of Energy (DOE) Orders require that a facility-specific hazards assessment be performed to support emergency planning activities. The Hazard Assessment establishes the technical basis for the Emergency Action Levels (EALs) and the Emergency Planning Zone (EPZ). This document represents the facility-specific hazards assessment for the Hanford Site Solid Waste Storage and Disposal (SWSD) organization as interpreted from DOE guidance (DOE 1992)

  17. Solid Waste/Disease Relationships, A Literature Survey.

    Hanks, Thrift G.

    Presented is a comprehensive survey of the literature on the relationships between disease and solid wastes. Diseases are grouped on the basis of waste type or disease vector, such as chemical waste, human fecal waste, animal fecal waste, rodent-borne disease, mosquito-borne disease and miscellaneous communicable disease. The following format is…

  18. Pyrolisis of municipal solid waste derived fuels

    In this study of pyrolytic processes for refuse derived fuel from municipal solid wastes, the main process parameters affecting the yield and the physical-chemical characteristics of products (gases, liquids and solids) were identified and analyzed. From the experimental results, one can observe that the pyrolytic process reduces the volume of produced emissions with respect to the conventional incinerators and allows, at the same time, the recovery of a gas with a significant heat capacity (14,000-19,000 kj/nmc) according to the process temperature, two other fuels, a tar and a solid with low ash content. It seems also that the strong environmental impact associable to this process is due to the water fraction of the produced liquid, whose main pollutants were also identified

  19. Solid, low-level radioactive waste certification program

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  20. Possible global environmental impacts of solid waste practices

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C. [Pacific Northwest Lab., Richland, WA (United States); Dibari, J.C. [Heritage College, Toppenish, WA (United States)

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  1. Development of a master plan for industrial solid waste management

    Rapid industrial growth in the province of Khuzestan in the south west of Iran has resulted in disposal of about 1750 tons of solid waste per day. Most of these industrial solid wastes including hazardous wastes are disposed without considering environmental issues. This has contributed considerably to the pollution of the environment. This paper introduces a framework in which to develop a master plan for industrial solid waste management. There are usually different criteria for evaluating the existing solid waste pollution loads and how effective the management schemes are. A multiple criteria decision making technique, namely Analytical Hierarchy Process, is used for ranking the industrial units based on their share in solid waste related environmental pollution and determining the share of each unit in total solid waste pollution load. In this framework, a comprehensive set of direct, indirect, and supporting projects are proposed for solid waste pollution control. The proposed framework is applied for industrial solid waste management in the province of Khuzestan in Iran and a databank including GIS based maps of the study area is also developed. The results have shown that the industries located near the capital city of the province, Ahwaz, produce more than 32 percent of the total solid waste pollution load of the province. Application of the methodology also has shown that it can be effectively used for development of the master plan and management of industrial solid wastes

  2. Assessment of LANL solid low-level waste management documentation

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A

  3. Solid low-level waste forecasting guide

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford's experience within the last six years. Hanford's forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford's annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford's forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data

  4. Solid low-level waste forecasting guide

    Templeton, K.J.; Dirks, L.L.

    1995-03-01

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

  5. Municipal solid waste management in Beijing City

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km2 with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  6. Integrated solid waste management of Scottsdale, Arizona

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  7. Integrated solid waste management of Springfield, Massachusetts

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  8. Obtaining fuel briquets from the solid municipal waste

    Recycling systems for solid waste materials are designed to reduce the amount of solid waste materials going to land fields. Through the Trash Separation Systems, clean municipal waste are reused in production of fuel pellets. Other waste streams such as coal fines, sawdust, wood chips, coke breeze and agricultural waste can be blended with these pellets along with a high thermal value binder and/or used motor oil to form a quality clean burning alternative fuel. (Author)

  9. Municipal solid waste management problems: an applied general equilibrium analysis

    BARTELINGS H.

    2003-01-01

    Keywords: Environmental policy; General equilibrium modeling; Negishi format; Waste management policies; Market distortions.About 40% of the entire budget spent on environmental problems in theNetherlandsis reserved for the waste management problem. Regardless of the amount spent on waste management, the quantity of municipal solid waste generated still increases. It has up till now proven impossible to decouple generation of municipal solid waste and income growth.This thesis investigates th...

  10. Municipal solid waste management in Nepal: practices and challenges

    Solid waste management in Kathmandu valley of Nepal, especially concerning the siting of landfills, has been a challenge for over a decade. The current practice of the illegal dumping of solid waste on the river banks has created a serious environmental and public health problem. The focus of this study was to carry out an evaluation of solid waste management in Nepal based on published information. The data showed that 70% of the solid wastes generated in Nepal are of organic origin. As such, composting of the solid waste and using it on the land is the best way of solid waste disposal. This will reduce the waste volume transported to the landfill and will increase its life

  11. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. PMID:26060198

  12. Biogas. Biofuels. Urban waste. Solid biomass

    The European production of primary energy from biogas reached 7.5*106 toe in 2008, it means a 4.4% increase on 2007. The bio-fuel consumption rose to 10.5 Mtoe in 2008, i.e. 2.5 Mtoe more than in 2007, this 31.4% growth seems relatively slow when compared with previous performances of 45.7% (between 2006 and 2007) and 70.9% (between 2005 and 2006). Primary energy production by combustion of renewable municipal solid waste in the European Union rose slightly in 2008 by 3% over 2007 to reach 6806 ktoe. The solid biomass that is made up of wood and its waste in addition to organic and animal waste was one of renewable energy production's safe bets. The primary energy production from this sector rose by 4.6% and reached 70292 ktoe. In all the renewable energy sources we have reviewed Germany ranks first in terms of global production. (A.C.)

  13. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  14. Integrated solid waste management of Seattle, Washington

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  15. Integrated solid waste management of Sevierville, Tennessee

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  16. Chrome recycling from leather solid wastes

    Leather processing is one of the industrial activities that generate chromium bearing wastes in different forms, one of them is chrome shavings which contributes about 10% of the quantum raw skins /hides, and causes on burning dangerous human hazardous. Hydrolysis processes by different alkalis such as (LiOK KOH, NaOH) have been applied to recover chrome from solid wastes. The extent of hydrolysis was studied as a function of alkalis concentrations, in presence and absence of reducing agents, shaking time and temperature. Hydrolysis process exhibits 99%, 98% and 97%, chrome recovery for LiOH, KOH and NaOH respectively. The recovered chrome has been used in retaining process, examined through visual and mechanical tests of leather samples. The evaluation of the tanning process with recovered chrome gave acceptable results

  17. 78 FR 46940 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    2013-08-02

    ... AGENCY RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and Listing of Special... conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of...) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System:...

  18. 75 FR 51434 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    2010-08-20

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271, and 302 RIN-2050-AE81 Hazardous and Solid Waste... No. EPA-HQ-RCRA-2009-0640. Mail: Send your comments to the Hazardous and Solid Waste Management... Delivery: Deliver two copies of your comments to the Hazardous and Solid Waste Management...

  19. Pyrolysis processing for solid waste resource recovery

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  20. Volume reduction techniques for solid radioactive wastes

    This report gives an account of some of the techniques in current use in the UK for the treatment of solid radioactive wastes to reduce their volume prior to storage or disposal. Reference is also made to current research and development projects. It is based on a report presented at a recent International Atomic Energy Agency Technical Committee when this subject was the main theme. An IAEA Technical Series report covering techniques in use in all parts of the world should be published within the next two years. (author)

  1. Plasma Gasification of Municipal Solid Waste: A Review

    Kartik Gonawala

    2014-01-01

    Full Text Available Utilization of plasma gasification in waste to energy is one of the novel applications meeting todays need for waste disposal. In this application, plasma arc, gasifies the carbon based part of waste materials such as municipal solid waste, sludge, agricultural waste, etc. and generating a synthetic gas which can be used to produce energy through engine generators, gas turbines and boilers. The non-carbon based part of the waste materials can be vitrified into glass and reusable metal. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. The paper focuses on plasma gasification technology for waste disposal and energy generation with case study. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  2. Development of new incineration systems for radioactive solid waste

    NGK delivers the incineration systems which can process the radioactive solid waste very safely to all power plants and nuclear facilities. If the radioactive solid waste contains the non-combustible waste and the retardant waste, in order to incinerate the combustible waste very well, we have to sort the non-combustible and the retardant waste from the radioactive soil waste. So, NGK has developed 'Rotary kiln type incinerator' and 'Rotary kiln and stoker type incinerator'. (author)

  3. Engineering properties for high kitchen waste content municipal solid waste

    Wu Gao

    2015-12-01

    Full Text Available Engineering properties of municipal solid waste (MSW depend largely on the waste's initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW. After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW, the following findings were obtained: (1 HKWC MSW has a higher initial water content (IWC than LKWC MSW, but the field capacities of decomposed HKWC and LKWC MSWs are similar; (2 the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3 compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG generation rate but a shorter duration and a lower potential capacity; (4 the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5 the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  4. A Baumol-Oates approach to solid waste taxation

    Andersen, M. S.; Dengsøe, N.

    2002-01-01

    A national Baumol–Oates tax on waste in Denmark helped achieve a reduction of 26% in net solid waste from 1987 to 1998. The tax, which is levied per ton of waste, was particularly effective as regards the heavier waste streams such as construction waste and garden waste. When it comes to industri...... assumption of environmental economics needs to be supplemented by an institutional dimension to interpret responses to environmental taxes correctly....

  5. Plasma Gasification of Municipal Solid Waste: A Review

    Kartik Gonawala

    2014-01-01

    Utilization of plasma gasification in waste to energy is one of the novel applications meeting todays need for waste disposal. In this application, plasma arc, gasifies the carbon based part of waste materials such as municipal solid waste, sludge, agricultural waste, etc. and generating a synthetic gas which can be used to produce energy through engine generators, gas turbines and boilers. The non-carbon based part of the waste materials can be vitrified into glass and reusab...

  6. Biomedical waste and solid waste management draft rules, 2015: A comment

    Sandeep Sachdeva

    2016-01-01

    Waste management is increasingly being given focus and attention throughout the globe in view of its diverse and adverse consequence to human and environmental health. Recently government has released draft biomedical waste and solid waste management rules, 2015 and invited comments from stakeholders. This brief provides update on bio medical waste, solid waste management especially community disposal of sanitary waste and highlights some of the concerns.

  7. Management of solid waste in Hyderabad city: problems and solutions

    This research paper is aimed to identify, explore, and disseminate the findings about the collection and transportation of solid waste in the second most populous city of Sindh province, Hyderabad. Working with a thorough understanding of existing system and practices in this city it is found that the imported solid waste management systems can not be successfully adopted. Therefore there is need of an indigenous approach for the management of solid waste in this one of the oldest city of the region. A successful community-involved attempt has been made to reshape the existing system of collection and transfer of solid waste by selecting Gulshan-e-Hali as a model colony. For this purpose a novel solid waste collection vehicle, Garbage Collection Rickshaw, was designed and operated satisfactorily. It is verified that incorporation of enhanced community participation can result ill significant and sustainable solid waste management improvements in the urban communities leading to improved living environment. (author)

  8. A Baumol-Oates approach to solid waste taxation

    Andersen, M.S.; Dengsøe, N.

    2002-01-01

    A national Baumol–Oates tax on waste in Denmark helped achieve a reduction of 26% in net solid waste from 1987 to 1998. The tax, which is levied per ton of waste, was particularly effective as regards the heavier waste streams such as construction waste and garden waste. When it comes to industrial and commercial waste, there are indications that the waste tax is not sufficiently significant to induce changes in behavior, and that except for very waste-intensive enterprises, companies do not ...

  9. Qinshan phase Ⅱ expansion project to minimize solid waste transformation

    The nuclear power plant in the production and maintenance period usually have a certain amount of radioactive waste, according to the physical state of these wastes, it can be divided into radioactive waste gas, radioactive waste water and solid waste. Radioactive waste gas and water, treated by the waste treatment system, and the corresponding facilities for filtration, purification. compression, storage to meet discharging requirements, discharge to the environment finally. As for solid radioactive waste, common solution in nuclear power plants is to use specially formulated cement to cure and packaged into the barrel, stored in a particular building for naturally decaying. Qinshan NPP have optimized the solid waste treatment process m extension project. As the nuclear power industry prospering, radioactive solid waste generation would increased dramatically,. how to reduce solid waste production volume, how to control the volume of waste bins will become serious issues in future. Qinshan Phase Ⅱ expansion project as 'replica plus improvement' projects, 'solid waste minimization transformation' has received great attention from SEPA (State Environmental Protection Department). (authors)

  10. Recovering method for solid waste and facility therefor

    When recovering solid wastes in a dry-type storage vessel, a crusher is hoisted down from a cask, and the crusher is operated to crush the solid wastes while holding them. The crushed wastes are temporarily stored at the upper portion of the crusher, and recovered as crushed wastes. In this case, the crusher is turned down, and a shielding vessel is laid the recover downwardly to temporary store the crushed wastes in the shielding vessel. Then, the crusher and the shielding vessel are turned 180deg to contain the crushed wastes into the shielding vessel. With such procedures, the stored solid wastes can be recovered reliably, the stored solid wastes can be reduced in the size, and efficiency of recovering operation can be improved. (T.M.)

  11. Management of radioactive wastes (solids and liquids) of CDTN

    Estimates of solid and liquid radioactive wastes produced in CDTN, the foreseen treatment and the responsibilities of various organs of CDTN involved in radioactive waste management are presented. (C.M.)

  12. Is Municipal Solid Waste Recycling Economically Efficient?

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  13. Municipal solid waste management system: decision support through systems analysis

    Pires, Ana Lúcia Lourenço

    2010-01-01

    The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, covering the four columns: technical, environmental, economic and social aspects. To develop the model an intensive literature review have been conducted. T...

  14. Integrated Solid Waste Management-An Innovative Approach

    Dr.L.Nageswara Rao; D.Kamalakar

    2014-01-01

    Now a day’s Municipal Solid waste management (MSWM) has become an important problem due to enhanced economic activities and rapid urbanization. Solid waste, which is a concern of day-to-day activity of human kind, needs to be accomplished properly. The people from different sectors are face various problems associated with ailing managed solid waste operation. Increased attention has been given by the government in recent years to handle this problem in a safe and clean manner...

  15. Race, Wealth, and Solid Waste Facilities in North Carolina

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Jay S. Kaufman; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain ...

  16. Solid waste utilization: incineration with heat recovery

    Boegly, W.J. Jr.

    1978-04-01

    As a part of the Integrated Community Energy Systems (ICES) Program, Technology Evaluations, this evaluation considers the potential utilization of municipal solid wastes as an energy source by use of incineration with heat recovery. Subjects covered include costs, design data, inputs and outputs, and operational problems. Two generic types of heat recovery incinerators are evaluated. The first type, called a waterwall incinerator, is one in which heat is recovered directly from the furnace using water circulated through tubes imbedded in the furnace walls. This design normally is used for larger installations (>200 tons/day). The second type, a starved-air incinerator is used mainly in smaller sizes (<100 tons/day). Burning is performed in the incinerator, and heat recovery is obtained by the use of heat exchangers on the flue gases from the incinerator. Currently there are not many installations of either type in the United States; however, interest in this form of solid-waste handling appears to be increasing.

  17. Municipal Solid Waste Management in Bulgaria from a Systems Perspective

    Kolev, Aleksandar

    2007-01-01

    The European Union membership of Bulgaria since January 2007 imposes higher requirements to the national waste management system and demands changes in the current waste management practices. In this context it is of great interest to study the contemporary and possible future development of the Bulgarian municipal solid waste management system. A systems analysis was carried out to provide better understanding of the Bulgarian municipal solid waste management and to analyze the possibilities...

  18. Spanish solid wastes legislation; Legislacion espanola de Residuos Solidos

    Castrillon Pelaez, L.; Maranon Maison, E.; Rodriguez Iglesias

    2001-07-01

    A review is made of the regulations in the field of solid wastes with the aim of providing a useful working tool for those entities that generate or manage some type of waste. The coming into force of the current Spanish Wastes Law establishes common regulations for all wastes, substituting all previous Municipal Waste and Toxic and Dangerous Waste Laws. For reasons of greater practical applicability, we have preferred in this paper to classify wastes on the basis of their characteristics. The regulations are thus presented in a series of sections: municipal waste, dangerous wastes, sewage plant sludge, cattle waste and specific risk materials, highlighting in each case those areas of the regulations that are of greater interest for the producers and managers of solid wastes. (Author)

  19. An integrated approach of composting methodologies for solid waste management

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  20. Solid Waste Land Applications with Permits by the Iowa DNR

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  1. Solid Waste Management Facilities with Permits by the Iowa DNR

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  2. Anaerobic digestion of municipal solid waste: Technical developments

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  3. Life cycle assessments of energy from solid waste

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  4. Environmental assessment of solid waste systems and technologies: EASEWASTE

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund;

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....

  5. Characterization of urban solid waste in Chihuahua, Mexico

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system

  6. Conceptual Model for the Solid Waste Landfill

    The Solid Waste Landfill (SWL) at the Hanford Site was operated from 1973 to 1996 to receive nonhazardous, nonradioactive sanitary waste generated from Hanford Site operations. Several volatile organic compounds (VOC) have been detected in wells in the SWL groundwater monitoring network since 1986, when groundwater monitoring for VOC was initiated throughout the Hanford Site. Because of the groundwater contamination, the SWL ceased operation in March 1996 and entered a period of interim closure in April 1996. The purpose of this report is to develop a conceptual model of the SWL to assess the nature and extent of the VOC contamination, in support of closure activities. The conceptual model indicates that VOC contamination has been detected in liquid wastes, soil gas, leachate, and groundwater at the SWL; that various transport mechanisms and pathways are available for contaminant migration; and that VOC concentrations are generally decreasing in groundwater. The implications of this conceptual model for closure activities will be discussed separately in the Plan for Closure of the SWL

  7. Evaluation of municipal solid waste management in egyptian rural areas.

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  8. Engineering properties for high kitchen waste content municipal solid waste

    Wu Gao; Yunmin Chen; Liangtong Zhan; Xuecheng Bian

    2015-01-01

    Engineering properties of municipal solid waste (MSW) depend largely on the waste’s initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW). After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings were obtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field ca-pacities of decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3) compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorter duration and a lower potential capacity; (4) the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  9. Municipal solid waste management in Malaysia: Practices and challenges

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  10. Solid Wastes use as an alternate Energy source in Pakistan

    Masood, Farhan

    2013-01-01

    Unfortunately, none of the cities in Pakistan has a proper solid waste management system right from the collection waste up to its proper disposal. Globally, wastes are used to produce electricity or used for recycling. Recently, Europe and United States (US) are recycling waste about 41% and 32%. China is also investing US 6.3 billion dollar to achieve 30% recycling of its waste 2030. The problems arising from the solid waste can be solved by using innovative technologies. Now-a-days differe...

  11. Effect of waste composition on anaerobic methanization of municipal solid waste

    Qu, X; He, P.J.; Shao, L. M.; Bouchez, T.

    2008-01-01

    Batch reactors were applied to study the anaerobic methanization of municipal solid waste (MSW). To compare the difference of methanization process of the majority two compositions of MSW food waste and cellulosic waste,liquid characteristics and biogas production were investigated on the reactors with reconstituted food waste and cellulosic waste respectively.and two kinds of typical MSW with different contents of food waste and cellulosic waste. Methane yield of food waste was...

  12. Storing solid radioactive wastes at the Savannah River Plant

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate.

  13. Producing usable fuel from municipal solid waste

    Ohlsson, O. O.

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  14. Product related solid waste analysis provides communities with reliable data for planing municipal solid waste reduction measurements

    Soth, J.; Pott, I.; Sinn, C.; Schaefer, T. [EPEA Internationale Umweltforschung GmbH, Hamburg (Germany); Braungart, M. [Fachhochschule Nordostniedersachsen, Suderburg (Germany)

    1997-12-31

    On behalf of the German waste management company Rethmann Entsorgungswirtschaft GmbH and Co. KG, EPEA Internationale Umweltforschung GmbH conducted a study for the minimization of municipal solid wastes in a typical rural county, Coesfeld (Germany). The main goal of the study was to answer the following question: Is it possible to implement a solid waste management concept in a typical rural county and to find suitable logistical, technical and organizational tools, thereby making incineration unnecessary? Furthermore the solid waste management concept has taken all technical and legal conditions into account, as recommended in Germany, and fulfills the requirement of leading solid wastes into technical or biological loops. The study is based on the new methodology of product related solid waste analysis. The study showed that a detailed solid waste avoidance plan can be developed which leads to a 90% reduction of municipal solid wastes until the year 2005. Following the results of the study a waste incineration plant has become unnecessary. Consequently the planning of a new waste incinerator was stopped. Thus, economical and ecological disadvantages could be avoided

  15. Leaching behavior of various low-level waste solids

    This report deals with the leaching of radioactive nuclides from low-level wastes solidified with cement, bitumen or plastics. Considerations are made on the effects of type of solidification matrix and waste; type, amount and exchange frequency of leachate; type and conditions of embedding soil; temperature and pressure; and secular deterioration. It is assumed that a waste composite is entirely immersed in leachate and that the amount of the leachate is large compared to the surface area of the waste. Cement solid is characterized by its high alkalinity and porosity while plastic and bitumen solids are dense and neutral. The content of waste in a composite is low for cement and high for plastics. It is generally high in bitumen solid though it should be reduced if the solid is likely to bulge. The leaching of 137Cs from cement solid is slightly dependent on the waste-cement ratio while it increases with increasing waste content in the case of plastic or bitumen solid. For 60Co, the leaching from cement solid depends on the alkalinity of the cement material used though it is not affected by the waste-cement ratio. In the case of plastics and bitumen, on the other hand, the pH value of the waste have some effects on the leaching of 60Co; the leaching decreases with increasing pH. (Nogami, K.)

  16. Assessment of LANL solid low-level mixed waste documentation

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section and the Chemical Waste Operations Section capabilities regarding preparation and maintenance of appropriate criteria, plans, and procedures. Additionally, a comparison is made which identifies areas where these documents are not presently in existence or being fully implemented. The documents being assessed in this report are: Solid Low-Level Mixed Waste Acceptance Criteria, Solid Low-Level Mixed Waste Characterization Plan, Solid Low-Level Mixed waste Certification Plan, Solid Low-Level Mixed Waste Acceptance Procedures, Solid Low-Level Mixed Waste characterization Procedures, Solid Low-Level Mixed Waste Certification Procedures, Solid Low-Level Mixed Waste Training Procedures, and Solid Low-Level Mixed Waste Recordkeeping Requirements. This report compares the current status of preparation and implementation, by the Radioactive Waste Operations Section and the Chemical Waste Operations Section, of these documents to the requirements of DOE 5820.2A,. 40 CFR 260 to 270, and to recommended practice. Chapters 2 through 9 of the report presents the results of the comparison in tabular form for each of the documents being assessed, followed by narrative discussion of all areas which are perceived to be unsatisfactory or out of compliance with respect to the availability and content of the documents. The final subpart of each of the following chapters provides recommendations where documentation practices may be improved to achieve compliance or to follow the recommended practice

  17. Solid Waste Management: Abstracts From the Literature - 1964.

    Connolly, John A.; Stainback, Sandra E.

    The Solid Waste Disposal Act of 1965 (Public Law 89-272, Title II) and its amending legislation, the Resource Recovery Act of 1970 (Public Law 91-512, Title I), authorize collection, storage, and retrieval of information relevant to all aspects of solid-waste management. As part of this effort, the U.S. Environmental Protection Agency's…

  18. Solid Waste Management: A List of Available Literature, October 1972.

    Environmental Protection Agency, Cincinnati, OH.

    Listed are 269 solid waste management publications available from the U. S. Environmental Protection Agency (EPA). There are EPA publications reporting on results of the research, development, and demonstrations in progress as authorized by the Solid Waste Disposal Act of 1965. Certain conference proceedings, findings of various commissions and…

  19. Solid Waste Management: A List of Available Literature.

    Environmental Protection Agency, Cincinnati, OH.

    Information, demonstration projects, and other activities, pertaining to solid-waste-related research, available from the U.S. Environmental Protection Agency (EPA), are contained in this document. These EPA publications are reports of the research, development, and demonstrations in progress as authorized by the Solid Waste Disposal Act of 1965.…

  20. Results-Based Financing for Municipal Solid Waste

    World Bank

    2014-01-01

    Municipal Solid Waste (MSW) management is a crucial service provided by cities around the world, but is often inefficient and underperforming in developing countries. This report provides eight examples of RBF designs, each tailored to the specific context and needs of the solid waste sector in the specific city or country. These projects are currently in various stages of preparation or i...

  1. Preparation of nonwoven and green composites from tannery solid wastes

    The disposal of solid wastes, such as trimmings and splits generated in various manufacturing processes in a tannery, is a serious challenge to the hides and leather industries. Our effort to address this challenge is to develop new uses and novel biobased products from solid wastes to improve prosp...

  2. Process and material that encapsulates solid hazardous waste

    O' Brien, Michael H.; Erickson, Arnold W.

    1997-12-01

    A method is described for encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150 C and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200 C and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  3. Municipal solid waste analysis in Iran

    M Heidari

    2008-09-01

    Full Text Available Background and Objectives: In the recent years Municipal Solid Waste (MSW has been one of the most important environmental concerns to throughout regions of Iran. Sound MSW management for any area needs to the reliable data in which present the actual MSW condition in that area. The aim of this study is express of integrated view of MSW in Iran."nMaterials and Methods:  In this study we collect the data from various municipal regions of Iran, to represent the roughly integrated view of MSW management situation in Iran. In this paper quantity, average generation rate, physical composition, and types of disposal methods in all of municipal regions of Iran also were investigated."nResults: Results from this study has shown that the amount of MSW generated in all of the municipal regions of Iran was 10370798 tons per year, and the average generation rate of MSW was 0.64 kg/capita/day. Results showed that only 6% of MSW was recycled, 10% was treated at organic waste (composting plants, and about 84% was disposed of in landfill."nConclusion: According to obtained results from this study and compare  MSW composition of Iran to some countries, its found that MSW properties in Iran is near to MSW properties in Low-income countries. Since the most of MSW in Iran contain organic fraction, there is a high potential to develop of composting industry.

  4. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the...

  5. Overview of solid radioactive wastes management program for Cernavoda NPP

    The Radioactive Waste Management Concept for Cernavoda Nuclear Power Plant has been established as part of Documentation of Radiation Safety Program for Cernavoda Nuclear Power Plant Solid Radioactive Waste Management - Reference Document RD-01364-RP1. The Program is based on operating experience from nuclear power facilities including CANDU Plants. It is based on operating experience from nuclear power facilities including CANDU Plants. The Radioactive Waste Management Concept for Cernavoda NPP established the general approach required for the collection, handling, conditioning and storage of solid radioactive waste while maintaining acceptable levels of safety for workers, public and environment. The concept developed ensures the necessary facilities to adequately manage solid radioactive waste from Cernavoda NPP Unit 1 and will be capable of expansion when other units will be brought into service. This concept does not address the management of spent nuclear fuel and the permanent disposal of the solid radioactive wastes. For Cernavoda NPP there were defined three types of solid radioactive waste as fallows: - Low Activity Radioactive Waste, type 1, namely, solid radioactive waste with a gamma dose rate of less than 2 mSv/h on contact with the container; - Medium Activity Radioactive Waste, type 2, namely, solid radioactive waste with gamma dose rate of 2 mSv/h to 125 mSv/h on contact with the container; - Medium Activity Radioactive Waste, type 3, namely, solid radioactive waste with gamma dose rate higher than 125 mSv/h on contact with the container. The design objectives for the solid radioactive waste management facilities are defined according to their specific characteristics. Design considerations are presented for solid radioactive waste interim storage facilities as well as the operating program and monitoring program for solid radioactive waste facility. Future plans are presented for short-term strategy including gamma improvement characterisation

  6. Integral urban solid waste management program in a Mexican university.

    Espinosa, R M; Turpin, S; Polanco, G; De Latorre, A; Delfín, I; Raygoza, I

    2008-01-01

    The Azcapotzalco campus of the Universidad Autónoma Metropolitana (UAM-A) has implemented an Integral Urban Solid Waste Management Program, "Segregation for a Better UAM Environment" (Separacción por un mejor UAMbiente). This program is directed to create awareness and involve the academic community of the UAM-A concerning the problem of solid wastes, at the same time fulfilling the local environmental legislation. The program consists in separating solid wastes into two classes: (1) recoverable wastes (glass and PET bottles, aluminum cans, Tetrapak packages) and (2) other wastes (non-recoverable). During the past three years, thanks to this program, the amount of solid wastes delivered monthly to municipal collecting services has been considerably reduced. In this period, UAM-A has sent to recycling: 2.2 tons of glass bottles; 2.3 tons of PET bottles; 1.2 tons of Tetrapak packages and 27.5 kg of aluminum cans. PMID:18586482

  7. 1995 solid waste 30-year container volume summary

    This report describes a 30-year forecast of the solid waste volumes by container category. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU-TRUM) waste. These volumes and their associated container categories will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company's Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1995 through FY 2024. The data presented in this report establish a baseline for solid waste management both in the present and future. With knowledge of the volumes by container type, decisions on the facility handling and storage requirements can be adequately made. It is recognized that the forecast estimates will vary as facility planning and missions continue to change and become better defined; however, the data presented in this report still provide useful insight into Hanford's future solid waste management requirements

  8. Integral urban solid waste management program in a Mexican university

    The Azcapotzalco campus of the Universidad Autonoma Metropolitana (UAM-A) has implemented an Integral Urban Solid Waste Management Program, 'Segregation for a Better UAM Environment' (Separaccion por un mejor UAMbiente). This program is directed to create awareness and involve the academic community of the UAM-A concerning the problem of solid wastes, at the same time fulfilling the local environmental legislation. The program consists in separating solid wastes into two classes: (1) recoverable wastes (glass and PET bottles, aluminum cans, Tetrapak packages) and (2) other wastes (non-recoverable). During the past three years, thanks to this program, the amount of solid wastes delivered monthly to municipal collecting services has been considerably reduced. In this period, UAM-A has sent to recycling: 2.2 tons of glass bottles; 2.3 tons of PET bottles; 1.2 tons of Tetrapak packages and 27.5 kg of aluminum cans

  9. Chemical digestion of low level nuclear solid waste material

    A method is described for processing low level, light weight, bulky, combustible nuclear solid waste material comprising the steps of reacting said solid waste material with concentrated sulfuric acid at a temperature within the range of 230 deg - 300 deg C and simultaneously, subsequently, or both simultaneously and subsequently contacting said waste with concentrated nitric acid or nitrogen oxides whereby carbonaceous material is oxidized to gaseous byproducts and a low volume residue. (author)

  10. Municipal Solid Waste Management in Grahamstown, Republic of South Africa

    Etengeneng, Dickson

    2012-01-01

    The studies investigate ways to improve the sanitation system of Grahamstown. It analyses public opinions and the underlying factors impacting effective solid waste management. The research methods used in the studies were: a structured questionnaire with closed ended questions, a review of published materials, informal interviews and physical observations. The following key findings were identified as factors affecting solid waste management in the municipality: poor methods of waste disposa...

  11. Solid Waste Radioactive Arisings from Nuclear Power Plants Operations

    All kinds of solid waste radioactive from NPP operations have been studied. The amounts and characteristics of waste produced in NPP operations depend on the type, the power and the operating conditions of its. The annual produced of solid waste from operation of NPP 1000 MWe about 1.200 m3 or 300 - 400 drums 200 l. The half life of radionuclide in its maximum is 30 years. (author)

  12. Determinants of municipal solid waste management in Portugal

    Ana Luísa Mota Freitas; Francisco Vitorino Martins; Elizabeth Real Oliveira

    2016-01-01

    Municipal solid waste management has been a topic of interest of several authors over time, in particular the implementation and maintenance of waste collection programmes. Initially, pioneering studies focused on the economic aspects of the provided services. However, many authors later argued the costs of providing solid waste collection services should also be influenced by socio-economic and behavioural factors, exogenous to the municipalities. The present study will be developed in this ...

  13. Do institutional factors matter for improved solid waste management?

    Yalew, Amsalu Woldie

    2012-01-01

    There is non-changing behavior of residents in cooperating and contributing for improved solid waste management in spite of increasing provision of solid waste management services in many urban areas. This paper starts from a hypothesis that institutional factors (interventions) are missing. We considered the case of issuing laws and creating awareness about the health and economic burdens due to improper waste management. We applied a paired-t test to test our hypothesis. We find that instit...

  14. Solid waste management of Jakarta : Indonesia an environmental systems perspective

    Trisyanti, Dini

    2004-01-01

    Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the city has faced serious threat of environmental deterioration andhealth hazard. It relies on one sanitary landfill only, whose capacity is currently beingexceeded, leading to excessive amounts of solid wastes left untreated in the city. An assessment with a system perspective was carried out, aiming to examine thecomplexity ...

  15. SOLID WASTE MANAGEMENT- A CASE STUDY IN DHULE

    Madhavi G. Sharma; Sanjivkumar S. Agrawal

    2016-01-01

    In each and every developing country solid waste management is a major problem. There are several factors behind it, May increasing population, consumption pattern, lifestyle, &structure of city. The quality &consumption of waste is also varied as per the variation. Thus, the solid waste management is based on the resource & the principles for the use which are responsible for the use of resource of planet & environmental protection. Thus, the consciousness must be taken by the public authori...

  16. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Mohammad Aljaradin; Kenneth M. Persson

    2016-01-01

    A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW) streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane c...

  17. Anaerobic digestion of organic solid waste for energy production

    Nayono, Satoto Endar

    2009-01-01

    This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms of its energy recovery, either by investigating the maximum organic loading rate or by co-digestion with other types of wastes for energy recovery. In order to reach the research purpose, several experiments such as characteristics examination of different organic solid wastes, which are potential substrates for anaerobic digestion.

  18. Air Pollution Control in Municipal Solid Waste Incinerators

    Quina, Margarida J.; Bordado, João C.M.; Quinta-Ferreira, Rosa M.

    2011-01-01

    Municipal solid waste (MSW) remains a major problem in modern societies, even though the significant efforts to prevent, reduce, reuse and recycle. At present, municipal solid waste incineration (MSWI) in waste-to-energy (WtE) plants is one of the main management options in most of the developed countries. The technology for recovering energy from MSW has evolved over the years and now sophisticated air pollution control (APC) equipment insures that emissions comply with the st...

  19. Evaluation of the biomethane potential of solid fish waste

    Eiroa, M.; Costa, J. C.; Alves, M.M.; Kennes, C.; Veiga, M. C.

    2012-01-01

    Manufacturing processes in fish canning industries generate a considerable amount of solid waste that can be digested anaerobically. The aim of this research was to study the biochemical methane potential of different solid fish waste. For tuna, sardine and needle fish waste, around 0.47 g COD–CH4/g CODadded was obtained in batch experiments with 1%TS; whereas for mackerel waste, the methane production attained 0.59 g COD–CH4/g CODadded. The increase in the waste/inoculum ratio, f...

  20. Application bar-code system for solid radioactive waste management

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system

  1. Quantity of Municipal Solid Waste Generated and Managed

    p>This indicator describes annual municipal solid waste (MSW) generation and management from 1960 to 2008. This information helps characterize the quantity of waste entering the waste stream in the U.S. and its eventual fate in the environment (e.g., landfill disposal, recovery ...

  2. Source Separation and Composting of Organic Municipal Solid Waste.

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  3. Research challenges in municipal solid waste logistics management.

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. PMID:26704064

  4. Treatment of low- and intermediate-level solid radioactive wastes

    One of the essential aims in the waste management is to reduce as much as possible the waste volumes to be stored or disposed of, and to concentrate and immobilize as much as possible the radioactivity contained in the waste. This document describes the treatment of low- and intermediate-level solid waste prior to its conditioning for storage and disposal. This report aims primarily at compiling the experience gained in treating low- and intermediate-active solid wastes, one of the major waste sources in nuclear technology. Apart from the description of existing facilities and demonstrated handling schemes, this report provides the reader with the basis for a judgement that facilitates the selection of appropriate solutions for a given solid-waste management problem. It thus aims at providing guidelines in the particular field and indicates new promising approaches that are actually under investigation and development

  5. Modules for estimating solid waste from fossil-fuel technologies

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides

  6. Method and device of decontaminating radioactive solid wastes

    Purpose: To surely enable grinding for the inner surface of hollow radioactive solid wastes such as pipeways or valves, as well as enable to decontaminate these solid wastes to such a level as being capable of processing in the same manner for the ordinary wastes. Method: A grinding piece abutting resiliently against the inner surface of a hollow radioactive solid wastes to be contaminated is attached at the top end of a flexible shaft, and the inner surface of the radioactive solid wastes is ground while rotating and slightly reciprocating, as well as axially moving the flexible shaft. Consequently, since the grinding piece is always abutted against the inner surface of the radioactive solid wastes just following after the profile of the inner surface, and the flexible shaft is resiliently flexed corresponding to the profile of the inner surface of the radioactive solid wastes, even an inner surface of radioactive solid wastes with a complicated configuration can surely be ground entirely. This surely enables to remove radioactive claddings and contaminated layers deposited on the surface. (Yoshihara, H.)

  7. Modules for estimating solid waste from fossil-fuel technologies

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  8. Advanced characterisation of municipal solid waste ashes

    Skytte Pedersen, Randi

    2002-12-15

    This report deals with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant Maebjergvaerket, Holstebro. MSW has been used as a fuel since the mid 1960's and since then, the MSW incineration plants have experienced operational problems due to deposit formation and corrosion. Inorganic elements tightly or loosely bound in the waste are the main cause of these problems. The tightly bound elements will mainly stay on the grate during combustion, whereas the loosely bound elements are volatilised and recondensed elsewhere in the furnace. Many of the heavy metals form volatile chlorides during the incineration, and the fly ash fraction thus show enrichment in these elements. Presence of chlorides and heavy metals in deposits may cause severe corrosion due to formation of low-melting eutectics. Chlorine gas in the flue gas is also of major concern with respect to corrosion, due to formation of volatile chlorides when chlorine comes in contact with the tube material. Four different ash fractions (bottom ash, super heater ash, economiser ash and fly ash) taken from Maebjergvaerket have been analysed with respect to particle sizes, structures, shapes and composition. The applied methods were scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX) and mapping, which were used in order to determine sizes, chemical composition and structure of the particles. X-ray powder diffraction (XRD) was used to provide information about crystallography and mineral phases. Chemical analysis was also performed along with a particle size distribution for the fine-grained fractions (economiser and fly ash). The amount of silicates consisting of Ca, Al and Si, were found to decrease through the furnace, whereas the amount of alkali (Na, K) chlorides and heavy metals (Pb, Zn) increased. The bonding in the waste before incineration is the direct cause of this, since silicates are tightly bound and chlorides are loosely bound. There was a

  9. SOLID WASTE DISPOSAL PROBLEMS IN ARIES URBAN COMMUNITY FROM CLUJ COUNTY

    Scortar Lucia-Monica; Mortan MariaVeres Vincentiu; Marin Anamaria

    2010-01-01

    In many technological societies, after the Industrial Revolution the problem of solid waste was appeared because of changing the consumption pattern of society. The part of solid waste which is related to the municipality is called municipal solid waste.

  10. Optimization of municipal solid waste collection and transportation routes

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length

  11. Optimization of municipal solid waste collection and transportation routes

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  12. 75 FR 35127 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    2010-06-21

    ... movement), or wastes from wet air pollution control devices, often in addition to other solid wastes... guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such...

  13. Treatment of wet solid low-level radioactive waste

    Recently low-level radioactive waste has caused much concern because of its long term impact on the environment. Most of the low-level radioactive waste is produced by nuclear power plants while a small fraction comes from medical applications, for example, radioactive isotopes. This waste exists in gas, liquid and solid forms. Research was carried out on wet solid low-level wastes, which were treated with polymeric materials. Their properties and applications were studied and evaluated. Wet solid radioactive wastes come from evaporated condensates produced by light-water reactors. The main component of boiling-water reactor waste is Na2SO4 and that of pressure-water reactor waste is H3BO3. Furthermore the spent ion exchange resin also constitutes a major portion of the solid radioactive waste. In this research, unsaturated polyesters, such as ETERSET 2565P and 2144 HCM, were employed to solidify the wastes; i.e. Na2SO4, Ca3(BO3)2.2H2O, cationic ion exchange resin Duolite ARA 9366 and anionic ion exchange resin Duolite ARC 9351. It was found that the properties, such as density, compressive strength, water resistance and thermal stability of unsaturated polyester solidified wastes were excellent. The radiation resistance could be as high as 108 Rad and the leachability was low. The volume reduction ratios of all samples were better than those of cement solidified waste

  14. The confirmation method of disposal about the pellet and granular solid wastes and the pellet solid wastes (Revised edition 2)

    The production of pellet solid wastes are scheduled in Fukushima Daiichi and Tokai Daini power plants. The propriety of the disposal confirmation method of these wastes was examined in this issue. Further the outline of the confirmation method of waste disposal was partially improved. (M.H.)

  15. Confirmation method of disposal about the pellet and granular solid wastes and the pellet solid wastes (Revised edition 1)

    The production of pellet solid wastes is scheduled in Fukushima Daiichi and Tokai Daini power plants. The propriety of the disposal confirmation method of these wastes was examined in this issue. Further the outline of the confirmation method of waste disposal was partially improved. (M.H.)

  16. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    2010-07-01

    ... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste....

  17. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands. PMID:16207528

  18. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  19. Conversion of Waste into Wealth: A Study in Solid Waste Management

    Janakiram, T.; Sridevi, K.

    2010-01-01

    Disposal of solid waste has been the talk of the day. An attempt has been made to dispose of the solid waste Jatropha (Kattamanakku). Aerobic composting method was employed. Properly treated solid wastes of different composition were mixed with slurries of cowdung and physicochemical parameters were measured after 30 and 60 days of composting. It was observed that percentages of nitrogen, phosphorous, potassium, sodium, calcium and magnesium increased as time elapsed. Water holding capacity, ...

  20. A field research on residential solid waste management in Beijing

    Pei, Lin

    2016-01-01

    As the biggest municipal solid waste generator all over the world, China has been facing unprecedented waste crisis since last decade (WorldBank, 2005). Especially in urban areas, rapid growing waste amount has led to pressing problems in environmental, economical and social aspects to municipal government and residents. Under this circumstance, Bei- jing, as the second biggest city in China, has adopted multiple approaches and allocated enormous resources to improve local waste management sy...

  1. Low and medium activity solid wastes processing and encapsulation

    This work, carried out under contract with the European Atomic Energy Community, describes the techniques in use for waste management. The activity of low and medium activity solid wastes is from few curies to few tens of curies per cubic meter, they are produced by nuclear facilities and are often complex mixtures. Radioactive wastes are characterized and processing and conditioning are described. Leaching, stability, mechanical resistance and radiolysis of encapsulated wastes are examined. Handling, storage and disposal are treated

  2. Solid Waste Management through the Application of Thermal Methods

    Moustakas, Konstantinos; Loizidou, Maria

    2010-01-01

    The energy utilization from waste can be achieved with the application of different thermal technologies (anaerobic digestion, a biological waste management method, can also result in energy recovery form waste). The basic operation principles that should apply to all thermal treatment facilities for municipal solid waste are: 1. Steady operation conditions. 2. Easiness for adaptation to rough changes of the composition and the quantity of feedstuff. 3. Flexibility for adaptation to the varia...

  3. High Strength Lightweight Nanocomposite from Domestic Solid Waste

    Masturi, Swardhani, Anggi Puspita; Sustini, Euis; Bukit, Minsyahril; Mora, Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    The issue of waste problems needs innovative efforts to solve. One of them is solid waste utilization as nanocomposite using polyurethane (PU) polymer as matrix. Beside using solid waste as filler, nanosilica is also added to improve the material strength of composite-produced. These materials were mixed by simple mixing with variative compositions, and then hot-pressed at 30 MPa and 100° C for 30 minutes. From compressive strength test, it was found that composite with composition 2:8 of PU and solid waste has optimum compressive strength, i.e. 160 MPa. Into this optimum composition, nanosilica then is added to improve the compressive strength and found that at composition 1:40:160 of nanosilica, PU and solid waste, the composite has optimum compressive strength 200 MPa, or increases 25% of that without nanosilica. The composite-produced is also lightweight material with the density is 0.69 g/cm.

  4. Conversion of municipal solid waste to hydrogen

    Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-09-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  5. Obtaining cementitious material from municipal solid waste

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  6. Conversion of municipal solid waste to hydrogen

    Richardson, J. H.; Rogers, R. S.; Thorsness, C. B.

    1995-04-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL's focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  7. Impact of socioeconomic status on municipal solid waste generation rate.

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. PMID:26831564

  8. Problems associated with solid wastes from energy systems

    Chiu, S.Y.; Fradkin, L.; Barisas, S.; Surles, T.; Morris, S.; Crowther, A.; DeCarlo, V.

    1980-09-01

    Waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation are reviewed with an emphasis on waste streams from coal and oil shale technologies. This study has two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

  9. 1995 solid waste 30-year characteristics volume summary

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D ampersand D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford's SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and the transuranic - transuranic mixed waste (TWunderscoreTRUM)

  10. 76 FR 51879 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes

    2011-08-19

    ... Process. Company F receives solid waste from a municipal garbage collector. Company F burns that solid... of solid waste disposal processes: A final disposal process, an energy conversion process, and a... to remove such solid waste), the incineration of solid waste without capturing any useful energy,...

  11. Towards sustainable solid waste management: Investigating household participation in solid waste management

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  12. Towards sustainable solid waste management: Investigating household participation in solid waste management

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation

  13. Study of Muncipal Solid Waste Management Scenario of Kadapa City

    Dr.P.Hari Prasad

    2015-05-01

    Full Text Available Municipal Solid Waste management constitutes a serious problem in many third world cities. Most cities do not collect the totality of wastes generated and of the wastes collected, only a fraction received proper disposal. The insufficient collection and inappropriate disposal of solid wastes represent a source of water, land and air pollution and poses risks to human health and the environment. Over the next several decades globalization, rapid urbanization and economic growth in the developing world tend to further deteriorate this situation. Items that we no longer need or don’t have any further use are falling in the category of waste and we tend to throw them away. In early days people were not facing such big problems of disposals because of availability of space and natural materials but now a day’s congestion in cities and use of non-biodegradable materials in our day life create many problems. It is directly deals with our hygiene and psychology. So, proper management of solid waste has become unavoidable. Two decades of economic growth since 1990 has changed the composition of India wastes. The quantity of MSW generated in India is increasing rapidly due to increasing population and change in lifestyles. Land is scarce and public health and environment resources are precious. The current SWM crisis in India should be approached holistically; while planning for long term solutions, focus on the solving the present problems should maintained. Solid waste Management, its impacts on public health and environment and prospects for the future should further researched. The findings should be disseminated into the public knowledge domain more effectively. The present paper deals with various topics related with solid waste such as it quantity, performance of solid waste management in Kadapa Municipal Corporation, future generation trends in KMC, deficiencies in the present Municipal Solid Waste management system and also keys to reduce it

  14. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  15. A legislator`s guide to municipal solid waste management

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  16. Maintenance implementation plan for solid waste management

    Reddinger, R.W., Westinghouse Hanford

    1996-06-27

    This Maintenance Implementation Plan (MIP)was developed for implementation of the U.S. Department of Energy (DOE) Order 4330.4A, A Maintenance Implementation Program (DOE 1990) which has been replaced by 4330.4B (DOE 1994) at the Hanford Site SWM complex. It addresses maintenance functions associated with SWM, which includes the field operational group and the facilities operational group. An assessment of the existing maintenance programs for SWM was performed, and the results of this assessment were evaluated to determine corrective actions required to bring Solid Waste Maintenance into compliance with the order. The objective of this MIP is to provide baseline information for the control and execution of SWM Maintenance activities relative to the requirements of Order 4330.4B, Chapter II. (Nuclear Facilities) It also describes actions that are planned to achieve compliance. Section 2.0 of this MIP summarizes the mission, history, and future plans of SWM. Section 3.0 describes maintenance scope and requirements, and outlines the overall strategy (both near- term and long-term) for implementing improvements to the maintenance program. Specific elements of DOE Order 4330.4B are addressed in Section 4.0, including objectives of each element, a discussion of how SWM addresses these objectives, proposed improvements, and references to Westinghouse Hanford Company (Westinghouse Hanford) policies and procedures. Section 5.0 addresses deviations from policy requirements, and Section 6.0 presents the implementation schedule for planned improvements.

  17. Ecological Solid Waste Management Act and Factors Influencing Solid Waste Management in Barangay Pansol of Quezon City, the Philippines

    Maskey, Bijan; Maharjan, Keshav Lall; Singh, Mrinila

    2016-01-01

    With rapid increase in population and economic growth, the Republic of the Philippines is facing a major challenge for effective management of its growing municipal waste. The government has enacted the Republic Act 9003, which is also called the Ecological Solid Waste Management Act of 2000, to overcome the challenges of waste management. This study was conducted in barangay Pansol of Quezon City in the Metro Manila to assess the impact of this act on households’ waste generation and managem...

  18. Strategic solid waste management in cities in Japan

    SWM (Solid Waste Management) systems have always been compatible with the societal need at every point of time. In 1950's it was oriented towards maintaining public health standards mainly to control infectious diseases. While in 1970's energy generation was considered as the vital aspect of the system. In 1990's reduction in waste generation and recycling were officially incorporated in the waste management regulation. By enacting basic law in 2000 A.D.; the society is poised to become a recycling based society in its drive towards sustainable society. The document explain the actual solid waste strategic management, and related issues, in Japan

  19. Solid and hazardous waste management issues for gas processing facilities

    This paper reports on common solid and hazardous waste related concerns associated with gas processing which include proper management and storage of hazardous material and hazardous waste, proper handling of controlled non-hazardous material such as petroleum hydrocarbons, and assessment, remediation and control of special contaminants such as PCB and asbestos. The Federal state, and local regulations governing management of these materials continues to change, typically trending toward more stringent control of waste handling and disposal, and sometimes affecting waste materials that were previously disposed of as non-hazardous solid waste. More recent, regulatory changes affecting gas processing facilities include proper waste characterization and record keeping, underground tank removal and leak management, on-site waste disposal options and remedial alternatives for chemical spills, PCB contamination assessments for processing equipment and facilities and used oil management

  20. Solid waste retrieval. Phase 1, Operational basis

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose

  1. Informal Collection of Household Solid Waste in Three Towns of Anambra State, Nigeria

    Egbu Anthony; Okoroigwe Decklan

    2014-01-01

    Management of urban solid waste implies the collection, transfer, treatment recycle, reuse and disposal of such waste. Collection of urban household solid waste traditionally rests with government agencies designated with such responsibility. Solid waste collection begins from storage at the household level to the final treatment or disposal point and represents the most important aspect of urban solid waste management. Little has however been written on urban household solid waste collection...

  2. Municipal Solid Waste Characterization, Tehran-Iran

    Amir Hossein Mahvi; Mohammad Reza Sabour; Helen Morabi Heravi

    2013-01-01

    Effective waste management has been greatly restricted by insufficient statistical data on the generation, processing and waste disposal. This study was undertaken in the municipality of Tehran. A total of 6,060 samples were compared by statistically comparing source generation, destination and intermediate stations. The results from these analyses showed that the average per capita waste generation in Tehran was 589 g day-1. It was also observed that, of the total amount of waste gener...

  3. Hanford Site solid waste acceptance criteria

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  4. DOMESTIC SOLID WASTE MANAGEMENT IN DHARAMSALA, NORTHERN INDIA

    KHOLIAVKO T.

    2015-01-01

    In this paper the current situation of domestic solid waste management in Dharamsala, Northern India is presented. In particular, collection system and disposal method and its effects to local and global environment are described.

  5. Microwave Enhanced Freeze Drying of Solid Waste Project

    National Aeronautics and Space Administration — The development of advanced methods for Microwave Enhanced Freeze Drying of Solid Waste (MEFDSW) is proposed. Methods for the recovery of relatively pure water as a...

  6. Municipal Solid Waste Management in Sekondi-Takoradi Metropolis, Ghana

    Bernard Fei-Baffoe

    2014-01-01

    Full Text Available The rapid increase in urban population due to the influx of the citizenry in search for better conditions of life has resulted in poor environmental conditions in most urban and peri-urban settlements in the country. Municipal solid waste management (MSW for that matter has become problematic within Sekondi-Takoradi Metropolis as the city is being inundated with so much filth which has proven to be very difficult and seemingly impossible for the municipal authorities to tackle. This study investigates the nature of solid waste problem in Sekondi-Takoradi Metropolis. A mixed methodological approach including field investigation, questionnaire survey, and structured and face-to-face interviews were employed in the gathering of data for the study. The key findings established to be the factors affecting effective solid waste management in the metropolis are irregular solid waste collection, inadequate operational funding, inappropriate technologies, inadequate staffing, inadequate skip, and lack of cooperation on the part of the citizenry.

  7. Energy recovery from solid waste. [production engineering model

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  8. A PNEUMATIC CONVEYING TEST RIG FOR MUNICIPAL SOLID WASTE FRACTIONS

    This report analyzes the material properties and system parameters relevant to the pneumatic conveying of municipal solid waste and its processed fractions. Comparisons are made with the conveying of conventional industrial feedstocks, and a rationale for sizing and specification...

  9. Demonstration Project of Radioactive Solid Waste Retrieval and Conditioning

    2008-01-01

    <正>The construction goal of the project is to construct a set of special equipments for radioactive solid waste retrieval, sorting, pre-compacting and radioactive measurement, to provide a set of engineering

  10. Landfills - MO 2006 Solid Waste Management Districts (SHP)

    NSGIC GIS Inventory (aka Ramona) — This data set contains boundaries and contact information for Missouri Solid Waste Management districts and regions. The districts were created by statute to foster...

  11. Leaching from municipal solid waste incineration residues

    Hyks, J.

    2008-02-15

    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  12. Melting method for radioactive solid wastes and device therefor

    Upon melting radioactive solid wastes mixed with radioactive metal wastes and non metal materials such as concrete by cold crucible high frequency induction heating, induction coils are wound around the outer circumference of a copper crucible having a water cooling structure to which radioactive solid wastes are charged. A heating sleeve formed by a material which generates heat by an induction heating function of graphite is disposed to the inside of the crucible at a height not in contact with molten metals in the crucible vertically movably. Radioactive solid wastes are melted collectively by the induction heat of the induction coils and thermal radiation and heat conduction of the heating sleeve heated by the induction heat. With such procedures, non metal materials such as concrete and radioactive metal wastes in a mixed state can be melt collectively continuously highly economically. (T.M.)

  13. Hanford Site Solid Waste Landfill permit application. Revision 1

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  14. Geotechnical hazards associated with closed municipal solid waste landfill sites

    Powrie, W.; Richards, D.; Beaven, R.

    2015-09-01

    As pressure for new infrastructure and development grows, it is inevitable that building projects will encounter some of the c20,000 closed former solid waste landfills in the UK, many of which will have accepted municipal solid wastes (MSW). Construction on or across these sites brings a special set of geohazards associated with the potential for large and difficult to predict settlements, gas (and odour) release or generation, contaminated leachate and the breach of containment systems and other environmental controls. The presentation will discuss these issues with reference to recent research into understanding and predicting settlements in municipal solid waste landfills; assessing the total, current and residual gas potential of biodegradable wastes; the role of the hydraulic regime in the flushing of contaminants from the waste and the quality of leachate; and the need or otherwise for the long term integrity of engineered barriers and controls.

  15. IMPROVEMENT OF THE PROCESSING OF SOLID WASTE IN UKRAINE

    T. Kharchenko

    2014-12-01

    Full Text Available The article is dedicated to the problems of recycling and solid waste. It is investigated traditional methods of waste management (storage, disposal, incineration. Authors insist on ineffectiveness of these methods, because of the pollution increases anthropogenic pressure on the environment. It is proved harmful health effects using the traditional methods of disposal. The question of introducing innovative recycling, particularly separating solid waste, the development and use of clean technology waste processing, using microorganisms, pyrolysis. It is determined implementation barriers such as lack of effective government support, and high cost. It is noted that there is a problem of underestimating the complexity, scope and specifics of the issue. The experience of developed countries is outlined. The comparative performance of existing tariffs for disposal of solid waste is used. The ways of solving problems are done.

  16. Stored solid waste recovering method and facility thereof

    Pool water is drained to expose solid waste containing canisters, wires connected thereto used when thrown in are cut by remote operation of a wire cutting means, and the separated canisters are suspended and recovered while accumulating the canisters by a self-running robot. With such procedures, the recovery of various kinds of solid wastes in the pool can be improved. (T.M.)

  17. Funding Solid Waste Disposal: A Study from the Philippines

    Antonia Corinthia C Naz; Mario Tuscan N Naz

    2006-01-01

    The treatment of solid waste is a major priority in countries across Southeast Asia. Economic development and population growth, particularly in the region's mega-cities, have made the challenge more acute. This is particularly true in the Philippines, where the legacy of dangerous open dump sites such as 'Smokey Mountain' have kept the issue high on the political agenda. This study looks at how a municipal government in one of the Philippines's provinces should organize its solid waste manag...

  18. Urban Development on Municipal Solid Waste Management in Dhaka, Bangladesh

    Nasrin, Syeda Tanjima

    2014-01-01

    Urban environment is a major global concern especially where the pollution isincreasing due to rapid growth of population along with less development of physicalinfrastructure. Municipal solid waste management (SWM) is now being considered asone of the most immediate and serious environmental issue for rapid increasing anddensely populated cities of least developing countries, unfortunately a large portion ofurban areas has no service for solid waste disposal. But globally, the amount of MSWh...

  19. Evaluation of Quantity and Quality of Dental Solid Waste

    Maryam Ghanbarian; Ahmad Khosravi; Marjan ghanbarian; Masoud Ghanbarian

    2011-01-01

    Introduction: Today, one of the most important environmental issues is dental solid wastes that because of the presence of hazardous, toxic and pathogen agents have special importance. In this study, solid waste produced in Shahroud general dental offices was studied. Methods: In this descriptive study, all dental offices in Shahrood were selected. From each office 3 samples were analyzed at the end of successive working days (Monday, Tuesday and Wednesday). Samples were manually sorted into ...

  20. Solid waste management in Asian countries: a review of solid waste minimisation (3'r) towards low carbon

    Ali, N. E.; Sion, H. C.

    2014-02-01

    The amount of solid-waste generated in Asian countries has increased tremendously, mainly due to the improvement in living standards, rapid developments in technology, growth in economy and population in the cities. Solid waste management is a global issue and major challenge facing Asian countries and neglecting its management may have negative consequences on the environment. Waste composition data proves the developed countries to have generated more recyclable materials while developing countries produce more organic and less recyclable waste such as paper, plastic and aluminium. In this regard, increase in number of landfills and disposal sites, will have an impact on GHG (greenhouse gas) emissions and pollutants to air and water. Alternative methods should therefore be taken to reduce the volume of waste. Most Asian countries have adopted the 3R (reduce, reuse, recycle) concept in order to reduce solid waste and their governments have implemented laws and regulations in order to support this. Implementation of 3R is the major contributor to the solid waste minimization and it can improve the quality of environmental sustainability and reduction of carbon dioxide emission in to the atmosphere. Based on our review, most of the countries practicing the 3R concept in tandem with laws and regulations perform better than those that just practice the 3R concept without any laws and regulations. The paper suggests that every country must focus on the laws and regulations relating to solid waste minimization so that it could be easily implemented as outlined.

  1. Solid waste management in Asian countries: a review of solid waste minimisation (3'r) towards low carbon

    The amount of solid-waste generated in Asian countries has increased tremendously, mainly due to the improvement in living standards, rapid developments in technology, growth in economy and population in the cities. Solid waste management is a global issue and major challenge facing Asian countries and neglecting its management may have negative consequences on the environment. Waste composition data proves the developed countries to have generated more recyclable materials while developing countries produce more organic and less recyclable waste such as paper, plastic and aluminium. In this regard, increase in number of landfills and disposal sites, will have an impact on GHG (greenhouse gas) emissions and pollutants to air and water. Alternative methods should therefore be taken to reduce the volume of waste. Most Asian countries have adopted the 3R (reduce, reuse, recycle) concept in order to reduce solid waste and their governments have implemented laws and regulations in order to support this. Implementation of 3R is the major contributor to the solid waste minimization and it can improve the quality of environmental sustainability and reduction of carbon dioxide emission in to the atmosphere. Based on our review, most of the countries practicing the 3R concept in tandem with laws and regulations perform better than those that just practice the 3R concept without any laws and regulations. The paper suggests that every country must focus on the laws and regulations relating to solid waste minimization so that it could be easily implemented as outlined

  2. Management, treatment and final disposal of solid hazardous hospital wastes

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  3. Municipal solid waste management in Rasht City, Iran

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years

  4. Solid waste management in faisalabad using GIS

    Waste management is a global environmental issue which concerns about a very significant problem in today's world. There is a considerable amount of disposal of waste without proper segregation which has lead to both economic and environment sufferings. It is still practiced in many cities. There is a tremendous amount of loss in terms of environmental degradation, health hazards and economic descend due to direct disposal of waste. It is better to segregate the waste at the initial stages where it is generated, rather than going for a later option which is inconvenient and expensive. There has to be appropriate planning for proper waste management by means of analysis of the waste situation of the area. This paper would deal with, how Geographical Information System can be used as a decision support tool for planning waste management. A model is designed for the case study area in Pakistan city for the purpose of planning waste management. The suggestions for amendments in the system through GIS based model would reduce the waste management workload to some extent and exhibit remedies for some of the SWM problems in the case study area. The waste management issues are considered to solve some of the present situation problems like proper allocation and relocation of waste bins, check for unsuitability and proximity convenience due to waste bin to the users, proposal of recyclable waste bins for the required areas and future suggestions. The model will be implemented on the Faisalabad city's case study area data for the analysis and results will suggest some modification in the existing system which is expected to reduce the waste management workload to a certain extent. (author)

  5. Drying device and processing method for radioactive solid waste

    A waste disposing vessel filled with radioactive solid wastes containing zirconium or alloys thereof is contained and sealed in a drying vessel of a drying device and then evaluated. Then, the radioactive solid wastes containing zirconium or alloys thereof in the waste disposing vessel are dried by heating using steams from the outside of the drying vessel. After the completion of the drying, the waste disposing vessel is sealed in the drying device, and the sealed waste disposing vessel is pressed after taking out from the drying vessel. Since this method requires no displacement or deaerating operation for sealing, the handling step can be saved, the working efficiency for a series of processings is improved, and there is no worry of ignition of fines due to mechanical shocks. (N.H.)

  6. Effects of biodrying process on municipal solid waste properties.

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. PMID:21664812

  7. INRA Integrated Fuel Recycling Facility Solid Waste Management

    This paper presents an overview of the Integrated Fuel Recycling Facility solid waste management process for the Pre-Conceptual Design of the facility proposed by the International Nuclear Recycling Alliance (INRA) Team. Wastes estimates and expected activity level are provided. The low volume of expected produced waste benefits from years of experience and feedback from La Hague operations, where a determined waste management strategy has been implemented. All waste management information presented in this paper is based on existing industrial experience in AREVA facilities in France. Specific US and site specific local requirements that are not fully assessed yet may impact waste forms and quantities. Some process optimizations are still possible that would decrease the number of residues (most notably for low level waste), dependent on potential disposal paths in the U.S. and the associated waste acceptance criteria of the receiving facilities. (authors)

  8. Product specific emissions from municipal solid waste landfills

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette;

    1998-01-01

    This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product in...... different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride...... (PVC), copper and chloride). Since waste products from different processes in the product system may be disposed at different landfills where they are mixed with waste originating outside the product system, the estimated emissions from specific waste products cannot be compared with measured emissions...

  9. CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF LEACHATES FROM COAL SOLID WASTES

    The report gives results of the chemical and mineralogical characterization of coal solid wastes. The wastes included three Lurgi gasification ashes, mineral residues from the SRC-1 and H-Coal liquefaction processes, two chars, two coal-cleaning residues, and a fly-ash-and-water-...

  10. Fire hazards analysis for solid waste burial grounds

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  11. Solid waste processing of enterprises of engineering complex

    Мезенцева, Ирина Александровна; Горбенко, Вероника Владимировна; Любченко, Ирина Николаевна; Котлярова, Светлана Владимировна

    2012-01-01

    The efficiency of solid waste of electrical discharge machining of complex alloys is shown. The types of electrical discharge machining are considered, as well as the physical phenomena occurring at a given processing and characteristics of the waste - products of erosion

  12. Energy in Solid Waste: A Citizen Guide to Saving.

    Citizens Advisory Committee on Environmental Quality.

    This booklet contains information for citizens on solid wastes. It discusses the possible energy available in combustible and noncombustible trash. It suggests how citizens can reduce waste at home through discriminating buying practices and through recycling and reuse of resources. Recommendations are given for community action along with state…

  13. Waste management and enzymatic treatment of Municipal Solid Waste

    Jensen, Jacob Wagner

    content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...... simulating Danish household waste in composition and weight, 2) evaluating the performance of best enzyme candidates on original waste with and without additional additives, 3) measuring the biogas potential of liquefied waste and comparing the results with the biogas potential of untreated waste...

  14. Study of thermal conductivity in organic solid wastes before composting

    Huet, Joachim; Druilhe, Celine; Debenest, Gérald

    2012-01-01

    In France, like in all developed countries, the amount of solid wastes generated per year has increased continuously since the 1960’s. To hold back this trend, waste policies have been set up, as illustrated by current EU waste policy and its five main priorities: prevention, reuse, recycling, recovery and disposal. Composting can be defined as the process whereby aerobic micro-organisms convert organic substrates into compost: a hygienic, biostable product that can be beneficially appl...

  15. Low-activity solid waste measurements at Tokai Works

    There is significant interest in performing assay measurements of containerized low-activity solid waste. The authors have examined the cases of typical waste drum matrices containing small quantities of plutonium and fission products. They have discussed various measurement techniques and considered the advantages and disadvantages of each method. They present a new state-of-the-art passive neutron waste drum counter with minimum detectable mass limits far below those systems which they have previously fabricated

  16. Solid Waste Bin Monitoring Using Zig –Bee

    Mrs. Kanchan Mahajan; Prof. J. S. Chitode

    2014-01-01

    Through the history, the significant amount of solid waste generated by humans was due to low population density and low levels of the exploitation of natural resources. Common waste produced during pre-modern times was mainly ashes and human biodegradable waste, which were released into the ground locally, with minimal environment impact. Tools made out of metal or woods were generally reused or passed down the generations and generations . However, in mid-19th century, du...

  17. Keeping Our Cities Clean: Urban Solid Waste Management in Karnataka

    Madhushree Sekher

    2004-01-01

    This paper broadly examines the process of municipal waste management in our cities, focusing on the situation in Karnataka. The paper is reflective in nature, drawing on a case study of solid waste management process in Bangalore. It highlights the characteristic of municipal waste generated, the management practices involved and the stakeholders in the refuse collection and disposal services, and thereupon attempts to identify future interventions to strengthen the delivery of public munici...

  18. Concurrent combustion of biomass and municipal solid waste

    Laryea-Goldsmith, Rene

    2010-01-01

    This PhD research project is primarily an investigation of the gaseous pollutant emissions arising from concurrent combustion of biomass and municipal solid wastes materials, using a fluidized bed combustor. Of the wide range of biomass energy resources available, dried distillers’ grains with solubles and wheat straw were chosen as two example agricultural by-products of the human food supply chain. To consider an integrated waste management programme, a residual waste resource from a mat...

  19. Municipal solid waste disposal by using metallurgical technologies and equipments

    Jiuju Cai, Wenqiang Sun

    2012-01-01

    Pyrolysis of municipal solid waste can take full advantage of energy and resource and avoid producing hazardous material during this period. In combination with mature metallurgical technologies of coking by coke oven, regenerative flame furnace technology and melting by electric arc furnace, technologies of regenerative fixed bed pyrolysis technology for household waste, co-coking technology for waste plastic and blend coal, and incineration ash melting technology by electric arc technology ...

  20. Municipal Solid Waste Management from a Systems Perspective

    Eriksson, Ola; Carlsson Reich, M.; Frostell, Björn; Björklund, Anna; Assefa, Getachew; Sundqvist, J-O; Granath, J; Baky, A; Thyselius, L

    2005-01-01

    Different waste treatment options for municipal solid waste have been studied in a systems analysis. Different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of biodegradable waste, were studied and compared to landfilling. The evaluation covered use of energy resources, environmental impact and financial and environmental costs. In the study, a calculation model ( ) based on method...

  1. Waste management of ENM-containing solid waste in Europe

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individual products to an appropriate waste material fraction, 2. identifying the ENM in each fraction, 3. comparing identified...... waste fractions with waste treatment statistics for Europe, and 4. illustrating the general distribution of ENM into incineration, recycling and landfilling. Our results indicate that ╲plastic from used product containers╡ is the most abundant and diverse waste fraction, comprising a variety of both...... nanoproducts and materials. While differences are seen between individual EU countries/regions according to the local waste management system, results show that all waste treatment options are significantly involved in nanowaste handling, suggesting that research activities should cover different areas. The...

  2. Bases for solid waste volume estimates for tank waste remediation system

    Reddick, G.W., Westinghouse Hanford

    1996-08-01

    This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

  3. 40 CFR 256.02 - Scope of the State solid waste management plan.

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... plan shall consider the following aspects of solid waste management: (i) Resource conservation;...

  4. Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?

    Biglan, Barbara

    Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…

  5. 76 FR 80451 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed Amendments...

    2011-12-23

    ... Municipal Solid Waste 2. Energy Recovery Units Designed to Burn Non-coal Solid Materials 3. Typographical... Units per Hour MSW Municipal Solid Waste MW Megawatts MWC Municipal Waste Combustor NAAQS National...? 2. What are the Water and Solid Waste Impacts? 3. What are the Energy Impacts? 4. What are......

  6. 40 CFR 266.202 - Definition of solid waste.

    2010-07-01

    ... disposal as defined in 40 CFR 261.2(c)(1), or burning for energy recovery as defined in 40 CFR 261.2(c)(2... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Definition of solid waste. 266.202 Section 266.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  7. Solid waste recycling in Rajshahi city of Bangladesh.

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. PMID:22749721

  8. Renewable energy source from pyrolysis of solid wastes

    Malaysia is blessed with a significant renewable energy resource base such as solar energy and biomass. To continue with its industrial development, Malaysia must manages energy supply its c prudently in order to avoid becoming an energy importer supply. Most significantly renewable energy from biomass such as rice husks, wood wastes, oil palm wastes, rubber wastes and other agricultural wastes. Beside rice and timber. Malaysia produces a huge amount of palm oil and natural rubber. These generate a significant amount of solid wastes in the forms of oil palm shell and rubber. These wastes are producing pollution and emission problems in Malaysia which is causing an environmental issue. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric studies of the wastes, it appeared that the wastes could be used as an alternative value-added source of energy. For this purpose a fast pyrolysis of 300 mi-n lone, and 50 mm diameter stainless-steel reactor was designed and fabricated. The grounded, sieved and dried solid feed particles underwent pyrolysis reactor at moderate temperature and were converted into pyrolytic oil, solid char and cas. Oil and char were collected while the cas was flared. The oil was characterised by GC-MS technique. Detailed analysis of the oil showed that there was no concentration of biologically active polycyclic aromatic species in the oil. The fuel properties of the derived oils were also analysed and compared to diesel fuel. (Author)

  9. Municipal solid waste management in Tehran: current practices, opportunities and challenges.

    Damghani, Abdolmajid Mahdavi; Savarypour, Gholamreza; Zand, Eskandar; Deihimfard, Reza

    2008-01-01

    Tehran, the capital city of Iran and a metropolis with a population of 8.2 million and containing 2.4 million households, generated 2,626,519 tons of solid waste in 2005. The present study is aimed at evaluating the generation, characteristics and management of solid waste in Tehran. Municipal solid waste comprises more than 97% of Tehran's solid waste, while three other types of solid waste comprise less than 3% of it, namely hospital waste (1.0%), industrial waste (0.6%) and construction and demolition waste (0.5%). The contribution of household solid waste to total municipal solid waste is about 62.5%. The municipality of Tehran is responsible for the solid waste management of the city; the waste is mainly landfilled in three centers in Tehran, with a small part of it usually recycled or processed as compost. However, an informal sector is also active in collecting recyclable materials from solid waste. The municipality has recently initiated some activities to mechanize solid waste management and reduce waste generation. There remain important challenges in solid waste management in Tehran which include: the proper collection and management of hospital waste; public education aimed at reducing and separating household waste and educating municipal workers in order to optimize the waste collection system; and the participation of other related organizations and the private sector in solid waste management. PMID:17881212

  10. Exhumation test with aged radioactive solid wastes

    This report presents observations during the excavation of low-level waste buried for 14 years in the humid environment of the Savannah River Plant. The waste was buried in sandy clay soil trenches more than 20 feet above the water table and covered with soil soon after burial. The waste uncovered included wood, steel, plastics, cotton cloth, rubber, and paper. Cardboard boxes not enclosed in plastic were the only materials that deteriorated visibly

  11. Solid waste integrated cost analysis model: 1991 project year report

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  12. Italian experience on the processing of solid radioactive wastes

    Experimental work is under way in Italy for treatment and conditioning of different types of solid radioactive wastes. The following wastes are taken into account in this paper: Magnox fuel element debris, solid compactable wastes, radiation sources and contaminated carcasses. The metallic debris, consisting of Magnox splitters and braces, are conditioned, after drying and separation of corrosion products, by means of a two component epoxy system (base product + hardener). Solid compactable wastes are reduced in volume by using a press. The resulting pellets are transferred to a final container and conditioned with a cement mortar of a suitable consistency. As to the radiation sources, mainly contained in lightning-rods, gas detectors and radioactive thickness gauges, the encapsulation in a cementitious grout is a common practice for their incorporation. Early experiments, with satisfactory results, have also been conducted for the cementation of contaminated carcasses. (author)

  13. Melt-processing method for miscellaneous radioactive solid wastes

    Miscellaneous radioactive solid wastes containing waste components of various kinds of materials are charged into a water-cooling type cold crucible induction melting furnace disposed in high frequency coils. High frequency electric current is supplied to the high frequency coils which surrounds the melting furnace to melt the miscellaneous wastes by induction-heating. In this case, plural kinds of currents of high frequencies suitable to induction-heating the various kinds of materials contained in the miscellaneous radioactive solid wastes are supplied to the high frequency coils in the present invention. Therefore, the most effective melting performance can be provided. As a result, even miscellaneous radioactive solid wastes having various kinds of mixed materials can be melted and processed uniformly, rapidly and efficiently entirely. In addition, since both materials of metals and glasses in the miscellaneous solid radioactive wastes can be melted as main materials, they are not limited to the mixing ratio of metals and glass in the wastes. (T.M.)

  14. Thirty-Year Solid Waste Generation Forecast by Treatability Group

    This report is Phase II of the Thirty-Year Solid Waste Generation Forecast for Facilities at SRS. Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS (Reference 4), forecasts the yearly quantities of LLW, hazardous, mixed, and TRU wastes generated over the next 30 years by operations, decontamination and decommissioning, and ER activities at SRS. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impacts to the environment, the generic waste categories described in the Phase I report must be divided into smaller classifications with similar physical, chemical, and radiological characterisics. These classifications, defined as treatability groups, can be used in the WMEIS process to evaluate treatment options. The methodology used to categorize the SRS Solid Waste Streams into treatability groups is based on the premise that the key information ncessary for identifying like treatments can be discerned from the radiological, physical, and chemical properties of the wastes and their contaminants

  15. Thermoelectric energy harvesting for a solid waste processing toilet

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  16. Municipal Solid Waste - Sustainable Materials Management

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  17. Composition of municipal solid waste in Denmark

    Edjabou, Maklawe Essonanawe

    food that would not be edible under normal circumstances (e.g. bones, banana peel, etc.). Food waste was estimated at 183 kg per household per year (86 kg per person per year), of which 103 kg per household (48 kg per person) per year was avoidable food waste and 80 kg per household (38 kg per person...

  18. Household solid waste characteristics and management in Chittagong, Bangladesh

    Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (rxy = 0.236, p xy = 0.244, p xy = 0.671, p < 0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the

  19. Energy recovery from municipal solid waste in an anaerobic reactor.

    Jeyapriya, S P; Saseetharan, M K

    2008-07-01

    Anaerobic digestion of municipal solid waste was carried out in the laboratory at room temperature to assess the bio-energy production from municipal solid waste (MSW) with high total solids content. The total biogas production from the municipal garbage was found to be 3.2 L in 120 days. The results from the biomethanation process showed that an increase in gas production was observed with increase in digestion period when the bioconversion parameters were found to be favorable for the production of gas. Changes in the parameters, such as pH, affected the production of gas significantly. Samples taken from the reactor at definite interval of time during the degradation process showed considerable reduction in total volatile solids, total carbon, total nitrogen and COD, etc. indicating the waste stabilization. PMID:19552079

  20. Hazardous Material Storage Facilities and Sites - WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN: Active Permitted Solid Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN is a point shapefile that contains active permitted solid waste site locations in Indiana, provided by personnel of Indiana...

  1. Treatment and conditioning of radioactive solid wastes

    Radioactive materials are extensively used in industrial and research activities mainly related to medical, agricultural, environmental and other studies and applications. During the application and production of radioisotopes, significant amounts of radioactive wastes will inevitably arise, which must be managed (i.e. handled, treated, conditioned, intermediately stored and finally disposed of) with particular care. Serious efforts to minimize and appropriately segregate the waste arisings during the application of radioisotopes are the most important first step in waste management. The essential objective of the management of radioactive waste is the protection of mankind, the biosphere and the environment from the detrimental effects of nuclear radiation both now and in the future. This report deals with radioactive wastes outside the nuclear fuel cycle and it is directed primarily to countries without nuclear power programmes, e.g. countries belonging to the Groups A, B and C. Group A includes Member States which utilize radioisotopes at a few hospital locations, universities and industries. Group B includes Member States which have multi-use of radioisotopes in hospitals and other institutional areas and need a central collection and processing system. Group C includes Member States which have multi-use of radioisotopes and a nuclear research centre which is capable of indigenous production of several radioisotopes. When developing a waste management strategy, consideration should be given to the entire sequence of waste management operations from waste sources to disposal and all the related issues: every aspect of waste generation, processing, transportation, storage and disposal, including regulatory, socio-political and economic issues. The interaction of all these aspects must be analysed and understood before the entire waste management system can be properly built up and safely managed. 16 refs, 13 figs, 5 tabs

  2. Space monitoring of municipal solid waste landfills in Kazakhstan

    Skakova, Olga; Shagarova, Lyudmila

    Municipal solid waste (MSW) landfills are special facilities designed for waste isolation and disposal ensuring sanitary and epidemiological safety of population. A solid waste landfill is a complex object with its own specific features. Modern remote-sensing methods are an indispensable source of information for the analysis of space images of solid waste landfills in Kazakhstan. Space monitoring of solid waste landfills includes the following tasks: 1. Identification and mapping of landfill areas according to the data of remote earth sensing. 2. Studying of energy and structural characteristics of landfills based on remote sensing data. 3. Analysis of the state of landfills based on a comparison of current and archive remote sensing data. Space monitoring of territories of municipal solid waste landfills uses modern computer technologies. They include satellite imagery combined with sub-satellite research, as well as other sources of information used for identification and mapping of landfill territories. Investigation of municipal solid waste landfills requires targeted survey of landfill areas, remote sensing using operational and archival data including theoretical foundations of physical optics and statistical data. Processing of digital satellite information uses methods of pattern recognition, automated image processing and correlation analysis. Based on spectral energy and textural characteristics of municipal solid waste landfills obtained by remote sensing methods, the technology of space monitoring of landfill areas, including landfill recognition and characterization of solid waste landfills from remote observations was developed. Monitoring of MSW landfills uses satellite images of ultrahigh and medium spatial resolution. Medium-resolution images are used to determine temperature, vegetation cover and soil degradation. High-resolution images are used to detect landfills, to determine forms of soil degradation, to calculate geometrical parameters, and

  3. Different indices to express biodegradability in organic solid wastes. Application to full scale waste treatment plants

    Ponsá Salas, Sergio

    2010-01-01

    Biodegradable waste receives especial attention in the European Legislation (Revised Framework Directive 2008/98/CE) and this has been also reflected in Spanish Legislation in the Plan Nacional Integrado de Residuos 20082015 (PNIR), due to the high importance that this municipal solid waste fraction has on the waste treatment environmental impact when it is not treated correctly and the possibility of recycling the biodegradable waste, to finally obtain compost or/and biogas that means green ...

  4. MUNICIPAL SOLID WASTE AND RECOVERY POTENTIAL: BANGLADESH PERSPECTIVE

    M. Alamgir, A. Ahsan

    2007-04-01

    Full Text Available A total of 7690 tons of municipal solid waste generated daily at the six major cities of Bangladesh, namely, Dhaka, Chittagong, Khulna, Rajshahi, Barisal and Sylhet, as estimated in 2005. Sampling was done at different waste generation sources such as residential, commercial, institutional and open areas, in different seasons. The composition of the entire waste stream was about 74.4% organic matter, 9.1% paper, 3.5% plastic, 1.9% textile and wood, 0.8% leather and rubber, 1.5% metal, 0.8% glass and 8% other waste. The per capita generation of municipal solid waste was ranged from 0.325 to 0.485 kg/cap/day while the average rate was 0.387 kg/cap/day as measured in the six major cities. The potential for waste recovery and reduction based on the waste characteristics are evaluated and it is predicted that 21.64 million US$/yr can be earned from recycling and composting of municipal solid waste.

  5. From dumping to sanitary landfills - solid waste management in Israel

    To address the problem of solid waste in Israel, the Ministry of the Environment has formulated a policy based on integrated waste management. The policy calls for reduction of waste at source, reuse, recycling (including composting), waste-to-energy technologies, and landfilling. Due to the implementation of this policy, all the large dumps were closed, state-of-the art landfills were built, and recovery rates have increased from 3% in the beginning of the 1990s to almost 20% in 2003. More than 95% of the municipal solid waste is disposed and treated in an environmentally sound manner - in comparison to a mere 10% just a decade ago. The policy was implemented utilizing both enforcement and financial support ('stick and carrot' approach)

  6. Solid Waste Bin Monitoring Using Zig –Bee

    Mrs. Kanchan Mahajan

    2014-06-01

    Full Text Available Through the history, the significant amount of solid waste generated by humans was due to low population density and low levels of the exploitation of natural resources. Common waste produced during pre-modern times was mainly ashes and human biodegradable waste, which were released into the ground locally, with minimal environment impact. Tools made out of metal or woods were generally reused or passed down the generations and generations . However, in mid-19th century, due to cholera outbreaks and the emergence of a public health debate that the first legislation on this solid waste issue emerged. the report The Sanitary Condition of the Labouring Population in 1842 of the social reformer, Edwin Chadwick, in which he argued for the importance of adequate waste removal and management facilities to improve the health and wellbeing of the city's population was highly effective.

  7. Sustainable Solid Waste Management and a Research on the Analysis of Managers' Thoughts and Attitudes in respect to Solid Waste Management in Municipalities

    Akdoğan, Asuman; GÜLEÇ, Sevcan

    2007-01-01

    Solid waste problem appeared with settled life and has growed with industrialization, urbanization, increasing population and economical development. It has caused to enviromental problems. Solid waste management is changing gradually according to countries’ characteristics. In Turkey, solid waste management is realized by municipalities within the scope of local governments. The aim of this study is to determine the solid waste management issues of province municipalities in Turkey. In this ...

  8. Containers for packaging of solid and intermediate level radioactive wastes

    Low and intermediate level radioactive wastes are generated at all stages in the nuclear fuel cycle and also from the medical, industrial and research applications of radiation. These wastes can potentially present risks to health and the environment if they are not managed adequately. Their effective management will require the wastes to be safely stored, transported and ultimately disposed of. The waste container, which may be defined as any vessel, drum or box, made from metals, concrete, polymers or composite materials, in which the waste form is placed for interim storage, for transport and/or for final disposal, is an integral part of the whole package for the management of low and intermediate level wastes. It has key roles to play in several stages of the waste management process, starting from the storage of raw wastes and ending with the disposal of conditioned wastes. This report provides an overview of the various roles that a container may play and the factors that are important in each of these roles. This report has two main objectives. The first is to review the main requirements for the design of waste containers. The second is to provide advice on the design, fabrication and handling of different types of containers used in the management of low and intermediate level radioactive solid wastes. Recommendations for design and testing are given, based on the extensive experience available worldwide in waste management. This report is not intended to have any regulatory status or objectives. 56 refs, 16 figs, 10 tabs

  9. The construction of solid waste form test and inspection facility

    The solid waste form test and inspection facility is a facility to test and inspect the characteristics of waste forms, such as homogenity, mechanical structure, thermal behaviour, water resistance and leachability. Such kinds of characteristics in waste forms are required to meet a certain conditions for long-term storage or for final disposal of wastes. The facility will be used to evaluate safety for the disposal of wastes by test and inspection. At this moment, the efforts to search the most effective management of the radioactive wastes generated from power plants and radioisotope user are being executed by the people related to this field. Therefore, the facility becomes more significant tool because of its guidance of sucessfully converting wastes into forms to give a credit to the safety of waste disposal for managing the radioactive wastes. In addition the overall technical standards for inspecting of waste forms such as the standardized equipment and processes in the facility will be estabilished in the begining of 1990's when the project of waste management will be on the stream. Some of the items of the project have been standardized for the purpose of localization. In future, this facility will be utilized not only for the inspection of waste forms but also for the periodic decontamination apparatus by remote operation techniques. (Author)

  10. Solid municipal waste management: Systems and reference technologies

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  11. Processing and Pre-Treatment of Solid Radioactive Waste

    As solid radioactive waste varies in form, dimensions and volume, the Atomic Energy Commission first of all reduces the volume by breaking up and compressing the waste. Since the temporary storage of such waste is always attended by the risk of contamination, an efficient packing system has been devised and adopted. This consists of embedding the waste in the heart of a specially-designed block of concrete possessing the following characteristics: Great strength Maximum insolubility Resistance to corrosion Maximum imperviousness Protection against radiation. It is thus quite safe to store these blocks with a view to final dumping. (author)

  12. Fabrication technology of waste package for low level radioactive solid waste and evaluation of the package

    Low level radioactive solid wastes generating from nuclear power plant are classified into air and liquid-filter, articles of consumption, various parts of replacement and consumption materials generating during periodical inspections and so on. Therefore it is difficult to define such wastes univocally, because waste forms and contamination conditions are different respectively. In order to bury these wastes into shallow land disposal site, it is necessary to understand waste properties, and to establish reasonable fabrication technology of waste package. This report describes the outline of these studies. (author)

  13. Informal Collection of Household Solid Waste in Three Towns of Anambra State, Nigeria

    Egbu Anthony

    2014-10-01

    Full Text Available Management of urban solid waste implies the collection, transfer, treatment recycle, reuse and disposal of such waste. Collection of urban household solid waste traditionally rests with government agencies designated with such responsibility. Solid waste collection begins from storage at the household level to the final treatment or disposal point and represents the most important aspect of urban solid waste management. Little has however been written on urban household solid waste collection in Nigeria. Using empirical data from three urban areas of Anambra State, Nigeria, the paper examines the place of informal private solid waste collectors in household solid waste collection. The ANOVA technique is used to test the null hypothesis that the sample means of the distance to designated community/street solid waste collection containers in the residential neighbourhoods of the three towns are equal. We conclude on household patronage of informal private solid waste collectors as against government provided community/street collection containers in the areas studied.

  14. Biogasification of solid wastes by two-phase anaerobic fermentation

    Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)

  15. Development of Municipal Solid Waste Management

    Teibe, Inara

    2015-01-01

    This paper is based on an empirical work done by author on a series of case studies such us document studies and analyzing the best practices examples. The objective of this research is to find out barriers to reach regional waste management plan demands in three municipalities: Salacgriva, Saulkrasti and Ikskile. Author gives proposal with some recommendations for development of municipal waste management as well. There are several views and attitudes of local stakeholders such us municipali...

  16. Externalities in solid waste managements: Values, instruments and control

    This thesis was stimulated by and completed against the backdrop of the unfolding 'waste crisis'. It critically examines whether the crisis is real or whether it merely reflects mis-perceptions. Three principal problems associated with the disposal of solid waste are identified. First, there is increasing concern over the environmental pollution of waste disposal, reflecting not just the increase in actual waste arisings, but also the increased public awareness of environmental pollution. Secondly, there is concern over the financial costs of waste collection and disposal, which can constitute a considerable drain on available public revenues. Lastly, there is the perceived scarcity of suitable land for siting disposal facilities. Although some low-lying, densely populated regions are inappropriate for the sitting of landfills, the scarcity more often reflects political constraints rather than a genuine shortage. This thesis asserts that a non-optimal quantity of waste, together with the concomitant environmental pollution and financial costs of disposal, partly result from government failure. Current practice fails to ensure that the parties generating the waste face a price at the point of disposal and that such a price reflects the full social costs of disposal. A model is presented which argues that the socially optimal configuration of waste management is that where the marginal social costs of each waste treatment method equals those of the others. In an empirical section, the external costs of landfill, incineration, recycling and composting are estimated for the European Union, based on existing studies of damage costs for different pollutants. This is followed by estimations of the financial costs of municipal solid waste management. Combining financial and external cost estimates, a cost-benefit analysis of municipal solid waste management in the European Union is undertaken. (Abstract Truncated)

  17. Economic evaluation of radiation processing in urban solid wastes treatment

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  18. Decontamination of alpha-bearing solid wastes and plutonium recovery

    Nuclear activities in the Radiochemistry building of Fontenay-aux-Roses Nuclear Research Center concern principally the study of fuel reprocessing and the production of transuranium isotopes. During these activities solid wastes are produced. In order to improve the management of these wastes, it has been decided to build new facilities: a group of three glove-boxes named ELISE for the treatment of α active solid waste and a hot-cell, PROLIXE, for the treatment of solid wastes. Leaching processes were developed in order to: decontaminate these wastes and recover actinide elements, particularly the highly valuable plutonium, from the leachates. The processes developed are sufficiently flexible to be able to accommodate solid wastes produced in other facilities. Laboratory studies were conducted to develop the leaching process based on the use of electrogenerated Ag(II) species which is particularly suitable to provoke the dissolution of PuO2. Successful exhaustive Pu decontaminations with DF(Pu) higher than 104 were achieved for the first time during the treatment of stainless steel PuO2 cans (future MELOX plant) by electrogenerated Ag (II) in nitric acid medium

  19. Climate Change Energy And Decentralized Solid Waste Management

    T. Subramani

    2014-06-01

    Full Text Available India Is The Second Largest Nation In The World, With A Population Of 1.21 Billion, Accounting For Nearly 18% Of World‘s Human Population, But It Does Not Have Enough Resources Or Adequate Systems In Place To Treat Its Solid Wastes. Its Urban Population Grew At A Rate Of 31.8% During The Last Decade To 377 Million, Which Is Greater Than The Entire Population Of Us, The Third Largest Country In The World According To Population. India Is Facing A Sharp Contrast Between Its Increasing Urban Population And Available Services And Resources. Solid Waste Management (Swm Is One Such Service Where India Has An Enormous Gap To Fill. Proper Municipal Solid Waste (Msw Disposal Systems To Address The Burgeoning Amount Of Wastes Are Absent. The Current Swm Services Are Inefficient, Incur Heavy Expenditure And Are So Low As To Be A Potential Threat To The Public Health And Environmental Quality. Improper Solid Waste Management Deteriorates Public Health, Causes Environmental Pollution, Accelerates Natural Resources Degradation, Causes Climate Change And Greatly Impacts The Quality Of Life Of Citizens With Increasing Population And Urbanization, Municipal Waste Management In Our Cities Is Emerging As A Major Problem, Which Is Going To Get Even Worse In The Future. The Total Msw Generated In Urban India Is Estimated To Be 68.8 Million Tons Per Year (Tpy Or 188,500 Tons Per Day (Tpd Of Msw.

  20. Gaseous emissions from management of solid waste: a systematic review.

    Pardo, Guillermo; Moral, Raúl; Aguilera, Eduardo; Del Prado, Agustín

    2015-03-01

    The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3 ). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta-analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2 O) and methane (CH4 ) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2 O: 50% and CH4 : 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta-analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste

  1. The study for management process of radioactive solid waste

    For the purpose of contributing to decide treatment method for solid waste stored by JNC, a series of investigation was conducted for domestic and overseas technologies about volume-reduction and immobilization of radioactive solid waste, focused on the melting technologies. Based on the result of investigation, melting and off-gas treatment were classified and summarized based on the result of investigation. Treatment and disposal cost for each melting method were estimated under definite conditions. Followings are obtained: (1) Melters for radioactive metal have been in operation since 1980's. On the other hand, melter for solid waste is under construction in Japan and Switzerland, never in operation. (2) Plasma arc melter and induction heat melter is developed for radioactive solid waste. They are classified into 5 method since there are 4 induction heat melter is developed. (3) Construction cost for each kind of melter are about 700-950 million yen, estimated by using open melting capacity and cost ratio of existing facility. (4) Volume of the molten waste to be filled up per disposal container, supposing 200 liter drum about 70-140 liter depends on the volume of receptacle and sub-heat material. Decision of the melter need detailed estimation of filling factor since they have large effects on disposal cost. (5) For adopting radioactive solid waste melter, it needs to estimate of melting capacity taking consideration into wide range composition of the JNC waste. In addition, it is necessary to develop estimating method of inventory for JNC waste since radioactivity composition is differ from that of nuclear power station. (author)

  2. Sustainable recycling of municipal solid waste in developing countries

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors

  3. Sustainable recycling of municipal solid waste in developing countries.

    Troschinetz, Alexis M; Mihelcic, James R

    2009-02-01

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors. PMID:18657963

  4. Product specific emissions from municipal solid waste landfills

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette; Hauschild, Michael Zwicky

    1998-01-01

    different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride...... is significantly reduced in the presence of landfill top-cover, landfill gas combustion units and leachate treatment units. Generally, the sensitivity analysis shows good agreement between the relative proportions of various types of emissions (based on properties of the waste and properties of......This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product in...

  5. High integrity container evaluation for solid waste disposal burial containers

    In order to provide radioactive waste disposal practices with the greatest measure of public protection, Solid Waste Disposal (SWD) adopted the Nuclear Regulatory Commission (NRC) requirement to stabilize high specific activity radioactive waste prior to disposal. Under NRC guidelines, stability may be provided by several mechanisms, one of which is by placing the waste in a high integrity container (HIC). During the implementation process, SWD found that commercially-available HICs could not accommodate the varied nature of weapons complex waste, and in response developed a number of disposal containers to function as HICs. This document summarizes the evaluation of various containers that can be used for the disposal of Category 3 waste in the Low Level Burial Grounds. These containers include the VECTRA reinforced concrete HIC, reinforced concrete culvert, and the reinforced concrete vault. This evaluation provides justification for the use of these containers and identifies the conditions for use of each

  6. Municipal solid waste development phases: Evidence from EU27.

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. PMID:26574580

  7. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These

  8. QUALITATIVE AND QUANTITATIVE STUDY OF MUNICIPAL SOLID WASTE IN AHWAZ CITY; WITH EMPHASIS ON HOSPITAL WASTES

    Gh. Omrani

    1998-09-01

    Full Text Available Qualitative and quantitative analyses of hospital and municipal solid waste are necessary for selecting the best and most appropriate method of health care collection, storage, transportation and disposal of this kind of wastes. Quantitative and qualitative analyses of hospital and municipal wastes have been studied in Ahwaz city during spring 1996. The amount of solid wastes in five regions of the city was 560,000 Kg perday (0.648 Kg per capita. Also, the rate of waste production in 6 hospitals of Ahwaz was 2.54 Kg per bed. The average density of hospital and municipal solid wastes were 443 and 284.5 Kg/m3 respectively. Physical contents of municipal and hospital solid wastes were also investigated. The results were as follows Plastic & rubber (%7.7 , %16.57 ; wood and paper (%11.3, %14.35; textiles (%5.32, %13.76 ; metals (%4.7 , %9.48 ; glass (%4.26 , %4.12. Also degradable materials in hospital and municipal wastes were %29.38 and %64.24 of total sample waste, respectively.

  9. Potential of radiation sterilization in solid waste treatment

    Different categories of solid waste are examined from the viewpoint of origins, characteristics and quantities. The composition of household garbage in a Mediterranean municipal zone has been determined in the course of one year, demonstrating the potential application of ionizing radiation to sterilization of certain raw materials (putrescible matter, plastics and paper stock) obtained after separation of the garbage into components. An economic feasibility study of a planned separation and processing plant (1,000-1,200 ton/day) is discussed. A pilot plant (200-300 ton/day) to demonstrate the technologic and economic feasibility of the process is described as is research presently being conducted in several institutes for the production of radiation sterilized feed. The potential of ionizing radiation in solid waste treatment, as a tool facilitating resource recovery from solid municipal and agricultural wastes, is evaluated on the basis of the data presented. (orig.)

  10. Solid forms for Savannah River Plant radioactive wastes

    Methods are being developed to immobilize Savannah River Plant wastes in solid forms such as cement, asphalt, or glass. 137Cs and 90Sr are the major biological hazards and heat producers in the alkaline wastes produced at SRP. In the conceptual process being studied, 137Cs removed from alkaline supernates, together with insoluble sludges that contain 90Sr, will be incorporated into solid forms of high integrity and low volume suitable for storage in a retrievable surface storage facility for about 100 years, and for eventual shipment to an off-site repository. Mineralization of 137Cs, or its fixation on zeolite prior to incorporation into solid forms, is also being studied. Economic analyses to reduce costs and fault-tree analyses to minimize risks are being conducted. Methods are being studied for removal of sludge from (and final decontamination of) waste tanks

  11. Recent advances in the treatment of solid wastes

    The combined approach towards sanitary and environmentally safe disposal of solid wastes together with resource recovery of raw material and energy is discussed. onal techniques of solid waste treatment such as sanitary landfilling (tipping), incineration and composting are described. This is followed by examination of various techniques aimed at recovery of resources such as comminution methods (crushing and shredding) as well as various separation techniques, namely gravity separation, aerodynamic separation and magnetic and electrostatic separations. Methods of recovery of individual components and constituents of solid wastes such as paper and cardboard, plastics, o.lass, ceramics, ferrous and non-ferrous metals are briefly discussed. Techniques such as pyrolyis and anaerobic digestion are also evaluated. The economic approach including both damage prevention and added value of recovered material of energy is emphasized. (author)

  12. Life cycle assessment applied to nanomaterials in solid waste management

    Laurent, Alexis

    for assessing engineered nanoparticles. To support the impact assessment of engineered nanoparticles in the life cycle of nanoproducts and in solid waste management systems, a comprehensive review of toxicological data for nanosilver and titanium dioxide (TiO2) particles was conducted and it enabled......, thus potentially posing problems on human health, e.g. through occupational exposure to engineered nanoparticles. In that setting, through its holistic quantification of environmental impacts, life cycle assessment (LCA) can be a useful decisionsupport tool for managing environmental sustainability...... of solid waste management systems as well as that of nanoproducts. But how has LCA generally been applied to both fields of solid waste management and nanotechnology until now? In particular, what are the current shortcomings for assessing impacts of released engineered nanoparticles? Is it possible...

  13. Feasibility study of cyclone incineration treatment for radioactive solid waste

    Feasibility study of cyclone incineration treatment for radioactive solid waste is introduced. The structure of cyclone incineration furnace is defined according to test results. The results show: under given conditions of technology: i.e., inlet flowrate ≥30 m/s, total volume ≥210 Nm3/h, the mixed solid material with more than 40% of plastics and rubber can completely be incinerated after suitable smash and mixing. The advantages of the furnace are: simple structure, high strength of volume heat, no preheating and combustion-supporting of assistant fuel, bridging and melt leak can be avoided in the stuff. The pretreatment of solid waste is simple, and a little amount of non-combustible substance in the waste can be allowed

  14. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage in...... landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein it...

  15. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. PMID:27297046

  16. Mathematical modeling to predict residential solid waste generation

    One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R2 were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total

  17. Scenario of solid waste reuse in Khulna city of Bangladesh

    The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d−1 solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.

  18. Production of gaseous fuel by pyrolysis of municipal solid waste

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  19. 40 CFR 260.31 - Standards and criteria for variances from classification as a solid waste.

    2010-07-01

    ... from classification as a solid waste. 260.31 Section 260.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.31 Standards and criteria for variances from classification as a solid waste. (a)...

  20. Product Durability, Solid Waste Management and Market Structure

    Runkel, Marco

    1999-01-01

    For a durable consumption good which turns into waste after consumption, the socially optimal durability increases with an increase in the marginal environmental damage. In a laissez-faire equilibrium under perfect competition, producers fail to provide an efficient product design, i.e. durability is inefficiently small, whereas the amount of solid waste is inefficiently large. The market failure is corrected simply by Pigouvian taxation which also can be interpreted as an extension of the pr...

  1. Biodegradability of leachates from Chinese and German municipal solid waste*

    Selic, E.; Wang, Chi; Boes, N.; Herbell, J.D.

    2006-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequen...

  2. Solid Waste Disposal: A Choice Experiment Experience in Malaysia

    Pek, Chuen Khee; Othman, Jamal

    2009-01-01

    Increasing generation of solid waste requires better quality disposal options in Malaysia. Control tipping is the most commonly used complemented by sanitary landfill and incineration. This study estimates the non-market values of improved waste disposal services and also ranking them using choice experiment. River water quality is the most concerned followed by psychological fear, air pollution and land use. Socio-economic background and distance factor influence the types of compensating su...

  3. MEXICO CITY'S MUNICIPAL SOLID WASTE CHARACTERISTICS AND COMPOSITION ANALYSIS

    Alfonso DURÁN MORENO; Manuel GARCÉS RODRÍGUEZ; Adriana Rocío VELASCO; Juan Carlos MARÍN ENRIQUEZ; Rafaela GUTIÉRREZ LARA; Abril MORENO GUTIÉRREZ; Norma Angélica DELGADILLO HERNÁNDEZ

    2013-01-01

    Mexico City generates approximately 12 500 000 kg of municipal solid wastes (MSW) a day. Nowadays, waste management of the refuse material is of high concern since the local landfill has reached its limit capacity and its closure is imminent, thereby alternative disposal methods must be evaluated. The objective of this paper is to analyze the composition of MSW produced in Mexico City through a sampling campaign. In comparison to previous official reports of Mexico Citys MSW characterization,...

  4. Liquid and solid waste reduction by using Reversed Osmose

    Full text of publication follows: Radioactive waste water produced at the NRG site in Petten is treated in our waste water treatment facility by membrane filtration and by the use of flocculant to reduce the amount of liquid waste. By using a flocculant a quite amount of sludge as secondary waste is produced. To reduce the amount of solid secondary waste tests have been performed with reversed osmosis. The effect of reverse osmoses was tested on: - different types of waste; - different concentrations of heavy metals such as Cr, Co, Ni, Cu, Zn, As, Cd, Sn, Hg, Pb...; - Kjiedahl nitrogen; - chemical oxygen demand. It was shown in the experiments with different original waste waters that for the greater part of waste streams a radionuclide concentration reduction of 90%-100% can be achieved. The reduction of nitrogen and oxygen is in the range of 65%-100% depending on the waste steam type. The introduction of reversed osmoses resulted in three advantages: - The amount of flocculant that has to be used can be reduced up to 50%. - It becomes possible to re-use waste water in certain cleaning processes which was not possible before the use of reversed osmoses. - The water which is released is much cleaner than without the use of reversed osmoses. (authors)

  5. Optimization of municipal solid waste collection and transportation routes.

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. PMID:26152365

  6. Energy and environmental potential of solid waste in Brazil

    The economic progress and sustainable developments are linked to the optimization and energy conservation. Conventional methods of production and energy utilization usually embed harmful environmental impacts, and hence the challenge to scientists to seek for mechanisms of energy production and use which are less harmful or better still free of unfavorable environmental impacts. Studies point out that municipal solid waste has great energy potential and its reuse, specifically the production of biogas from landfills and the recycling of solid waste presents a favorable mechanism to optimize energy use and preserve it. The present investigation includes the energy savings and the avoided emissions of CO2 to the atmosphere as a result of recycling and production of biogas from landfills in one metropolitan with more than one million inhabitants and in Brazil. The results show that the rate of CH4 production from the Brazilian waste landfills can avail for Brazil about 41.7 MW and the reuse of recyclables can avail to the energy system an additional quantity of 286 GJ/month enough for the consumption of 318,000 families. - Highlights: → This paper highlights four fundamental and potential points of solid waste. → Energy, environmental and social aspects of solid waste as a source of energy in Brazil. → The use of organic matter deposited in the landfills as mechanism to generate energy from biogas. → Recycling economizes energy, raw material, creates jobs, income and social inclusion. → Selective collection and recycling increases the Family Grants and the social inclusion in Brazil.

  7. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm. PMID:26573690

  8. Solid Waste Projection Model: Database (Version 1.3)

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  9. Influence of vermicomposting on solid wastes decomposition kinetics in soils*

    Nourbakhsh, Farshid

    2007-01-01

    The effect of vermicomposting on kinetic behavior of the products is not well recognized. An incubation study was conducted to investigate C mineralization kinetics of cow manure, sugarcane filter cake and their vermicomposts. Two different soils were treated with the four solid wastes at a rate of 0.5 g solid waste C per kg soil with three replications. Soils were incubated for 56 d. The CO2-C respired was monitored periodically and a first-order kinetic model was used to calculate the kinet...

  10. Sustainable solid waste management a systems engineering approach

    Chang, N

    2015-01-01

    Interactions between human activities and the environment are complicated and often difficult to quantify. In many occasions, judging where the optimal balance should lie among environmental protection, social well-being, economic growth, and technological progress is complex. The use of a systems engineering approach will fill in the gap contributing to how we understand the intricacy by a holistic way and how we generate better sustainable solid waste management practices. This book aims to advance interdisciplinary understanding of intertwined facets between policy and technology relevant to solid waste management issues interrelated to climate change, land use, economic growth, environmental pollution, industrial ecology, and population dynamics.

  11. Economic evaluation of radiation processing in urban solid wastes treatment

    The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products. (author)

  12. Current Status of Municipal Solid Waste Generation in Malaysia

    Iwan Budhiarta; Chamhuri Siwar; Hassan Basri

    2012-01-01

    Recent investigations in 2010 resulted information that population of Kuala Lumpur City Area has reached 1.66 million people (JPM, 2009). With the population growth rate of 6.1 percent, then the population in the year 2010 can be estimated at least to 1.69 million people. The number of municipal solid waste generated from Kuala Lumpur State Territory and delivered to TBTS was recorded of 2,000 tonnes per day. Accordingly, the solid waste generation average for any person is 1.2 kilograms a da...

  13. Solid-waste leach characteristics and contaminant-sediment interactions

    The objectives of this report and subsequent volumes include describing progress on (1) development of conceptual-release models for Hanford Site defense solid-waste forms; (2) optimization of experimental methods to quantify the release from contaminants from solid wastes and their subsequent interactions with unsaturated sediments; and (3) creation of empirical data for use as provisional source term and retardation factors that become input parameters for performance assessment analyses for future Hanford disposal units and baseline risk assessments for inactive and existing disposal units

  14. Microbiological indication of municipal solid waste landfill non-stabilization

    ZHOU Qi-xing; SYLVESTER Runyuzi; YU Ji-yu; ZHANG Qian-ru

    2004-01-01

    Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important unstable factor. A landfill reactor was thus manufactured and installed to examine quantitative and population dynamics of microorganisms during degradation of landfilled solid waste. It was showed that unstable landfill can be reflected and indicated by microbiological features such as rapidly decreased growth amount of microorganisms, no detection of fungi and actinomyces, and changing the dominant population into methanogenic bacteria and Acinotobacter.

  15. Plasma gasification of municipal solid waste

    Hlína, Michal; Hrabovský, Milan; Konrád, Miloš

    Prague: Czech Technical University in Prague, Faculty of Electrical Engineering, 2014. s. 94. [SPPT 2014 - 26th Symposium on Plasma Physics and Technology/26./. 16.06.2014-19.06.2014, Prague] Institutional support: RVO:61389021 Keywords : Plasma * gasification * waste Subject RIV: BL - Plasma and Gas Discharge Physics

  16. ENGINEERING ASPECTS OF LANDFILLING MUNICIPAL SOLID WASTE

    2001-01-01

    Sanitary landfilling is the most important method of municipalsolid waste disposal in China. Landfill sites are always set up in mountain valley, on plain or beside seashore. A complete landfill consists of base system, cover system, and leachate collection and gas extraction system. This paper reviews the state-of-the-art landfilling technology in China and collection discusses research projects for engineers.

  17. A New Approach for Solid Waste Handling in Mosul City, Comparison Study with the Existing System

    Amar T. Hamad; Mohamed A. Saeed

    2013-01-01

     Municipal Solid waste management constitutes a serious problem in many developing countries. Cities spend increasing resources  to improve their Municipal solid waste management. Based on the concept that solid waste is a resource containing significant amounts of valuable materials, new approaches of solid waste management are adopted. The present work proposes a policy framework for improving a low-cost waste management system in Mosul city. The new approach induces additional services to ...

  18. APPLICATION OF THE ELECTRE III METHOD FOR A SOLID WASTE MANAGEMENT SYSTEM

    Aysun ÖZKAN; Banar, Müfide; Acar, Ilgın Poyraz; SİPAHİOĞLU, Aydın

    2011-01-01

    In recent years, effective disposing of solid waste environmentally and economically has becomemandatory due to the increase in environmental problems resulted by the solid waste. Furthermore,choosing a solid waste management system appears to be an important decision making problem.Hence, economical, social, cultural and technical factors in choosing thesolid waste management systemsshould be considered together. A solid waste management system may have different alternatives to be evaluated...

  19. Reliability of chemical microanalyses for solid waste materials

    Highlights: ► Key role of solid speciation of contaminants in hazardous waste materials. ► Nanophases affect the accuracy of electron probe microanalysis (EPMA). ► High-resolution methods (FEG-SEM, FIB-TEM) proposed for solid speciation. - Abstract: The investigation of solid speciation of metals and metalloids is required for accurate assessment of the hazardous properties of solid waste materials from high-temperature technologies (slag, bottom ash, fly ash, air-pollution-control residues). This paper deals with the problem of reliability of microanalyses using a combination of electron microprobe analysis (EPMA) and scanning electron microscopy (SEM) only. These methods do not permit to detect nanophases in host-crystals and lead to erroneous interpretation of analytical results, considering the elements of nanophases as belonging to the crystal structure of the main phase. More detailed analysis using transmission electron microscopy (TEM) on foils prepared by focused ion beam (FIB) can be used to solve this analytical problem. In this study, lamellar aggregates of potassium-rich clinopyroxenes were detected in copper smelting slags by a combination of SEM and EPMA. However, FIB-TEM indicated the presence of leucite inclusions (tens to hundreds nm in size) within the clinopyroxene lamellae. Based on examples from smelting slags and other solid waste materials, recommendations for standard SEM and EPMA applications and the need for methods with higher resolution for mineralogical investigation of waste materials are discussed.

  20. Reliability of chemical microanalyses for solid waste materials

    Ettler, Vojtech, E-mail: ettler@natur.cuni.cz [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Johan, Zdenek [Bureau des Recherches Geologiques et Minieres (BRGM), av. Claude Guillemin, 45060 Orleans, Cedex 2 (France); Vitkova, Martina [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Skala, Roman [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Institute of Geology of the ASCR, v.v.i., Rozvojova 269, 165 00 Prague 6 (Czech Republic); Kotrly, Marek [Institute of Criminalistics Prague, P.O. Box 62/KUP, Strojnicka 27, 170 89 Prague 7 (Czech Republic); Habler, Gerlinde [Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Klementova, Mariana [Institute of Inorganic Chemistry of the AS CR, v.v.i., 250 68 Husinec-Rez (Czech Republic)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Key role of solid speciation of contaminants in hazardous waste materials. Black-Right-Pointing-Pointer Nanophases affect the accuracy of electron probe microanalysis (EPMA). Black-Right-Pointing-Pointer High-resolution methods (FEG-SEM, FIB-TEM) proposed for solid speciation. - Abstract: The investigation of solid speciation of metals and metalloids is required for accurate assessment of the hazardous properties of solid waste materials from high-temperature technologies (slag, bottom ash, fly ash, air-pollution-control residues). This paper deals with the problem of reliability of microanalyses using a combination of electron microprobe analysis (EPMA) and scanning electron microscopy (SEM) only. These methods do not permit to detect nanophases in host-crystals and lead to erroneous interpretation of analytical results, considering the elements of nanophases as belonging to the crystal structure of the main phase. More detailed analysis using transmission electron microscopy (TEM) on foils prepared by focused ion beam (FIB) can be used to solve this analytical problem. In this study, lamellar aggregates of potassium-rich clinopyroxenes were detected in copper smelting slags by a combination of SEM and EPMA. However, FIB-TEM indicated the presence of leucite inclusions (tens to hundreds nm in size) within the clinopyroxene lamellae. Based on examples from smelting slags and other solid waste materials, recommendations for standard SEM and EPMA applications and the need for methods with higher resolution for mineralogical investigation of waste materials are discussed.

  1. Microbial Community Profiling of Biodegradable Municipal Solid Waste Treatments : Aerobic Composting and Anaerobic Digestion

    Yu, Dan

    2014-01-01

    An enormous quantity of solid waste is generated annually all over the world. Solid waste can be divided into three main categories: municipal waste, industrial waste and agricultural waste. The focus of the research presented in this thesis was on the biodegradable fraction of municipal solid waste (MSW), and particularly on the biowaste and sewage sludge generated in the Nordic countries. In general, there are two major options for processing biodegradable MSW in a sustainable manner: aerob...

  2. Managing plastic waste in East Africa: Niche innovations in plastic production and solid waste

    Ombis, L.O.; Vliet, van B.J.M.; Mol, A.P.J.

    2015-01-01

    This paper assesses the uptake of environmental innovation practices to cope with plastic waste in Kenyan urban centres at the interface of solid waste management and plastic production systems. The Multi Level Perspective on Technological Transitions is used to evaluate 7 innovation pathways of pla

  3. Solid waste treatment volume reduction by compaction or incineration

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given

  4. Radiation protection at UKAEA's solid waste plant at Harwell

    The paper provides an overview of the solid waste plant at Harwell ( United Kingdom)Examples of waste streams, processes and the supporting health physics measures have been briefly described. It is clear that all waste operations involve close team work between staff from U.K.A.E.A. (United Kingdom Atomic Energy Authority) operations and health physics staff from both U.K.A.E.A. and RWE NUKEM (RWE NUKEM is one of the health physics support contractors). Work must be planned carefully, and radiological conditions monitored to ensure that the job is progressing smoothly and workplace exposure remains as low as reasonably practicable. (authors)

  5. Containment of Solid Wastes in some Large Scandinavian Cities

    Du-Thinh, Kien

    1998-01-01

    Two kinds of containment of solid wastes - one in the vicinity of Copenhagen, the capital of Denmark, another on the outskirts of Gothenburg, the second largest city of sweden - are reviewed in this article. They represent two different approaches to waste management. Special attention is given to...... the geological-geotechnical characteristics of the subsoil of the waste sites which determine to a large extent the risks of infiltration and transport of leachates. The role of the barrier, its design and construction or the consequences arising from the lack of abarrier are dealt with herein. The...

  6. Environmental exposure assessment framework for nanoparticles in solid waste

    Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders;

    2014-01-01

    Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five...... transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data....

  7. Solid Waste Biodegradation Enhancements and the Evaluation of Analytical Methods Used to Predict Waste Stability

    Kelly, Ryan J.

    2002-01-01

    Conventional landfills are built to dispose of the increasing amount of municipal solid waste (MSW) generated each year. A relatively new type of landfill, called a bioreactor landfill, is designed to optimize the biodegradation of the contained waste to stabilized products. Landfills with stabilized waste pose little threat to the environment from ozone depleting gases and groundwater contamination. Limited research has been done to determine the importance of biodegradation enhancement tech...

  8. Solid waste drum array fire performance

    Louie, R.L. [Westinghouse Hanford Co., Richland, WA (United States); Haecker, C.F. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L. [Hughes Associates, Inc., Baltimore, MD (United States)

    1995-09-01

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

  9. Recovery of ethanol from municipal solid waste

    Methods for disposal of MSW that reduce the potential for groundwater or air pollution will be essential in the near future. Seventy percent of MSW consists of paper, food waste, yard waste, wood and textiles. These lignocellulosic components may be hydrolyzed to sugars with mineral acids, and the sugars may be subsequently fermented to ethanol or other industrial chemicals. This chapter presents data on the hydrolysis of the lignocellulosic fraction of MSW with concentrated HC1 and the fermentation of the sugars to ethanol. Yields, kinetics, and rates are presented and discussed. Design and economic projections for a commercial facility to produce 20 MM gallons of ethanol per year are developed. Novel concepts to enhance the economics are discussed

  10. Solid waste drum array fire performance

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided

  11. BIOESTABILIZATION ANAEROBIC SOLID WASTE ORGANIC:QUANTITATIVE ASPECTS

    Valderi Duarte Leite

    2015-01-01

    Full Text Available It is estimated that in Brazil, the municipal solid waste produced are constituted on average 55% of fermentable organic solid waste and that this quantity can be applied in aerobic or anaerobic stabilization process. Anaerobic digestion is an important alternative for the treatment of different types of potentially fermentable waste, considering providing an alternative source of energy that can be used to replace fossil fuels. To perform the experimental part of this work was constructed and monitored an experimental system consisting of an anaerobic batch reactor, shredding unit of fermentable organic wastes and additional devices. Fermentable organic wastes consisted of leftover fruits and vegetables and were listed in EMPASA (Paraibana Company of Food and Agricultural Services, located in the city of Campina Grande- PB. The residues were collected and transported to the Experimental Station Biological Sewage Treatment (EXTRABES where they were processed and used for substrate preparation. The substrate consisted of a mixture of fermentable organic waste, more anaerobic sewage sludge in the proportion of 80 and 20 % respectively. In the specific case of this study, it was found that 1m3 of substrate concentration of total COD equal to 169 g L-1, considering the reactor efficiency equal to 80 %, the production of CH4 would be approximately 47.25 Nm3 CH4. Therefore, fermentable organic waste, when subjected to anaerobic treatment process produces a quantity of methane gas in addition to the partially biostabilized compound may be applied as a soil conditioning agent.

  12. Evaluation of Quantity and Quality of Dental Solid Waste

    Maryam Ghanbarian

    2011-01-01

    Full Text Available Introduction: Today, one of the most important environmental issues is dental solid wastes that because of the presence of hazardous, toxic and pathogen agents have special importance. In this study, solid waste produced in Shahroud general dental offices was studied. Methods: In this descriptive study, all dental offices in Shahrood were selected. From each office 3 samples were analyzed at the end of successive working days (Monday, Tuesday and Wednesday. Samples were manually sorted into different 64 components and by means of laboratory scale were measured. Then, measured components were classified on the basis of characteristic and hazardous potential as well as material type. Results: Total annual waste produced in dental offices in Shahrood is 2425.48 kg. Production percentages of infectious, domestic type, chemical and pharmaceutical, and toxic wastes were 46.0%, 43.8%, 9.2% and 1.0%, respectively. Conclusion: For the proper management of dental waste, it is suggested that in addition to educating dentists in waste reduction, separation and recycling inside the offices, each section of dental waste be managed separately and according to related criteria.

  13. Product specific emissions from municipal solid waste landfills

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  14. Product specific emissions from municipal solid waste landfills

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided......For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...

  15. Method for fractional solid-waste sampling and chemical analysis

    Riber, Christian; Rodushkin, I.; Spliid, Henrik;

    2007-01-01

    Chemical characterization of solid waste is a demanding task due to the heterogeneity of the waste. This article describes how 45 material fractions hand-sorted from Danish household waste were subsampled and prepared for chemical analysis of 61 substances. All material fractions were subject to...... repeated particle-size reduction, mixing, and mass reduction until a sufficiently small but representative sample was obtained for digestion prior to chemical analysis. The waste-fraction samples were digested according to their properties for maximum recognition of all the studied substances. By combining...... four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...

  16. Municipal solid waste disposal by using metallurgical technologies and equipments

    Jiuju Cai, Wenqiang Sun

    2012-01-01

    Full Text Available Pyrolysis of municipal solid waste can take full advantage of energy and resource and avoid producing hazardous material during this period. In combination with mature metallurgical technologies of coking by coke oven, regenerative flame furnace technology and melting by electric arc furnace, technologies of regenerative fixed bed pyrolysis technology for household waste, co-coking technology for waste plastic and blend coal, and incineration ash melting technology by electric arc technology for medical waste were respectively developed to improve current unsatisfied sorting status of waste. The investigation results of laboratory experiments, semi-industrial experiments and industrial experiments as well as their economic benefits and environmental benefits for related technologies were separately presented.

  17. Effective Municipal Solid Waste Management in India

    Kumar, Sunil; Chakrabarti, Tapan

    2010-01-01

    Keeping in view of the judicial intervention, the municipalities have started a lot of activities now to improve the existing MSW management system. However, still a long way has to go to achieve sustainable waste management in India. The existing MSW rules are being modified and the Union Government has provided lot of funds in this sector and a paradigm shift is expected under 11th plan.

  18. Potential useful products from solid wastes.

    Golueke, C G; Diaz, L F

    1991-10-01

    Wastes have been aptly defined as "items, i.e. resources, that have been discarded because their possessors no longer have an apparent use for them". Accordingly, "wastes" have a significance only in relation to the items and those who have discarded them. The discarded items now are resources awaiting reclamation. Reclamation usually involves either salvage or conversion--or in modern terminology, "reuse" or "recycling". Reclamation for reuse consists in refurbishing or other upgrading without significantly altering original form and composition. Examples of wastes amenable to reuse are containers (bottles, etc.), cartons and repairable tires. With "recycling" (i.e. conservation), the discarded items are processed such that they become raw material, i.e. resources in the manufacture of "new" products. The variety of processes is wide, ranging from simply physical (grinding) through thermal (melting, gasification, combustion), to biological (composting, biogasification, hydrolysis, microbial protein production). In the paper, reuse and recycling (conversion) are evaluated in terms of advantages and disadvantages (limitations) and their respective technologies are described and discussed in detail. PMID:11537693

  19. Solid waste management in the hospitality industry: a review.

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. PMID:25194519

  20. The combustion of solid fuels and wastes

    Tillman, David

    1991-01-01

    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  1. Environmental applications of steel industry solid wastes

    Vega Aguirre, Noelia; Montes Morán, Miguel Ángel; Ovín Ania, María Concepción; Canals-Batlle, C.; González-Suárez, V.; Martín, María J.

    2009-01-01

    Various solid residues from steel industry were tested as adsorbents of hydrogen sulfide at high concentrations. Their performance towards the removal of thiocyanates from aqueous solutions was also studied. The H2S adsorption capacity was evaluated at room temperature under both dry and wet conditions. The removal efficiency for thiocyanate ions from solution was evaluated at high ionic concentration. In both cases the results were compared to those of other adsorb...

  2. Waste management of ENM-containing solid waste in Europe

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    Little research has been done to determine emissions of engineered nanomaterials (ENM) from currently available nano-enabled consumer products. While ENM release is expected to occur throughout the life cycle of the products, this study focuses on the product end-of-life (EOL) phase. We used the Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individualproducts to an ...

  3. Leaching of nano-ZnO in municipal solid waste.

    Sakallioglu, T; Bakirdoven, M; Temizel, I; Demirel, B; Copty, N K; Onay, T T; Uyguner Demirel, C S; Karanfil, T

    2016-11-01

    Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix. PMID:27318728

  4. 1.3. Processing of aluminium production solid wastes

    The reprocessing of solid wastes of aluminium production, including fluorine regeneration, carbon regeneration, and extraction of valuable components was considered in this chapter. The main methods of fluorine regeneration, including alkaline, acidic, two-stage leaching, hydrochemical, burning, flotation, sintering, vacuum-thermal pyro hydrolysis were considered as well.

  5. An Accounting System for Solid Waste Management in Small Communities.

    Zausner, Eric R.

    This pamphlet provides a guide to the type and quantity of information to be collected for effective solid waste management in small communities. It is directed at municipal or private personnel involved in the operation and ownership of management facilities. Sample activity reports are included for reference. (CS)

  6. Guidelines for Local Governments on Solid Waste Management.

    National Association of Counties, Washington, DC. Research Foundation.

    This document consists of ten guides on Solid Waste Management to assist local elected and appointed policy-making officials. They are entitled: Areawide Approaches; Legal Authority, Planning, Organization Design and Operation, Financing, Technical and Financial Assistance, Citizen Support, Personnel, and Action Plan and Bibliography. The guides…

  7. Data summary of municipal solid waste management alternatives

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  8. Estimating activity of uranium ore and solid waste

    From radioactive equilibrium of natural radioactive decay series and content of several radioactive constituents, the formula for estimating activity of uranium ore and solid waste is derived and a case study on treatment engineering of decommissioning Linchang Uranium Mine is presented

  9. India : Municipal Financing Requirements - Water, Sewerage, and Solid Waste

    World Bank

    2010-01-01

    This report presents the main results from cost models that were developed as an input to the High Powered Expert Committee on Urban Development in order to estimate the investment, operations, and maintenance requirements for urban water, sanitation and municipal solid waste in India. The cost models are designed as tools that allow linking the various building blocks of the cost estimat...

  10. Community-Based Solid Waste Management: A Training Facilitator's Guide.

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Urban environmental management and environmental health issues are of increasing concern worldwide. The need for urban environmental management work at the local level where the Peace Corps works most effectively is significant, but training materials dedicated specifically to community-based solid waste management work in urban areas are lacking.…

  11. Data summary of municipal solid waste management alternatives

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  12. EVALUATION OF MUNICIPAL SOLID WASTE LANDFILL COVER DESIGNS

    The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...

  13. USE OF MUNICIPAL SOLID WASTE LANDFILLS AS BIOCHEMICAL REACTORS

    Municipal solid waste (MSW) from the nation is managed predominantly in anitary landfills. ue to the physical, chemical and biological makeup f he aste he landfill acts as a biochemical reactor and degrades the organic matter. urrent practices are to use covers and liners as engi...

  14. Gasification versus combustion of solid wastes. Environmental aspects. Supplementary report

    The report is supplementary to the main one of the same title and contains detailed descriptions of the plants for gasification and pyrolysis of biomass visited in Europe, Canada and USA in order to evaluate the technology development, especially with regard to the use of solid wastes as fuel. (AB)

  15. Teaching and Learning about Solid Waste: Aspects of Content Knowledge

    Cinquetti, Heloisa Chalmers Sisla; de Carvalho, Luiz Marcelo

    2007-01-01

    This paper investigates aspects of content knowledge related to teaching and learning about solid waste, focusing on the processes of learning and teaching by Elementary School teachers in Brazil, in two modalities of continuing education: courses and school-based meetings. We analyse elements of teachers' reflections whilst referring to three…

  16. The integral treatment of urban solid wastes. Experience at Spain

    In this work, which is the origin of the urban solid wastes in a City, how is it classify and which are the most important methods for its elimination, once have been collected are presented. Statistics on the Spanish Case, how is the treatment system and which are the most representative methods for its elimination is describe

  17. A new laborafory for solid waste recycling fechnologies

    2012-01-01

    According to a cooperation agreement between the CAS Research Center for Eco-Envimnmental Sciences (RCEES) and the Ordos municipal government, a new institute is now being built in Ordos City, north China's Inner Mongolia to address the key engineering technologies for solid waste recycling.

  18. Influence of vermicomposting on solid wastes decomposition kinetics in soils

    2007-01-01

    The effect of vermicomposting on kinetic behavior of the products is not well recognized. An incubation study was conducted to investigate C mineralization kinetics of cow manure, sugarcane filter cake and their vermicomposts. Two different soils were treated with the four solid wastes at a rate of 0.5 g solid waste C per kg soil with three replications. Soils were incubated for 56 d. The CO2-C respired was monitored periodically and a first-order kinetic model was used to calculate the kinetic parameters of C mineralization. Results indicated that the percentage of C mineralized during the incubation period ranged from 31.9% to 41.8% and 55.9% to 73.4% in the calcareous and acidic soils, respectively. The potentially mineralizable C (C0) of the treated soils was lower in the solid waste composts compared to their starting materials. Overall, it can be concluded that decomposable fraction of solid wastes has decreased due to vermicomposting.

  19. Optimizing Resource and Energy Recovery for Municipal Solid Waste Management

    Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...

  20. Sustainable solutions for solid waste management in Southeast Asian countries

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  1. Solid waste management challenges for cities in developing countries

    Highlights: ► Stakeholders. ► Factors affecting performance waste management systems. ► Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities’ authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders’ action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems’ failure. The information provided is very useful when planning, changing or implementing waste management systems

  2. Co-firing coal and municipal solid waste

    Demirbas, A. [Sila Science, Trabzon (Turkey)

    2008-07-01

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  3. Determinants of municipal solid waste management in Portugal

    Ana Luísa Mota Freitas

    2016-07-01

    Full Text Available Municipal solid waste management has been a topic of interest of several authors over time, in particular the implementation and maintenance of waste collection programmes. Initially, pioneering studies focused on the economic aspects of the provided services. However, many authors later argued the costs of providing solid waste collection services should also be influenced by socio-economic and behavioural factors, exogenous to the municipalities. The present study will be developed in this context, looking, more broadly, to explain the factors influencing the decision-making of the Portuguese municipalities in implementing and maintaining programs of selective collection of solid waste, considering the economic, financial, technological and sociodemographic factors. The results show that, indeed as presented by several authors before, economic factors aren’t the only determinants that influence municipal costs concerning these services, as demographic, geographic and technological factors must be taken into account. Moreover, the enforced legislation also impacts the municipal costs due to municipalities being obliged to contribute to the success of these collection programs in order to fulfil the waste recovery targets. This implies that the costs of these services and the inherent infrastructures are usually financed by its citizens in the form of utilization taxes and also the state.

  4. Low temperature ozone oxidation of solid waste surrogates

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  5. Combustion of oil palm solid wastes in fluidized bed combustor

    Shamsuddin, A.H. [Univ. Kebangsaan Malaysia, Bangi (Malaysia). Faculty of Engineering; Sopian, K. [Univ. of Miami, Coral Gables, FL (United States). College of Engineering

    1995-12-31

    The palm oil industry of Malaysia is the largest in the world producing about 55% of the world production. The industry has approximately 270 mills throughout the country with processing sizes ranging from 10 tonnes/hour to 120 tonnes/hour. All mills produce solid wastes, about 50% of the fresh fruit bunches in terms of weight. The solid wastes produced are in the form of empty fruit bunches, fibers and shells. These wastes have high energy value, ranging from 14 to 18 MJ/kg. The industry is currently self-sufficient in terms of energy. Fibers and shell wastes are being used as boiler fuel to raise steam for electrical power production and process steam. However, the combustion technology currently being employed is obsolete with low efficiency and polluting. A fluidized bed combustor pilot plant is designed and constructed at Combustion Research Laboratory, Universiti Kebangsaan Malaysia. The combustor is made up of 600 mm {times} 900 mm rectangular bed filled with sand up to 400 mm height, static. A bank of heat transfer tubes is imbedded in the bed, designed to absorb 50% of heat released by the fuel in the bed. The remaining heat is transferred in tubes placed on the wall of the freeboard area. Experimental studies were carried out in the pilot plant using palm oil solid wastes. The combustion temperatures were maintained in the range 800--900 C. The performance of the combustor was evaluated in terms of combustion and boiler efficiencies and flue gas emissions monitored.

  6. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although

  7. Solid Waste Projection Model: Database (Version 1.4)

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  8. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced

  9. Bioremediation of municipal solid waste by windrow composting.

    Manjula, G; Ravikannan, S P; Meenambal, T

    2013-10-01

    Due to rapid urbanization and economic development the urban cities are facing the problem of solid waste management. It is one among the major challenges faced by governing bodies. Bioremediation of municipal solid waste can be effectively done by windrow composting. In this study, a consortium of effective microorganisms was used for the windrow composting process. About 500 kg of shredded waste was placed in two windrows and 1 litre effective microorganisms were sprayed on one of the windrows. The variation in physical and chemical parameters was monitored throughout the process. The results indicate that usage of effective microorganisms not only shortens the stabilization time but also improves product quality. The final product was more stable and homogenous and can be effectively used as soil conditioner. PMID:25906592

  10. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    MAY, D.L.

    2000-03-22

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced.

  11. Municipal solid waste management in a new legislation: comprehensive approach

    Berezyuk Maria

    2016-01-01

    Full Text Available The problem of the municipal solid waste (MSW formation and recycling has been very important for many decades in the Russian Federation. The sustainable development of the Russian Federation subjects and municipalities, their evolution to the status of “smart cities” is not possible without solving this problem. The current situation in the area of SHW treatment leads to the dangerous environmental pollution, improper use of the natural resources, and the significant economic damage and poses a threat to the health of the present and future generations of the country. The authors examine the issues of implementation of the changes in the field of municipal solid waste management legislation. The problems of the comprehensive waste management are also discussed on the example of the Sverdlovsk region (Sverdlovskaya Oblast.

  12. Aerobic Thermophilic Composting of Municipal Solid Waste

    D V Wadkar

    2013-03-01

    Full Text Available Composting is a natural process that turns organic material into a dark rich substance called compost. Aerobic Composting is the creation of compost that depends on bacteria that thrive in an oxygen rich environment. Aerobic bacteria manage the chemical process by converting the inputs (i.e. air, water and carbon and nitrogen rich materials into heat, carbon dioxide and ammonium. The ammonium is further converted by bacteria into plant nourishing nitrites and nitrates through the process of nitrification. Thermophilic Composting is breaking down biological waste with thermophilic (heat loving bacteria. A cylindrical reactor was made. Organic wasteincluded dry vegetable waste collected from MSW ramp, Koregaon park, Pune. The characteristics of compost like pH, moisture content, temperature, C/N ratio and volume reduction were studied for the period of maturation (42days. It can be concluded that the values are within the desired limits and compost is suitable for ornamental plants. The setup of reactor is affordable and thus the compost obtained is effective and economical.

  13. Discussion on decommissioning disposal to radioactive solid wastes

    To resolve environmental impact of radioactive solid wastes born in military nuclear industry, the article's key research is on decommissioning disposal to radioactive solid wastes. Choosing the uranium mill for research in the south, using methods of part static state to test and control precipitation rate of radon, with covering materials of sand loam, light loam , mortar, asphalt. The results show that the precipitation rate of radon changes greatly with different covering materials; the precipitation rate is smaller when the thickness of cover is increase; the effect of cutting down the precipitation rate of radon is better when the density of covering materials is bigger. Choosing loam as the covering materials, easily come from, economic and reasonable, speeded-up the soil compaction. Implying some moisture, gradually increasethe density of solid, and get better effect of cutting down the precipitation rate of radon. (authors)

  14. Electricity production from municipal solid waste using microbial fuel cells.

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed. PMID:27231132

  15. Solid waste and leaching studies using nuclear analytical techniques

    As a result of the awareness of the potential hazards that solid wastes may pose to the environment, many countries have instituted research agendas and regulations to address these issues issues. During the past fifteen years there has been a plethora of leaching studies proposed to ascertain the potential impact that solid wastes may have on water quality. Regulatory laboratory leaching procedures should be applicable to a variety of waste types while providing useful data for the prediction of leachate quality generated by the wastes in a landfill environment. Although it is unrealistic to expect a single laboratory leaching procedure to reliably assess all wastes, an ideal procedure would include the following features: (a) use a leaching medium to be encountered in a landfill (b) include procedures to estimate the intensity and dynamics of Teachable constituents; (c) minimize sample particle size alteration; (d) optimize the liquid to solid ratio to minimize leachate dilution and experimental variability; (e) avoid exotic laboratory apparatus; and (f) restrict procedures used to those conveniently performed by laboratory personnel. In the University of Illinois laboratories, the focus is on assessing the short and long term hazards from municipal solid waste, incinerator ash and coal fly ash through the elemental analysis of heavy metals in ash and leachates using a variety of multi-elemental techniques. Other studies have included the identification of heavy metals in household plastics and the characterization of contaminated soils in urban environments. These techniques included neutron activation analysis, X ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry. The leaching tests have included the Toxicity Characteristic Leaching Procedure, water batch extraction, sequential extraction and column tests. The philosophy of leaching procedures, the strength of non-destructive multi-elemental techniques, and results from

  16. Municipal solid waste management in China: status, problems and challenges.

    Zhang, Dong Qing; Tan, Soon Keat; Gersberg, Richard M

    2010-08-01

    This paper presents an examination of MSW generation and composition in China, providing an overview of the current state of MSW management, an analysis of existing problems in MSW collection, separation, recycling and disposal, and some suggestions for improving MSW systems in the future. In China, along with urbanization, population growth and industrialization, the quantity of municipal solid waste (MSW) generation has been increasing rapidly. The total MSW amount increased from 31.3 million tonnes in 1980 to 212 million tonnes in 2006, and the waste generation rate increased from 0.50 kg/capita/day in 1980 to 0.98 kg/capita/year in 2006. Currently, waste composition in China is dominated by a high organic and moisture content, since the concentration of kitchen waste in urban solid waste makes up the highest proportion (at approximately 60%) of the waste stream. The total amount of MSW collected and transported was 148 million tonnes in 2006, of which 91.4% was landfilled, 6.4% was incinerated and 2.2% was composted. The overall MSW treatment rate in China was approximately 62% in 2007. In 2007, there were 460 facilities, including 366 landfill sites, 17 composing plants, and 66 incineration plants. This paper also considers the challenges faced and opportunities for MSW management in China, and a number of recommendations are made aimed at improving the MSW management system. PMID:20413209

  17. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the...

  18. Economic Instruments for Solid Waste Management in Latin America and the Caribbean

    Jorge Ducci; Michael Toman

    2003-01-01

    The use of economic instruments has drawn increased attention as a tool for both lessening the size of the solid waste management problem and improving upon the delivery of solid waste collection and disposal services.

  19. Evolving partnerships in the collection of urban solid waste in the developing world

    J. Post

    2004-01-01

    -Post, Johan. (2004) Evolving Partnerships in the Collection of Urban Solid Waste in the Developing World, in: Baud, Isa., Johan. Post and Christine Furedy (2004) Solid Waste Management and Recycling; Actors, Partnerships and Policies in Hyderabad, India

  20. 3.7. Physicochemical properties of solid wastes and products of their processing

    This article is devoted to physicochemical properties of solid aluminium production wastes and products of their processing. The physicochemical properties of solid aluminium production wastes were studied by means of X-ray and differential thermal analysis.

  1. Research on Health Risk-Based Radioactive Acceptance Criteria of Municipal Solid Waste Landfill

    2011-01-01

    The article focuses on the topics of Health Risk-Based Radioactive Acceptance Criteria of Municipal Solid Waste Landfill (MSWL, including municipal refuse landfills or industrial solid waste landfills, MSWL). At first, health risk assessment

  2. Energy potential of municipal solid waste incineration in urban areas of China.

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  3. Data summary of municipal solid waste management alternatives

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  4. Solid waste management : a case study of National Refinery Limited

    A study was conducted to quantify and classify the waste generated at the National Refinery Limited (NRL). This refinery, located in Karachi, Pakistan, produces naphtha, motor gasoline, diesel, kerosene and lubricating oils and much more. Various units such as crude oil storage, thermal cracking, catalytic cracking and others were surveyed to assess the source and nature of the pollution. It was found that the major contributor to air pollution was the sulfur released through the burning of fuel oil during day-to-day operations. It was determined that approximately 2000 metric tons of solid waste were produced each day, along with 0.55 million gallons of waste water. In addition, sulfur, carbon dioxide, carbon monoxide and nitrogen dioxide were also released in the atmosphere. The solid waste was composed of municipal waste, sludges from the API and other discarded materials. The authors then proceeded to determine the heavy metals contents in samples obtained from combined sludge dumping areas on the premises. The sludges contained sulfur (0-1.26 wt per cent), lead (0-0.156 wt per cent), iron (0.01-3.4 wt per cent), chromium (0-0.159 per cent), copper (0-0.05 wt per cent), cadmium (0-0.0034 wt per cent), nickel (0-0.168 wt per cent), and manganese (0.0015-0.0776 wt per cent). It was recommended that hazardous and non-hazardous wastes be segregated, that a separate feasibility study be undertaken to determine the best possible course of action to dispose of solid waste, and that government guidelines be established on the same topic. 5 refs., 4 tabs

  5. [Studies on the anaerobic phased solid digester system for municipal solid waste (MSW) treatment].

    Wang, Jun-qin; Shen, Dong-sheng

    2004-05-01

    Through analyzing and detecting the leaching pollutant (COD) in two bioreactors, anaerobic phased solid digester system and leachate direct-recirculating landfill, the changing rule of municipal solid waste and the characteristics of methanogenesis were studied. The results showed that anaerobic phased solid digester system accelerated the process of degrading municipal solid waste and stabilizing landfill site. The relationship between the leaching pollutant (COD) and refuse age was logarithmic linear correlation. More than 80% of biogas in volume occured in the methanogenisis bioreactor, the methane content in which was 55%-69%. The preferable volumetric COD loading rate of the methanogenisis bioreactor was 6.5-7.5 g/(L x d). PMID:15327275

  6. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  7. Municipal Solid Waste Landfills Harbor Distinct Microbiomes.

    Stamps, Blake W; Lyles, Christopher N; Suflita, Joseph M; Masoner, Jason R; Cozzarelli, Isabelle M; Kolpin, Dana W; Stevenson, Bradley S

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  8. Pyrolysis oil from carbonaceous solid wastes in Malaysia

    The agro-industrial sector of Malaysia produces a huge amount of oil palm and paddy rice. These generate a significant amount of renewable biomass solid wastes in the forms of oil palm shell and rice husk. Apart from this a huge quantity of scrap tyre is generated from the country's faster increasing usage of transportation vehicles like motorcycle, car, bus and lorries. These wastes are producing pollution and disposal problems affecting the environment. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric analysis (TGA) studies of the wastes, it appeared that the wastes could be used for pyrolysis liquid oil production. Pyrolysis at present is deemed to be a potential method for the conversion of carbonaceous solid wastes into upgraded liquid products which can either be tried for liquid fuel or value-added chemical. A fluidized bed bench scale fast pyrolysis system was employed for this thermochemical conversion process of solid wastes. Silica sand was used as fluidized bed material and nitrogen gas as the fluidising medium. The products obtained were liquid oil, solid char and gas. The liquid oil and solid char were collected separately while the gas was flared. The maximum liquid product yield was found to vary with feedstock material fluidized bed temperature. The maximum liquid product yield was found to be 58, 53 and 40 wt. % of biomass fed at fluidized bed temperature at 500, 525 and 4500C respectively for oil palm shell, scrap tyre and rice husk. The solid char yield was 25, 36 and 53 wt. % of biomass fed at the condition of maximum liquid product yield for oil palm shell, scrap tyre and rice husk respectively. The oil products were subjected to FTIR, GC and GC/MS analysis for their group composition and detailed chemical compositions. The pyrolysis oil from scrap tyre was found to contain highest percentage of pure hydrocarbons (25 wt. % of total feed) with esters and oxygenated

  9. Current Status of Municipal Solid Waste Generation in Malaysia

    Iwan Budhiarta

    2012-01-01

    Full Text Available Recent investigations in 2010 resulted information that population of Kuala Lumpur City Area has reached 1.66 million people (JPM, 2009. With the population growth rate of 6.1 percent, then the population in the year 2010 can be estimated at least to 1.69 million people. The number of municipal solid waste generated from Kuala Lumpur State Territory and delivered to TBTS was recorded of 2,000 tonnes per day. Accordingly, the solid waste generation average for any person is 1.2 kilograms a day. From the survey found that almost total respondents, has already knew about the zero waste program and other government's waste management program. But this has to be mentioned if there was about 14% of the total respondents that have already recycled on their solid waste. Several of them have no convinced reason about why did they want to do a recycle thing. Though recycling activity in Malaysia is rising up, the recycling industry still needs to be enhanced. The price of solid waste (plastic collected from plastic used market at several places on Kuala Lumpur City area is about RM 0.45 per kilogram, due to data taken on May 2010. If the population in 2009 is about 1.66 millions, then the plastic value per day will be RM 179,280. The potential gross value calculation for one year period can be reached  about RM 43,027,200. This potential value should be an additional income if the Government can build and develop an integrated plastic recycling market. At present, Taman Beringin Transfer Station has been taking care of the average of solid waste at 2,100 tonnes per day. The capacity of this waste generation has been increasing in numbers, from 1,700 tonnes, since initial operation in 2002. In estimation, TBTS budget is around of RM 30,000,000 in the period of one year only for the purposes of simple operational cost. Government Board of Kuala Lumpur City should reconsider a better solution for funding that operating cost.

  10. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Kunio Yoshikawa; Pandji Prawisudha; Bayu Indrawan

    2012-01-01

    An experimental study on converting municipal solid waste (MSW) into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine conten...

  11. Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis

    Xingpeng Chen; Jiaxing Pang; Zilong Zhang; Hengji Li

    2014-01-01

    As the largest solid waste (SW) generator in the world, China is facing serious pollution issues induced by increasing quantities of SW. The sustainability assessment of SW management is very important for designing relevant policy for further improving the overall efficiency of solid waste management (SWM). By focusing on industrial solid waste (ISW) and municipal solid waste (MSW), the paper investigated the sustainability performance of SWM by applying decoupling analysis, and further iden...

  12. An integrated approach for efficient biomethane production from solid bio-wastes in a compact system

    Wang, H.; Tao, Y; Temudo, M.; Schooneveld, M.; Bijl, H.; Ren, N.; Wolf, M.; Heine, C.; Foerster, A.; Pelenc, V.; Kloek, J.; van Lier, J B; De Kreuk, M.K.

    2015-01-01

    Background Solid bio-wastes (or organic residues) are worldwide produced in high amount and increasingly considered bioenergy containers rather than waste products. A complete bioprocess from recalcitrant solid wastes to methane (SW2M) via anaerobic digestion (AD) is believed to be a sustainable way to utilize solid bio-wastes. However, the complex and recalcitrance of these organic solids make the hydrolysis process inefficient and thus a rate-limiting step to many AD technologies. Effort ha...

  13. Solid Waste Management in Small Island Destinations: A Case Study of Gili Trawangan, Indonesia

    WILLMOTT, Lacey; R. GRACI, Sonya

    2012-01-01

    Solid waste management is a critical, complex, multi-dimensional challenge for societies. The nature of solid waste management in each community can differ based upon a number of factors including economic activities and geographies. Solid waste management in small island tourist communities is often complicated by their isolated geographies and tourism dominated economies, resulting in even greater challenges for ensuring sustainable solid waste management. This article discusses a case stud...

  14. A Case Study on Municipal Solid Waste Management in Salt Lake City

    Maity, S. K.; B. K. Bhattacharyay; BHATTACHARYYA, B.

    2011-01-01

    Solid waste management is an important social problem throughout the world. In India it takes the shape of alarming dimension which has to be addressed urgently. It includes the collection and disposal ofgarbage, or municipal solid waste, compounded by increasing consumption levels. Among the solid waste generated in Indian cities, Kolkata’s position is second. Bidhannagar or Salt Lake City is a planned satellite township in Kolkata. The problem of municipal solid waste management (MSWM) also...

  15. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Jairo F. Pereira; Katherine Erazo; Carolina Blanco; Mary H. Burbano; Mariela García; Diaz, Luis F.; Patricia Torres; Luis F. Marmolejo

    2010-01-01

    Material recovery from municipal solid waste (MSW) is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste mana...

  16. Parametric Evaluation of Digestability of Organic Fraction of Municipal Solid Waste for Biogas Production

    Monoj Kumar Mondal; Aparna Banerjee

    2015-01-01

    Municipal solid waste was collected from Varanasi’s municipal solid waste dumpsite and sorted for organic fraction present in it. Current work showed the consequences of calcium hydroxide or lime digestion on organic fraction of municipal solid waste of Varanasi, India. The organic fraction of municipal solid waste sample was digested with desired amount of calcium hydroxide. The different concentrations (0.1, 0.2, and 0.5 %) of calcium hydroxide was blended separately to substrates (10...

  17. Municipal Solid Waste Costs: A Comparative Analysis of Local Authority Policies in Attica

    Antonis Rovolis; Katia Lazaridi; Margarita Kehagioglou

    2006-01-01

    This paper presents the results from a comparative study of solid waste costs of the municipal authorities in Attica. At first, it attempts to estimate the economic cost of solid waste for a number of municipal authorities of the Attica region. The solid waste costs are determined by a number of factors, including the quantity and composition of the solid waste, collection and transportation processes, etc. A number of efficiency indicators are also estimated for each municipality in terms of...

  18. CHARACTERIZATION OF MUNICIPAL SOLID WASTE, IN KAZAURE LOCAL GOVERNMENT AREA, JIGAWA STATE, NIGERIA

    Abubakar Abdullahi Musa*, Armaya’u Suleiman Labo, Surayya M. Lamido, Sarki Aliyu Salisu, Muhammad Bello Ibrahim, Nura Bello

    2016-01-01

    Municipal solid waste is been one of the greatest challenge facing environmental Protection agencies in most cities of the world. This Paper presents a generation and compositions of municipal solid waste in Kazaure local government Jigawa state, the compositions of municipal solid waste were determined using samples obtained from Central collection situated at Kanti area. However, Kanti landfill received a volume of municipal solid waste from eleven wards of 175.07 m3 in dry season and 182.2...

  19. Efficient Resource Recovery Options from Municipal Solid Waste: Case Study of Patna, India

    Herambprasad Digambar Gandhe; Awkash Kumar

    2016-01-01

    Solid waste management is one of the biggest issues in India as well as in the world. The generation of solid waste should be estimated for proper management of municipal solid waste (MSW) of the cities.The segregation, collection, transportation and disposal of municipal solid waste (MSW) are currently done in very unscientific and causal way in India and in many other developing countries. This creates problem for environment in terms of water, air and odour pollution. In this study, munici...

  20. Plasma fusion processing system for miscellaneous solid wastes

    Toyo Engineering Corp. has been developing and constructing a treatment system for miscellaneous solid radioactive wastes paying attention to plasma arc centrifugal treatment process (PACT) developed by Retech (Calif. U.S.A.). This report describes the outlines of the treatment system made by our company with the aim of its application to the domestic nuclear fields. PACT is a fusion furnace which allows effective heating and easy wasting of molten materials and thus has been noticed as a superior processing system for poisonous wastes. The melting technique using plasma arc enables to melt various wastes with different properties and to construct a multi-purpose processing system. The composition and the actual results of PACT were presented. The first system, PACT-6 was evaluated by SITE, a evaluation program of EPA. It was shown that the molten slug produced contains comparatively little amount of heavy metals. (M.N.)

  1. Electrodialytic Removal of Heavy Metals from Different Solid Waste Products

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Pedersen, Anne Juul;

    2003-01-01

    the method could be used for removal of different heavy metals from impregnated wood waste, fly ash from straw combustion, and fly ash from municipal solid waste incineration. The best result was obtained with the wood waste where more than 80% of each of the polluting elements Cu, Cr and As was...... removed in a 7-day experiment in which oxalic acid was used as enhancement solution. From the straw ash, 66% of the Cd was removed, but 64% of the fly ash dry mass dissolved during the treatment. In this actual experiment, no enhancement solution was used but that will be necessary to avoid dissolution of...... the ash to such a high extent. For the fly ash from waste incineration, ammonium citrate was tested as enhancement solution and in 14 days 62% Cd, 53% Cu, 6% Pb, and 31% Zn were removed. The preliminary results were thus promising for developing the electrodialytic method to other products than soil...

  2. Study of plastic solidification process on solid radioactive waste treatment

    Comparisons between the plastic solidification conditions of incinerated ash and waste cation resin by using thermosetting plastic polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE), and identified physico-chemical properties and irradiation resistance of solidified products were presented. These solidified products have passed through different tests as compression strength, leachability, durability, stability, permeability and irradiation resistance (106 Gy) etc. The result showed that the solidified products possessed stable properties and met the storage requirement. The waste tube of radioimmunoassay, being used as solidification medium to contain incinerated ash, had good mechanical properties and satisfactory volume reduction. This process may develop a new way for disposal solid radioactive waste by means of re-using waste

  3. Experimental Studies on Combustion Characteristics of Mixed Municipal Solid Waste

    Fan Jiang; Zhonggang Pan; Shi Liu; Haigang Wang

    2003-01-01

    In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper,thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3~3.5 rain to burn out in FB, but in thermogravimetric analyzer, the time is 20~25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures.Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures,there was interference among the components during fluidized bed combustion.

  4. Evaluation of nitrogen fertilizing value of composted household solid waste under greenhouse conditions

    Elherradi, Elhassania; Soudi, Brahim; CHIANG, Claude; Elkacemi, Kacem

    2005-01-01

    Accumulation of municipal solid wastes, such as household solid waste, can be rated as a harmful, if not critical, pollution problem. However, if these wastes can be composted and the end product used as soil organic amendment or fertilizer, this may represent one of the alternatives for achieving the goal of ensuring integrated and sustainable waste management. The objective of the present work is to evaluate the nitrogen fertilizing value of household solid waste compost in two soils of Mor...

  5. AN INVESTIGATION FOR ECONOMICAL WAY OF RECYCLE OF SOLID WASTES FROM A DORMITORY

    KOÇER, Nilüfer (NACAR); Hilal (ARSLANOĞLU) IŞIK

    2005-01-01

    Collection, transportion, reuse, recycle and proper disposal solid wastes is major environmental problems for local administrations. At present, the most appropriate disposal method of solid waste from the point of view of economy and environment is recycle at the source. In this study the applicability of solid wastes recovery system which is one of the waste disposal methods for student dormitory wastes having economical values has been evaluated in Elazığ. The results of this study were ev...

  6. Designing an economic instrument for sustainable solid waste management in the household sector

    Welivita, Indunee

    2014-01-01

    Household Solid Waste Management has become problematic in urban areas especially in developing countries like Sri Lanka due to increased waste generation and financial constraints. The main objective of this research was to design an economic instrument with policy suggestions in order to address the household solid waste management problem in Dehiwala – the Mt. Lavinia Municipal Council area in Sri Lanka. In order to reduce the quantity of waste by encouraging sustainable solid waste manage...

  7. A Typical Case Study: Solid Waste Management in Petroleum Refineries

    Jadea S. Alshammari

    2008-01-01

    Full Text Available The current environmental concerns have forced developed and developing countries to reduce air, water and land pollution for sustainable growth. Solid refinery waste is cocktail of hydrocarbons, water, heavy metal and fine solids and is substantial in quantity. The principal processes of waste management focus mainly on waste source reduction, reusing, recycling, composting, incineration with or without energy recovery, fuel production and land filling. Waste management models have a common approach of assignment of generating sources to landfills, transfer stations sitting, site selection for landfills, etc. but recently new integrated models have been developed and applied. Waste management system in an industrial complexes uses multi-objective mixed integer programming approach for the running of existing facilities in dynamic net work flow models with nonlinear costs of management. The latest multi-objective mixed integer programming techniques are applied to resolve the potential conflict between environmental and economic goals and to evaluate sustainable strategies for waste management. In this approach, material recycling in an economic sense exhibits huge indirect benefits, although the emphasis of environmental quality as a major objective in decision-making drives the optimal solution toward pro-recycling programs. The use of grey and fuzzy system theories as uncertainty analysis tools as an enhancement of this modeling analysis proves to be highly profitable. A multi-objective optimization model based on the goal programming approach has been developed and tested in this study for passable management of solid waste generated by a typical petroleum refining industry in the state of Kuwait. The analytic hierarchy process, a decision-making approach, including qualitative and quantitative aspects of a problem, has been integrated in the model to prioritize the conflicting goals existing in the waste management problems of the petroleum

  8. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  9. Solid State Fermentation of Mexican Oregano (Lippia Berlandieri Schauer Waste

    Paola Melendez-Renteria

    2012-01-01

    Full Text Available Problem statement: Mexican oregano is recognized for their aromatic characteristics and flavor quality. Principal products obtained from the plant and marketing are the leaves and essential oil; however the extraction of the essential oil generates large amounts of agro industrial wastes; that can be used as support-substrates in Solid-State Fermentations (SSF. Approach: In this study a fungal bioprocess, as solid state fermentation using Mexican oregano wastes as support, for the use of these residues to obtain adds value products and/or molecules were developed. The fungal strain was selects by its adaptability to the support. The aqueous and non polar extracts were obtained kinetically until 120 h and then it was partially characterized (hydrolysable tannins, total sugar and proteins contents, antioxidant activity, tymol and carvacrol concentration. Results: Solid state fermentation of oregano wastes, with Aspergillus niger PSH, allowed the accumulation of a phenolic compound with catechin similar characteristics and could be responsible of the biotransformation of small amounts of carvacrol to thymol. Conclusion: These results could give an add value to Mexican oregano wastes and with more investigation the obtained products can be used in several industries.

  10. The Influence of Social Analysis on a Solid Waste Management Project : West Bank and Gaza

    Davis, Deborah

    2001-01-01

    The West Bank and Gaza suffer from severe environmental degradation, including deterioration of groundwater and uncontrolled dumping of solid waste. These problems have been addressed in Gaza with the assistance of bilateral donors, but until the design of the Solid Waste and Environment Management Project (SWEMP) in 2000, they were largely neglected in the West Bank. Solid waste managemen...

  11. Solid-waste management in Jalandhar city and its impact on community health

    Puri Avinash; Kumar Manoj; Johal Eonkar

    2008-01-01

    In this study, solid-waste management practices were evaluated in order to find out its link with occurrence of vector-borne disease. Strategies for solid-waste management were employed as practical model to solve the problems regarding pollution which is originated by solid-waste.

  12. Technical and economic analysis of incineration in nuclear power plant solid radioactive waste treatment

    The source and current treatment system of solid radioactive waste in CPR1000 was introduced. Adoption of incineration technology in solid waste treatment was compared with current process at a typical NPP site with 4 reactors. Conclusions showed that both in NPP's low and intermediate level solid waste minimization and in disposal cost saving, incineration technology has significant advantages. (authors)

  13. 76 FR 76625 - Association of State and Territorial Solid Waste Management Officials; Denial of Petition for...

    2011-12-08

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 32 Association of State and Territorial Solid Waste Management... rulemaking (PRM-32-6) submitted by the Association of State and Territorial Solid Waste Management Officials... exit signs are disposed of in solid waste landfills where they become potential sources of...

  14. 75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste

    2010-06-04

    ...''). See 70 FR 55568. In the CISWI Definitions Rule, EPA defined ``commercial and industrial solid waste... presented in the January 9, 1988 proposed amendments to the definition of solid waste (53 FR 522). Then on... following types of units from the definition of ``solid waste incineration unit'': (1) Incinerators or...

  15. Attitudes of Preservice Social Studies Teachers towards Solid Wastes and Recycle

    Karatekin, Kadir; Merey, Zihni

    2015-01-01

    The objective of this study is to determine the attitudes of preservice social studies-teachers towards solid wastes and recycle. This study used the screening model, In order to determine the attitudes of preservice teachers towards solid wastes and recycle, we used the "Scale for the Attitudes of Preservice Teachers towards Solid Wastes and…

  16. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    2013-02-07

    ... Emission Guidelines for Existing Sources: Commercial and Industrial Solid Waste Incineration Units,'' 76 FR... combusting solid waste. 3. Definitions of Cyclonic Burn Barrels, Burn-off Ovens, Soil Treatment Units... Solid Waste Incineration Units: Reconsideration and Final Amendments; Non-Hazardous Secondary...

  17. 40 CFR 264.101 - Corrective action for solid waste management units.

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... solid waste management units. (a) The owner or operator of a facility seeking a permit for the treatment... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid...

  18. 3.4. Processing of sifting of solid waste storage by flotation method

    The chemical analysis of components of solid waste storage on presence of fluorine, sodium, aluminium, silicon and iron oxides, calcium and magnesium fluorides, carbon was conducted. The results of chemical and mineralogical analysis of components of solid waste storage are presented. The processing of sifting of solid waste storage by means of flotation method was researched. Flotation tests were carried out in flotation machine.

  19. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    2011-02-22

    ... AGENCY Adequacy of Arizona Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... municipal solid waste landfill (MSWLF) permit program to allow the State to issue research, development, and.... Background On March 22, 2004, EPA issued a final rule amending the municipal solid waste landfill criteria...

  20. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    2010-08-31

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program... approve New Hampshire's modification of its approved Municipal Solid Waste Landfill Program. On March 22... be issued to certain municipal solid waste landfills by approved states. On June 28, 2010...