WorldWideScience

Sample records for 111-5 magnetic separator

  1. Magnetic Separation in Czechoslovakia

    Hencl, Vladimir

    1991-01-01

    The use of magnetic separation in various mineral processing facilities in Czechoslovakia is described. The manufacture of assorted types of magnetic separation machines is highlighted. Potential applications and research and development activities are discussed.

  2. Magnetic separation of algae

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  3. Magnetic separation anxiety

    This paper reports that only a few years ago superconducting magnetic separation was viewed as the next major market for superconducting magnets. The first commercial units had been installed, worked flawlessly, and demonstrated real economic viability. The potential market was seen as quite large, and many people believed that superconducting magnetic separation would soon show the same rapid growth that MRI had demonstrated after its initial success. These hopes even prompted IGC, one of the top MRI magnet builders, to form a separate division devoted to magnetic separation. Despite the existence of Magstream, IGC has not been overly active in the market. As a technology that has applications from the clay on the Earth to the soil on the moon, superconducting magnetic separation has yet to become widely used

  4. Magnetic separation anxiety

    Canning, C.

    1992-01-01

    This paper reports that only a few years ago superconducting magnetic separation was viewed as the next major market for superconducting magnets. The first commercial units had been installed, worked flawlessly, and demonstrated real economic viability. The potential market was seen as quite large, and many people believed that superconducting magnetic separation would soon show the same rapid growth that MRI had demonstrated after its initial success. These hopes even prompted IGC, one of the top MRI magnet builders, to form a separate division devoted to magnetic separation. Despite the existence of Magstream, IGC has not been overly active in the market. As a technology that has applications from the clay on the Earth to the soil on the moon, superconducting magnetic separation has yet to become widely used.

  5. High gradient magnetic separation

    In a process in which magnetic material is trapped in a filter disposed in a magnetic field, and is unloaded by passing a fluid through the filter in the absence of the initial magnetic field, the magnetic field is first reduced to an intermediate value to allow unloading of the more weakly magnetic particles, the more strongly magnetic particles being retained and subsequently unloaded by further reduction of the magnetic field. Stage by stage reduction of the magnetic field during unloading allows separation of different species from the mixture. As an example the method can be applied to the separation of uranium compounds from mine ores. The uranium compounds are magnetic, while most of the other constituents of the ore are non-magnetic. The starting material is a suspension of the ore. Water is used for unloading. The filter material in this case is stainless steel balls. (author)

  6. 25 CFR 111.5 - Future payments.

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Future payments. 111.5 Section 111.5 Indians BUREAU OF... 111.5 Future payments. Indians who have received or applied for their pro rata shares of an interest... act of May 18, 1916 (39 Stat. 128), will not be permitted to participate in future payments made...

  7. Magnetic separation in microfluidic systems

    Smistrup, Kristian

    2007-01-01

    also presented. One of these designs feature multiple magnetic length scales, and it is shown that this enhances bead capture ability. A ’hybrid’ magnetic separator design, where the magnetic field from on-chip current lines couples with an externally applied homogenous field to create strong fields...... separation. It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients...

  8. Magnet system for a superconducting magnetic separator

    Jüngst, K. P.; Ries, G.; Förster, S.; Graf, F.; Obermaier, G.; Lehmann, W.

    A magnetic separator with superconducting magnets has been designed, constructed and successfully tested. Its application is sorting finely ground ores or minerals with low susceptibility. The system can be described as a superconducting drum separator combining the advantages of the well known reliable conventional drum separators with the advantage of high magnetic field economically produced by superconducting magnets. This laboratory magnetic separator with a relevant drum diameter of 1 m served as a first step on the way to an industrial pilot plant. This paper reports on design, construction, and test of the sc magnet system and its supply.

  9. Magnetic Separation in South Africa

    Corrans, Ian James; Svoboda, Jan

    1985-01-01

    The use of magnetic separators in the various mineral processing facilities in South Africa is described. A large number are used to recover medium in dense medium plants. The manufacture of various types of magnetic separation machines by three local suppliers is highlighted. The potential use of highgradient and/or highintensity magnetic separation in the recovery of gold, uranium, and phosphate minerals is discussed.

  10. Magnetic separation of particles

    Particles are released at end of a vibrating table supplied from a hopper and fall past a device in which parallel superimposed super conducting cables produce a magnetic field in the region of the descending particles. The table is level with the uppermost cable or raised above the table by the radius of the cable. The cables are held in a clamp and cooled in a cryostat vessel. The side of the device is provided with a wiper. Strongly magnetic particles are attracted to the side and can be removed by the wiper. Weakly magnetic particles fall into a box and non-magnetic particles into another box. A movable wall enables adjustment of the relative widths of the boxes. Under certain conditions the deflection of the particles is independent of their shape and size. (author)

  11. The Physical Model of Magnetic Separation in a Plate Separator

    Brożek, M.

    1999-01-01

    The results of magnetic separation depend on many factors, such as physical properties of particles of the separated mixture, magnetic intensity, particle sizes, separation conditions (constant or alternating field, dry or wet separation) and others. The formulae representing the dependence of separation results on the above mentioned factors are obtained from the model. The mathematical model presents only some general dependences of separations results on time or length of the separation pa...

  12. Recent Activities in Magnetic Separation in Sweden

    Wang, Yanmin; Forssberg, Eric

    1995-01-01

    This paper describes some industrial applications of magnetic separation in Swedish mineral industry. Recent studies on magnetic treatment of minerals in Sweden are also presented. These studies involve selectivity of wet magnetic separation, wet magnetic recovery of mineral fines and ultrafines, sulphide processing by magnetic means, as well as dry magnetic purification of industrial minerals.

  13. Magnetic separation of organic dyes using superconducting bulk magnets

    Kondo, N.; Yokoyama, K.; Hosaka, S.

    Organic dyes were separated from wastewater using superconducting bulk magnets. Two types of particles, magnetic activated carbon (MAC) and reactive nanoscale iron particles (RNIP), were used as magnetic seeds. We set up a magnetic separator consisting of an acrylic pipe located between the magnetic poles of a face-to-face superconducting bulk magnet. We tested the separator under both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS). Adsorption ratios greater than 95% were achieved for sufficient concentrations of both MAC and RNIP, and separation ratios greater than 90% were achieved in HGMS and OGMS for certain dye-particle combinations.

  14. Magnetic particle separation using controllable magnetic force switches

    Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.

  15. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Ihara, I.; Toyoda, K.; Beneragama, N.; Umetsu, K.

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  16. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  17. Magnetic separations: From steel plants to biotechnology

    Cafer T. Yavuz; Arjun Prakash; J.T. Mayo; Vicki L. Colvin [Rice University, Houston, TX (United States). Department of Chemistry

    2009-05-15

    Magnetic separations have for decades been essential processes in diverse industries ranging from steel production to coal desulfurization. In such settings magnetic fields are used in continuous flow processes as filters to remove magnetic impurities. High gradient magnetic separation (HGMS) has found even broader use in wastewater treatment and food processing. Batch scale magnetic separations are also relevant in industry, particularly biotechnology where fixed magnetic separators are used to purify complex mixtures for protein isolation, cell separation, drug delivery, and biocatalysis. In this review, we introduce the basic concepts behind magnetic separations and summarize a few examples of its large scale application. HGMS systems and batch systems for magnetic separations have been developed largely in parallel by different communities. However, in this work we compare and contrast each approach so that investigators can approach both key areas. Finally, we discuss how new advances in magnetic materials, particularly on the nanoscale, as well as magnetic filter design offer new opportunities for industries that have challenging separation problems.

  18. Magnetic Separation - A computer simulation study

    Caciagli, A.

    2015-01-01

    Nanotechnology which involves magnetic particles has experienced, in the last decades, an impressive boost and magnetic nanoparticles have become an interesting research area on their own, finding applications in a rather broad range of techniques and devices, from waste-water treatment to new clinical and biomedical applications. Most notably, they occupy a relevant role in the framework of magnetic separation technology. However, due to their minute size, the actual separation of the magnet...

  19. Microfabricated Passive Magnetic Bead separators

    Hansen, Mikkel Fougt; Lund-Olesen, Torsten; Smistrup, Kristian; Bruus, Henrik

    2006-01-01

    The use and manipulation of functionalized magnetic beads for bioanalysis in lab-on-a-chip systems is receiving growing interest. We have developed microfluidic systems with integrated magnetic structures for the capture and release of magnetic beads. The systems are fabricated in silicon by deep...

  20. Wide aperture multipole magnets of separator COMBAS

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Its magneto-optical structure is based on strong focusing principle. The magnetic fields of analysing magnets M1, M2, M7, M8, contain quadrupole components of alternating sign that provide necessary beam focusing. Besides, all the magnets M1 - M8, contain sextupole and octupole field components, which minimizes the 2nd and 3rd order aberrations. All this allowed one to increase their apertures, to effectively form a beam of the required sizes, and to decrease the channel length. This implementation of wide aperture magnets with combined functions is unique for the separation technology. Three-components magnetic measurements of all the magnets were performed. The measured data allow reconstructing the 3D-distributions of the fields in all the magnets. 3D-maps are supposed to be used for particle trajectory simulations throughout the entire separator

  1. A superconducting magnetic separator with magnetically balanced matrix

    In a magnetic separator the field gradients around magnetized fibres (the matrix) are used to capture particles. To remove the particles from the fibres the background magnetic field must be reduced to zero. The large superconducting magnets which are used to produce the background field cannot be de-energised quickly (i.e. in less than 1000 s). As the separator is fully loaded in approximately 1000 s a way must be found to reduce the cleaning time significantly

  2. Magnetic separation of uranium from magnesium fluoride

    The attraction or repulsion of particles by a magnetic gradient, based on the respective susceptibilities, provides the basis for physical separation of particles that are comprised predominantly of uranium from those that are predominantly magnesium fluoride (MgF2). To determine the effectiveness of this approach, a bench-scale magnetic separator from the S.G. Frantz Co., Inc. was used. In the Frantz Model L-1, particles are fed through a funnel onto a vibration tray and through a magnetic field. The specific design of the Frantz magnet causes the magnetic field strength to vary along the width of the magnet, setting up a gradient. The tray in the magnetic field is split at a point about half way down its length so that the separated material does not recombine. A schematic is presented of Frantz Model L-1 CN - the same magnet configured for high gradient magnetic separation of liquid-suspended particles. Here different pole pieces create a uniform magnetic field, and stainless steel wood in the canister between the pole pieces creates the high gradient. 1 ref., 6 figs., 2 tabs

  3. Magnetic separation of uranium from magnesium fluoride

    Hoegler, J.M.

    1987-01-01

    The attraction or repulsion of particles by a magnetic gradient, based on the respective susceptibilities, provides the basis for physical separation of particles that are comprised predominantly of uranium from those that are predominantly magnesium fluoride (MgF/sub 2/). To determine the effectiveness of this approach, a bench-scale magnetic separator from the S.G. Frantz Co., Inc. was used. In the Frantz Model L-1, particles are fed through a funnel onto a vibration tray and through a magnetic field. The specific design of the Frantz magnet causes the magnetic field strength to vary along the width of the magnet, setting up a gradient. The tray in the magnetic field is split at a point about half way down its length so that the separated material does not recombine. A schematic is presented of Frantz Model L-1 CN - the same magnet configured for high gradient magnetic separation of liquid-suspended particles. Here different pole pieces create a uniform magnetic field, and stainless steel wood in the canister between the pole pieces creates the high gradient. 1 ref., 6 figs., 2 tabs.

  4. A PURPOSE ORIENTED MAGNETIC SEPARATOR: SKIMMER

    Salih Ersayin

    2005-08-09

    A magnetic separator was designed to selectively separate fine-liberated magnetite. The conceptual design was simulated using CFD techniques. A separator tank was fabricated and a magnetic drum was used to capture magnetic particles. The initial tank design was modified to eliminate application oriented problems. The new separator was able to produce a fine product as a concentrate at relatively high feed rates. A plant simulation showed that such a device could lower circulating loads around ball mills by 16%, thereby creating room for a 5-8% increase in throughput at the same energy level. However, it was concluded that further improvements in terms of both size and mineral selectivity are needed to have a marketable product.

  5. Microfluidic magnetic separator using an array of soft magnetic elements

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt; Tang, Peter Torben

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete...... capture of 1.0 mu m fluorescent magnetic beads from a 7.5 mu L sample volume traveling at an average linear fluid velocity of 5 mm/s....

  6. Densimetric Separation of Coal Using Magnetic Fluids

    Svoboda, J.

    2004-01-01

    Ferrohydrostatic separation of particles in magnetic fluids is a sink-float technique based on generalized Archimedes law whereby, in addition to the conventional force of gravity, a magnetically induced force also acts on the fluid. This additional magnetic pull creates a magnetically induced buoyancy force on a particle immersed in the fluid. This buoyancy force can be accurately controlled over a wide range and particles as dense as 20 000 kg/m3 can be made to float. The selectivity of sep...

  7. Development of magnetic separation system of magnetoliposomes

    Nakao, R.; Matuo, Y.; Mishima, F.; Taguchi, T.; Maenosono, S.; Nishijima, S.

    2009-10-01

    The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe 3O 4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe 3O 4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.

  8. Development of magnetic separation system of magnetoliposomes

    Nakao, R., E-mail: ryo-nakao@see.qb.eng.osaka-u.ac.j [Osaka University. Yamadaoka 2-1, Suita, Osaka, 565-0871 (Japan); Matuo, Y.; Mishima, F. [Osaka University. Yamadaoka 2-1, Suita, Osaka, 565-0871 (Japan); Taguchi, T. [Osaka University. Yamadaoka 2-1, Suita, Osaka, 565-0871 (Japan); University of Queensland, 4072, QLD (Australia); Maenosono, S. [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292 (Japan); Nishijima, S. [Osaka University. Yamadaoka 2-1, Suita, Osaka, 565-0871 (Japan)

    2009-10-15

    The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe{sub 3}O{sub 4} of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe{sub 3}O{sub 4} encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.

  9. Development of magnetic separation system of magnetoliposomes

    The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe3O4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe3O4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.

  10. A Continuous Throughput Micro Magnetic Cell Separator

    Inglis, David; Sturm, James C.; Austin, Robert H.

    2004-03-01

    Micro-fluidic total analysis systems for diagnosis, research and treatment require foolproof sorting and separation techniques. A bulk fluid sample invariably contains unwanted and useless matter that must be disposed of. The chip must first be able to separate the wheat from the chaff before doing any analysis. A micro-fluidic device that continuously separates blood cells from a whole blood sample via immunomagnetic labeling has been built. The device differentiates the flow of labeled cells from all other blood components such as RBC's, plasma, viruses, proteins and other unwanted blood components. A fluid sample passes over an array of micro-fabricated permanent magnets which alter the flow of cells tagged with magnetic beads. Separated target cells, for example CD4 positive WBCs, can then be passed on to subsequent phases on the TAS chip, ultimately allowing fast pheno and geno typing of cells from bulk fluid samples.

  11. Magnetically activated and guided isotope separation

    We propose a general method for efficient isotope separation. The principle of operation is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in an effusive atomic beam, followed by magnetic guiding. We show that scalability is feasible with this method. The application of this method towards production of highly enriched Li-7 for the nuclear industry is analyzed in detail, and extension to other elements is discussed. (paper)

  12. Electromagnetic Isotope Separator: Magnetic Measurement: Results

    The electromagnetic isotope separator of the University of Grenoble can produce isotope with a great purity. It has two magnets with non homogeneous field. The magnetic fields have been corrected with shims in order to obtain an accuracy of ±10-4 in the useful region. These shims have been determined experimentally by measurements. The great enrichment factors obtained, prove the quality of this apparatus. (author)

  13. Magnetic separation using a switchable system of permanent magnets (abstract)

    Watson, J. H. P.; Beharrell, P. A.

    1997-04-01

    Permanent magnets have been used in magnetic filtration, particularly in drum separators, thus, obviating the need for solenoids and electrical power. In the area of high gradient magnetic separation, which uses a matrix magnetized by an external field, the use of permanent magnets has been limited, because the field needs to be switched off periodically, due to the loss of filter efficiency owing to the accumulation of captured material, necessitating periodic cleaning. Cleaning requires the field in the matrix to be reduced, which is not possible with a nonswitchable field source. The solution presented here is to employ a novel arrangement of permanent magnets as the field source that permits the flux density in the matrix to be switched between distinct maximum and minimum levels. As a result, optimum capture is carried out with the field at maximum, then cleaning is accomplished by backwashing the filter with the field at minimum. The aim of this work is to develop a viable filtration system utilizing this principle. Early work has centered on a simple configuration of this system with two-dimensional symmetry and has demonstrated that the basic principles are sound. This apparatus has been incorporated into a separator using a ferromagnetic stainless steel wool matrix and its effectiveness demonstrated using paramagnetic wolframite particles. More sophisticated configurations are being developed with axial symmetry and with more powerful magnet materials, the basic outlines being optimized by means of computer-aided-design. It is anticipated that these subsequent models will provide the basis for a large operating volume, self-contained and fully reusable magnetic separation system.

  14. Separation of magnetic affinity biopolymer adsorbents in a Davis tube magnetic separator

    Šafařík, Ivo; Mucha, Pavel; Pechoč, Jiří; Stoklasa, Jaroslav; Šafaříková, Miroslava

    2001-01-01

    Roč. 23, - (2001), s. 851-855. ISSN 0141-5492 R&D Projects: GA ČR GA203/98/1145 Institutional research plan: CEZ:AV0Z6087904 Keywords : Davis tube * magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  15. A Study of Magnetic Aggregation—Gravity Separation for Separation of Coarse Magnetite Ores

    Yu–Shu, Zhang; De–Zhang, Luo; Shuyi, Liu

    1997-01-01

    This paper describes experiments on separation of coarse magnetite ores using magnetic aggregation—gravity separation (MAGS) process for the first time. The results show that the MAGS technology can have a coarser separation size as well as a higher grade of the the magnetic product than the traditional low—intensity magnetic separation technology.

  16. Fundamental study of phosphor separation by controlling magnetic force

    Highlights: •We tried to separate the phosphor using the magnetic Archimedes separation method. •In this method, vertical and radial components of the magnetic force were used. •We succeeded to separate HP and developed the continuous separation system. •The separation system enables successive separation and recovery of HP. -- Abstract: The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used

  17. Fundamental study of phosphor separation by controlling magnetic force

    Wada, Kohei, E-mail: kohei@qb.see.eng.osaka-u.ac.jp; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@qb.see.eng.osaka-u.ac.jp; Nishijima, Shigehiro

    2013-11-15

    Highlights: We tried to separate the phosphor using the magnetic Archimedes separation method. In this method, vertical and radial components of the magnetic force were used. We succeeded to separate HP and developed the continuous separation system. The separation system enables successive separation and recovery of HP. -- Abstract: The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  18. High Radiation Environment Nuclear Fragment Separator Magnet

    Kahn, Stephen [Muons, Inc., Batavia, IL (United States); Gupta, Ramesh [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the magnetic field are large and in order minimize the deformation of the coils, mechanical support must be provided. Since the support structure cannot be made of organic materials with minimal thermal conductivity, an optimization was explored comparing the amount of coil deformation that can be tolerated and the amount of heat leakage that can be endured. A test coil containing 500 m of HTS was constructed to be tested at the 40 K operating temperature. The anticipated heat load was simulated with heater strips to demonstrate that the heat could be removed and that the coil can operate in a stable state. The FRIB project has decided that using HTS coils for this magnet was too risky considering their time and funding constraints and has opted for a more conservative approach with conventional coils. As an outcome of this STTR project, it is likely that HTS coils operating at higher temperatures will have beneficial applications for future accelerator projects.

  19. Prediction of Separation Performance of Dry High Intensity Magnetic Separator for Processing of Para-Magnetic Minerals

    Tripathy, Sunil Kumar; Singh, Veerendra; Suresh, Nikkam

    2015-10-01

    High intensity dry magnetic separators are gaining popularity for the separation of para-magnetic minerals due to the cost economic factor. Induced roll magnetic separator is found to be an effective dry separator for the separation of fine particles. Separation efficiency of this separator depends on mineral characteristics and the design features of equipment along with the optimization of process variables. Present investigation focuses on the prediction and validation of separation performance of minerals while treating in induced roll magnetic separator. Prediction of the separation is expressed in terms of separation angle at which a particle leaves the rotor surface by using a modified particle flow model derived by Cakir. The validation of the model is carried by capturing the particle trajectory using an image analyzer. It is found that Cakir's mathematical model produces reliable results and a new model is proposed to increase the reliability of separation angle prediction by including the particle shape factor.

  20. Separation of magnetic fractions from coal by magnetic separation method. Paper no. IGEC-1-041

    The application of the magnetic separation method in the process of cleaning of the coal and the effect of the particular size of coal on the method was investigated in this study. The method is based on the fact that coal is weakly diamagnetic, while most of the minerals present are weakly to moderately paramagnetic. In the experimental studies, Manisa and Can lignites which have three different particular sizes (-1500+1000, -1000+500, -500+100 micron) were used. For the particular size of -1500+1000 micron, the magnetic fraction which was separated from Can lignite contained 24 % pyritic sulfur which was less than that of the ground coal. The amount of pyritic sulfur increased in the non-magnetic fraction of Manisa coal. The ash content of non-magnetic fraction which was separated from the particular size of -1000+500 micron of the Manisa coal reduced 20 %, while the value of calorie of coal was enhanced 15 % according to the ground coal. The amount of ash reduction in the non-magnetic fractions of Can lignites was slightly increased along with the value of calorie of coal was a little enhanced. (author)

  1. Separation of magnetic susceptibility components from magnetization curves

    Kosareva, L.; Nourgaliev, D.; Kuzina, D.; Spassov, S.; Fattakhov, A.

    2014-12-01

    Modern lake sediments are a unique source of information for climate changes, regionally and globally, because all environmental variations are recorded by these sediments with high resolution. The magnetic properties of Chernyshov Bay (Aral Sea) sediments we investigated from core number 4 (N45o57'04.2''; E59o17'14.3'') are taken at far water depth of 9.5 m. The length of the core is 4.16 m. Samples for measurements were taken to plastic sample boxes with internal dimensions 2x2x2 cm. Remanent magnetization curves were measured by coercivity spectrometer for the separate determination of the different contributions to the total bulk magnetic susceptibility. There was measured also magnetic susceptibility using MS2 susceptibility meter. Those operations were done for data comparison between 2 susceptibilities obtained from different equipment. Our goal is to decipher the magnetic susceptibility signal in lake sediments by decomposing the bulk susceptibility signal of a lake sediment sequence into ferromagnetic (χf), dia-/paramagnetic (χp) and superparamagnetic (χsp) components using data from remanent and indused magnetization curves Each of these component has a different origin: paramagnetic minerals are usually attributed to terrigenous sediment input, ferromagnetics are of biogenic origin, and superparamagnetic minerals may be of either biogenic or terrigenous origin. Comparison between susceptibility measurements of MS2-Bartington susceptometer and of the coercivity spectrometer has shown good correlation. The susceptibility values measured in two different equipment are fairly close and indicate thus the reliability the proposed method. In research also has shown water level changes in Aral Sea based on magnetic susceptibility. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University also by RFBR research projects No. 14-05-31376 - а, 14-05-00785- а.

  2. Magnetic force on a magnetic particle within a high gradient magnetic separator

    Highlights: ? Magnetic field and the gradient decide magnetic force on a particle in HGMS (High Gradient Magnetic Separation). ? We calculated the field and the gradient of a superconducting HGMS system by finite element method. ? We could calculate magnetic force on a particle consisting of major impurities in the condenser water of a thermal power station. -- Abstract: HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station

  3. Magnetic force on a magnetic particle within a high gradient magnetic separator

    Baik, S.K., E-mail: skbaik@keri.re.kr [Korea Electrotechnology Research Institute, Seongju-dong 28-1, Changwon (Korea, Republic of); Ha, D.W.; Kwon, J.M.; Lee, Y.J.; Ko, R.K. [Korea Electrotechnology Research Institute, Seongju-dong 28-1, Changwon (Korea, Republic of)

    2013-01-15

    Highlights: ► Magnetic field and the gradient decide magnetic force on a particle in HGMS (High Gradient Magnetic Separation). ► We calculated the field and the gradient of a superconducting HGMS system by finite element method. ► We could calculate magnetic force on a particle consisting of major impurities in the condenser water of a thermal power station. -- Abstract: HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station.

  4. High-gradient magnetic separation using ferromagnetic membrane

    Podoynitsyn, Sergey N.; Sorokina, Olga N.; Kovarski, Alexander L.

    2016-01-01

    The magnetic separator with the membrane separating unit made of laser-perforated thick ferromagnetic foil was tested using composite water suspension of magnetic nanoparticles adsorbed on hydroxylapatite microparticles. The average sizes of the particles in the suspension and the magnetic moment of the suspension were measured by dynamic light scattering and electron magnetic resonance correspondingly to evaluate the efficiency of the separation. It was shown experimentally that the separation is effected by the membrane type and the flow rate. Magnetic coarse grains (larger than 1 ?m) were captured by the membrane preferably and the magnetic moment of the suspension decreased by 20-25% after the separation. The magnetic field simulation and experimental results demonstrate the higher separation efficiency for thicker membranes.

  5. Creation of superconducting magnet separators for weakly magnetic mineral raw material processing

    Sidorenko, V.D.; Gerasimenko, I.A.; Kutin, A.M. [Mekhanobrchermet Inst., Krivoy Rog (Ukraine); Yupherov, V.B.; Skibenko, Y.I. [National Research Centre Kharkov Physico-Technical Inst. (Ukraine); Gladky, V.V. [Inst. of Low Temperature Physics and Engineering, Kharkov (Ukraine)

    1996-07-01

    The paper describes the investigations to work out the design and process parameters of superconducting commercial separators using laboratory units. The design features of the magnet system and the cryostat of the separator of the disk type for wet separation of weakly magnetic ores and non-ore materials are presented. The results of modelling the technological flowsheets for separation of various types of weakly magnetic material using SC magnetic separators are given. The necessity to further improve the magnetic separators in the direction of generation of the magnetic flux higher magnetic forces and densities is well-grounded.

  6. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  7. Density simulations in magnetic fluid-based separators

    Fofana, M.; Klima, M.S. [Pennsylvania State University, University Park, PA (United States). Mineral Processing Section

    1998-04-01

    The paper analyses the effect of magnet pole design on the magnetic field distribution in a magnet gap for a magnetic fluid-based separator using a finite element software package for magnet design. Results are compared to measured values. Good agreement was obtained between the simulated and experimental values. The effective densities of the magnetic fluid within the separation zone were modelled by combining magnetic field gradient values and fluid magnetization data. These results also compared well with the observed values. Moreover, the results confirmed the existence of density gradients within the separation zone. Simulation studies were used to demonstrate that non-uniformity in the effective density of the magnetic fluid could be reduced by magnet shape modification.

  8. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles

    Ijiri, Y.; Poudel, C.; Williams, P.S.; Moore, L R; Orita, T.; Zborowski, M.

    2013-01-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment...

  9. MSWI boiler fly ashes: magnetic separation for material recovery.

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. PMID:21306886

  10. Large-scale separation of magnetic bioaffinity adsorbents

    Šafařík, Ivo; Ptáčková, Lucie; Šafaříková, Miroslava

    2001-01-01

    Roč. 23, - (2001), s. 1953-1956. ISSN 0141-5492 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  11. Integrated acoustic and magnetic separation in microfluidic channels

    Adams, Jonathan; Thevoz, Patrick; Bruus, Henrik; Soh, H. Tom

    2009-01-01

    -based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 10......With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column...

  12. High gradient magnetic separation applied to environmental remediation

    High Gradient Magnetic Separation (HGMS) is an application of superconducting magnet technology to the separation of magnetic solids from other solids, liquids, or gases. The production of both high magnetic fields (>4 T) and large field gradients using superconducting magnet technology has made it possible to separate a previously unreachable but large family of paramagnetic materials. This is a powerful technique that can be used to separate widely dispersed contaminants from a host material and may be the only technique available for separating material in the colloidal state. Because it is a physical separation process, no additional waste is generated. We are applying this technology to the treatment of radioactive wastes for environmental remediation. We have conducted tests examining slurries containing nonradioactive, magnetic surrogates. Results from these studies were used to verify our analytical model of the separation process. The model describes the rate process for magnetic separation and is based on a force balance on the paramagnetic species. This model was used to support bench scale experiments and prototype separator design

  13. SLon Magnetic Separator Applied to Upgrading the Iron Concentrate

    Dahe, Xiong

    2003-01-01

    SLon vertical ring and pulsating high gradient magnetic separator is a new generation of a highly efficient equipment for processing weakly magnetic minerals[1–3]. It possesses advantages of a large beneficiation ratio, high recovery, a matrix that cannot easily be blocked and excellent performance. In the technical reform of upgrading the iron concentrate in Qi Dashan Mineral Processing Plant of Anshan Iron and Steel Company in 2001 to 2002, ten SLon-1750 magnetic separators were successfull...

  14. Magnetic-based microfluidic platform for biomolecular separation.

    Ramadan, Qasem; Samper, Victor; Poenar, Daniel; Yu, Chen

    2006-06-01

    A novel microfluidic platform for manipulation of micro/nano magnetic particles was designed, fabricated and tested for applications dealing with biomolecular separation. Recently, magnetic immunomagnetic cell separation has attracted a noticeable attention due to the high selectivity of such separation methods. Strong magnetic field gradients can be developed along the entire wire, and the miniaturized size of these current-carrying conductors strongly enhances the magnetic field gradient and therefore produces large, tunable and localized magnetic forces that can be applied on magnetic particles and confine them in very small spots. Further increases in the values of the generated magnetic field gradients can be achieved by employing miniaturized ferromagnetic structures (pillars) which can be magnetized by an external magnetic field or by micro-coils on the same chip. In this study, we demonstrate magnetic beads trapping, concentration, transportation and sensing in a liquid sample under continuous flow by employing high magnetic field gradients generated by novel multi-functional magnetic micro-devices. Each individual magnetic micro-device consists of the following components: 1. Cu micro-coils array embedded in the silicon substrate with high aspect ratio conductors for efficient magnetic field generation 2. Magnetic pillar(s) made of the magnetic alloy NiCoP for magnetic field focusing and magnetic field gradient enhancement. Each pillar is magnetized by its corresponding coil 3. Integrated sensing coil for magnetic beads detection 4. Microfluidic chamber containing all the previous components. Magnetic fields of about 0.1 T and field gradients of around 300 T/cm have been achieved, which allowed to develop a magnetic force of 3 x 10(-9) N on a magnetic particle with radius of 1 mum. This force is large enough to trap/move this particle as the required force to affect such particles in a liquid sample is on the order of approximately pN. Trapping rates of up to 80% were achieved. Furthermore, different micro-coil designs were realized which allowed various movement modes and with different step-sizes. These results demonstrate that such devices incorporated within a microfluidic system can provide significantly improved spatial resolution and force magnitude for quick, efficient and highly selective magnetic trapping, separation and transportation, and as such they are an excellent solution for miniaturized mu-total analysis systems. PMID:16688574

  15. Selective separation of coal feedstocks for conversion by magnetic separation techniques

    Hise, E.C.; Holman, A.S.

    1981-01-01

    The Open-Gradient Magnetic Separation (OGMS) technique can separate particles on the basis of small differences in magnetic susceptibility. The highly reactive coal macerals are diamagnetic while the minerals and less reactive macerals range from slightly diamagnetic to paramagnetic with the pyritic minerals exhibiting the greatest positive magnetic susceptibility. OGMS can spread a falling stream of fine coal into a spectrum permitting the physical separation of these several maceral and mineral groups. Several eastern bituminous coals have been selectively separated into five to ten fractions. Petrographic examination of these separated fractions shows a concentration of the maceral and mineral groups in the appropriate fractions. It is proposed that the selective separation of the most reactive macerals, as well as of those minerals that exhibit a catalytic effect, can enhance the efficiency of coal conversion.

  16. Application of HTS bulk magnet system to the magnetic separation techniques for water purification

    We have investigated the application of the HTS bulk magnets to the magnetic separation techniques for the waste water drained from the university laboratories. The study has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. A superconducting bulk magnet has the highest value of the trapped magnetic fields at the centre of the sample surface, showing a sharp gradient of the magnetic field on the surface. Magnetic force acting on magnetic particles in magnetic fields is given by the product of a magnetization of particles and a gradient of magnetic field. The HTS bulk is superior to a solenoid magnet which has a poor gradient in magnetic fields in a bore. The separation ratios of ferrite precipitates in the waste slurry were estimated by means of the high gradient magnetic separation method which requires iron filters in the water channel and open gradient magnetic separation without any filters. The magnetic separation using HTS bulk magnet is substantially effective for the practical water purification

  17. Highly efficient magnetic separation using five-aligned superconducting bulk magnet

    Fujishiro, Hiroyuki; Miura, Takashi; Naito, Tomoyuki [Faculty of Engineering, Iwate University, Morioka 020-8551 (Japan); Hayashi, Hidemi, E-mail: fujishiro@iwate-u.ac.j [Kyushu Electric Power Co., Inc., Fukuoka 815-8520 (Japan)

    2010-06-01

    We have constructed the highly efficient magnetic separation system using five-aligned superconducting bulk magnets, which has ten usable magnetic poles on both sides in open space. We applied the bulk magnet system to the magnetic separation of ferromagnetic particles (magnetite; Fe{sub 3}O{sub 4}) and paramagnetic ones ({alpha}-hematite; Fe{sub 2}O{sub 3}) dispersed in water for various average particle diameters d, flow speeds V{sub F} and initial concentrations C{sub 0} of the particles. The multi-bulk magnet system has been confirmed to be effective for the magnetic separation and the efficiency of the magnetic separation per one magnetic pole has been estimated using the theoretical relation.

  18. SLon Magnetic Separators Applied in the Ilmenite Processing Industry

    Dahe, Xiong

    2004-01-01

    SLon vertical ring pulsating high gradient magnetic separators possess the advantages of a large beneficial ratio, high processing efficiency, strong adaptability, high resistance of the magnetic matrix to clogging, and high equipment availability. In recent years, these separators have been successfully applied to the beneficiation of ilmenite ores at the Panzhihua Ilmenite concentrator, and several other ilmenite processing plants, promoting the rapid development of the ilmenite industry in...

  19. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian; Wolff, Anders; Hansen, Mikkel Fougt

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration of s...

  20. Estimation of magnet separation for magnetic suspension applications

    Parfitt, Maxwell

    2013-01-01

    This thesis describes a form of non-contact measurement using two dimensional hall effect sensing to resolve the location of a moving magnet which is part of a magnetic spring type suspension system. This work was inspired by the field of Space Robotics, which currently relies on solid link suspension techniques for rover stability. This thesis details the design, development and testing of a novel magnetic suspension system with a possible application in space and terrestrial based robotic...

  1. Electromagnet with two coils separated by magnetic wall

    The electromagnet comprises a magnetic core with a magnetic wall fixed to it separating two coaxial coils, a casing surrounding the coils and magnetically coupled to the wall, and a carrying face at the end of the casing, arranged so that the carrying force exerted by energising one of the coils is less than that exerted by energising the other. The invention applies for holding nuclear reactor control rods. The force exerted on a control rod can be varied with its position

  2. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M [Niigata University, 8050 Ikarashi-Nino-cho, Nishi-ku, Niigata 950-2181 (Japan); Yamaguchi, M [Japanese Super-conductivity Organization CO., LTD., 2-1-6 Etchujima, Koto, Tokyo, 135-8533 Japan (Japan); Yokoyama, K [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi, 326-8558 Japan (Japan); Noto, K [Professor Emeritus Iwate University, 3-19-27 Chomeigaoka, Izumi-ku Sendai, 981-3212 Japan (Japan)], E-mail: okat@eng.niigata-u.ac.jp

    2009-03-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  3. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  4. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Tsujimura, M. [Aichi Giken Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Terasawa, T. [IMRA Material R and D Co., Ltd., 2-1 Asahimachi, Kariya, Aichi 448-0032 (Japan)

    2013-01-15

    Highlights: ► The magnetic separation was operated for recycling the electroless plating waste. ► The HTS bulk magnet effectively attracted the ferromagnetic precipitates with Ni. ► The separation ratios over 90% were reported under flow rates up to 1.35 L/min. -- Abstract: The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni–P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  5. Simulation of recoil trajectories in gas-filled magnetic separators

    A computer code has been developed to simulate the production of heavy element compound nucleus recoils and their trajectories through gas-filled magnetic separators. The simulation is carried out in three steps: positions and trajectories of heavy element recoils in the target layer, propagation through remaining target material, and trajectories through the gas-filled separator. Separators with quite different magnetic configurations are modeled: the Berkeley gas-filled separator (BGS) and two magnetic configurations for the TransActinide separator and chemistry apparatus (TASCA). While computing trajectories through the gas-filled separator, special attention is paid to the charge exchange/equilibration and scattering in the gas. New features of these simulations include mixed He/H2/N2 gas operation and a gas density (pressure) effect. Numerical procedures used in the simulations are explained in detail. Results of the simulations are presented, showing the gas mixtures/pressures that result in the highest efficiency for collecting compound nucleus recoils at the focal plane of the gas-filled separator. Comparison between simulation and experimental results are presented for average recoil ion charge in various gases, focal plane image size, and magnetic rigidity dispersion

  6. Use of high gradient magnetic separation for actinide application

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ?0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  7. Study on industrial wastewater treatment using superconducting magnetic separation

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  8. Low field orientation magnetic separation methods for magnetotactic bacteria

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the range of motility inhibiting ions is such that MTB cannot be envisaged for general wastewater applications. Radionucleide studies were undertaken targeting a niche application where this metal ion restriction would not apply. Liquid scintillation and γ-ray counting measurements indicated that magnetotactic bacteria accumulate high levels of both plutonium and mercury. A number of both static and flow recovery separators for magnetotactic bacteria were developed. Statistical models predicting the behaviour of these separators were compared to measured results. These comparisons highlighted the problems of 'wash off' of accumulated bacteria in separators where flow was present. The most successful of the flow recovery designs - the channel separator - was then tested using a simulated effluent that contained plutonium. The results confirmed both previous radioisotope uptake studies and separator test results. The channel separator design was enhanced by the introduction of wire arrays into the separation chamber. Orientation magnetic separation in these hybrid-type separators was used to accumulate the biomass and the magnetic gradients generated by the wire arrays to retain the bacteria on the separator walls. These separators achieved increases in efficiency of up to 300% compared with the channel separator. In summary, this thesis describes a successful separation process for the recovery of motile MTB. However, to apply this separator approach to the suggested radioisotope application would require successful large scale culturing. (author)

  9. Bench-scale magnetic separation of Department of Energy wastes

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and 11 materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in an open-gradient mode with dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both open- and high-gradient modes and could be an important application of the technology

  10. Initial investigation of open-gradient magnetic separation

    Holman, A.S.; Hise, E.C.; Jones, J.E.

    1982-04-01

    This report presents an overview of initial investigations in the area of open-gradient magnetic separation (OGMS) for coal cleaning. The work with OGMS techniques was originally in support of high-gradient magnetic separation technology, but later efforts have been aimed explicitly at OGMS because of the simplicity and flexibility of this separation technique. The information contained in this report was obtained over a two-year period from tests conducted in two devices, each in different configurations, with a limited range of coal feed samples. Testing to date shows that OGMS is a viable method of separating materials based on differences in magnetic susceptibilities on a laboratory scale as well as with pilot-scale equipment. Test results with -600 + 150-..mu.. coal samples have produced results approaching those obtained with laboratory float-sink methods with respect to both quality and quantity. The parallel analytical effort indicates that better magnets can be designed to yield 2 to 3 times the separating force available with our current test magnets.

  11. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACSwhich consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tubewe could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  12. Open-gradient magnetic separation for physical coal cleaning

    Doctor, R.D.; Livengood, C.D.

    1990-01-01

    Open-Gradient Magnetic Separation (OGMS) using superconducting quadrupole magnets offers a novel beneficiation technology for removing pyritic sulfur from pulverized dry coal. It is estimated to have a power demand 75% lower than techniques using conventional electromagnets, while achieving higher separation forces. Additionally, the system operates in a continuous mode and uses no chemicals. Because OGMS is specifically applicable to finely ground coal (120--325 mesh), its development could encourage the commercialization of other unconventional coal technologies, such as coal-water slurries, fluidized-bed combustion, and synfuels. 3 figs., 1 tab.

  13. On heteroclinic separators of magnetic fields in electrically conducting fluids

    Grines, V; Pochinka, O; Zhuzhoma, E

    2014-01-01

    In this paper we partly solve the problem of existence of separators of a magnetic field in plasma. We single out in plasma a 3-body with a boundary in which the movement of plasma is of special kind which we call an (a-d)-motion. We prove that if the body is the 3-annulus or the "fat" orientable surface with two holes the magnetic field necessarily have a heteroclinic separator. The statement of the problem and the suggested method for its solution lead to some theoretical problems from Dynamical Systems Theory which are of interest of their own.

  14. Magnetic driven separation techniques - DNA isolation from probiotic food samples

    Trachtová, S.; Španová, A.; Prettl, Z.; Horák, Daniel; Rittich, B.

    Wroclaw : Institute of Immunology and Experimental Therapy Polish Academy of Science , 2013 - (Gamian, A.; Górska-Fraczek, S.). s. 27 ISBN 978-83-928488-3-7. [Polish-Czech Probiotics Conference /1./ - Microbiology and Immunology of Mucosa, Probiotics Conference 2013. 28.05.2013-31.05.2013, Kudowa Zdrój] R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : magnetic * DNA * separation Subject RIV: CB - Analytical Chemistry, Separation

  15. Ultrasound imaging for quantitative evaluation of magnetic density separation:

    Sanaee, S.A.

    2013-01-01

    This thesis is dedicated to an investigation of the potential and technological possibilities of an inline ultrasound system as a quality control system for wet recycling of solid waste. The main targeted recycling technology is magnetic density separation (MDS), a novel technique that was investigated and technologically matured in a project running in parallel to this work. In MDS, the easily magnetisable ferrofluid is used as the separation medium to sort different materials based on their...

  16. An experimental investigation of the effect of preliminary magnetization in magnetic separation

    The effects of preliminary magnetization on the high-gradient magnetic separation of hematite and uranium-gold leach residues were studied. It is shown that the pre-magnetization of anti-ferromagnetic hematite can enhance the recovery of iron and the grade of the magnetic product. The effect of pre-magnetization was found to increase with decreasing particle size, the recovery from the fraction -12 ?m increasing by 11% and the grade of the magnetic concentrate by 30%. The pre-magnetization of paramagnetic uranium-gold leach residues, however, reduced the recovery of uranium. It is suggested that the behaviour of a mineral with an ordered magnetic structure is related to magnetic viscosity. The capital and operating costs of the magnet required for pre-magnetization are assessed. (orig.)

  17. The study on optimization issues for magnetic separation by magnetic chromatography

    The magnetic chromatography is a very useful system for an ion and/or fine magnetic particle separation because it has strong magnetic field gradients even in a very narrow flow channel. We have not only developed the magnetic chromatography system to separate the fine particles and ions, but also the numerical analysis code based on the fluid dynamics and electromagnetism to investigate the separating characteristics and to optimize design of magnetic column. In this study, the simple experiments using a superconducting magnet with a large room-temperature-bore and a micro-scale magnetic column consisting of ferromagnetic wires were carried out to understand the ions separation. The cobalt chloride (CoCl2) and the nickel sulfate (NiSO4) were used as ions, and the magnetic field and length of magnetic column were used as a parameter in an experiment and an analysis. It can be expected that the ion mobility of a single and complex are quite different, and the ability of the separation will be improved by increasing the column length without external magnetic field.

  18. Matched filtering method for separating magnetic anomaly using fractal model

    Chen, Guoxiong; Cheng, Qiuming; Zhang, Henglei

    2016-05-01

    Fractal/scaling distribution of magnetization in the crust has found with growing body of evidences from spectral analysis of borehole susceptibility logs and magnetic field data, and fractal properties of magnetic sources have already been considered in processing magnetic data such as the Spector and Grant method for depth determination. In this study, the fractal-based matched filtering method is presented for separating magnetic anomalies caused by fractal sources. We argue the benefits of considering fractal natures of source distribution for data processing in magnetic exploration: the first is that the depth determination can be improved by using multiscaling model to interpret the magnetic data power spectrum; the second is that the matched filtering can be reconstructed by employing the difference in scaling exponent together with the corrected depth and amplitude estimates. In the application of synthetic data obtained from fractal modeling and real aeromagnetic data from the Qikou district of China, the proposed fractal-based matched filtering method obtains more reliable depth estimations as well as improved separation between local anomalies (caused by volcanic rocks) and regional field (crystalline basement) in comparison with the conventional matched filtering method.

  19. On Poor Separation in Magnetically Driven Shock Tube

    Chang, C.T.

    1973-01-01

    Observations made at steady-state running conditions in a magnetically driven shock tube, with parallel-plate electrodes, showed that for a given discharge voltage, sufficient separation between the shock and the current-sheet occurred only at relatively high discharge pressures. As a comparison......, poor separations were also noted in conventional diaphragm-type shock tubes running at low initial pressures. It is demonstrated that the observed poor separation can be explained by a mass leakage, instead of through the wall boundary layer, but through the current-sheet itself....

  20. Passive magnetic separator integrated with microfluidic mixer: Demonstration of enhanced capture efficiency

    Lund-Olesen, Torsten; Bruus, Henrik; Hansen, Mikkel Fougt

    In this paper, we present two results: (1) a new method for quantifying the efficiency of magnetic bead separators by magnetic measurements, and (2) a new idea for designing efficient magnetic bead separators. For microfluidic magnetic separators, a limiting factor for the capture of magnetic beads...... enhances the bead capture-and-release efficiency....

  1. Separation of the Magnetic Field into External and Internal Parts

    Olsen, Nils; Glassmeier, K.-H.; Jia, X.

    The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal...

  2. Magnetic separation as a plutonium residue enrichment process

    Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

    1989-01-01

    We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

  3. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  4. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable

  5. Magnetic separation using high-T sub c superconductors

    Bolt, L

    2001-01-01

    sensitivity of the high-T sub c material to magnetic fields. Finite elements modelling of the system has provided the framework for the quantitative analysis of the magnetic field distributions on the coil windings and the optimisation of the system configuration. The performance of the separator has been tested at 77 K with liquid nitrogen at atmospheric pressure, and at a temperature approx = 67 K by pumping liquid nitrogen at a pressure around 100 Torr. The highest field obtained in the air gap at 67 K was of 340 mT. Magnetic separators with an iron circuit have been in operation for many years in mineral industry, and there appear to be an opportunity of building machines with high-T sub c coils or retrofitting existing machines with high-T sub c coils to run them closer to saturation in a cheap and effective way. Superconductivity has found in magnetic separation one of its major industrial applications second only to magnetic resonance imaging. Low-T sub c superconducting coils have been employed in Hig...

  6. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation

    Research highlights: → Red mud residues (RM) were disposed in alumina production. → Utilization of Red mud residues was affected by its iron content. → Superconducting magnetic separation (HGSMS) was used in iron separation from RM. → RM with high and low iron contents were separated in HGSMS. - Abstract: The disposal of bayer red mud tailings now seriously threats the environment safety. Reduction and recycling of red mud is now an urgent work in aluminum industry. High gradient superconducting magnetic separation (HGSMS) system was applied to separate the extreme fine RM particles (<100 μm) into high iron content part and low iron content part. Two sorts of RM were fed in the HGSMS. The iron oxide contents in concentrates were about 65% and 45% when RM 1 and RM 2 were fed respectively. Meanwhile, the residues contained 52.0% or 14.1% iron oxide in residues after eight separation stages when RM 1 and RM 2 were fed respectively. The mass recovery of iron concentrates was about 10% after once separation process regardless of RM 1 or RM 2 was fed. Extreme fine particles (<10 μm) could be captured in the HGSMS. Intergrowth of Fe and other elements is disadvantages for iron mineral separation from RM by HGSMS. Some improvement should be studied to enhance the efficiency of iron separation. It is possible for HGSMS to separate RM into high iron content part and low iron content part, the former part could be used in iron-making furnace and the later part could be recycling to sintering process for alumina production or used as construction material.

  7. Investigation of open-gradient magnetic separation for Illinois coal

    Doctor, R.D.; Livengood, C.D.; Genens, L.E.; Swietlik, C.E.; Foote, K.

    1987-01-01

    Open-gradient magnetic separation (OGMS) using superconducting quadrupole magnets is a novel coal-beneficiation technology offering high pyritic-sulfur removal from pulverized dry coal. The system operates in a continuous mode, uses no chemicals, and has an estimated power demand 75% lower than techniques using conventional electromagnets, while achieving magnetic separation forces up to 267% higher. Specifically applicable to finely ground coal (120 to 325 mesh), OGMS could encourage the commercialization of other developing coal technologies, such as coal-water slurries, fludized-bed combustion, and coal synfuels. Both the experimental program conducted by Argonne National Laboratory and the results of modeling in support of the experimental program are described. 11 refs., 9 figs.

  8. Tank waste remediation system milestone report magnetic separation of tank waste: Surrogate system separations report

    Avens, L.R.; Worl, L.A.; Schake, A.R.; Padilla, D.D.; de Aguero, K.J.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.

    1994-01-14

    High-level radioactive waste (HLW) has been stored in large underground storage tanks (UST) at the US Department of Energy`s Hanford Site since 1944. More than 253,000 m{sup 3} of waste have been accumulated in 177 tanks. The waste consists of many different chemicals and are in the form of liquids, slurries, salt cakes and sludges. A magnetic separation effort at Los Alamos National Laboratory is funded through the Tank Waste Remediation System (TWRS) to explore the use of high-gradient magnetic separation (HGMS) for tank waste segregation. The concept is to concentrate into a low volume waste stream, all or most of the magnetic components, which include actinide compounds, most of the fission products and precious metals. As a first step in this process investigations were made on surrogate systems. This milestone report discusses the HGMS results on these systems.

  9. RESEARCH ON MAGNETIC SORTING AND SEPARATION TECHNIQUES FOR MATERIALS USED IN AUTOMOBILE CONSTRUCTION

    Gheorghe AMZA; Dan DOBROTA; Zoia APOSTOLESCU

    2013-01-01

    The main sorting process are: separation based on density; on magnetic properties; on melting properties; on friction and piece shape; on interface properties, on chemical composition etc. This paper shows some contributions regarding magnetic separation. Magnetic separation based on permanent magnets are using to treat materials smaller than 50 mm, high intensity magnetic separators are used to recover magnetic and ferro-silicon, for removal of iron aluminium, a complex material consisting o...

  10. The electromagnetic design of a permanent magnet based separator

    The aim of this work was to design a permanent magnet based device that can selectively transport paramagnetic particles. Using specialised electromagnetic design software various arrangements of permanent magnets have been investigated. Each test geometry had to be constructively simple and able to produce highly non-uniform magnetic fields before being considered further in any more detail. The main parameter to indicate that the test geometry might be a suitable device has been ascribed to the ratio η between the highest (ON) and lowest (OFF) magnetic fields that were measured. A linear arrangement of permanent magnets has been considered first. This device produced a ratio η ∼ 2. Further, the cylindrical and the tubular arrangements may be considered as substantial improvements over the first geometry. The OFF magnetic fields have been substantially reduced by the method of magnetic shielding. Intensive research and modelling has been spent on addressing the problem of finding the optimal geometry for such arrangements. An experimental system has been also built, and the experimental values were compared against the theory. However, the results produced evidence that the manufacturing of any improved geometry (an estimated η ∼ 100) in this direction might be very difficult, for the tolerances involved were very strict. The disk arrangement was the latest device to be investigated. Particularly, a magnetic dipole model developed earlier for the ring arrangement suggested the way in which to arrange the magnets in the ON position. Moreover, the use of the magnetic symmetry of the device forced the OFF magnetic fields to negligible values. Detailed computer simulations of the dynamics of the particles in the applied magnetic field of the tubular and disk arrangements have been earned out. The adopted models could show realistic phenomena, e.g. particle clustering, chaining, block movement, etc. The separation efficiency proved to be nearly 100%. For the disk arrangement the minimum paramagnetic susceptibility of the particle that could be transported has been χ ∼ 10-4. In addition, the particle radii had little influence on the functioning of this magnetic separation device. (author)

  11. Waste water purification by magnetic separation technique using HTS bulk magnet system

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  12. Magnetic separation as a plutonium residue enrichment process

    Several plutonium contaminated residues have been subjected to Open Gradient Magnetic Separation (OGMS) on an experimental scale. OGMS experiments on graphite and bomb reduction residues resulted in a plutonium rich fraction and a plutonium lean fraction. Values for the bulk quantity rejected to the lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the lean fraction plutonium content was too high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. 6 refs., 1 fig., 9 tabs

  13. Magnetic nano-sorbents for fast separation of radioactive waste

    In order to find a cost effective and environmentally benign technology to treat the liquid radioactive waste into a safe and stable form for resource recycling or ultimate disposal, this study investigates the separation of radioactive elements from aqueous systems using magnetic nano-sorbents. Our current study focuses on novel magnetic nano-sorbents by attaching DTPA molecules onto the surface of double coated magnetic nanoparticles (dMNPs), and performed preliminary sorption tests using heavy metal ions as surrogates for radionuclides. The results showed that the sorption of cadmium (Cd) and lead (Pb) onto the dMNP-DTPA conjugates was fast, the equilibrium was reached in 30 min. The calculated sorption capacities were 8.06 mg/g for Cd and 12.09 mg/g for Pb. After sorption, the complex of heavy elements captured by nano-sorbents can be easily manipulated and separated from solution in less than 1 min by applying a small external magnetic field. In addition, the sorption results demonstrate that dMNP-DTPA conjugates have a very strong chelating power in highly diluted Cd and Pb solutions (1-10 ?g/L). Therefore, as a simple, fast, and compact process, this separation method has a great potential in the treatment of high level waste with low concentration of transuranic elements compared to tradition nuclear waste treatment. (authors)

  14. Advantage of combining magnetic cell separation with sperm preparation techniques.

    Said, Tamer M; Grunewald, Sonja; Paasch, Uwe; Glander, Hans-Juergen; Baumann, Thomas; Kriegel, Christian; Li, Liang; Agarwal, Ashok

    2005-06-01

    The selection of vital, non-apoptotic spermatozoa is a prerequisite for achieving optimal conception rates in assisted reproductive techniques. Magnetic cell sorting using annexin-V microbeads can effectively separate apoptotic and non-apoptotic spermatozoa. The objective of the present study was to optimize the integration of magnetic cell sorting in standard sperm preparations and to correlate the effect of different sperm preparation procedures on apoptotic markers. Semen specimens collected from 15 healthy donors were prepared by either density gradient centrifugation or by one-step sperm wash technique separately and in combination with magnetic cell sorting. The preparation methods were evaluated by assessment of semen parameters (motility, viability and morphology) as well as markers of apoptosis (levels of active caspase-3, integrity of membrane mitochondrial potential and externalization of phosphatidylserine). The apoptotic markers were measured using fluorochrome dyes coupled with flow cytometry. The results showed that the combination of density gradient centrifugation and annexin-V magnetic cell sorting was superior to all other sperm preparation methods in terms of providing motile, viable and non-apoptotic spermatozoa. This study clearly shows the advantage of integrating magnetic cell sorting as a part of sperm preparation, which in turn may positively affect the success rates of assisted reproductive techniques. PMID:15970004

  15. Low-Intensity Magnetic Separation: Principal Stages of a Separator Development – What is the Next Step?

    Bikbov, M. A.; Karmazin, V. V.; Bikbov, A. A.

    2004-01-01

    An analysis of the technological limitations of magnetite quartzite beneficiation illustrated the imperfections of the traditional classification by size. As an alternative to size classification, separation by the degree of magnetite grain liberation can be employed. Comparative analysis of the mineral phase properties of the magnetic separation feed and its magnetic product has confirmed that wet drum magnetic separators currently used for wet treatment of magnetite ores have a low selectiv...

  16. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  17. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil

  18. Magnetic Separation for Nuclear Material Detection and Surveillance

    A high performance superconducting magnet is being developed for particle retrieval from field collected samples. Results show that maximum separation effectiveness is obtained when the matrix fiber diameter approaches the diameter of the particles to be captured. Experimentally, the authors obtained a single particle capture limit with 0.8microm PuO2 particles with dodecane as a carrier fluid. The development of new matrix materials is being pursued through the controlled corrosion of stainless steel wool, or the deposition of nickel dendrites on the existing stainless steel matrix material. They have also derived a model from a continuity equation that uses empirically determined capture cross section values. This enables the prediction of high gradient magnetic separator performance for a variety of materials and applications. The model can be used to optimize the capture cross section and thus increase the capture efficiency

  19. Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle

    Liu, Zhuonan; Yang, Huihui; Zhang, Hao; Huang, Chuanjun; Li, Laifeng

    2012-12-01

    In the present work, oil-field wastewater purification through superconducting magnetic separation technique using a novel magnetic nanoparticle was investigated. The magnetic nanoparticle, which has a multi-shell structure with ferroferric oxide as core, dense nonporous silica as inter layer and mesoporous silica as outer layer, was synthesized by co-precipitation method. To functionalize the magnetic nanoparticle, plasma polymerization technique was adopted and poly methyl acrylate (PMA) was formed on the surface of the nanoparticle. The multi-shell structure of the nanoparticle was confirmed by transmission electron microscope (TEM) and the characteristic is measurable by FTIR. It is found that most of the pollutants (85% by turbidity or 84% by COD value) in the oil-field wastewater are removed through the superconducting magnetic separation technique using this novel magnetic nanoparticle.

  20. Design of Power Magnetic Chute Separator and Minimization of its External Magnetic Field

    Karban, P.; Ulrych, B.; Doležel, Ivo

    St. Petersburg : St. Petersburg Polytechnical University, 2005, s. 1-4. ISBN 5-93208-034-0. [International Conference on 2005 IEEE St. Petersburg PowerTech [0046062]. St. Petersburg (RU), 27.06.2005-30.06.2005] Institutional research plan: CEZ:AV0Z20570509 Keywords : magnetic separator * magnetic field * numerical analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Theoretical Assessment of Technological Potential of Magnetic and Electrical Separation

    Karmazin, V. V.

    1997-01-01

    Magnetic, electrical an combined methods of mineral beneficiation are widely used in various branches of mining industry. These processes have significant economic and ecological advantages in those areas where they can be applied technologically. It is thus necessary to analyse technological possibilities and areas of potential applications. Different designs of the separators must also be considered. Such an attempt is being done in this article based on the assessment of the level of diffe...

  2. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 μm with 4 wt.% over 100 μm and content metallic iron of 93 wt%. (author)

  3. Rapid cycling synchrotron magnet with separate ac and dc circuit

    In present rapid cycling synchrotron magnets ac and dc currents flow in the same coil to give the desired field. The circuit reactance is made zero at dc and the operating frequency by running the magnet in series with an external parallel resonant LC current. We propose to return the ac flux in a gap next to the synchrotron. The dc coil encloses the ac magnetic circuit and thus links no ac flux. A shorted turn between the dc coil and ac flux enhances the separation of the two circuits. Several interesting developments are possible. The dc coil could be a stable superconductor to save power. The ac flux return gap could be identical with the synchrotron gap and contain a second synchrotron. This would double the output of the system. If the return flux gap were used for a booster, the ac coil power could be greatly reduced or radiation hardening of the ac coil could be simplified

  4. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    Buchholz, B.A.; Nunez, L.; Vandegrift, G.F.

    1995-05-01

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 {mu}m) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity {sup 60}Co {gamma}-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO{sub 3} solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles.

  5. Loss separation for dynamic hysteresis in magnetic thin films

    Colaiori, F; Zapperi, S; Colaiori, Francesca; Durin, Gianfranco; Zapperi, Stefano

    2006-01-01

    We develop a theory for dynamic hysteresis in ferromagnetic thin films, on the basis of the phenomenological principle of loss separation. We observe that, remarkably, the theory of loss separation, originally derived for bulk metallic materials, is applicable to disordered magnetic systems under fairly general conditions regardless of the particular damping mechanism. We confirm our theory both by numerical simulations of a driven random--field Ising model, and by re--examining several experimental data reported in the literature on dynamic hysteresis in thin films. All the experiments examined and the simulations find a natural interpretation in terms of loss separation. The power losses dependence on the driving field rate predicted by our theory fits satisfactorily all the data in the entire frequency range, thus reconciling the apparent lack of universality observed in different materials.

  6. Possibility of the superconducting magnet systems application at dry magnetic separation of coal

    Pitel, J.; Chovanec, F. (Slovenska Akademia Vied, Bratislava (CS). Inst. of Electrical Engineering); Hencl, V. (Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Geologie a Geotechniky)

    1990-09-01

    The results of the laboratory scale dry separation of two samples of Czecho-Slovak brown coal using a superconducting open-gradient magnetic separator (OGMS) and a high-gradient magnetic separator (HGMS) are reported. To perform the OGMS experiments, we developed a superconducting magnet system capable of reaching a value f{sub r} = 110 T{sup 2}/m for the radial magnetic force density component at the separation zone in a 90 mm diameter warm bore. As for HGMS, using a matrix of ferromagnetic stainless steel rods located in the 140 mm diameter warm bore of a simple superconducting solenoid, we showed that it was sufficient to work with magnetic induction up to 2.5 T. More encouraging results were obtained with the HGMS method than with the OGMS method. The difference in recovery of total sulfur in the magnetic fraction for the two samples was 40% and 13% higher. Recovery of ash was 23% and 8% higher in favour of HGMS. The experiments were performed in partly optimized conditions requiring the loss of combustibles to be less than 10%. However, the lower efficiency of the OGMS method is compensated for by the simple construction and method of working of the separator. (author).

  7. Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales

    Smistrup, Kristian; Bu, Minqiang; Wolff, Anders; Bruus, Henrik; Hansen, Mikkel Fougt

    2008-01-01

    We present a theoretical analysis of a new design for microfluidic magnetic bead separation. It combines an external array of mm-sized permanent magnets with magnetization directions alternating between up and down with mu m-sized soft magnetic structures integrated in the bottom of the separation...

  8. Magnetically separable titania-coated nickel ferrite photocatalyst

    Chung, Yun Seup; Park, Seung Bin; Kang, Duk-Won

    2004-08-15

    A magnetically separable photocatalyst was prepared by a continuous multi-step spray pyrolysis process. In the first step, nickel ferrite core particles were prepared by an ultrasonic spray pyrolysis. In the second step, tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) were sequentially injected and coated on the surface of the core particles. The sequentially coated layers were decomposed to form silica and titania layers in a final furnace reactor. The titania-silica layered particles displayed higher photoactivity than particles coated only with titania and titania-silica mixture-coated particles. The photoactivity of the titania-silica layered particles remained unchanged after magnetic separation and washing. This confirms that the adhesion between the core particles and the coated layer is strong enough to withstand vigorous mixing. It also implies that the formation of free particles of silica or titania is negligible in the second reactor. The strong adhesion between the coated layer and the nickel ferrite core is attributed to the features of the multi-step process, wherein the core particles are exposed to high temperate in the second reactor for only a few seconds and transformation of the core particles into non-magnetic particles is prohibited.

  9. Magnetically separable titania-coated nickel ferrite photocatalyst

    A magnetically separable photocatalyst was prepared by a continuous multi-step spray pyrolysis process. In the first step, nickel ferrite core particles were prepared by an ultrasonic spray pyrolysis. In the second step, tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) were sequentially injected and coated on the surface of the core particles. The sequentially coated layers were decomposed to form silica and titania layers in a final furnace reactor. The titania-silica layered particles displayed higher photoactivity than particles coated only with titania and titania-silica mixture-coated particles. The photoactivity of the titania-silica layered particles remained unchanged after magnetic separation and washing. This confirms that the adhesion between the core particles and the coated layer is strong enough to withstand vigorous mixing. It also implies that the formation of free particles of silica or titania is negligible in the second reactor. The strong adhesion between the coated layer and the nickel ferrite core is attributed to the features of the multi-step process, wherein the core particles are exposed to high temperate in the second reactor for only a few seconds and transformation of the core particles into non-magnetic particles is prohibited

  10. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO2) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO2 was coagulated with magnetite particles using FeCl3·6 H2O at a fixed pH value. Magnetic separation of coagulated TiO2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO2 powder. The magnetic separation of TiO2–magnetite coagulate from solution proved to be efficient around pH:8

  11. Plasma separation process: Magnet move to Oak Ridge National Laboratory

    This is the final report on the series of operations which culminated with the delivery of the Plasma Separation Process prototype magnet system (PMS) to Building K1432 at Oak Ridge National Laboratory (ORNL). This procedure included real time monitoring of the cold mass support strut strain gauges and an in-cab rider to monitor the instrumentation and direct the driver. The primary technical consideration for these precautions was the possibility of low frequency resonant vibration of the cold mass when excited by symmetrical rough road conditions at specific speeds causing excess stress levels in the support struts and consequent strut failure. A secondary consideration was the possibility of high acceleration loads due to sudden stops, severe road conditions, of impacts. The procedure for moving and transportation to ORNL included requirements for real time continuous monitoring of the eight strut stain gauges and three external accelerometers. Because the strain gauges had not been used since the original magnet cooldown, it was planned to verify their integrity during magnet warmup. The measurements made from the strut strain gauges resulted in stress values that were physically impossible. It was concluded that further evaluation was necessary to verify the usefulness of these gauges and whether they might be faulty. This was accomplished during the removal of the magnet from the building. 6 figs., 1 tab

  12. Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

    Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.

    2015-01-01

    Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980

  13. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  14. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom.

    Wegrowe, J-E; Olive, E

    2016-03-16

    The Landau-Lifshitz-Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times. PMID:26871542

  15. An open gradient magnetic separator assembled using NdFeB magnets for a use of fine particles remover

    A drum type magnetic separator was designed and optimized by computer simulation. The separator consisted of rotating outer shell of drum, magnetic flux generator drum which was assembled with numbers of disk type magnet holders, and drum axis around which the magnet holders were fixed. NdFeB magnet blocks were inserted into the disks, and the disks were assembled layer by layer along the drum axis. Magnetic circuits of the separator were simulated on the basis of highest magnetic strength, least cost, and high yield of separation by using a vector field S/W employing the opera-2D program. The separator proved a separation yield of 95% in removing fine iron-base particles, and installed at hot rolling mill of Pohang iron and steel co. in Korea. (orig.)

  16. Correlations, spin-charge separation, and magnetic anisotropy

    Skomski, Ralph; Manchanda, Priyanka

    2015-03-01

    Much of the physics of condensed matter reflects electron-electron correlations. On an independent-electron level, correlations are described by a single Slater determinant with broken spin symmetry. This approach includes Hund's rule correlations as well the LSDA and LSDA+U approximations to density-functional theory (DFT). However, from Kondo and heavy-fermion systems it is known that the independent-electron approach fails to describe spin-charge separation in strongly correlated systems, necessitating the use of two or more Slater determinants. Using first-principle and model calculations, we show that spin-charge separation strongly affects the leading rare-earth anisotropy contribution in top-end permanent magnet materials such as Nd2Fe14B and SmCo5. Explicit correlation results are obtained for two limiting cases. First, we derive the density functional for tripositive rare-earth ions in a Bethe-type crystal field. The potential looks very different from the LSDA(+U) potentials, including gradient corrections. Second, we use a simple model to show that Kondo-type spin-charge separation yield a rare-earth anisotropy contribution absent in the independent-electron approach. This research is supported by DOE (DE-FG02-04ER46152).

  17. Thorium-uranium processing with gravity, magnetic and electrical separation in zarigan ore deposit

    Because of low grade of thorium and uranium in the Zarigan mineral deposit, the pre-concentration operation prior to leaching is necessary. From X-ray diffraction analysis results, it was clear that this ore has large amount of other minerals such as Feldespat, Quartz, Hematite, Titanomagnetite, and rare earths. In this paper the thorium enhancement grade in Zarigan deposit by using gravity, magnetic and electrical separations methods is reported. The output of a Jaw crusher was ground to 85 micron by using ball mill. Then about 95% of SiO2 was separated by using shaking table separation. The heavy concentrate of shaking table was processed by a high intensity magnetic separator and then the magnetic concentrate separated by a low intensity magnetic separator. Finally, the non magnetic concentrate of low magnetic separator was processed with the electrical separation. The grades of thorium and uranium in the non magnetic concentrate of low magnetic separator were increased to 4000 and 5000 ppm, respectively where only 15% of the initial feed (ore) was transferred to this concentrate. Therefore, this resulted in a decrease of acid consumption in the leaching processes and the efficiency enhancement of the process. The pre-treatment circuit of this ore was designed as Jaw crusher/ball mill/shaking table/high-magnetic separator/low-magnetic separator/electrical separator, respectively.

  18. Magnetic separation - Advanced nanotechnology for future nuclear fuel recycle

    Kaur, M.; Zhang, H.; Qiang, Y. [Department of Physics and Environmental Science, University of Idaho, Moscow, ID 83844 (United States); Martin, L.; Todd, T. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-07-01

    The unique properties of magnetic nanoparticles (MNPs), such as their extremely small size and high surface area to volume ratio, provide better kinetics for the adsorption of metal ions from aqueous solutions. In this work, we demonstrated the separation of minor actinides using complex conjugates of MNPs with diethylenetriamine-pentaacetic acid (DTPA) chelator. The sorption results show the strong affinity of DTPA towards Am (III) and Pu (IV) by extracting 97% and 80% of actinides, respectively. It is shown that the extraction process is highly dependent on the pH of the solution. If these long-term heat generating actinides can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. (authors)

  19. Demonstration of magnetically activated and guided isotope separation

    Mazur, Thomas R.; Klappauf, Bruce; Raizen, Mark G.

    2014-08-01

    Enriched isotopes are widely used in medicine, basic science and energy production, and the need will only grow in the future. The main method for enriching stable isotopes today, the calutron, dates back over eighty years and has an uncertain future, creating an urgent need, especially in nuclear medicine. We report here the experimental realization of a general and efficient method for isotope separation that presents a viable alternative to the calutron. Combining optical pumping and a unique magnet geometry, we observe substantial depletion of Li-6 throughput in a lithium atomic beam produced by an evaporation source over a range of flux. These results demonstrate the viability of our method to yield large degrees of enrichment in a manner that is amenable to industrial scale-up and the production of commercially relevant quantities.

  20. Magnetic separation - Advanced nanotechnology for future nuclear fuel recycle

    The unique properties of magnetic nanoparticles (MNPs), such as their extremely small size and high surface area to volume ratio, provide better kinetics for the adsorption of metal ions from aqueous solutions. In this work, we demonstrated the separation of minor actinides using complex conjugates of MNPs with diethylenetriamine-pentaacetic acid (DTPA) chelator. The sorption results show the strong affinity of DTPA towards Am (III) and Pu (IV) by extracting 97% and 80% of actinides, respectively. It is shown that the extraction process is highly dependent on the pH of the solution. If these long-term heat generating actinides can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. (authors)

  1. Titania deposited on soft magnetic activated carbon as a magnetically separable photocatalyst with enhanced activity

    Magnetically separable composite photocatalysts, TiO2 deposited on soft magnetic ferrite activated carbon (TFAC), were prepared by sol-gel and dip-coating technique. The prepared composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectra (FTIR), optical absorption spectroscopy, vibrating sample magnetometer (VSM) and nitrogen adsorption. These photocatalysts exhibited enhanced photocatalytic activity compared to Degussa P25 for the degradation of methyl orange (MO) in aqueous solution. The kinetics of MO degradation was well fitted to the Langmuir-Hinshelwood model. The samples showed good magnetic response and could be completely recovered by an external magnet. Furthermore, the photocatalysts could maintain high photocatalytic activity after five cycles, and the degradation rate of MO was still close to 90%.

  2. Tracing magnetic separators and their dependence on IMF clock angle in global magnetospheric simulations

    Komar, C M; Dorelli, J C; Glocer, A; Kuznetsova, M M

    2013-01-01

    A new, efficient, and highly accurate method for tracing magnetic separators in global magnetospheric simulations with arbitrary clock angle is presented. The technique is to begin at a magnetic null and iteratively march along the separator by finding where four magnetic topologies meet on a spherical surface. The technique is verified using exact solutions for separators resulting from an analytic magnetic field model that superposes dipolar and uniform magnetic fields. Global resistive magnetohydrodynamic simulations are performed using the three-dimensional BATS-R-US code with a uniform resistivity, in eight distinct simulations with interplanetary magnetic field (IMF) clock angles ranging from 0 (parallel) to 180 degrees (anti-parallel). Magnetic nulls and separators are found in the simulations, and it is shown that separators traced here are accurate for any clock angle, unlike the last closed field line on the Sun-Earth line that fails for southward IMF. Trends in magnetic null locations and the struc...

  3. A study on a magnetic separation of radioactive corrosion products from NPP using permanent magnets

    It is important to emphasize that the current trend to longer fuel cycles (18-24 months) has complicated the dilemma of finding optimum chemical condition for the primary coolant because of some problems such as increase of radioactive corrosion products, possibility of axial offset anomaly and so on. Radioactive corrosion products which are generated by the neutron activation of general corrosion products at a nuclear power plant are the major source of occupational radiation exposure. Generally, radioactive corrosion products exit in soluble and insoluble forms, and are removed by ion exchangers and purification filters. Most of the insoluble radioactive corrosion products have the characteristic of showing strong ferrimagnetism. Along with the new development and production of permanent magnets (rare earth magnets) which generate much stronger magnetic fields than conventional permanent magnets, a new type of magnetic filter is suggested that can efficiently separate corrosion products using rotation of permanent magnets. This new magnetic filter reveals good performance results in filtering magnetite, cobalt ferrite and nickel ferrite from aqueous coolant simulation

  4. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  5. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  6. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    Safarik, Ivo; Horska, Katerina; Martinez, Lluis M.; Safarikova, Mirka

    2010-12-01

    A simple procedure for large scale isolation of Solanum tuberosum tuber lectin from potato starch industry waste water has been developed. The procedure employed magnetic chitosan microparticles as an affinity adsorbent. Magnetic separation was performed in a flow-through magnetic separation system. The adsorbed lectin was eluted with glycine/HCl buffer, pH 2.2. The specific activity of separated lectin increased approximately 27 times during the isolation process.

  7. Exploiting Size-Dependent Drag and Magnetic Forces forSize-Specific Separation of Magnetic Nanoparticles

    Hunter B. Rogers

    2015-08-01

    Full Text Available Realizing the full potential of magnetic nanoparticles (MNPs in nanomedicinerequires the optimization of their physical and chemical properties. Elucidation of the effectsof these properties on clinical diagnostic or therapeutic properties, however, requires thesynthesis or purification of homogenous samples, which has proved to be difficult. Whileinitial simulations indicated that size-selective separation could be achieved by flowingmagnetic nanoparticles through a magnetic field, subsequent in vitro experiments wereunable to reproduce the predicted results. Magnetic field-flow fractionation, however, wasfound to be an effective method for the separation of polydisperse suspensions of iron oxidenanoparticles with diameters greater than 20 nm. While similar methods have been used toseparate magnetic nanoparticles before, no previous work has been done with magneticnanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM anddynamic light scattering (DLS analysis were used to confirm the size of the MNPs. Furtherdevelopment of this work could lead to MNPs with the narrow size distributions necessary fortheir in vitro and in vivo optimization.

  8. SUPERCONDUCTING MAGNET FOR 60 TONNE/HOUR MINERAL SEPARATOR WITH CLOSED CYCLE 4 KELVIN REFRIGERATION

    Good, J.; White, K.

    1984-01-01

    Cryogenic Consultants Limited has constructed a superconducting magnet system for magnetic separation, with a three metre long dipole magnet cooled by a closed-cycle refrigerator. This paper considers the design and construction of the magnet system in relation to a theoretical expression for processing capacity.

  9. Rapid Characterization of Magnetic Separator Feed Stocks in Titanium Minerals Processing

    Cavanough, G.; Holtham, P.N.

    2004-01-01

    Magnetic separation is widely used in the processing of titanium minerals. The expected mineral recoveries are assessed by performing laboratory magnetic separations of representative samples to determine the distribution of magnetic components. This is an inherently slow process performed on relatively small samples. This paper describes the development of an inductance based device to rapidly determine the mass distribution of the magnetic properties of a titanium mineral sample. The system...

  10. Development of high-gradient and open-gradient magnetic separation

    Hise, E C

    1981-01-01

    This paper was prepared: to review the accomplishments in both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS) by the Oak Ridge National Laboratory (ORNL) group during the past three years; to show, through the medium of motion pictures, the operation of the various separation methods and devices used and developed; to show qualitative results of the separation performed; and to make available, to those interested, detailed reports of the experimental procedures and the resulting data. The qualitative separation of pyritic sulfur and ash forming minerals from fine coal by high gradient magnetic separation has been demonstrated at feed rates up to one ton per hour, and in a machine that is commercially produced in sizes for feed rates up to several hundred tons per hour. The quantitative separation of pyritic sulfur and ash forming minerals from fine coal by free fall open gradient magnetic separation has been demonstrated at a laboratory scale and at 300 kg per hour in a solenoidal magnet configuration. A magnet modeling analysis has shown that an optimum magnet can be designed with practical physical constraints which can generate separating forces two to three times those of the existing solenoidal configuration and with a large processing capacity. The analytical predictions of the behavior of particles traversing these separating forces have been experimentally confirmed within 15% in existing magnets.

  11. Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets

    The separation of particles and cells is critical in many chemical and biological applications. This work presents a simple idea for utilizing a pair of permanent magnets to continuously separate diamagnetic particles and cells in ferrofluid flow through a straight microchannel. The first magnet is placed close to the microchannel for focusing the particle mixture to a single stream without the use of a sheath flow. The second magnet, which is offset from the first magnet and placed farther from the channel, is to displace the aligned particles to dissimilar flow paths for a continuous sorting. This idea is first demonstrated through the separation of 3 μm- and 10 μm-diameter polystyrene particles, where the effects of flow speed and magnet distance are both examined. The experimental data are found to fit well with the predictions of an analytical model. Furthermore, a continuous separation of live yeast cells from 10 μm polystyrene particles is implemented in the same device. - Highlights: • We develop a simple diamagnetic particle and cell separation technique in ferrofluids. • Two offset magnets are used to achieve a sheath-free continuous separation in a straight microchannel. • The technique is demonstrated through the magnetic separation of polystyrene particles and yeast cells. • The effects of ferrofluid speed and magnet-channel distance are examined on particle separation. • The predictions from an analytical model agree with the experimental data quantitatively

  12. Continuous sheath-free magnetic separation of particles in a U-shaped microchannel

    Liang, Litao; Xuan, Xiangchun

    2012-01-01

    Particle separation is important to many chemical and biomedical applications. Magnetic field-induced particle separation is simple, cheap, and free of fluid heating issues that accompany electric, acoustic, and optical methods. We develop herein a novel microfluidic approach to continuous sheath-free magnetic separation of particles. This approach exploits the negative or positive magnetophoretic deflection to focus and separate particles in the two branches of a U-shaped microchannel, respe...

  13. Application of high temperature superconductors to high-gradient magnetic separation

    High Gradient Magnetic Separation (HGMS) is a powerful technique which can be used to separate widely dispersed contaminants from a host material. This technology can separate magnetic solids from other solids, liquids or gases. As the name implies HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles. HGMS separators usually consist of a high-field solenoid magnet, the bore of which contains a fine-structured, ferromagnetic matrix material. The matrix material locally distorts the magnetic field and creates large field gradients in the vicinity of the matrix elements. These elements then become trapping sites for magnetic particles and are the basis for the magnetic separation. In this paper the authors discuss the design and construction of a prototype HGMS unit using a magnet made with high temperature superconductors (HTS). The prototype consists of an outer vacuum vessel which contains the HTS solenoid magnet. The magnet is surrounded by a thermal radiation shield and multilayer insulation (MLI) blankets. The magnet, thermal shield and current leads all operate in a vacuum and are cooled by a cryocooler. High temperature superconducting current leads are used to reduce the heat leak from the ambient environment to the HTS magnet

  14. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  15. Self-Assembled Magnetic Filter for Highly Efficient Immunomagnetic Separation

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2010-01-01

    We have developed a compact and inexpensive microfluidic chip, the Self Assembled Magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometer-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ∇B (from the configuration) in the ...

  16. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  17. Coupled particle–fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality

    A study is presented of coupled particle–fluid transport and field-directed particle capture in microfluidic systems with passive magnetic functionality. These systems consist of a microfluidic flow cell on a substrate that contains embedded magnetic elements. Two systems are considered that utilize soft- and hard-magnetic elements, respectively. In the former, an external field is applied to magnetize the elements, and in the latter, they are permanently magnetized. The field produced by the magnetized elements permeates into the flow cell giving rise to an attractive force on magnetic particles that flow through it. The systems are studied using a novel numerical/closed-form modelling approach that combines numerical transport analysis with closed-form field analysis. Particle–fluid transport is computed using computational fluid dynamics (CFD), while the magnetic force that governs particle capture is obtained in closed form. The CFD analysis takes into account dominant particle forces and two-way momentum transfer between the particles and the fluid. The two-way particle–fluid coupling capability is an important feature of the model that distinguishes it from more commonly used and simplified one-way coupling analysis. The model is used to quantify the impact of two-way particle–fluid coupling on both the capture efficiency and the flow pattern in the systems considered. Many effects such as particle-induced flow-enhanced capture efficiency and flow circulation are studied that cannot be predicted using one-way coupling analysis. In addition, dilute particle dispersions are shown to exhibit significant localized particle–fluid coupling near the capture regions, which contradicts the commonly held view that two-way coupling can be ignored when analysing high-gradient magnetic separation involving such particle systems. Overall, the model demonstrates that two-way coupling needs to be taken into account for rigorous predictions of capture efficiency, especially for applications involving high particle loading and/or low flow rates. It is computationally more efficient and accurate than purely numerical models and should prove useful for the rational design and optimization of novel magnetophoretic microsystems. (paper)

  18. The electromagnetic design of a permanent magnet based separator

    Nedelcu, S

    2002-01-01

    The aim of this work was to design a permanent magnet based device that can selectively transport paramagnetic particles. Using specialised electromagnetic design software various arrangements of permanent magnets have been investigated. Each test geometry had to be constructively simple and able to produce highly non-uniform magnetic fields before being considered further in any more detail. The main parameter to indicate that the test geometry might be a suitable device has been ascribed to the ratio eta between the highest (ON) and lowest (OFF) magnetic fields that were measured. A linear arrangement of permanent magnets has been considered first. This device produced a ratio eta approx 2. Further, the cylindrical and the tubular arrangements may be considered as substantial improvements over the first geometry. The OFF magnetic fields have been substantially reduced by the method of magnetic shielding. Intensive research and modelling has been spent on addressing the problem of finding the optimal geometr...

  19. Application of coal petrography to the evaluation of magnetically separated dry crushed coals

    Harris, L.A.; Hise, E.C.

    1981-01-01

    In the present study the open gradient magnetic separation method has been used to beneficiate the -30 + 100 mesh fraction of two high volatile bituminous coals. The evaluation of the effectiveness of the magnetic separation for cleaning these coals is the subject of this paper. Coal petrography in combination with scanning electron microscopy and x-ray diffractometry were used to characterize the magnetically separated coal fractions. These analyses revealed that the majority of the pyrite and non-pyrite minerals were concentrated in the positive magnetic susceptibility fractions. The bulk of the starting samples (approx. 80 weight percent) were located in the negative magnetic susceptibility fractions and showed significant reductions in pyrite and non-pyritic minerals. The magnetic separation appears to effectively split the samples into relatively clean coal and refuse.

  20. Rapid Multi-Target Immuno-Magnetic Separation through Programmable DNA Linker Displacement

    Probst, Christine E.; Zrazhevskiy, Pavel; GAO, XIAOHU

    2011-01-01

    Immuno-magnetic separation has become an essential tool for high throughout and low cost isolation of biomolecules and cells from heterogeneous samples. However, as magnetic selection is essentially a “black-and-white” assay, its application has been largely restricted to single-target and single-parameter studies. To address this issue, we have developed an immuno-magnetic separation technology that can quickly sort multiple targets at high yield and purity using selectively displaceable DNA...

  1. Open gradient magnetic separation utilizing NbTi, Nb3Sn and Bi-2223 materials

    Superconducting magnets enable the magnetic separation of particles with small magnetic susceptibility. In this paper, we compare superconducting separator magnets made of Nb3Sn, NbTi and Bi-2223 materials. The separator system is used to determine the optimal conditions for separation of various slurries. The magnet should provide a high and nearly constant magnetic force density. These requirements are met with racetrack coils. Geometries consisting of one or two racetracks have been examined. In order to keep the material costs at a reasonable level, the volume of the magnet has been minimized taking into account the constraints set by the force and current densities. Sequential quadratic programming (SQP) was used in the optimization procedure. The force density has been calculated using an analytical two-dimensional model. The critical current density of the coil was obtained by solving the magnetic flux density from a three-dimensional model using the finite element method. We have compared magnetic force densities and wire lengths in magnets made of different materials. For magnets made of low-temperature superconductors, the optimized geometry consisted of two coils. For magnets made of high-temperature superconductors, the minimum volume was achieved by using only one coil. (author)

  2. HIGH-GRADIENT MAGNETIC SEPARATION FOR REMOVAL OF SULFUR FROM COAL

    The report gives results of a thorough physical, chemical, and magnetic characterization of a Pennsylvania coal from the Upper Freeport seam. The powdered coal was then subjected to high-gradient magnetic separations, as a function of magnetic field and fluid velocity, in both a ...

  3. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra [National Chemical Laboratory, Council of Scientific and Industrial Research, Pune 411008 (India); Kale, Sonia; Shastry, Padma [National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Pasricha, Renu [National Physical Laboratory, Council of Scientific and Industrial Research, New Delhi 110012 (India); Lefez, Benoit; Hannoyer, Beatrice, E-mail: padma@nccs.res.in, E-mail: satishogale@gmail.com [Universite de Rouen, GPM UMR 6634 CNRS-BP 12, 76801 Etienne du Rouvray Cedex (France)

    2011-06-03

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  4. Proposal for implanting a magnetic stable isotope separator

    The implantation of an electromagnetic isotope separator able to separate elements of mass from 20 to 250 a.m.u., with an enrichment factor from 10 to 200 times the initial concentration, depending on the elements, is proposed. The most suitable separator type for Brazilian CNEN, considering building installations and minimum conditions for the equipment facilities, the retinue chronogram, the infrastructure, and the personnel training for operation is defined. (M.C.K.)

  5. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China)

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078

  6. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.007832 =1.4058) in comparison with other samples

  7. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    Collins, Liam; Belianinov, Alex; Proksch, Roger; Zuo, Tingting; Zhang, Yong; Liaw, Peter K.; Kalinin, Sergei V.; Jesse, Stephen

    2016-05-01

    In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.

  8. Phase separation in La-Ca manganites: Magnetic field effects

    The coexistence of magnetic phases seems to be a characteristic of the La-Ca family of in colossal magnetoresistant manganites. We have analyzed this phenomenon in terms of a free energy, F, where magnetic and electronic contributions of two coexistent phases are included. Three order parameters describe the behavior of the mixed material: the magnetization of each phase and the metallic fraction. Due to the coupling between order parameters there is a range: T**≤T≤T* where coexistence is possible. Values for the phenomenological parameters are obtained from the experiment. In this paper we analyze the effects of an applied magnetic field on the range of T where the phase coexistence takes place, based on results obtained from dc-magnetization and ESR measurements

  9. Purification of condenser water in thermal power station by superconducting magnetic separation

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  10. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  11. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  12. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  13. Theoretical analysis of a simple yet efficient portable magnetic separator design for separation of magnetic nano/micro-carriers from human blood flow

    A technology that could physically remove substances from the blood such as biological, chemical, or radiological toxins could dramatically improve treatment of disease. One method in development proposes to use magnetic-polymer spheres to selectively bind toxins and remove them by magnetic filtration. Although magnetic filtration is a developed technology, the clinical boundary conditions described here require a new filter design. We investigated the removal of toxin-bound magnetic carriers from the blood stream using 2-D FEMLAB simulations. The magnetic separator consisted of a permanent magnet with parallel ferromagnetic prisms on the faces and in contact with a straight tube carrying the magnetic-polymer spheres in suspension. We varied the following parameters: blood flow velocity, the size, and number of ferromagnetic prisms, and the ferromagnetic material in both prisms and magnets. The capture efficiency reached maximum values when the depth of the prisms equaled the diameter of the tubing and the saturation magnetization of the prism material equaled twice that of the magnet. With this design a piece of 2 mm (diameter) tube carrying the fluid resulted in 95% capture of 2.0 μm magnetic-polymer spheres at 10 cm/s flow velocity

  14. Application of magnetic separation technology for the recovery of colemanite from plant tailings.

    Alp, Ibrahim

    2008-10-01

    In this study, colemanite was recovered from tailings produced by the Kestelek (Turkey) Processing Plant by magnetic separation. Magnetic susceptibility measurements revealed that colemanite is diamagnetic in character whereas gangue minerals are weakly paramagnetic, apparently due to the presence of the iron-bearing silicates such as smectite and, to a less extent, illite. Three-stage magnetic separation tests were performed on the size fractions coarser than 75 microm produced from the tailings (31.52% B(2)O(3)) using a high-intensity permanent magnetic separator. Under the test conditions a colemanite concentrate with a B(2)O(3) content of 43.74% at 95.06% recovery was shown to be produced from the tailings. The mineralogical composition of the tailings appears to allow the removal of gangue minerals by magnetic separation and hence the production of a concentrate of commercial grade. PMID:18927062

  15. Cleaning of liquid radioactive waste by the methods of ozonization and magnetic separation

    The possibility for purification of liquid radioactive wastes (LRW) from organic compounds by the methods of ozonization and magnetic separation is studied. It is shown that addition of a finely divided ferromagnetic substance into LRW and subsequent filtration through a magnetic filter is an effective method for removal of emulsified organic compounds. The dissolved organic compounds are destroyed by ozonization. Some characteristics of the ozonization and magnetic separation processes are determined. The composition of the products of reactions between ozone and organic compounds is defined. The behavior of 137Cs in the process of magnetic separation is investigated. A feasibility of very good cleaning of LRW from emulsified organic compounds by means of successive application of the methods of magnetic separation and ozonization is confirmed

  16. Colossal magnetoresistance and phase separation in magnetic semiconductors

    Nagaev, Eduard L

    2002-01-01

    Colossal magnetoresistance materials, to which manganites and conventional ferromagnetic semiconductors belong, draw great attention because of their intriguing physical properties and the excellent prospects for their practical applications in electronic devices. In addition, magnetic semiconductors are basic materials for high-temperature conductors, and it is impossible to construct a theory of the latter without elucidating properties of the former.This book presents theoretical and experimental results on manganites and conventional magnetic semiconductors, with emphasis on the former. It

  17. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    Šafařík, Ivo; Horská, Kateřina; Martinez, L. M.; Šafaříková, Miroslava

    Melville : American institute of physics, 2010 - (Häfeli, U.; Schütt, W.; Zborowski, M.), s. 146-151 ISBN 978-0-7354-0866-1. ISSN 0094-243X. - (AIP Conference Proceedings. 1311). [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /8./. Rostock (DE), 25.05.2010-29.05.2010] Institutional research plan: CEZ:AV0Z60870520 Keywords : drug delivery * magnetic microspheres and ferrofluids * magnetic nanospheres * molecular biology * stem cell separation * starch production * potato waste water * magnetic separation * chitosan * lectin * Solanum tuberosum Subject RIV: EH - Ecology, Behaviour

  18. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators

    Tsai, H. Y., E-mail: annetsai@csmu.edu.tw [Chung Shan Medical University, Department of Applied Chemistry (China); Chang, C. Y.; Li, Y. C.; Chu, W. C.; Viswanathan, K.; Bor Fuh, C., E-mail: cbfuh@ncnu.edu.tw [National Chi Nan University, Department of Applied Chemistry (China)

    2011-06-15

    We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic ({approx}80 nm) and fluorescent ({approx}180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.

  19. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators

    We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic (∼80 nm) and fluorescent (∼180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.

  20. Magnetically Separable Fe3O4@DOPA-Pd: A Heterogeneous Catalyst for Aqueous Heck Reaction

    Magnetically separable Fe3O4@DOPA-Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via non-covalent interaction and the catalyst is utilized for expeditious Heck coupling in aqueous media.

  1. Magnetic separation and immunoassay of multi-antigen based on surface enhanced Raman spectroscopy.

    Chen, Shuai; Yuan, Yaxian; Yao, Jianlin; Han, Sanyang; Gu, Renao

    2011-04-14

    A novel and highly sensitive immunoassay method based on surface enhanced Raman spectroscopy (SERS) and magnetic particles has been developed. This method exhibits great potential application in bio-separation and immunoassay. PMID:21359307

  2. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  3. Iso-geometric shape optimization of magnetic density separators

    Dang Manh, Nguyen; Evgrafov, Anton; Gravesen, Jens; Lahaye, Domenico

    2014-01-01

    covers with B-splines and defines a cost functional that measures the non-uniformity of the magnetic field in an area above the poles. The authors apply an iso-geometric shape optimization procedure, which allows us to accurately represent, analyze and optimize the geometry using only a few design...

  4. Compensation of magnetic field corrugations for a separate coil system

    Compensators of magnetic field corrugation in electromagnetic system with a simple geometry are considered. The expressions to estimate resulting field disturbances when using compensating coils and ferromagnetic inserts are obtained. It is shown that these inserts narrow the working range of electromagnetic system fields in the case of effective suppression of corrugation. Estimating calculations are rather useful insetting numeric optimization problems

  5. Special solutions for magnetic separation problems using force and energy conditions for ferro-particles capture

    Sandulyak, Anna; Sandulyak, Alexander; Belgacem, Fethi B. M.; Kiselev, Dmitriy

    2016-03-01

    While trying to solve the equation for the ferro-particle movement in the zone of magnetic separation, it is necessary to provisionally perform a comparative evaluation of forces influencing the ferro-particle in order to define the dominating ones, and specify the task at hand. Here, we consider various solutions of the problem and definitions of magnetic separation parameters based on the traditionally used forces and/or energy conditions of ferro-particle capture.

  6. Immunomagnetic separation of Salmonella cells using newly designed magnetic carrriers

    Rittich, B.; Španová, A.; Sučiková, J.; Štrumcová, S.; Lenfeld, Jiří; Horák, Daniel

    Frankfurt am Main : Dechema e. V. Society for Chemical Engineering and Biotechnology, 2002. s. P28. [International Symposium on the Separation of Proteins, Peptides and Polynucleotides /22./. 10.11.2002-13.11.2002, Heidelberg] R&D Projects: GA AV ČR KSK4055109 Keywords : Salmonella cells Subject RIV: CC - Organic Chemistry

  7. High-gradient magnetic affinity separation of trypsin from porcine pancreatin

    Hubbuch, Jürgen; Thomas, Owen R. T.

    2002-01-01

    We introduce a robust and scale-flexible approach to macromolecule purification employing tailor-made magnetic adsorbents and high-gradient magnetic separation technology adapted from the mineral processing industries. Detailed procedures for the synthesis of large quantities of low-cost defined...... increased scale using a high-gradient magnetic separation system to capture loaded benzamidine-linked adsorbents following batch adsorption. With the aid of a simple recycle loop over 80% of the initially adsorbed trypsin was recovered in-line with an overall purification factor of approximate to3.5....... submicron-sized magnetic supports are presented. These support materials exhibit unique features, which facilitate their large-scale processing using high magnetic field gradients, namely sufficiently high magnetization, a relatively narrow particle size distribution and ideal superparamagnetism. Following...

  8. Electro-magnetic separation for stable isotopes of Osmium

    High purity Osmium isotopes (Os-187, Os-192, Os-190 etc.) have great important applications in scientific research, industry and radiotherapy for cancer. The authors have done some experiments on separation and preparation of Osmium isotopes using the existing laboratory- scale EMIS at SINR. Source improvement, change material preparation, mass calibration and so on have been done on the system. Some experimental results are also given

  9. Fluctuations of the Solitary Bubble at the Separation from the Air Cavity, Compressed by the Magnetic Field in Magnetic Liquid

    M.L. Boev

    2013-12-01

    Full Text Available In the article, on the basis of the concept of "display" of geometry of a free surface of the "low-magnetic" environment by the topography of isolines of the module of intensity of a magnetic field, it is studied a form of a free surface of magnetic fluid in a static condition at the initial stage of rapprochement of a ring magnet with a surface of a column of magnetic fluid in a tube and at a stage of pressing of a cavity to a bottom. It is shown that the separation of bubbles from an air cavity occurs in close proximity to the plane of symmetry of a ring magnet on its axis. It is described the method and experimental installation for studying the possibility of electromagnetic indication of sizes of the air bubbles, being in magnetic fluid. It is discussed the results of experimental research on process of a separation of solitary air bubble from a cavity, contained in magnetic fluid and squeezed by ponderomotive forces of a magnetic field which are of interest for creation of essentially new technique of the dosed supply of small amount of gas in the reactor.

  10. ELECTRON TRANSPORT IN CORONAL LOOPS: THE INFLUENCE OF THE EXPONENTIAL SEPARATION OF MAGNETIC FIELD LINES

    Observations by the TRACE spacecraft have shown that coronal emission in the extreme ultraviolet is characterized by filamentary structures within coronal loops, with transverse sizes close to the instrumental resolution. Starting from the observed filament widths and using the concepts of braided magnetic fields, an estimate of the turbulence level in the coronal loops can be obtained. Magnetic turbulence in the presence of a background magnetic field can be strongly anisotropic, and such anisotropy influences the separation of magnetic field lines, as well as the magnetic field line diffusion coefficient. Careful computations of the magnetic field line diffusion coefficient Dm and of the rate of exponential separation of magnetic field lines h, also allowing for the possibility of anisotropic magnetic turbulence, enable computation of the effective perpendicular diffusion coefficient for electrons. When compared with observations this yields magnetic turbulence levels on the order of δB/B 0 = 0.05-0.7, which are larger than previous estimates. These values of the magnetic fluctuation level support the idea that magnetic turbulence can contribute to coronal heating by means of MHD turbulence dissipation. It is also found that field line transport is not governed by the quasilinear regime, but by a nonlinear regime which includes an intermediate and the percolation regimes.

  11. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  12. Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration.

    Frodsham, George; Pankhurst, Quentin A

    2015-10-01

    High gradient magnetic separation is a well-established technology in the mineral processing industry, and has been used for decades in the bioprocessing industry. Less well known is the increasing role that high gradient magnetic separation is playing in biomedical applications, for both diagnostic and therapeutic purposes. We review here the state of the art in this emerging field, with a focus on therapeutic haemofiltration, the key enabling technologies relating to the functionalisation of magnetic nanoparticles with target-specific binding agents, and the development of extra-corporeal circuits to enable the in situ filtering of human blood. PMID:26439594

  13. Removal of freshwater microalgae by a magnetic separation method

    Vergini, Sofia S.; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2013-04-01

    Some species of microalgae, with high growth rate and high lipid content, appear to be attractive alternatives as a feedstock for biodiesel production. The high-energy input for harvesting biomass and removing the water from the algae makes current commercial microalgal biodiesel production cost expensive. The major techniques currently employed in microalgae harvesting and recovery include centrifugation, coagulation-flocculation, bio-flocculation, filtration and screening, gravity sedimentation, and flotation. The purpose of this study was to investigate the harvesting of microalgae cells by coagulation using magnetic activated carbon, magnetite (FeO4) nanoparticles, and common chemical coagulants. Scenedesmus rubescens was selected and cultivated in 10 L flasks under continuous artificial light. Samples were taken at different operation intervals. Jar tests were conducted to investigate the effect of adsorption of microalgae on the magnetic material. The removal efficiency of microalgae was affected by the coagulants dose, stirring time and speed, and the initial microalgae concentration. The recovery of microalgae was greater in cultures with high initial microalgae concentration compared to cultures with low microalgae concentrations.

  14. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  15. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins.

    Chen, Fangfang; Zhao, Weifeng; Zhang, Jingjing; Kong, Jie

    2015-12-23

    Surface molecular imprinting for proteins is an emerging cross-field of molecular imprinting engineering and functional materials. In this contribution, we report a novel design of magnetic two-dimensional molecularly imprinted polymers (2D-MIPs) for the high recognition and separation of proteins. Bovine serum albumin-surface-imprinted polydopamines were prepared on the surfaces of the magnetic Fe3O4-graphene oxide hybrid to form magnetic 2D-MIPs for proteins. The 2D Fe3O4-graphene oxide substrate possesses a dominant surface-to-volume ratio in comparison to 3D spherical substrates with the same volume. These materials are sensitive to a magnetic field and can be easily separated using an external magnet. The binding experimental results of bovine serum albumin on magnetic 2D-MIPs and real sample analysis demonstrated the high recognition specificity, selectivity, accessibility and convenient separation of 2D-MIPs for template protein. The design and synthesis of magnetic 2D-MIPs provide a new perspective for the surface molecularly imprinted materials with potential in the recognition and separation of proteins. PMID:26388494

  16. Circular Halbach array for fast magnetic separation of hyaluronan-expressing tissue progenitors.

    Joshi, Powrnima; Williams, P Stephen; Moore, Lee R; Caralla, Tonya; Boehm, Cynthia; Muschler, George; Zborowski, Maciej

    2015-10-01

    Connective tissue progenitors (CTPs) are a promising therapeutic agent for bone repair. Hyaluronan, a high molecular mass glycosaminoglycan, has been shown by us to be a suitable biomarker for magnetic separation of CTPs from bone marrow aspirates in a canine model. For the therapy to be applicable in humans, the magnetic separation process requires scale-up without compromising the viability of the cells. The scaled-up device presented here utilizes a circular Halbach array of diametrically magnetized, cylindrical permanent magnets. This allows precise control of the magnetic field gradient driving the separation, with theoretical analysis favoring a hexapole field. The separation vessel has the external diameter of a 50 mL conical centrifuge tube and has an internal rod that excludes cells from around the central axis. The magnet and separation vessel (collectively dubbed the hexapole magnet separator or HMS) was tested on four human and four canine bone marrow aspirates. Each CTP-enriched cell product was tested using cell culture bioassays as surrogates for in vivo engraftment quality. The magnetically enriched cell fractions showed statistically significant, superior performance compared to the unenriched and depleted cell fractions for all parameters tested, including CTP prevalence (CTPs per 10(6) nucleated cells), proliferation by colony forming unit (CFU) counts, and differentiation by staining for the presence of osteogenic and chondrogenic cells. The simplicity and speed of the HMS operation could allow both CTP isolation and engraftment during a single surgical procedure, minimizing trauma to patients and lowering cost to health care providers. PMID:26368657

  17. Probing magnetic phase separation in manganites by nonlinear susceptibility

    At low frequencies ν≤300Hz, nonlinear magnetic susceptibility of polycrystalline La0.7Pb0.3Mn0.8(Co, Ni)0.2O3 samples near the ferromagnetic (FM)–paramagnetic (PM) phase transition reinforces the earlier observation, based on linear ac susceptibility, that these systems behave as a three-dimensional isotropic dipolar ferromagnet in the asymptotic critical regime and exhibit an isotropic dipolar to isotropic Heisenberg crossover. In addition, the nonlinear susceptibility results reveal the phase segregation of the conducting and insulating FM phases (clusters) within the conducting FM regime and existence of conducting FM clusters in the insulating PM matrix at high frequencies

  18. Thickness dependence of the magnetic anisotropy of Fe layers separated by Al

    Magnetic multilayers of 57Fe with nominal thickness, Tnom, between 0.4 and 1.0 nm separated by 3.0 nm Al spacer layers were prepared by alternate deposition of the constituents in high vacuum. The samples were investigated at 4.2 K in external magnetic field. A fraction of Fe atoms corresponding to about 0.3 nm equivalent Fe-thickness was found to mix into the Al spacer. The extremely strong magnetic anisotropy observed for Tnom nom = 0.8 nm, but full saturation was not achieved even for Tnom = 1 nm and 3 T magnetic field applied perpendicularly to the sample plane.

  19. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting

    Chen, Shuang-yin; Chu, Man-sheng

    2014-03-01

    To achieve high efficiency utilization of Panzhihua vanadium titano-magnetite, a new process of metalizing reduction and magnetic separation based on hot briquetting is proposed, and factors that affect the cold strength of the hot-briquetting products and the efficiency of reduction and magnetic separation are successively investigated through laboratory experiments. The relevant mechanisms are elucidated on the basis of microstructural observations. Experimental results show that the optimal process parameters for hot briquetting include a hot briquetting temperature of 475°C, a carbon ratio of 1.2, ore and coal particle sizes of less than 74 μm. Additionally, with respect to metalizing reduction and magnetic separation, the rational parameters include a magnetic field intensity of 50 mT, a reduction temperature of 1350°C, a reduction time of 60 min, and a carbon ratio of 1.2. Under these above conditions, the crushing strength of the hot-briquetting agglomerates is 1480 N, and the recovery ratios of iron, vanadium, and titanium are as high as 91.19%, 61.82%, and 85.31%, respectively. The new process of metalizing reduction and magnetic separation based on hot briquetting demonstrates the evident technological advantages of high efficiency separation of iron from other valuable elements in the vanadium titano-magnetite.

  20. Optimisation of magnetic separation: a case study for soil washing at a heavy metals polluted site.

    Sierra, C; Martnez-Blanco, D; Blanco, Jess A; Gallego, J R

    2014-07-01

    Sandy loam soil polluted with heavy metals (As, Cu, Pb and Zn) from an ancient Mediterranean Pb mining and metallurgy site was treated by means of wet high-intensity magnetic separation to remove some of the pollutants therein. The treated fractions were chemically analysed and then subjected to magnetic characterisation, which determined the high-field specific (mass), magnetic susceptibility (?) and the specific (mass) saturation magnetisation (?S), through isothermal remanent magnetisation (IRM) curves. From the specific values of ? and ?S, a new expression to assess the performance of the magnetic separation operation was formulated and verified by comparison with the results obtained by traditional chemical analysis. The magnetic study provided valuable information for the exhaustive explanation of the operation, and the deduced mathematical expression was found to be appropriate to estimate the performance of the separation operation. From these results we determined that magnetic soil washing was effective for the treatment of the contaminated soil, concentrating the majority of the heavy metals and peaking its separation capacity at 60% of the maximum output voltage. PMID:24418067

  1. Effect of desliming on the magnetic separation of low-grade ferruginous manganese ore

    Tripathy, Sunil Kumar; Banerjee, P. K.; Suresh, Nikkam

    2015-07-01

    In the present investigation, magnetic separation studies using an induced roll magnetic separator were conducted to beneficiate low-grade ferruginous manganese ore. The feed ore was assayed to contain 22.4% Mn and 35.9% SiO2, with a manganese-to-iron mass ratio (Mn:Fe ratio) of 1.6. This ore was characterized in detail using different techniques, including quantitative evaluation of minerals by scanning electron microscopy, which revealed that the ore is extremely siliceous in nature and that the associated gangue minerals are more or less evenly distributed in almost all of the size fractions in major proportion. Magnetic separation studies were conducted on both the as-received ore fines and the classified fines to enrich their manganese content and Mn:Fe ratio. The results indicated that the efficiency of separation for deslimed fines was better than that for the treated unclassified bulk sample. On the basis of these results, we proposed a process flow sheet for the beneficiation of low-grade manganese ore fines using a Floatex density separator as a pre-concentrator followed by two-stage magnetic separation. The overall recovery of manganese in the final product from the proposed flow sheet is 44.7% with an assay value of 45.8% and the Mn:Fe ratio of 3.1.

  2. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F. [Argonne National Lab., IL (United States); Landsberger, S. [Univ. of Illinois, Urbana, IL (United States)

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration.

  3. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration

  4. Particle Capture Efficiency in a Multi-Wire Model for High Gradient Magnetic Separation

    Eisenträger, Almut; Griffiths, Ian M

    2014-01-01

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles, removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle's entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separa...

  5. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  6. Ion separation due to magnetic field penetration into a multispecies plasma.

    Weingarten, A; Arad, R; Maron, Y; Fruchtman, A

    2001-09-10

    The magnetic field, the electron density, and the ion velocities in a multispecies plasma conducting a high fast-rising current are determined using simultaneous spectroscopic measurements. It is found that ion separation occurs in which a light-ion plasma is pushed ahead while a heavy-ion plasma lags behind the magnetic piston. We show that most of the momentum imparted by the magnetic field pressure is taken by the reflected light ions, and most of the dissipated magnetic field energy is converted into kinetic energy of these ions, even though their mass is only a small part of the total plasma mass. Such species separation with implications to the momenta and energy partitioning is shown to be of a general nature. PMID:11531532

  7. Closed-loop magnetic separation of nanoparticles on a packed bed of spheres

    Magnet, Ccilia; Akouala, Mesferdon; Kuzhir, Pavel; Bossis, Georges; Zubarev, Andrey; Wereley, Norman M.

    2015-05-01

    In this work, we consider magnetic separation of iron oxide nanoparticles when a nanoparticle suspension (diluted ferrofluid) passes through a closed-loop filter composed of a packed bed of micro-beads magnetized by an externally applied magnetic field. We show that the capture of nanoparticles of a size as small as 60 nm is easily achieved at low-to-moderate magnetic fields (16-32 kA/m) thanks to relatively strong magnetic interactions between them. The key parameter governing the capture process is the Mason numberthe ratio of hydrodynamic-to-magnetic forces exerted to nanoparticles. The filter efficiency, ?, defined through the ratio of the inlet-to-outlet concentration shows a power-law dependency on Mason number, ??M a-0.83 , in the range of 102magnetic nanoparticles, followed by magnetic separation of the nanoparticles.

  8. Physical coal cleaning of Midwestern coals by open-gradient magnetic separation

    Doctor, R.D.; Livengood, C.D.

    1990-01-01

    Open-Gradient Magnetic Separation (OGMS) using superconducting quadrupole magnets offers a novel beneficiation technology for removing pyritic sulfur from pulverized dry coal. It is estimated to have a power demand 75% lower than techniques using conventional electromagnets, while achieving higher separation forces. Additionally, the system operates in a continuous mode and uses no chemicals. Because OGMS is specifically applicable to finely ground coal (120-325 mesh), its development could encourage the commercialization of other unconventional coal technologies, such as coal-water slurries, fluidized-bed combustion, and synfuels. 3 figs., 1 tab.

  9. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation

    Zhang, Yali; Li, Huaimei [College of Chemical Engineering, Shandong University of Technology, 255081, Zibo, Shandong (China); Yu, Xianjin, E-mail: xjy@sdut.edu.cn [College of Chemical Engineering, Shandong University of Technology, 255081, Zibo, Shandong (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Using reduction roasting-water leaching-magnetic separation method, the recovery of iron from cyanide tailings was optimized. Black-Right-Pointing-Pointer The recovery of iron was highly depended on the water-leaching process after reduction roasting. Black-Right-Pointing-Pointer The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 Degree-Sign C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 Degree-Sign C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  10. Recovery of iron from cyanide tailings with reduction roastingwater leaching followed by magnetic separation

    Highlights: ? Using reduction roastingwater leachingmagnetic separation method, the recovery of iron from cyanide tailings was optimized. ? The recovery of iron was highly depended on the water-leaching process after reduction roasting. ? The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roastingwater leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  11. Thinking out of the box for magnetic mineral separation using low temperature magnetism

    Lagroix, F.; Guyodo, Y. J. B.; Till, J. L.; Taylor, S. N.

    2014-12-01

    One timeless challenge in rock magnetic studies, inclusive of paleomagnetism and environmental magnetism, is decomposing a sample's bulk magnetic behaviour into its individual magnetic mineral components. We present a method permitting to decompose the magnetic behavior of a bulk sample experimentally and at low temperature avoiding any ambiguities in data interpretation due to heating induced alteration. A single instrument is used to measure the temperature dependence of the remanent magnetization and to apply different steps of AF demagnetizations and thermal demagnetization. The experimental method is validated on synthetic mixtures of magnetite, hematite, goethite as well as on natural loess samples where the contributions of magnetite, goethite, hematite and maghemite are successfully isolated. The experimental protocol can be adapted to target other iron bearing minerals relevant to the rock or sediment under study. One limitation rests on the fact that the method is based on remanent magnetization. Consequently, a quantitative decomposition of absolute concentration of individual components remains unachievable without assumptions. Nonetheless, semi-quantitative magnetic mineral concentrations were determined on synthetic and natural loess/paleosol samples in order to validate and test the method as a semi-quantitative tool in environmental magnetism studies.

  12. Magnetic separation as an adjunct to surface barrier detectors for backscattering and ion reaction analysis methods

    The sensitivity of analysis by energy spectroscopy of product ions using solid state detectors is often limited by instrumental background from pulse pileup, due to an intense flux of lower energy ions scattered from the accelerator beam. A small magnet can be used for low resolution separation of ions of different type and/or energy. In the present work a simple permanent magnet is used to reject ions of low magnetic rigidity. The technique has been developed for the depth profiling of oxygen in solar absorber surfaces using the 18O(p,?) reaction, and to determine surface trces of gold on silicon substrates

  13. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-04-30

    Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism. PMID:22333161

  14. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed

  15. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon [Rare Isotope Science Project, Institute for Basic Science, Yuseong, Daejeon, 305-811 (Korea, Republic of)

    2014-01-29

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  16. New High Performance Magnet Structures for Bead Based MolecularSeparation

    Humphries, David

    2005-06-01

    New High Performance Magnet Structures for Bead Based Molecular Separation David Humphries Lawrence Berkeley National Laboratory, D.O.E. Joint Genome Institute Abstract High performance Hybrid magnetic separation technology is under continuing development at the D.O.E. Joint Genome Institute and Lawrence Berkeley National Laboratory for general laboratory and high throughput automated applications. This technology has broad applicability for molecular separation in genomics, proteomics and other areas. It s applicability ranges from large and small scale microtiter plate and flow separation processes to single molecule DNA manipulation. It is currently an enabling purification technology for very high throughput production sequencing at the D.O.E. Joint Genome Institute. This technology incorporates hybrid magnetic structures that combine linear permanent magnet material and ferromagnetic material to produce significantly higher fields and gradients than those of currently available commercial devices. These structures incorporate ferromagnetic poles that can be easily shaped to produce complex field distributions for specialized applications. The higher maximum fields and strong gradients of the hybrid structures result in greater holding forces on magnetized targets that are being processed as well as faster extraction. Current development versions of these magnet plates have exhibited fields in excess of 1.0 tesla and gradients approaching 1000.0 tesla/meter. Second generation Hybrid magnet plates have now been developed for both 384 and 96-well applications. This technology is currently being made available to industry through the Tech Transfer Department at Lawrence Berkeley National Laboratory. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program and the by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory under contract No. DE-AC03-6SF00098 and Los Alamos National Laboratory under contract No. W-7405-ENG-36.

  17. Purification of condenser water in thermal power station by superconducting magnetic separation

    Ha, D. W.; Kwon, J. M.; Baik, S. K.; Lee, Y. J.; Han, K. S.; Ko, R. K.; Sohn, M. H.; Seong, K. C.

    2011-11-01

    Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2O 3 (hematite) and γ-Fe 2O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  18. Novel Magnetic Microand Nanoparticles for Biomedical Separation and as Means for a New Approach to Aids Therapy

    Müller-Schulte, Detlef

    2000-01-01

    The separation principle and the advantage of using magnetic polymer particles in bioseparation is elucidated. After a short review of the presently used diverse magnetic microparticles as well as the basic differences of micro- and nanosized magnetic particles with regards to their physical properties in bio-separation, preparation and application of novel magnetic microparticles prepared from polyvinylalcohol are described. The performance of the novel product and their superior properties ...

  19. Analysis of phase separation by thermal aging in duplex stainless steels by magnetic methods

    The phase separation in ferrite phase of duplex stainless steel is the primary cause of thermal aging embrittlement of the LWR primary pressure boundary components. In this study the phase separation of simulated duplex stainless steel was detected by Mossbauer spectroscopy and magnetic property analysis by VSM (Vibrating Specimen Magnetometer). The simulated duplex stainless steels, Fe-Cr binary, Fe-Cr-Ni Temary, and Fe-Cr-Ni-Si quaternary alloys, were aged at 370 and 400 deg C up to 5,340 hours. It was observed from Mossbauer spectra analysis that internal magnetic field increases with aging time and from VSM that the specific saturation magnetization and Curie temperature increase with aging time. These results are indicative that phase separation into Fe-rich region and Cr-rich region is caused by thermal aging in the temperature range of 370 - 400 deg C. In cases specimens containing Ni, the increase of specific saturation magnetization is much higher. This implies that Ni seems to promote Fe-Cr interdiffusion, which accelerates the phase separation into Fe-rich α phase and Cr-rich α' phase. (author)

  20. Separation and enrichment of enantiopure from racemic compounds using magnetic levitation.

    Yang, Xiaochuan; Wong, Shin Yee; Bwambok, David K; Atkinson, Manza B J; Zhang, Xi; Whitesides, George M; Myerson, Allan S

    2014-07-18

    Crystallization of a solution with high enantiomeric excess can generate a mixture of crystals of the desired enantiomer and the racemic compound. Using a mixture of S-/RS-ibuprofen crystals as a model, we demonstrated that magnetic levitation (MagLev) is a useful technique for analysis, separation and enantioenrichment of chiral/racemic products. PMID:24875274

  1. Separation of flow from chiral magnetic effect in U+U collisions using spectator asymmetry

    Chatterjee, Sandeep

    2014-01-01

    We demonstrate that the prolate shape of the Uranium nucleus generates anti-correlation between spectator asymmetry and initial state ellipticity of the collision zone, providing a way to constrain the initial event shape in U+U collisions. As an application, we show that this can be used to separate the background contribution due to flow from the signals of chiral magnetic effect.

  2. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy.

    Sierra, C; Martnez, J; Menndez-Aguado, J M; Afif, E; Gallego, J R

    2013-03-15

    The industrial history in the district of Linares (Spain) has had a severe impact on soil quality. Here we examined soil contaminated by lead and other heavy metals in "La Cruz" site, a brownfield affected by metallurgical residues. Initially, the presence of contaminants mainly associated with the presence of lead slag fragments mixed with the soil was evaluated. The subsequent analysis showed a quasi-uniform distribution of the pollution irrespective of the grain-size fractions. This study was accompanied by a characterization of the lead slag behavior under the presence of a magnetic field. Two main magnetic components were detected: first a ferromagnetic and/or ferrimagnetic contribution, second a paramagnetic and/or antiferromagnetic one. It was also established that the slag was composed mainly of lead spherules and iron oxides embedded in a silicate matrix. Under these conditions, the capacity of magnetic separation to remove pollutants was examined. Therefore, two high intensity magnetic separators (dry and wet devices, respectively) were used. Dry separation proved to be successful at decontaminating soil in the first stages of a soil washing plant. In contrast, wet separation was found effective as a post-process for the finer fractions. PMID:23357508

  3. Beneficiation Of Chromium Waste By Means Of Magnetic And Gravitational Separation

    Brożek M.

    2015-09-01

    Full Text Available The paper presents the results of investigations of chromium recovery from the Cr waste mud, originating in the production of sodium dichromate. The differentiation of physical properties of particles of different contents of chromium and magnesium compounds is a premise for the use of physical separation methods. The investigations were performed on 2 waste samples, taken by random from the waste dump. The investigations of magnetic and gravity concentration for sample I and II were made, respectively. The results of screen and float and sink analyses of sample II indicate that it is possible to obtain Cr- and Mg-enriched products by means of a combined method of separation, i.e. hydraulic classification and, next, gravitational concentration on the shaking table. The concept of gravity concentration of the tested chromium waste was verified in the technical scale on multiboard shaking tables. The advantage of these fittings in relation to laboratory conditions is the possibility of separation of discussed waste without previous classification. The longer time of separation on the industrial shaking table as well as the respective amount of water directed to the process together with feed enabled an exact separation of initial material. The obtained concentrate in such conditions contains from 25 to 35% Cr2O3, depending on the chromium content in the initial waste material. It results from the fractional magnetic analysis of sample I that by means of the magnetic separation it is possible to obtain the magnetic concentrate of Cr2O3 content minimum 20% and, simultaneously, to obtain the non-magnetic product of increased MgO content. The optimum separation conditions regarding the yield and content of Cr2O3 were determined. The highest value of criterion K for the grade of the concentrate containing over 20% of Cr2O3 is obtained when the 10 mm diameter balls and the 1150 kA/m magnetic field intensity are applied. The yield of the concentrate equals about 9.5 % and recovery of Cr2O3 almost 22%. In the non-magnetic product the content of Cr2O3 equals 7.74% and MgO 27.36%.

  4. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  5. Magnetic separation of Dy(III) ions from homogeneous aqueous solutions

    The possibility to enrich paramagnetic dysprosium(III) ions in a magnetic field gradient is proved by means of interferometry, which may open the route for a magnetic separation of rare earth ions from aqueous solutions. The separation dynamics are studied for three different concentrations of DyCl3 and compared with those found recently in a sulphate solution of the 3d ion Mn(II). In view of the similar-sized hydration spheres for Dy(III) and Mn(II), the slower separation dynamics in DyCl3 is attributed to both a higher densification coefficient and the strong impact of Brownian motion due to the absence of ion-pair clusters

  6. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1998 annual progress report

    'The objective is to reduce the volume and cost of high-level waste glass produced during US DOE remediation activities by demonstrating that magnetic separation can separate crystalline, amorphous, and colloidal constituents in vitrification feed streams known to be deleterious to the production of borosilicate glass. Magnetic separation will add neither chemicals nor generate secondary waste streams. The project includes the systematic study of magnetic interactions of waste constituents under controlled physical and chemical conditions (e.g., hydration, oxidation, temperature) to identify mechanisms that control the magnetic properties. Partitioning of radionuclides to determine their sorption mechanisms is also being studied. The identification of fundamental magnetic properties within the microscopic chemical environment in combination with hydrodynamic and electrodynamic models provides insights into the design of a system for optimal separation. Following this, experimental studies using superconducting open-gradient magnetic separation (OGMS) will be conducted to validate its effectiveness as a pretreatment technique.'

  7. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1998 annual progress report

    Doctor, R.D.; Nunez, L. [Argonne National Lab., IL (US); Crawford, C. [Westinghouse Savannah River Co., Aiken, SC (US); Ritter, J. [Univ. of South Carolina, Columbia, SC (US); Landsberger, S. [Univ. of Texas, Austin, TX (US)

    1998-06-01

    'The objective is to reduce the volume and cost of high-level waste glass produced during US DOE remediation activities by demonstrating that magnetic separation can separate crystalline, amorphous, and colloidal constituents in vitrification feed streams known to be deleterious to the production of borosilicate glass. Magnetic separation will add neither chemicals nor generate secondary waste streams. The project includes the systematic study of magnetic interactions of waste constituents under controlled physical and chemical conditions (e.g., hydration, oxidation, temperature) to identify mechanisms that control the magnetic properties. Partitioning of radionuclides to determine their sorption mechanisms is also being studied. The identification of fundamental magnetic properties within the microscopic chemical environment in combination with hydrodynamic and electrodynamic models provides insights into the design of a system for optimal separation. Following this, experimental studies using superconducting open-gradient magnetic separation (OGMS) will be conducted to validate its effectiveness as a pretreatment technique.'

  8. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    Complete text of publication follows. In a previous work on the (U1-xNdx)Co2Ge2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: TN(x=0.4) = 130 K, and TN(x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  9. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study.

    Brandão, Delfina; Liébana, Susana; Campoy, Susana; Alegret, Salvador; Isabel Pividori, María

    2015-10-01

    This paper addresses a comparative study of immunomagnetic separation of Salmonella using micro and nano-sized magnetic carriers. In this approach, nano (300 nm) and micro (2.8 μm) sized magnetic particles were modified with anti-Salmonella antibody to pre-concentrate the bacteria from the samples throughout an immunological reaction. The performance of the immunomagnetic separation on the different magnetic carriers was evaluated using classical culturing, confocal and scanning electron microscopy to study the binding pattern, as well as a magneto-actuated immunosensor with electrochemical read-out for the rapid detection of the bacteria in spiked milk samples. In this approach, a second polyclonal antibody labeled with peroxidase as electrochemical reporter was used. The magneto-actuated electrochemical immunosensor was able to clearly distinguish between food pathogenic bacteria such as Salmonella enterica and Escherichia coli, showing a limit of detection (LOD) as low as 538 CFU mL(-1) and 291 CFU mL(-1) for magnetic micro and nanocarriers, respectively, in whole milk, although magnetic nanoparticles showed a noticeable higher matrix effect and higher agglomeration effect. These LODs were achieved in a total assay time of 1h without any previous culturing pre-enrichment step. If the samples were pre-enriched for 8 h, the magneto immunosensor based on the magnetic nanoparticles was able to detect as low as 1 CFU in 25 mL of milk (0.04 CFU mL(-1)). PMID:26078149

  10. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    Eisenträger, Almut

    2014-07-21

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle\\'s entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separation cycles may increase efficiency. © 2014 AIP Publishing LLC.

  11. A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification

    A portable magnetic separator device is being developed for a proposed magnetically based detoxification system. In this paper, the performance of this device was evaluated via preliminary in vitro flow experiments using simple fluids and a separator unit consisting of one tube and two metal wires, each at the top and bottom of the tube. The effects of the following factors were observed: mean flow velocity Uo (0.14-45 cm s-1), magnetic field strength ?oHo (0.125-0.50 T), wire size Rw (0.125, 0.250 and 0.500 mm), wire length Lw (2, 5 and 10 cm), wire materials (nickel, stainless steel 304 and 430) and tube size (outer radius Ro = 0.30 mm and inner radius Ri = 0.25 mm; Ro = 0.50 mm and Ri = 0.375 mm; and Ro = 2.0 mm and Ri = 1.0 mm). Our observations showed that the experimental results fit well with the corresponding theoretical results from the model we previously developed at a low flow velocity area (for example, Uo ? 20 cm s-1), strong external magnetic field (for example, ?0.30 T) and long wire length (for example, Lw = 10 cm). The experimental results also showed that more than 90% capture efficiency is indeed achievable under moderate systemic and operational conditions. Pressure drop measurements revealed that the device could work well under human physiological and clinical conditions, and sphere buildup would not have any considerable effect on the pressure drop of the device. The breakthrough experiments demonstrated that a lower flow rate V, higher applied magnetic field ?oHo and diluted sphere suspension, i.e. lower Co, would delay the breakthrough. All the results indicate the promise of this portable magnetic separator device to efficiently in vivo sequestrate nano-/micro-spheres from blood flow in the future magnetically based detoxification system

  12. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  13. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  14. Model Magnet Development of D1 Beam Separation Dipole for the HL-LHC Upgrade

    Nakamoto, T; Kawamata, H; Enomoto, S; Higashi, N; Idesaki, A; Iio, M; Ikemoto, Y; Iwasaki, R; Kimura, N; Ogitsu, T; Okada, N; Sasaki, K I; Yoshida, M; Todesco, E

    2015-01-01

    KEK has been conducting the design study of the beam separation dipole magnet, D1, for the High Luminosity LHC (HL-LHC) upgrade within a framework of the CERN-KEK collaboration. The D1 magnet has a coil aperture of 150 mm using Nb-Ti superconducting cable and the nominal dipole field of 5.6 T can be generated at 12 kA and 1.9 K. A field integral of 35 T·m is required. The development of the 2-m-long model magnet has been started since May 2013. This paper describes the development status of the short model magnet as well as advancement of the fundamental design studies.

  15. Development of 5 T NbTi Superconducting Magnet with 160 mm Warm Bore for Magnetic Separation

    A wide-bore 5 T NbTi superconducting magnet, for magnetic separator, with an operational current of 106 A is designed and fabricated. This magnet with a oe 60 mm room-temperature bore is installed in a vacuum cryostat and immersed in liquid helium. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to maintain the cooling shield at 70 K and the condenser at 4 K in order to achieve the zero vaporization loss of liquid helium. The cooling power of the GM cryocooler is 1.5 W. In this paper, the design, heat leakage, stress analysis, quench protection characteristics and preliminary test results are presented.

  16. Separating Effect of a Novel Combined Magnetic Field on Inclusions in Molten Aluminum Alloy

    He, Yanjie; Li, Qiulin; Liu, Wei

    2012-10-01

    The feasibility and effectiveness of a novel combined magnetic field (CMF) on the removal of inclusions with a density smaller than the surrounding melt were investigated. The experiment of the separating effect of CMF was conducted on a laboratory-scale apparatus by the simultaneous application of a rotating magnetic field (RMF) and a downward traveling magnetic field (TMF). Primary silicon particles precipitating from the solidification process of Al-Si-Cu alloy were regarded as the inclusions in a molten aluminum alloy. It was found that a CMF consisting of both a RMF and a downward TMF was able to separate silicon particles from the molten Al-Si-Cu alloy by making these particles migrate vertically toward the upper part of the samples. Compared with downward TMF or RMF, CMF improved the separating effectiveness substantially. It was proposed that this type of CMF was approved to be highly effective at eliminating the inclusions with a density smaller than the surrounding molten alloy. A tentative mechanism for the high separating effect of CMF was discussed.

  17. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel

    A nanomagnetic separation method based on Diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at low pH is protected by encapsulating them in silica layer. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelators on MNPs. The particles were characterized before and after surface modification using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and uncoated samples were studied using vibrating sample magnetometer (VSM) to understand the change in magnetic properties due to the influence of the surface functionalization. The hydrodynamic size and surface charge of the particles are investigated using Dynamic Light Scattering (DLS). The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1M NaNO3 solution was investigated. The sorption result shows the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency and fast uptake of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation.

  18. Microchip electrophoresis coupled with on-line magnetic separation and chemiluminescence detection for multiplexed immunoassay.

    Huang, Yong; Zhao, Shulin; Shi, Ming; Liu, Jinwen; Liang, Hong

    2012-04-01

    A facile and universal strategy for multiplexed immunoassay is proposed. The strategy is based on microchip electrophoresis (MCE) coupled with on-line magnetic separation and chemiluminescence (CL) detection. The system consisted of a microchip, an electromagnet, and a photomultiplier. The realization of multiplexed immunoassay protocol involves sampling magnetic nanoparticles (MNPs) labeled antibodies, N-(4-aminobutyl)-N-ethyl-isoluminol (ABEI) labeled antigens and free antigens in the precolumn reactor, on-line immunoreaction, capturing the MNPs-immunocomplexes, and the separation of unconjugated ABEI-labeled antigens. After on-line magnetic separation, the free ABEI-labeled antigens were transported into the separation channel, and mixed with hydrogen peroxide (H(2) O(2) ) in the presence of horseradish peroxidase in the postcolumn reactor, and producing CL emission. Using this arrangement, multiple analytes could be measured simultaneously by performing the technical operations for a single assay. As a proof-of-concept, the multiplexed immunoassay was evaluated for the simultaneous determination of five model analytes (i.e. hydrocortisone, corticosterone, digoxin, testosterone, and estriol). The results exhibited excellent precision and sensitivity, the relative standard deviations for nine times detection were lower than 4.7% for all the five components, and the detection limits of five analytes were in the range of 3.6-4.9 nM. The MCE system was validated using two human serum-based control samples containing five analytes. PMID:22539323

  19. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel

    Kaur, Maninder [Idaho Univ., Moscow, ID (United States); Johnson, Andrew [Idaho Univ., Moscow, ID (United States); Tian, Guoxin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Jiang, Weilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rao, Linfeng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Paszczynski, Andrzej [Idaho Univ., Moscow, ID (United States); Qiang, You [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Idaho Univ., Moscow, ID (United States)

    2013-01-01

    A nanomagnetic separation method based on Diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at low pH is protected by encapsulating them in silica layer. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelators on MNPs. The particles were characterized before and after surface modification using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and uncoated samples were studied using vibrating sample magnetometer (VSM) to understand the change in magnetic properties due to the influence of the surface functionalization. The hydrodynamic size and surface charge of the particles are investigated using Dynamic Light Scattering (DLS). The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1M NaNO3 solution was investigated. The sorption result shows the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency and fast uptake of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation.

  20. Challenge to the volume reduction of contaminated soil based on magnetic separation

    A great amount of radioactive substances were released in the neighborhood of Fukushima Daiichi Nuclear Power Station following the accident of this plant. In particular, damage from radioactive cesium (134 or 137) has become the main case of trouble, incurring the necessity of decontamination of soil in the contaminated territory. In addition, a large amount of contaminated soil was generated due to the decontamination work, and its volume reduction has become a large challenge for the management and storage. This paper takes up magnetic separation technology as one of the technologies of volume reduction, and introduces its development condition. In this method, soil is firstly classified by size, and clay (or silt) with small particles, which adsorbs about 80% of radioactive cesium in soil, is separated from sand gravel. Furthermore, this clay portion is separated based on magnetic separation to 1:1 type and 1:2 type clay minerals with different magnetic susceptibilities, for the purpose of volume reduction. This paper describes the principle of the above method, as well as the development history to date. (A.O.)

  1. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law. PMID:24943952

  2. High-gradient magnetic separation for the treatment of high-level radioactive wastes

    Argonne National Laboratory is developing an open-gradient magnetic separation (OGMS) system to fractionate and remove nonglass-forming species from high-level radioactive wastes (HLW); however, to avoid clogging, OGMS may require high-gradient magnetic separation (HGMS) as a pretreatment to remove the most magnetic species from the HLW. In this study, the feasibility of using HGMS in the pretreatment of HLW was demonstrated. A HLW simulant of hanford's C-103 tank waste, which contained precipitate hydroxides and oxides of Fe, Al, Si, and Ca, was used. Preliminary fractionation results from a 0.3-T bench-scale HGMS unit showed that a significant amount of Fe could be removed from the HLW simulant. Between 1 and 2% of the total Fe in the sludge was removed during each stage, with over 18.5% removed in the 13 stages that were carried out. Also, in each stage, the magnetically retained fraction contained about 20% more Fe than the untreated HLW; however, it also contained a significant amount of SiO2 in relatively large particles. This indicated that SiO2 was acting possibly as a nucleation agent for Fe (i.e., an Fe adsorbent) and that the fractionation was based more on size than on magnetic susceptibility

  3. High-gradient magnetic separation for the treatment of high-level radioactive wastes

    Ebner, A.D.; Ritter, J.A. [Univ. of South Carolina, Columbia, SC (United States); Nunez, L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1999-04-01

    Argonne National Laboratory is developing an open-gradient magnetic separation (OGMS) system to fractionate and remove nonglass-forming species from high-level radioactive wastes (HLW); however, to avoid clogging, OGMS may require high-gradient magnetic separation (HGMS) as a pretreatment to remove the most magnetic species from the HLW. In this study, the feasibility of using HGMS in the pretreatment of HLW was demonstrated. A HLW simulant of hanford`s C-103 tank waste, which contained precipitate hydroxides and oxides of Fe, Al, Si, and Ca, was used. Preliminary fractionation results from a 0.3-T bench-scale HGMS unit showed that a significant amount of Fe could be removed from the HLW simulant. Between 1 and 2% of the total Fe in the sludge was removed during each stage, with over 18.5% removed in the 13 stages that were carried out. Also, in each stage, the magnetically retained fraction contained about 20% more Fe than the untreated HLW; however, it also contained a significant amount of SiO{sub 2} in relatively large particles. This indicated that SiO{sub 2} was acting possibly as a nucleation agent for Fe (i.e., an Fe adsorbent) and that the fractionation was based more on size than on magnetic susceptibility.

  4. Development and creation of the electromagnetic separator for isotope separation in the system of opposing axisymmetric magnetic fields with two fields reversed

    The paper reports the results of work on creation of a setup for isotope separation in the system of opposing axisymmetric magnetic fields with two field reverses. Consideration is given to a real possibility of improving the efficiency of the electromagnetic separator and its resolving power in the double-reverse magnetic field system. It is demonstrated that the use of the opposing axisymmetric field system may substantially reduce the energy consumption during the process of isotope separation. The estimated magnetic field of the facility attests to a possibility of molybdenum isotope separation and isolation of high-purity 98Mo and 100Mo isotopes required for production of the 99Mo/99Tc generator, most widely used in modern medicine.

  5. Treatment of heavy metals and radionuclides in groundwater and wastewater by magnetic separation

    Removal of trace quantities of heavy metal or radionuclide contamination from solutions at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration demand significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes recent progress with this technique including performance tests of composite materials produced to selectively remove specific contaminants such as cesium, uranium, lead, cadmium, and mercury from solution

  6. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (Kd) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles

  7. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    Bauer, C.B.; Rogers, R.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F. [Argonne National Lab., IL (United States)

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  8. Magnetic antibody immunoassay (MAIA) - a new improved separation technique in radioimmunoassay

    Odenthal, J.; Ziemann, W.

    1981-01-01

    Following a short description of the principle of radioimmunoassay and immunoradiometric assay, the special difficulties connected with the separation steps are discussed. Centrifugation is subject to inaccuracies and both time-consuming and technically complicated. Moreover it involves the risk of microbial or radioactive contamination. A new solid-phase procedure is presented using magnetizable particles as solid phase which are for instance bonded with the antibody. Separation is effected by collection of the magnetizable particles and the attached antibodies using a permanent magnet and subsequent decanting of the supernatant. The method is explained using two examples (cortisol, digoxin).

  9. Magnetic antibody immunoassay (MAIA) - a new improved separation technique in radioimmunoassay

    Following a short description of the principle of radioimmunoassay and immunoradiometric assay, the special difficulties connected with the separation steps are discussed. Centrifugation is subject to inaccuracies and both time-consuming and technically complicated. Moreover it involves the risk of microbial or radioactive contamination. A new solid-phase procedure is presented using magnetizable particles as solid phase which are for instance bonded with the antibody. Separation is effected by collection of the magnetizable particles and the attached antibodies using a permanent magnet and subsequent decanting of the supernatant. The method is explained using two examples (cortisol, digoxin). (ZDE)

  10. Radioimmunoassay (RIA) procedure for total triiodothyronine (T3) based on magnetic separation

    We describe a user-friendly radioimmunoassay (RIA) procedure for total triiodothyronine (T3) based on magnetic separation. Anti-T3 antibody was covalently linked to in-house prepared magnetizable cellulose particles and used for the separation of immune complexes formed during the assay procedure. The developed assay procedure was validated statistically and clinically after studying standard assay parameters such as precision profile-assay variations, recovery, clinical correlation etc. This method is planned to be adapted for large-scale production of immunoassay recovery, clinical correlation etc. This method is planned to be adapted for large-scale production of immunoassay kits. (author)

  11. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  12. Self-Doping of Gold Chains on Silicon: A New Structural Model for Si(111)5x2-Au

    Erwin, Steven C.

    2003-01-01

    A new structural model for the Si(111)5x2-Au reconstruction is proposed and analyzed using first-principles calculations. The basic model consists of a "double honeycomb chain" decorated by Si adatoms. The 5x1 periodicity of the honeycomb chains is doubled by the presence of a half-occupied row of Si atoms that partially rebonds the chains. Additional adatoms supply electrons that dope the parent band structure and stabilize the period doubling; the optimal doping corresponds to one adatom pe...

  13. Separated magnet yoke for permanent magnet linear generator for marine wave energy converters

    Gargov, NP; Zobaa, AF; Pisica, I

    2014-01-01

    In this paper the performance of a longitudinal flux permanent magnet linear generator (PMLG) for wave energy converters (WEC) is investigated. The influence of the number of slots per pole, phase q and the number of stator's winding sections are analysed. The power output and the cogging forces in the PMLG are calculated and reviewed with respect to the above design parameters. In addition, an optimised PMLG model is designed and simulated. Three-dimensional Finite Element Method (FEM) is us...

  14. Reduction of the magnetic signal from unbound magnetic markers for magnetic immunoassay without bound/free separation

    Tsukamoto, A. [Advanced Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo 185-8601 (Japan)], E-mail: akira.tsukamoto.tw@hitachi.com; Kuma, H. [Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo-shi, Nagasaki 859-3298 (Japan); Saitoh, K.; Kandori, A. [Advanced Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo 185-8601 (Japan); Yoshinaga, K. [Department of Applied Chemistry, Kyushu Institute of Technology, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550 (Japan); Sugiura, Y. [Plastic products division, INOAC Corporation, Atsuta-ku, Nagoya-shi, Aichi 456-0054 (Japan); Hamasaki, N. [Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo-shi, Nagasaki 859-3298 (Japan); Enpuku, K. [Research Institute of Superconductor Science and Systems, Kyushu University, Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka 812-8581 (Japan)

    2007-10-01

    We investigated the effect of adding magnetic shielding and applying of a compensation field to reduce the magnetic signal from unbound free markers. When the initial immunoassay system was used without the additional shielding box, the signal intensity of the liquid markers normalized by the weight of the Fe{sub 3}O{sub 4} was 1/2700 of the dried markers. By installing the additional shielding box, the reduction factor was improved to 1/10,000. We successfully reduced the magnetic signal of the liquid marker further by applying a compensation field. The magnetic signal of the free marker obtained by applying a compensation field of -18 nT was 1.4 m{phi}{sub 0}, which was close to the system noise level. Field compensation at the very local area just around the SQUID is sufficient for reducing of the magnetic signal from the free marker.

  15. Reduction of the magnetic signal from unbound magnetic markers for magnetic immunoassay without bound/free separation

    Tsukamoto, A.; Kuma, H.; Saitoh, K.; Kandori, A.; Yoshinaga, K.; Sugiura, Y.; Hamasaki, N.; Enpuku, K.

    2007-10-01

    We investigated the effect of adding magnetic shielding and applying of a compensation field to reduce the magnetic signal from unbound free markers. When the initial immunoassay system was used without the additional shielding box, the signal intensity of the liquid markers normalized by the weight of the Fe3O4 was 1/2700 of the dried markers. By installing the additional shielding box, the reduction factor was improved to 1/10,000. We successfully reduced the magnetic signal of the liquid marker further by applying a compensation field. The magnetic signal of the free marker obtained by applying a compensation field of -18 nT was 1.4 mΦ0, which was close to the system noise level. Field compensation at the very local area just around the SQUID is sufficient for reducing of the magnetic signal from the free marker.

  16. Reduction of the magnetic signal from unbound magnetic markers for magnetic immunoassay without bound/free separation

    We investigated the effect of adding magnetic shielding and applying of a compensation field to reduce the magnetic signal from unbound free markers. When the initial immunoassay system was used without the additional shielding box, the signal intensity of the liquid markers normalized by the weight of the Fe3O4 was 1/2700 of the dried markers. By installing the additional shielding box, the reduction factor was improved to 1/10,000. We successfully reduced the magnetic signal of the liquid marker further by applying a compensation field. The magnetic signal of the free marker obtained by applying a compensation field of -18 nT was 1.4 mΦ0, which was close to the system noise level. Field compensation at the very local area just around the SQUID is sufficient for reducing of the magnetic signal from the free marker

  17. Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis

    Raed Abu-Reziq; Howard Alper

    2012-01-01

    The synthesis of magnetically separable quasi-homogeneous base catalyst and heterogeneous base catalyst is described. The quasi-homogeneous catalyst is achieved by supporting silane monomers functionalized with different amine groups directly on the surface of magnetite nanoparticles. The heterogeneous catalyst is prepared via a sol-gel process in which silane monomers containing different amine groups are copolymerized with tetraethoxysilane in the presence of magnetite nanoparticles functio...

  18. Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas

    Volotskova, O.; Levchenko, I.; Shashurin, A.; Raitses, Y.; Ostrikov, K.; Keidar, M.

    2010-10-01

    The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene. Electronic supplementary information (ESI) available: Details of the setup and process; details on the micro-Raman, TEM, SEM, AFM, and characterization of the carbon deposits in different collection areas; detailed description of the results obtained by micro-Raman, AFM and electron diffraction techniques. See DOI: 10.1039/c0nr00416b

  19. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Bölükbaşı Ö.S.; Tufan B.

    2014-01-01

    Basic oxygen furnaces (BOF) slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increa...

  20. Spin-Charge Separation in Two-dimensional Frustrated Quantum Magnets

    Laeuchli, A

    2004-01-01

    The dynamics of a mobile hole in two-dimensional frustrated quantum magnets is investigated by exact diagonalization techniques. Our results provide evidence for spin-charge separation upon doping the kagome lattice, a prototype of a spin liquid. In contrast, in the checkerboard lattice, a symmetry broken Valence Bond Crystal, a small quasi-particle peak is seen for some crystal momenta, a finding interpreted as a restoration of weak holon-spinon confinement.

  1. Multilevel (3D) microfluidic technology for an innovative magnetic cell separation and couting platform

    Fouet, Marc; Manczak, R; Manczak, Rmi; Courson, Rmi; Blatch, Charline; Reybier, K; Gu, Anne-Marie

    2014-01-01

    Currently, the technique for the quantitative detection of cells is flow cytometry. This technique has the advantage of being sensitive and reliable but is expensive, time consuming and not suited to both routine screening and point?of?care diagnostics. Miniaturized cell separation devices offer many advantages such as the use of small volumes, portability and low cost.We propose a new concept of device which, by combining 3D fluid engineering and localized magnetic actuation, enables the ful...

  2. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. PMID:25689073

  3. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation; Caracterizacao da granalha de aco recuperada do residuo de rochas ornamentais por separacao magnetica

    Junca, E.; Telles, V.B.; Rodrigues, G.F.; Oliveira, J.R. de; Tenorio, J.A.S., E-mail: eduardojunca@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2010-07-01

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 {mu}m with 4 wt.% over 100 {mu}m and content metallic iron of 93 wt%. (author)

  4. Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

    An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found

  5. Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

    Kim, J. W.; Kim, D. G.; Jo, H. C. [Institute for Basic Science, Daejeon (Korea, Republic of); Choi, Y. S. [Korea Basic Science Institute, Daejeon (Korea, Republic of); Kim, S. H. [Changwon National University, Changwon (Korea, Republic of); Sim, K. D.; Sohn, M. H. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2015-03-15

    An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found.

  6. Separation of ferromagnetic components by analyzing the hysteresis loops of remanent magnetization

    Kosareva, L. R.; Utemov, E. V.; Nurgaliev, D. K.; Shcherbakov, V. P.; Kosarev, V. E.; Yasonov, P. G.

    2015-09-01

    The new method is suggested for separating ferromagnetic components in sediments through analyzing the coercivity spectra of the samples by the continuous wavelet transform with the Gaussian-based wavelet (MHAT). A total of 1056 samples of Lake Khuvsgul's sediments (Mongolia) are studied. At least four groups of magnetic components are identified based on the analysis of their magnetization and remagnetization curves. Almost all samples are found to contain two components of bacterial origin which are represented by the assemblages of the interacting single-domain grains and differ by the grain compositions (magnetite and greigite). The applicability of the magnetic data for diagnosing magnetotactic bacteria in sediments and building paleoecological and paleoclimatic reconstructions is demonstrated.

  7. Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes.

    Lu, S G; Chen, Y Y; Shan, H D; Bai, S Q

    2009-09-30

    Magnetic fractions (MFs) in fly ashes from eight coal-burning power plants were extracted by magnetic separation procedure. Their mineralogy and potential leachability of heavy metals were analyzed using rock magnetism, X-ray diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDX) and leaching procedures (toxicity characteristics leaching procedure by the United States Environmental Protection Agency, TCLP, and gastric juice simulation test, GJST). Results show that the MFs in the fly ashes range between 2.2 and 16.3wt%, and are generally composed of magnetite, hematite, quartz and mullite. Thermomagnetic analysis and SEM/EDX indicate that the main magnetic carrier magnetite is substituted with small amounts of impure ions, and its structures are featured by rough, dendritic and granular iron spherules. The MFs are found to be rich in Fe, Mn, Cr, Cu, Cd and Pb. Compared with the non-magnetic fractions (NMFs), the MFs have about 5 times higher iron, and 1.6 times higher Mn, Cr, Cu and Cd concentrations. The TCLP test shows that the TCLP-extractable Cr, Cu, and Pb concentrations in the MFs are higher than those in the NMFs, while the TCLP-extractable Cd concentration in the MFs and NMFs is below the detection limit (Cr>Pb>Cd. The heavy metals of fly ashes have a great potential to be released into the environment under acid environment. PMID:19380201

  8. Magnetic design and field optimization of a superferric dipole for the RISP fragment separator

    Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.

    2015-10-01

    The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.

  9. Lipid-Based Immuno-Magnetic Separation of Archaea from a Mixed Community

    Frickle, C. M.; Bailey, J.; Lloyd, K. G.; Shumaker, A.; Flood, B.

    2014-12-01

    Despite advancing techniques in microbiology, an estimated 98% of all microbial species on Earth have yet to be isolated in pure culture. Natural samples, once transferred to the lab, are commonly overgrown by "weed" species whose metabolic advantages enable them to monopolize available resources. Developing new methods for the isolation of thus-far uncultivable microorganisms would allow us to better understand their ecology, physiology and genetic potential. Physically separating target organisms from a mixed community is one approach that may allow enrichment and growth of the desired strain. Here we report on a novel method that uses known physiological variations between taxa, in this case membrane lipids, to segregate the desired organisms while keeping them alive and viable for reproduction. Magnetic antibodies bound to the molecule squalene, which is found in the cell membranes of certain archaea, but not bacteria, enable separation of archaea from bacteria in mixed samples. Viability of cells was tested by growing the separated fractions in batch culture. Efficacy and optimization of the antibody separation technique are being evaluated using qPCR and cell counts. Future work will apply this new separation technique to natural samples.

  10. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation

    Zirconium ferrite particles are good adsorbent for phosphate ions. Magnetic separation characteristics for removal of phosphate from treated water of sewage plants with the adsorbent have been studied to prevent eutrophication of semi-enclosed bay, e.g. the bay of Tokyo. Based on the adsorption for the phosphate ions and ferromagnetic properties of the zirconium ferrite adsorbent, high gradient magnetic separation characteristics with using superconducting magnet was discussed. Very rapid magnetic filtration velocity, i.e. 1m/s, and regeneration properties of the adsorbent indicate that the zirconium ferrite is the excellent adsorbent for phosphorus removal and recycle from treated water of large scale sewage plants.

  11. Separation and measurement of silver nanoparticles and silver ions using magnetic particles.

    Mwilu, Samuel K; Siska, Emily; Baig, R B Nasir; Varma, Rajender S; Heithmar, Ed; Rogers, Kim R

    2014-02-15

    The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility of human or ecosystem exposure due to unintentional release into the environment. To protect consumer health and the environment, there is an urgent need to develop tools that can characterize and quantify these materials at low concentrations and in complex matrices. In this study, magnetic nanoparticles coated with either dopamine or glutathione were used to develop a new, simple and reliable method for the separation/pre-concentration of trace amounts of silver nanoparticles followed by their quantification using inductively coupled plasma mass spectrometry (ICP-MS). The structurally modified magnetic particles were able to capture trace amounts of silver nanoparticles (~2 ppb) and concentrate (up to 250 times) the particles for analysis with ICP-MS. Under laboratory conditions, recovery of silver nanoparticles was >99%. More importantly, the magnetic particles selectively captured silver nanoparticles in a mixture containing both nano-particulate and ionic silver. This unique feature addresses the challenges of separation and quantification of silver nanoparticles in addition to the total silver in environmental samples. Spiking experiments showed recoveries higher than 97% for tap water and both fresh and saline surface water. PMID:24295749

  12. Chiral separation and chiral magnetic effects in a slab: the role of boundaries

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2015-01-01

    We study the chiral separation and chiral magnetic effects in a slab of Dirac semimetal of finite thickness, placed in a constant magnetic field perpendicular to its surfaces. We utilize the Bogolyubov boundary conditions with a large Dirac mass outside the slab. We find that a finite thickness of the slab leads to a quantization of the axial current density, which is seen in its stepped shape dependence on the fermion chemical potential and a sawtooth shape dependence on the thickness of the slab. As expected, in the limit of a large thickness, the result reduces to the well known expression for the chiral separation effect. On the other hand, in the same slab geometry, we find that a nonzero chiral chemical potential induces no electric current, as might have been expected from the chiral magnetic effect. We argue that this outcome is natural and points to the truly non-static nature of the latter. By taking into account a nonzero electric field of double layer near the boundaries of the slab, we find that ...

  13. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui; Srinivasakannan, C.; Chen, Guo; Peng, Jinhui

    2014-05-01

    The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite.

  14. Magnetic particle separation technique: a reliable and simple tool for RIA/IRMA and quantitative PCR assay

    Five types of magnetic particles without or with aldehyde, amino and carboxyl functional groups, respectively were used to immobilize first or second antibody by three models, i. e. physical adsorption, chemical coupling and immuno-affinity, forming four types of magnetic particle antibodies. The second antibody immobilized on polyacrolein magnetic particles through aldehyde functional groups and the first antibodies immobilized on carboxylic polystyrene magnetic particles through carboxyl functional groups were recommended to apply to RIAs and/or IRMAs. Streptavidin immobilized on commercial magnetic particles through amino functional groups was successfully applied to separating specific PCR product for quantification of human cytomegalovirus. In the paper typical data on reliability of these magnetic particle ligands were reported and simplicity of the magnetic particle separation technique was discussed. The results showed that the technique was a reliable and simple tool for RIA/IRMA and quantitative PCR assay. (author)

  15. THE DETECTION OF NUMEROUS MAGNETIC SEPARATORS IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODEL OF SOLAR EMERGING FLUX

    Magnetic separators in three-dimensional (3D) magnetic fields are believed to be often associated with locations of magnetic reconnection. In this preliminary study, we investigate this relationship using data from a numerical resistive 3D MHD experiment of a solar flux emergence event. For the first time separators are detected in complex magnetic fields resulting from a 3D resistive MHD model of flux emergence. Two snapshots of the model, taken from different stages of its evolution, are analyzed. Numerous separators are found in both snapshots, and their properties, including their geometry, length, relationship to the magnetic null points, and integrated parallel electric field are studied. The separators reside at the junctions between the emerging flux, the overlying field, and two other flux domains that are newly formed by reconnection. The long separators, which connect clusters of nulls that lie either side of the emerging flux, pass through spatially localized regions of high parallel electric field and correspond to local maxima in integrated parallel electric field. These factors indicate that strong magnetic reconnection takes place along many of the separators, and that separators play a key role during the interaction of emerging and overlying flux.

  16. Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids

    A portable separator has been developed to quantitatively separate blood-borne magnetic spheres in potentially high-flow regimes for the human detoxification purpose. In the separator design, an array of biocompatible capillary tubing and magnetizable wires is immersed in an external magnetic field that is generated by two permanent magnets. The wires are magnetized and the high magnetic field gradient from the magnetized wires helps to collect blood-borne magnetic nano/micro-spheres from the blood flow. In this study, a 3D numerical model was created and the effect of tubing-wire configurations on the capture efficiency of the system was analyzed using COMSOL Multiphysics 3.3 (registered) . The results showed that the configuration characterized by bi-directionally alternating wires and tubes was the best design with respect to the four starting configurations. Preliminary in vitro experiments verified the numerical predictions. The results helped us to optimize a prototype portable magnetic separator that is suitable for rapid sequestration of magnetic nano/micro-spheres from the human blood stream while accommodating necessary clinical boundary conditions

  17. Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation

    CdTe-coated magnetic polystyrene nanospheres (MPN) were prepared via a stepwise electrostatic self-assembly approach, and the conjugation of epidermal growth factor (EGF) to the MPN/CdTe core-shell nanocomposites was prepared by using 1-ethyl-3(3-dimethylamino propyl)-carbodiimide (EDC) as a cross-linking reagent. The MPN/CdTe and their bioconjugates yielded not only emitted bright fluorescence, but also exhibited superparamagnetism. The human breast cancer MDA-MB-435S cells could be labelled and rapidly separated by the MPN/CdTe-EGF bioconjugates. These magnetofluorescent nanospheres, consisting of magnetic spheres and quantum dots (QDs), may be of special interest for many biomedical applications

  18. Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation

    Chu, Maoquan; Song, Xin; Cheng, Duo; Liu, Shupeng; Zhu, Jian

    2006-07-01

    CdTe-coated magnetic polystyrene nanospheres (MPN) were prepared via a stepwise electrostatic self-assembly approach, and the conjugation of epidermal growth factor (EGF) to the MPN/CdTe core-shell nanocomposites was prepared by using 1-ethyl-3(3-dimethylamino propyl)-carbodiimide (EDC) as a cross-linking reagent. The MPN/CdTe and their bioconjugates yielded not only emitted bright fluorescence, but also exhibited superparamagnetism. The human breast cancer MDA-MB-435S cells could be labelled and rapidly separated by the MPN/CdTe-EGF bioconjugates. These magnetofluorescent nanospheres, consisting of magnetic spheres and quantum dots (QDs), may be of special interest for many biomedical applications.

  19. Magnetic-field-induced nematic-nematic phase separation and droplet formation in colloidal goethite

    We demonstrate the suitability of polarization microscopy to study the recently discovered (parallel) nematic-(perpendicular) nematic phase separation. This novel type of phase transition is induced by applying an external magnetic field to a nematic liquid crystal of boardlike colloidal goethite and is due to an interplay between the intrinsic magnetic properties of goethite and the collective effect of liquid crystal formation. It is shown that the intense ochre colour of goethite does not preclude the use of polarization microscopy and interference colours, and that dichroism can give valuable qualitative information on the nature of the phases, their anchoring and their sedimentation and order parameter profiles. We also apply these techniques to study 'nematic-nematic tactoids': nematic droplets sedimenting within a nematic medium with mutually perpendicular orientations.

  20. Deterministic Generation of Quantum State Transfer Between Spatially Separated Single Molecule Magnets

    We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum electrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network. (general)

  1. Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white.

    Gao, Ruixia; Zhang, Lili; Hao, Yi; Cui, Xihui; Liu, Dechun; Zhang, Min; Tang, Yuhai

    2015-11-01

    Novel core-shell nanocomposites, consisting of magnetic carbon nanotubes (MCNTs) core surrounded by a thin polydopamine (PDA) imprinting shell for specific recognition of lysozyme (Lyz), were fabricated for the first time. The obtained products were characterized and the results showed that the PDA layer was successfully attached onto the surface of MCNTs and the corresponding thickness of imprinting layer was just about 10nm which could enable the template access the recognition cavities easily. The polymerization conditions and adsorption performance of the resultant nanomaterials were investigated in detail. The results indicated that the obtained imprinted polymers showed fast kinetic and high affinity towards Lyz and could be used to specifically separate Lyz from real egg white. In addition, the prepared materials had excellent stability and no obvious deterioration after five adsorption-regeneration cycles. Easy preparation, rapid separation, high binding capacity, and satisfactory selectivity for the template protein make this polymer attractive in biotechnology and biosensors. PMID:26452937

  2. Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis

    Raed Abu-Reziq

    2012-03-01

    Full Text Available The synthesis of magnetically separable quasi-homogeneous base catalyst and heterogeneous base catalyst is described. The quasi-homogeneous catalyst is achieved by supporting silane monomers functionalized with different amine groups directly on the surface of magnetite nanoparticles. The heterogeneous catalyst is prepared via a sol-gel process in which silane monomers containing different amine groups are copolymerized with tetraethoxysilane in the presence of magnetite nanoparticles functionalized with ionic liquid moieties. The reactivity of the quasi-homogeneous and the heterogeneous base catalysts is compared in the nitroaldol condensation.

  3. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  4. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    Kyeong, San; Jeong, Cheolhwan; Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics un...

  5. Separation of Selenite from Inorganic Selenium Ions using TiO2 Magnetic Nanoparticles

    A simple and quick separation technique for selenite in natural water was developed using TiO2 SiO2/Fe3O4 nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the TiO2 shell. The synthesized nanoparticles were used to separate selenite (Se4+) in the presence of Se6+ or selenium anions for the photocatalytic reduction to Se0 atom on the TiO2 shell, followed by magnetic separation using Fe3O4 nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis

  6. Optimization of a dual capture element magnetic separator for the purification of high velocity water flow

    Belounis, Abdallah; Mehasni, Rabia; Ouili, Mehdi; Feliachi, Mouloud; El-Hadi Latreche, Mohamed

    2016-02-01

    In this paper a magnetic separator based on the use of a cascade arrangement of two identical capture elements has been optimized and verified. Such a separator is intended for the separation of fine particles of iron from flowing water at high velocity. The optimization has concerned the search for the excitation current and the distance between the capture elements that permit the extraction of the particles from a water flow in a circular channel at an average velocity ufav = 1.05 m/s. For such optimization we have minimized the objective function that is the distance between the capture position of a particle initially situated at a specific position and the central point of the last capture element of the arrangement. To perform the minimization, we have applied the Tabu search method. To validate the obtained results experimental verification based on the control of the evolution of the captured particle buildup and the quantifying of the separated volume of particles was achieved. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  7. Identification of the au coverage and structure of the Au/Si(111)-(5 × 2) surface.

    Kwon, Se Gab; Kang, Myung Ho

    2014-08-22

    We identify the atomic structure of the Au/Si(111)-(5 × 2) surface by using density functional theory calculations. With seven Au atoms per unit cell, our model forms a bona fide (5 × 2) atomic structure, which is energetically favored over the leading model of Erwin et al. [Phys. Rev. B 80, 155409 (2009)], and well reproduces the Y-shaped and V-shaped (5 × 2) STM images. This surface is metallic with a prominent half filled band of surface states, mostly localized around the Au-chain area. The correct identification of the atomic and band structure of the clean surface further clarifies the adsorption structure of Si adatoms and the physical origin of the intriguing metal-to-insulator transition driven by Si adatoms. PMID:25192108

  8. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    Judkins, Roddie R. (9917 Rainbow Dr., Knoxville, TN 37922); Burchell, Timothy D. (109 Greywood Pl., Oak Ridge, TN 37830)

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  9. Magnetic separation of amino acids by gold/iron-oxide composite nanoparticles synthesized by gamma-ray irradiation

    Amounts of amino acids adsorbed onto the Au/?-Fe2O3 composite nanoparticles synthesized by gamma-ray irradiation were measured using magnetic separation technique. Cystine and methionine, which are sulfur-containing amino acids, connected to Au by a Au-S bond could be selectively picked up by a magnet

  10. Theoretical study of moving magnetic beads on an inclined plane and its application in the ratchet separation technique

    Rashidi, M. M.; Johnson, S.; Yang, Z.

    2016-01-01

    For first time, motion of a magnetic bead ascending an inclined surface is investigated. The translational and rotational velocities of magnetic beads traveling on an inclined plane in the creeping flow regime are studied. The governing equations considering lift force and magnetic torque are obtained. Rolling and slipping cases are studied in detail. It is shown that the lift force effect is critical for large values of sedimentation Reynolds number (Res) and negligible for small values of Res. This method is applicable for neutrally buoyant and heavy magnetic bead motion. Practical application of this study is implemented in the ratchet configuration for separation of magnetic beads with different sizes. This is applicable for novel applications such as drug delivery, magnetic tweezers, and magnetic actuated stiffness testing systems which require accurate magnetic bead sizes for accurate function.

  11. Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes

    Lu, S.G., E-mail: lusg@zju.edu.cn [College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310029 (China); Chen, Y.Y. [Institute of Applied Biological Resources, Zhejiang University, Hangzhou 310029 (China); Shan, H.D.; Bai, S.Q. [College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310029 (China)

    2009-09-30

    Magnetic fractions (MFs) in fly ashes from eight coal-burning power plants were extracted by magnetic separation procedure. Their mineralogy and potential leachability of heavy metals were analyzed using rock magnetism, X-ray diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDX) and leaching procedures (toxicity characteristics leaching procedure by the United States Environmental Protection Agency, TCLP, and gastric juice simulation test, GJST). Results show that the MFs in the fly ashes range between 2.2 and 16.3 wt%, and are generally composed of magnetite, hematite, quartz and mullite. Thermomagnetic analysis and SEM/EDX indicate that the main magnetic carrier magnetite is substituted with small amounts of impure ions, and its structures are featured by rough, dendritic and granular iron spherules. The MFs are found to be rich in Fe, Mn, Cr, Cu, Cd and Pb. Compared with the non-magnetic fractions (NMFs), the MFs have about 5 times higher iron, and 1.6 times higher Mn, Cr, Cu and Cd concentrations. The TCLP test shows that the TCLP-extractable Cr, Cu, and Pb concentrations in the MFs are higher than those in the NMFs, while the TCLP-extractable Cd concentration in the MFs and NMFs is below the detection limit (<0.1 mg/L). The GJST-extractable Cd, Cr, Cu, and Pb concentrations in the MFs are higher those in the NMFs. No significant difference in the leachability ratio of Cr, Cu and Pb with TCLP and GJST is found in the MFs and NMFs. However, the GJST test showed that Pb has higher leachability in MFs than that in NMFs. The leachability ratio of heavy metals has an order of Cu > Cr > Pb > Cd. The heavy metals of fly ashes have a great potential to be released into the environment under acid environment.

  12. A novel bubbling-assisted exfoliating method preparation of magnetically separable ?-Fe2O3/graphene recyclable photocatalysts

    Zhang, Lili; Hu, Hongrui; Wu, Mingzai; Yu, Xinxin; Sun, Zhaoqi; Li, Guang; Liu, Xiansong; Zheng, Xiuwen

    2014-06-01

    A facile and novel bubbling-assisted exfoliating method was developed for the preparation of ?-Fe2O3/graphene composite, which showed desirable photocatalytic activity toward methyl orange with excellent cycling abilities and the possible growth mechanism was discussed. Photocatalytic and magnetic properties measurements show that the composite has excellent recyclable degradation efficiency and soft magnetic parameters, which makes the composite magnetically separable in a suspension system and can be recycled without significant loss of catalytic activity.

  13. Removal and recovery of phosphorus in wastewater by superconducting high gradient magnetic separation with ferromagnetic adsorbent

    Prevention of eutrophication for semi-enclosed bays and ponds is serious and important challenge. In spite of the advanced wastewater treatment, typically 1 mg/L phosphorus is discharged into public water bodies from wastewater treatment plants. The total amount of the discharged water is so large that the further improvement of the removal efficiency of phosphorus in the discharged water is demanded. On the other hand, recently phosphorus has become increasingly recognized as the important strategic material due to the global food problem. Therefore, the recovery and recycling of phosphorus is also important issue. In this work, removal and recovery of phosphorus from treated wastewater by High Gradient Magnetic Separation (HGMS) with ferromagnetic zirconium ferrite adsorbent were studied. Phosphorus in the treated wastewater could be removed from 1.12 mg/L to 0.03 mg/L by the HGMS system with 500 mg/L zirconium ferrite adsorbent for 5 min in adsorption time. The magnetic separation speed achieved 1 m/s at 1 T which was necessary for practical use. We also confirmed that phosphorus could be desorbed from zirconium ferrite adsorbent by alkali treatment in a short time.

  14. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    Magnetic particles (MAG*SEPSM) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEPSM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEPSM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEPSM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  15. Magnetic isotope effect and isotope separation under photolysis of dibenzylketone; dependence on viscosity and electron-nuclear interaction

    Tarasov, V.F.; Askerov, D.B.; Buchachenko, A.L. (AN SSSR, Moscow. Inst. Khimicheskoj Fiziki)

    1982-09-01

    Dependence of effectiveness of magnetic isotope redistribution on the solvent mixture of glycerine and butanol viscosity is investigated on the example of dibenzylketone (DBK) photolysis. Changes in /sup 13/C isotope content in dibenzylketone molecules and dibenzyl molecules-DBK photolysis product are measured. It is shown that the stronger is the difference of effective electron-nuclear interactions in the magnetic and non-magnetic radical pairs the higher is the effectiveness of isotope separation. Isotope separation takes place more effectively at a certain, optimal viscosity of the solvent, in which the reaction proceeds.

  16. The Recovery and Life Cycle Assessment of Nickel Particles in A Multi-Solenoid Open-Gradient Magnetic Separator

    Shibayama, A.; Matsuda, M.; Otsuki, A.; Dodbiba, G; Fujita, T.; Jeyadevan, B.; Takahashi, K.

    2002-01-01

    The recovery of 87% and the grade of 30% of Ni from nickel tip capacitors were achieved using a multi-solenoid open-gradient magnetic separator. A series of tests under varying conditions, such as density of pulp, magnetic flux density, pH, etc. have been studied. The experimental results of the purification tests were relaed to the parameters investigated. Moreover, the LCA assessment suggested that the nickel concentrate recovered by the open-gradient magnetic separator can be re-used as a ...

  17. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite

  18. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Chen, Guo, E-mail: guochen@kmust.edu.cn [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Peng, Jinhui, E-mail: jhpeng@kmust.edu.cn [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates)

    2014-05-01

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite.

  19. Mass separation of a multi-component plasma flow travelling through a magnetic transport system

    The travel of plasma flow produced by a dc arc through a transport system based on a curved magnetic field was studied. The characteristics of the system were the absence of a curved metallic plasma guiding duct ('open architecture') and the fact that the magnetic field coils were non-coaxial to the plasma flow. By means of Langmuir probe measurements it was shown that both shape and position of the cathode plasma flow at the exit of the transport system were governed by variation of currents of the magnetic coils as well as by biasing of a special electrode inserted into the plasma flow. It was found that with parameters of the transport system held constant, the plasma ions with lower m/Z were deflected more, e.g. Al ions were deflected more than Ti ions. For an arc with a composite cathode, consisting of mainly Cr-Fe-Ni, the profile of atoms of these elements at the exit of the transport system was measured by x-ray fluorescence spectrometry. The results obtained were consistent with the probe measurements, hence the transport system, in principle, may be used for spatial separation of a multi-component (in masses) plasma flow.

  20. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes.

    Wang, Yuling; Ravindranath, Sandeep; Irudayaraj, Joseph

    2011-01-01

    A rapid and sensitive method was developed here for separation and detection of multiple pathogens in food matrix by magnetic surface-enhanced Raman scattering (SERS) nanoprobes. Silica-coated magnetic probes (MNPs@SiO(2)) of ~100 nm in diameter were first prepared via the reverse microemulsion method using cetyltrimethylammonium bromide as a surfactant and tetraethyl orthosilicate as the silica precursor. The as-prepared MNPs@SiO(2) were functionalized with specific pathogen antibodies to first capture threat agents directly from a food matrix followed by detection using an optical approach enabled by SERS. In this scheme, pathogens were first immuno-magnetically captured with MNPs@SiO(2), and pathogen-specific SERS probes (gold nanoparticles integrated with a Raman reporter) were functionalized with corresponding antibodies to allow the formation of a sandwich assay to complete the sensor module for the detection of multiple pathogens in selected food matrices, just changing the kinds of Raman reporters on SERS probes. Here, up to two key pathogens, Salmonella enterica serovar Typhimurium and Staphylococcus aureus, were selected as a model to illustrate the probability of this scheme for multiple pathogens detection. The lowest cell concentration detected in spinach solution was 10(3) CFU/mL. A blind test conducted in peanut butter validated the limit of detection as 10(3) CFU/mL with high specificity, demonstrating the potential of this approach in complex matrices. PMID:21136046

  1. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag. PMID:26994349

  2. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-11-01

    A reclaimable Fe3O4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (qm) of the Fe3O4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π-π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe3O4/GO hybrid. Therefore, the Fe3O4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  3. Function of the demagnetization factor in respect of a quasi-solid filtermatrix of a magnetic separator ?????????????? ??? ???????????? ??????????????? ????????????? ??????-??????? ?????????? ??????????

    Sandulyak Anna Aleksandrovna

    2013-07-01

    Full Text Available The author presents the prospects for the use of a magnetic separator, equipped with a filter matrix, in the treatment of ceramic suspensions and minerals. Particles of ferromagnetic impurities are captured by matrix pores, when purified media is transmitted through the magnetized filter matrix. The particle capture efficiency depends on the level of the filter matrix magnetization. The intensity of demagnetization influences the filter matrix magnetization intensity. Unfortunately, many researchers frequently ignore the demagnetization factor of a filter matrix as a specific (granulated magnet.The effect of self-demagnetization is studied in terms of homogeneous (solid magnets. The effect of self-demagnetization means that poles emerge on the borders of magnetized short magnets. Thus, a strong inner demagnetization field emerges. The main parameter of this physical characteristic of sample-magnets is the coefficient of demagnetization, which relates the intensity of the demagnetization field and the magnetization intensity of a sample body. The author considers the relevant issue of influence of the demagnetization intensity on the average values of the magnetic permeability of porous (quasi-solid magnets, for example, a filter matrix. This dependence is relevant for the calculation of magnetic permeability values.??????????? ?????????? ?????? ? ???????????? ??????? ????????????????? ??????? N ?? ??????? ???????? ????????? ????????????? ???????? ?????????? (??????-??????. ????????? ???????? N ? ??????????? ?? ????????? ????? L ????? ?????????? ? ?? ???????? D . ????????, ??? ?????? N ????? ????????? ???????????????? ????? ? ????????? ?????????????? ???????? (? L/D . ????????????? ????? ????????? ???????? ??????????? ???????? ????????? ????????????? ???????? ??????-??????? ? ??? ????? ?????? ? ?? ??????????????? ?????????????????.

  4. The selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    The proper choice of a suitable matrix for high-intensity magnetic separation is of the utmost importance, since the geometry and size of the matrix play decisive roles in the achievement of optimum separation conditions. In relatively simple filtration applications, the matrix must offer a high efficiency of collision with suspended particles, a high probability of retention of intercepted particles, and high loading capacity. Also, it must be easily cleaned. The results obtained by the use of theoretical models of magnetic separation fail to agree with the experimental results for basic parameters like the ratio of particle size to matrix size, the length of the matrix, and the magnetic properties of the matrix material. Preconceived ideas about the matrix often lead to the erroneous choice of a matrix, and hence to its unsatisfactory performance during magnetic separation. The potential value of high-intensity magnetic separation as applied to the recovery of uranium and gold from leach residues and in association with the development of a large-scale magnetic separator to be used for the same purpose led to the present investigation in which a wide spectrum of matrix shapes and sizes were tested. It was found that the optimum recovery and selectivity of separation are obtained at a ratio of particle size to matrix-element size ranging from 200 to 300. The use of these matrices also results in a low degree of mechanical entrapment, particularly of coarser particles, for which straining plays a significant role for fine matrices. It was also found that the magnetization of a matrix plays a minor role, contrary to the theoretical predictions. Furthermore, the effects of matrix height, matrix loading, and scalping of the pulp by paramagnetic matrices were evaluated for various types of matrices

  5. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994]. Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in short term leachability [Jantzen-1985, Hench-1982]. However, Jantzen et.al. found that leaching increased preferentially at grain boundary interfaces [Jantzen-1985]. For a SRL 165 glass crystallized up to 30% vol., leachability measured by normalized boron release increased by a factor of three compared to the uncrystallized glass [Kelly-1975, Plodinec-1979]. In general, the magnitude of the crystallization effect depends highly on glass composition and cooling rate

  6. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    Nunez' , L.; Kaminsky' , M.D.,; Crawford, C.; Ritter, J.A.

    1999-12-31

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994] Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in short term leachability [Jantzen-1985, Hench-1982]. However, Jantzen et k > al. found that leaching increased preferentially at grain boundary interfaces [Jantzen-1985]. For a SRL 165 glass crystallized up to 30% vol., leachability measured by normalized boron release increased by a factor of three compared to the uncrystallized glass [Kelly-1975, Plodinec-1979]. In general, the magnitude of the crystallization effect depends highly on glass composition and cooling rate.

  7. Wave-driven rotation and mass separation in rotating magnetic mirrors

    Fetterman, Abraham J.

    Axisymmetric mirrors are attractive for fusion because of their simplicity, high plasma pressure at a given magnetic pressure, and steady state operation. Their subclass, rotating mirrors, are particularly interesting because they have increased parallel confinement, magnetohydrodynamic stability, and a natural heating mechanism. This thesis finds and explores an unusual effect in supersonically rotating plasmas: particles are diffused by waves in both potential energy and kinetic energy. Extending the alpha channeling concept to rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A high azimuthal mode number perturbation on the magnetic field is a particularly simple way to achieve the latter effect. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particles total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. In the same way, rotation can be produced in non-fusion plasmas. Waves are identified to produce rotation in plasma centrifuges, which separate isotopes based on their mass difference. Finally, a new high throughput mass filter which is well suited to separating nuclear waste is presented. The new filter, the magnetic centrifugal mass filter (MCMF), has well confined output streams and less potential for nuclear proliferation than competing technologies. To assess the usefulness of the MCMF, a metric for comparing mass filters is developed. With this metric, the MCMF is compared with other mass filters such as the Ohkawa filter and the conventional plasma centrifuge.

  8. Research on high gradient magnetic separation of pneumatic conveyed powder products: Investigation from the viewpoint of interparticle interactions

    Highlights: ? We separated SUS particle from the mixture of alumina/silica and SUS particle. ? The high separation efficiencies were obtained both in two samples. ? The separation efficiency of the sample using alumina did not reach to 100%. ? The adhesion forces between particles were measured when changing the humidity. ? Based on these data, the conditions of the separation experiment were examined. -- Abstract: The separation and removal of the metallic debris originating from pipe of manufacturing line are required in the manufacturing process of the fine particle products. In this study, we develop a high gradient magnetic separation system (HGMS) under a dry process by using a superconducting magnet to remove ferromagnetic particles such as the material stainless steel (SUS). To avoid the obstruction of the separation part by aggregation of the processed material, we develop a magnetic separation system using a pneumatic conveying as a new transportation method of the particles. The magnetic separations were experimented under the same conditions on different days, but the results were different. The reason is considered to be the difference in adhesion force between the particles due to a change of humidity, we have measured the adhesion forces between the ferromagnetic particles and the paramagnetic medium particles using AFM (Atomic Force Microscope) while changing the humidity. As a result, the adhesion force between the particles increased with the increasing of humidity. Furthermore, we saw that the effect of relative humidity was larger in the adhesion force of alumina with larger cohesive property. Based on these results, an appropriate condition of the separation experiment was clarified. And a dehumidification mechanism was introduced

  9. Research on high gradient magnetic separation of pneumatic conveyed powder products: Investigation from the viewpoint of interparticle interactions

    Senkawa, Kohei, E-mail: senkawa@qb.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, A1 Bldg., 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakai, Yuki; Mishima, Fumihito [Graduate School of Engineering, Osaka University, A1 Bldg., 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Akiyama, Yoko, E-mail: yoko-ak@qb.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, A1 Bldg., 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, A1 Bldg., 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-01-15

    Highlights: ? We separated SUS particle from the mixture of alumina/silica and SUS particle. ? The high separation efficiencies were obtained both in two samples. ? The separation efficiency of the sample using alumina did not reach to 100%. ? The adhesion forces between particles were measured when changing the humidity. ? Based on these data, the conditions of the separation experiment were examined. -- Abstract: The separation and removal of the metallic debris originating from pipe of manufacturing line are required in the manufacturing process of the fine particle products. In this study, we develop a high gradient magnetic separation system (HGMS) under a dry process by using a superconducting magnet to remove ferromagnetic particles such as the material stainless steel (SUS). To avoid the obstruction of the separation part by aggregation of the processed material, we develop a magnetic separation system using a pneumatic conveying as a new transportation method of the particles. The magnetic separations were experimented under the same conditions on different days, but the results were different. The reason is considered to be the difference in adhesion force between the particles due to a change of humidity, we have measured the adhesion forces between the ferromagnetic particles and the paramagnetic medium particles using AFM (Atomic Force Microscope) while changing the humidity. As a result, the adhesion force between the particles increased with the increasing of humidity. Furthermore, we saw that the effect of relative humidity was larger in the adhesion force of alumina with larger cohesive property. Based on these results, an appropriate condition of the separation experiment was clarified. And a dehumidification mechanism was introduced.

  10. The evaluation of thyrotropin immunoradiometric assay kit (magnetic separation) in clinical application

    The average recovery of the thyrotropin immunoradiometric assay (TSH IRMA) is (104.8 +- 4.1)%. The coefficients of variation in intra-and inter assay are 9.0% and 15.4%, respectively. The average batch coefficient of variation is 0.0077-0.0216. The 95% confidence interval of serum TSH IRMA was 0.41-4.28 mIU/I in 45 blood donors. The levels of TSH in 113 cases with hyperthyroidism are below 0.41 mIU/l in IRMA, but normal in RIA. The levels of TSH IRMA in 57 cases with hypothyroidism are higher than normal, and have more significant positive correlation with that of TSH RIA (r 0.9566, P<0.01). The results show that the TSH IRMA with magnetic separation is a sensitive method for thyroid function test

  11. Radioimmunoassays for free triiodothyronine and free thyroxine in serum with magnetic separation of the solid phase

    Two sensitive and rapid RIA method for quantitative measurement of free triiodothyronine (FT3) and free thyroxine (FT4) in serum are described. These two step RIA procedures utilize immuno extraction of free hormone and separation of free phase by specific, high affinity polyclonal antiserum coupled to cellulose coated magnetic iron oxide particles. The measurement range is 0-100 pmol/l for FT4 and 0-50 pmol/l for FT3 respectively. Sensitivity of FT3 and FT4 is no more than 0.5 pmol/l. The normal range is 2.5-9.5 pmol/l for FT3 and 9.5-25.5 pmol/l for FT4

  12. Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation.

    Zhang, Liang; Li, Lili; Dang, Zhi-Min

    2016-02-01

    In the present study, superhydrophobic and superoleophilic microparticles with magnetic property were fabricated by combining the oxidation and self-polymerization of dopamine and formation of Fe3O4 nanoparticles on the surface of the polydopamine (PDA) particles, followed by modification with low surface energy material. The modified PDA/Fe3O4 particles showed high water repellency with contact angle (CA) measured at 153.71.6 and high oil affinity. The superhydrophobic microparticles preserved high water CA after aging test, showing excellent durability. The microparticles were employed to effectively remove oil from water in different routes. Superhydrophobic sponge was prepared by modifying with the achieved microparticles. The sponge exhibited high absorption capability of oil, with weight gains ranging from 1348% to 7268%. The results suggest this work might provide a promising candidate for oily pollutants/water separation and transportation. PMID:26550784

  13. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation.

    Tang, Wenshu; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-07-01

    By doping a proper amount of Mg(2+) (~10%) into ?-Fe2O3 during a solvent thermal process, ultrafine magnesium ferrite (Mg0.27Fe2.50O4) nanocrystallites were successfully synthesized with the assistance of in situ self-formed NaCl "cage" to confine their crystal growth. Their ultrafine size (average size of ~3.7 nm) and relatively low Mg-content conferred on them a superparamagnetic behavior with a high saturation magnetization (32.9 emu/g). The ultrafine Mg0.27Fe2.50O4 nanoadsorbent had a high specific surface area of ~438.2 m(2)/g, and demonstrated a superior arsenic removal performance on both As(III) and As(V) at near neutral pH condition. Its adsorption capacities on As(III) and As(V) were found to be no less than 127.4 mg/g and 83.2 mg/g, respectively. Its arsenic adsorption mechanism was found to follow the inner-sphere complex mechanism, and abundant hydroxyl groups on its surface played the major role in its superior arsenic adsorption performance. It could be easily separated from treated water bodies with magnetic separation, and could be easily regenerated and reused while maintaining a high arsenic removal efficiency. This novel superparamagnetic magnesium ferrite nanoadsorbent may offer a simple single step adsorption treatment option to remove arsenic contamination from water without the pre-/post-treatment requirement for current industrial practice. PMID:23726698

  14. Research on high gradient magnetic separation of pneumatic conveyed powder products: Investigation from the viewpoint of interparticle interactions

    Senkawa, Kohei; Nakai, Yuki; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-01-01

    The separation and removal of the metallic debris originating from pipe of manufacturing line are required in the manufacturing process of the fine particle products. In this study, we develop a high gradient magnetic separation system (HGMS) under a dry process by using a superconducting magnet to remove ferromagnetic particles such as the material stainless steel (SUS). To avoid the obstruction of the separation part by aggregation of the processed material, we develop a magnetic separation system using a pneumatic conveying as a new transportation method of the particles. The magnetic separations were experimented under the same conditions on different days, but the results were different. The reason is considered to be the difference in adhesion force between the particles due to a change of humidity, we have measured the adhesion forces between the ferromagnetic particles and the paramagnetic medium particles using AFM (Atomic Force Microscope) while changing the humidity. As a result, the adhesion force between the particles increased with the increasing of humidity. Furthermore, we saw that the effect of relative humidity was larger in the adhesion force of alumina with larger cohesive property. Based on these results, an appropriate condition of the separation experiment was clarified. And a dehumidification mechanism was introduced.

  15. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    A magnetically separable single-phase MgFe2O4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe2O4 was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe2O4 was studied by measuring their photocurrentpotential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm?2 illumination. - Graphical abstract: Highly efficient magnetically separable MgFe2O4 photocatalyst for organic based impurities decomposition as well as for the production of H2 gas was synthesized and characterized successfully (a) MgFe2O4 photocatalyst in polluted water, (b) The photocatalyst (MgFe2O4) is being attracted toward magnetic field for separation, (c) Hysteresis loop of MgFe2O4 showing magnetic behavior. Highlights: ? New photocatalyst working in the visible range have been synthesized by facile cheap route. ? MgFe2O4 photocatalyst showed well defined magnetically separable behavior. ? Excellent water splitting characteristics to produce H2 was observed under visible light irradiation

  16. Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity.

    Ji, Zhenyuan; Shen, Xiaoping; Yue, Xiaoyang; Zhou, Hu; Yang, Juan; Wang, Yuqin; Ma, Lianbo; Chen, Kangmin

    2015-12-01

    In this study, the combination of magnetite (Fe3O4) with reduced graphene oxide (RGO) generates a new hybrid substrate for the dispersion of noble metal nanoparticles. Well-dispersed silver (Ag) nanoparticles loaded on the surface of Fe3O4 modified RGO are achieved by an efficient two-step approach. Through reducing Ag(+) ions, highly dispersed Ag nanoparticles are in-situ formed on the RGO/Fe3O4 substrate. It is found that the existence of Fe3O4 nanocrystals can significantly improve the dispersity and decrease the particle size of the in-situ formed Ag nanoparticles. Magnetic study reveals that the as-prepared RGO/Fe3O4/Ag ternary nanocomposites display room-temperature superparamagnetic behavior. The catalytic properties of the RGO/Fe3O4/Ag ternary nanocomposites were evaluated with the reduction of 4-nitrophenol into 4-aminophenol as a model reaction. The as-synthesized RGO/Fe3O4/Ag ternary catalysts exhibit excellent catalytic stability and much higher catalytic activity than the corresponding RGO/Ag catalyst. Moreover, the RGO/Fe3O4/Ag catalysts can be easily magnetically separated for reuse. This study further demonstrates that nanoparticles modified graphene can act as an effective hybrid substrate for the synthesis of multi-component and multifunctional graphene-based composites. PMID:26263498

  17. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA

    Chen, Feng; Shi, Ruobing; Xue, Yun; Chen, Lei; Wan, Qian-Hong

    2010-08-01

    A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe 2O 3)/silica (SiO 2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe 3O 4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe 3O 4 to γ-Fe 2O 3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 °C feature spherical shape and uniform particle size ( dparticle=1.72 μm), high saturation magnetization ( Ms=17.22 emu/g), superparamagnetism ( Mr/ Ms=0.023), high surface area ( SBET=240 m 2/g), and mesoporosity ( dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO 2 nanoparticles, in which cubic γ-Fe 2O 3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 °C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/ A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.

  18. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA

    A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe2O3)/silica (SiO2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe3O4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe3O4 to γ-Fe2O3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 deg. C feature spherical shape and uniform particle size (dparticle=1.72 μm), high saturation magnetization (Ms=17.22 emu/g), superparamagnetism (Mr/Ms=0.023), high surface area (SBET=240 m2/g), and mesoporosity (dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO2 nanoparticles, in which cubic γ-Fe2O3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 deg. C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.

  19. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells

    Chimma Pattamawan

    2010-02-01

    Full Text Available Abstract Background Highly purified infected red blood cells (irbc, or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported using polymer coated columns, while HGMS depletion has not been described yet. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary. Methods A dipole magnet generating a strong homogenous field was custom assembled. Polypropylene syringes were fitted with one-way stopcocks and filled with stainless steel wool. Rbc from Plasmodium falciparum cultures were resuspended in density and viscosity optimized HGMS buffers and HGMS processed. Purification and depletion results were analysed by flow cytometer and light microscopy. Viability was evaluated by calculating the infection rate after re-culturing of isolates. Results In HGMS concentration, purity of irbc isolates from asynchronous cultures consistently ranged from 94.8% to 98.4% (mean 95.7%. With further optimization, over 90% of isolated irbc contained segmented schizonts. Processing time was less than 45 min. Reinfection rates ranged from 21.0% to 56.4%. In HGMS depletion, results were comparable to treatment with sorbitol, as demonstrated by essentially identical development of cultures. Conclusion The novel HGMS concentration procedure achieves high purities of segmented stage irbc from standard asynchronous cultures, and is the first HGMS depletion alternative to sorbitol lysis. It represents a simple and highly efficient alternative to conventional irbc concentration and synchronization methods.

  20. Studies of charge separation characteristics for higher density plasma in a direct energy converter using slanted cusp magnetic field

    In an advanced fusion, fusion-produced charged particles must be separated from each other for converting their kinetic energy to electricity. The CUSPDEC performs this function of separation and direct energy conversion of thermal components. This paper summarizes experimental works by using a small scale experimental device and these results as charge separation characteristics by slanted cusp magnetic field. When the incident plasma is low-density, the dependences of the separation efficiency on magnetic field strength, energy of electrons, and gradient of the field line are explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot always be applied due to a self-induced field. In the experiment, as plasma density became higher, separation capability of the charged particles became lower although the efficiency of separation was improved with some extent by using slanted cusp magnetic field. The modification of the theory applicable for high density plasma and the effective factor corresponding to separation efficiency was required in the following research. (author)

  1. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    Shahid, Muhammad

    2013-05-01

    A magnetically separable single-phase MgFe2O4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe2O4 was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe2O4 was studied by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm-2 illumination. © 2013 Elsevier B.V. All rights reserved.

  2. Effects of pH and Magnetic Material on Immunomagnetic Separation of Cryptosporidium Oocysts from Concentrated Water Samples

    Kuhn, Ryan C.; Rock, Channah M.; Oshima, Kevin H.

    2002-01-01

    In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered f...

  3. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates. PMID:25976126

  4. Separation of the contributions to the magnetization of Tm1 - x Yb x B12 solid solutions in steady and pulsed magnetic fields

    Bogach, A. V.; Sluchanko, N. E.; Glushkov, V. V.; Demishev, S. V.; Azarevich, A. N.; Filippov, V. B.; Shitsevalova, N. Yu.; Levchenko, A. V.; Vanacken, J.; Moshchalkov, V. V.; Gabani, S.; Flachbart, K.

    2013-05-01

    The magnetization of substitutional Tm1 - x Yb x B12 solid solutions is studied in the composition range 0 B12 compounds to be separated. These contributions include a Pauli component, which corresponds to the response of the heavy-fermion manybody states that appears in the energy gap in the vicinity of the Fermi level (density of states (3-4) × 1021 cm-3 meV-1), and a contribution with saturation in high magnetic fields attributed to the localized magnetic moments ((0.8-3.7)μB per unit cell) of the nanoclusters formed by rare-earth ions with an antiferromagnetic interaction.

  5. Fabrication of anisotropic porous silica monoliths by means of magnetically controlled phase separation in sol-gel processes.

    Furlan, Marco; Lattuada, Marco

    2012-08-28

    Sol-gel accompanied by phase separation is an established method for the preparation of porous silica monoliths with well-defined macroporosity, which find numerous applications. In this work, we demonstrate how the addition of (superpara)magnetic nanocolloids as templates to a system undergoing a sol-gel transition with phase separation leads to the creation of monoliths with a strongly anisotropic structure. It is known that magnetic nanocolloids respond to the application of an external magnetic field by self-assembling into columnar structures. The application of a magnetic field during the chemically driven spinodal decomposition induced by the sol-gel transition allows one to break the symmetry of the system and promote the growth of elongated needle-like silica domains incorporating the magnetic nanocolloids, aligned in the direction of the field. It is found that this microstructure imparts a strong mechanical anisotropy to the materials, with a ratio between the Young's modulus values measured in a direction parallel and perpendicular to the one of the field as high as 150, and an overall smaller average macropores size as compared to isotropic monoliths. The microstructure and properties of the porous monoliths can be controlled by changing both the system composition and the strength of the applied magnetic field. Our monoliths represent the first example of materials prepared by magnetically controlling a phase transition occurring via spinodal decomposition. PMID:22849804

  6. Magnetic isotope and magnetic field effects on chemical reactions. Sunlight and soap for the efficient separation of 13C and 12C isotopes

    Photolysis of dibenzyl ketone (DBK) solution at room temperature yields 1,2-diphenylethane and carbon monoxide quantitatively. Results of the study of this reaction, using light and ordinary mercury lamps as excitation sources, show that (1) a measurable, but small, 12C/13C isotope separation occurs in homogeneous (benzene) solution; (2) the efficiency of the separation is greatly enhanced in soap solution relative to homogeneous solution; (3) the carbonyl carbon of DBK is specifically and exponentially enriched as photolysis proceeds; (4) an external magnetic field significantly influences the efficiency of the isotopic separation. Mass spectroscopic and NMR analyses of the recovered DBK confirm these conclusions. 2 figures

  7. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  8. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light

    Zhang, Ying; Zhang, Yanrong, E-mail: yanrong_zhang@hust.edu.cn; Tan, Jue

    2013-10-15

    Highlights: The AgCl/iron oxide composites were prepared by a chemical precipitation method. The composites exhibited improved performances in the photodegradation of pollutants. The visible light photocatalysts could be recycled easily by a magnet. -- Abstract: In this work, AgCl/iron oxide composites were synthesized by a simple chemical precipitation method and calcining process. The composition of the material and magnetic and optical properties of the composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating specimen magnetometer (VSM) techniques, which confirms the high crystalline and magnetic behavior of the composites. UV-vis diffuse reflectance spectral (DRS) studies showed that the AgCl/iron oxide composites were of much higher absorption in longer wavelength region compared to bare iron oxide. The AgCl/iron oxide composites showed better performance in the photodegradation of organic dyes Rhodamin B (RhB) under the fluorescent lamp irradiation, which is remarkably superior to the N-TiO{sub 2}. The degradation of microcystin-LR (MC-LR) and phenol was also found to be good owing to its effective electron-hole separation at AgCl/iron oxide interface. The separation of AgCl/iron oxide composites from the treated water was achieved by an external magnetic field as ?-Fe{sub 2}O{sub 3} exhibits enough magnetic power to facilitate the separation.

  9. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    Shaibu, B. S.; Reddy, M. L. P.; Bhattacharyya, A.; Manchanda, V. K.

    2006-06-01

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 μm) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated.

  10. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 μm) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated

  11. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen

    2015-12-01

    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  12. Separation of species of a binary fluid mixture confined in a channel in presence of a strong transverse magnetic field

    Sharma Bishwaram

    2012-01-01

    Full Text Available Effects of a transverse magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids confined between two stationary parallel plates are examined. Both the plates are maintained at constant temperatures. It is assumed that one of the components, which is rarer and lighter, is present in the mixture in a very small quantity. The equations governing the motion, temperature and concentration in Cartesian coordinate are solved analytically. The solution obtained for concentration distribution is plotted against the width of the channel for various values of non-dimensional parameters. It is found that the effect of transverse magnetic field is to separate the species of rarer and lighter component by contributing its effect directly to the temperature gradient and the pressure gradient. The effects of increase in the values of Hartmann number, magnetic Reynolds number, barodiffusion number, thermal diffusion number, electric field parameter and the product of Prandtl number and Eckert number are to collect the rarer and lighter component near the upper plate and throw away the heavier component towards the lower plate. The problem discussed here derives its application in the basic fluid dynamics separation processes to separate the rare component of the different isotopes of heavier molecules where electromagnetic method of separation does not work.

  13. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-01

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally. PMID:22304328

  14. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17?-estradiol in milk.

    Gao, Ruixia; Cui, Xihui; Hao, Yi; Zhang, Lili; Liu, Dechun; Tang, Yuhai

    2016-03-01

    In this work, we prepared molecularly imprinted polymers (MIPs) combining surface molecular imprinting technique and magnetic separation for separation and determination of 17?-estradiol (E2) from milk. During the synthesis process, the acryloyl chloride was specially used to graft double bonds on Fe3O4 nanoparticles and served as co-functional monomer cooperating with acrylamide. The morphology, structure property, and the best polymerization and adsorption conditions of the prepared magnetic nanoparticles were investigated in detail. The obtained nanomaterials displayed high adsorption capacity of 12.62mg/g, fast equilibrium time of 10min, and satisfactory selectivity for target molecule. What's more, the MIPs was successfully applied as sorbents to specifically separate and enrich E2 from milk with a relatively high recovery (88.9-92.1%), demonstrating the potential application of the MIPs as solid phase extractant for rapid, highly-efficient, and cost-effective sample analysis. PMID:26471651

  15. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  16. Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood.

    Liu, Wenting; Nie, Liju; Li, Fulai; Aguilar, Zoraida P; Xu, Hong; Xiong, Yonghua; Fu, Fen; Xu, Hengyi

    2016-01-01

    Because of the lack of early screening strategies, ovarian cancer is the most deadly cause of gynecologic malignancies. This paper describes an effective method for the separation and detection of ovarian cancer cells from female whole blood, using folic acid (FA) conjugated magnetic iron oxide nanoparticles (IO-FA nanoparticles). The IO nanoparticles were synthesized by thermal decomposition and then covalently conjugated with FA. The IO-FA nanoparticles were stably attached to the surface of ovarian cancer cells by coupling to the over-expressed folate receptor (FR), thereby making the cells magnetic. These "magnetic cells" were separated from the complex blood matrix without destruction under a magnetic field. The separation efficiency was as high as 61.3% when the abundance of spiked ovarian cancer SKOV3 cells was as low as 5 × 10(-5)%. We also successfully detected five (5) out of ten (10) metastatic ovarian cancer patients' whole blood. This study suggested the feasibility of early detecting of metastatic ovarian cancer cells, which may potentially improve the ovarian cancers patients' overall survival rate for clinical applications. PMID:26478922

  17. A paper-based surface-enhanced resonance Raman spectroscopic (SERRS) immunoassay using magnetic separation and enzyme-catalyzed reaction.

    Chen, Yuanyuan; Cheng, Hanwen; Tram, Kha; Zhang, Shengfeng; Zhao, Yanhua; Han, Liyang; Chen, Zengping; Huan, Shuangyan

    2013-05-01

    In this study, a novel paper-based SERRS immunoassay based on magnetic separation and alkaline phosphatase (ALP) enzyme catalyzed hydrolysis reaction was developed. By using modified antibodies conjugated to magnetic beads, capture of mouse IgG followed by addition of ALP-labeled antibodies would form a sandwich-like immunoconjugate. After magnetic separation, 5-bromo-4-chloro-3-indolyl phosphate (BCIP), a low SERRS active compound, was added as the substrate for ALP to generate a high SERRS response. Detection was conducted on a silver colloid/PVP/filter paper SERS substrate by spotting a pre-aggregated silver colloid sol onto polyvinyl pyrrolidone (PVP) modified filter paper using a semi-automatic TLC sample applicator. The optimization of the highly SERS active paper-based substrate, dynamic hydrolysis process of BCIP, quantitative detection of IgG, and selectivity of the assay was studied in detail. By taking advantage of magnetic separation in order to decrease the background interference, the selective enzyme reaction involved in producing a highly SERRS active product could detect mouse IgG from 1 to 500 ng mL(-1) with a LOD of 0.33 ng mL(-1). PMID:23486763

  18. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    Doctor, R.; Nunez, L. [Argonne National Lab., IL (US); Cicero-Herman, C.A. [Westinghouse Savannah River Co., Aiken, SC (US). Savannah River Technology Center; Ritter, J.A. [Univ. of South Carolina, Columbia, SC (US). Chemical Engineering Dept.; Landsberger, S. [Univ. of Texas, Austin, TX (US). Nuclear Engineering Dept.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe{sub 3}O{sub 4} and FeCrO{sub 4}, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  19. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe3O4 and FeCrO4, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  20. Experimental observation of magnetically induced phase separation and thermodynamic assessment in the Co–V binary system

    Wang, Cuiping [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Zhao, Cancan [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Lu, Yong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Li, Tian; Peng, Dongliang [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Shi, Ji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152–8552 (Japan); Liu, Xingjun, E-mail: lxj@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)

    2015-07-15

    The phase equilibria of Co–V binary system were experimentally investigated, and the magnetically induced phase separation in the fcc phase was observed in a Co/V diffusion couple. Based on previous research and present work, a thermodynamic reassessment in the Co–V binary system was carried out by means of the CALPHAD method. The calculated results are consistent with the experimental data. The metastable miscibility gap of the hcp phase in the Co–V binary system was thermodynamically calculated. According to the calculation, the Co–V thin films with three concentrations were designed and deposited by magnetron sputtering. The transmission electron microscope (TEM) results prove that the metastable phase separation in the hcp phase exists in the Co–V system. The determined magnetic properties of the thin films reveal that the values of coercivity and remanence ratio are function of V content. - Highlights: • The magnetically induced phase separation of (α{sub f}Co) + (α{sub p}Co) was determined. • A thermodynamic reassessment of the Co–V binary system has been carried out. • The phase separation in the (ε{sub f}Co) was observed in the Co{sub 85}V{sub 15} thin film. • The coercivity and remanence ratio of the thin films are function of V content.

  1. Experimental observation of magnetically induced phase separation and thermodynamic assessment in the Co–V binary system

    The phase equilibria of Co–V binary system were experimentally investigated, and the magnetically induced phase separation in the fcc phase was observed in a Co/V diffusion couple. Based on previous research and present work, a thermodynamic reassessment in the Co–V binary system was carried out by means of the CALPHAD method. The calculated results are consistent with the experimental data. The metastable miscibility gap of the hcp phase in the Co–V binary system was thermodynamically calculated. According to the calculation, the Co–V thin films with three concentrations were designed and deposited by magnetron sputtering. The transmission electron microscope (TEM) results prove that the metastable phase separation in the hcp phase exists in the Co–V system. The determined magnetic properties of the thin films reveal that the values of coercivity and remanence ratio are function of V content. - Highlights: • The magnetically induced phase separation of (αfCo) + (αpCo) was determined. • A thermodynamic reassessment of the Co–V binary system has been carried out. • The phase separation in the (εfCo) was observed in the Co85V15 thin film. • The coercivity and remanence ratio of the thin films are function of V content

  2. Magnetic phase separation in double layer ruthenates Ca3(Ru1-xTix)2O7.

    Peng, Jin; Liu, J Y; Hu, J; Mao, Z Q; Zhang, F M; Wu, X S

    2016-01-01

    A phase transition from metallic AFM-b antiferromagnetic state to Mott insulating G-type antiferromagnetic (G-AFM) state was found in Ca3(Ru1-xTix)2O7 at about x?=?0.03 in our previous work. In the present, we focused on the study of the magnetic transition near the critical composition through detailed magnetization measurements. There is no intermediate magnetic phases between the AFM-b and G-AFM states, which is in contrasted to manganites where a similar magnetic phase transition takes place through the presence of several intermediate magnetic phases. The AFM-b-to-G-AFM transition in Ca3(Ru1-xTix)2O7 happens through a phase separation process in the 2-5% Ti range, whereas similar magnetic transitions in manganites are tuned by 50-70% chemical substitutions. We discussed the possible origin of such an unusual magnetic transition and compared with that in manganites. PMID:26771083

  3. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol.

    Yang, Kang; Hu, Yongjun; Dong, Ning

    2016-06-15

    The accurate and sensitive detection of chloramphenicol (CAP) is particularly imperative to public health and safety. Here, we present a novel sensor for residual CAP detection based on competitive surface-enhanced Raman scattering (SERS) immunoassay and magnetic separation. In this nanosensor, functionalized Au nanoparticles (AuNPs) were labeled with the Raman reporter molecule (e.g. 4,4'-dipyridyl). With the addition of free CAP, a competitive immune reaction was initiated between free CAP and above AuNPs for conjugating with CAP antibody-modified magnetic nanoparticles (MNPs). Instead of the solid substrate, the antibody conjugated-magnetic beads were used as supporting materials and separation tools in the present sensor. With the aid of a magnet, the mixture was removed from the supernatant for concentration effects. This caused obvious change of SERS signal intensity obtained from supernatant. The SERS signals were collected from the supernatant directly, which made the SERS measurements more stable, repeatable and reliable. The proposed SERS-based magnetic immunosensor allows us to detect CAP in a fast, selective and sensitive (1.0pg/mL) manner over a wide concentration range ( 1-1×10(4)pg/mL). In addition, these results demonstrate that this immunosensor holds great potential for the detection of antibiotics in real aquatic environment, which is crucial to our life. PMID:26866562

  4. Separation of radioimmunoassay in magnetic phase with particles prepared at the IPEN and its comparison with conventional methodologies

    In the present work two main objectives were chosen. The first was the preparation for the execution of the magnetic phase separation technique, useful for the radioimmunoassay as well as for the most modern and most efficient immunoradiometric assay. The second objective, of a theoretical-practical kind and directly linked to the first, was the realization of a study about the precision of the technique with synthesized products compared with imported products and with two liquid phase separation techniques: the second antibody and polyethyleneglycol (PEG). This analysis was performed with the help of precision profiles built according to R.P.Ekins' recommendations. (author)

  5. Possibility of separating spent nuclear fuel components by a plasma method in azimuthal magnetic and radial electric fields

    Samokhin, A. A.; Smirnov, V. P.; Gavrikov, A. V.; Vorona, N. A.

    2016-02-01

    We consider the method of plasma separation of spent nuclear fuel in a system with an azimuthal magnetic field and the electric potential produced by electrodes located in a magnetized plasma. The results of calculation of trajectories of ions simulating uranium and the first peak of its fission products in the oneparticle approximation are described. The effect of the initial position and the initial velocity of ions on their trajectories is analyzed. The conditions ensuring the spatial separation of ions in the groups of masses admissible for practical realization are specified; it is shown that currents on the order of 100 kA through the central conductor and electrostatic potentials on the order of 1 kV are required for this purpose.

  6. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC.

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bltmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Caldern de la Barca Snchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies. PMID:25126911

  7. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  8. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Zhong, Suting; Jiang, Wei; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-01

    A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe3O4) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron-hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  9. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    Das, Kalipada; Das, I.

    2015-12-01

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr0.67Ca0.33MnO3 (PCMO) and ferromagnetic La0.67Sr0.33MnO3 (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects.

  10. The Vlasov equation with strong magnetic field and oscillating electric field as a model of isotope resonant separation

    Frenod, E; Frenod, Emmanuel; Watbled, Frederique

    2002-01-01

    We study qualitative behavior of the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant in order to understand isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. In some particular cases, the kernel is explicitly given.

  11. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  12. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Emmanuel Frenod; Frederique Watbled

    2002-01-01

    We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  13. The Application of High–Gradient Magnetic Separation to Water Treatment by Means of Chemically Precipitated Magnetite

    Hencl, V.; Mucha, P.

    1994-01-01

    Conditions of high–gradient magnetic separation (HGMS) of chemically precipitated magnetite, prepared from a waste material of the titanium white production were studied. The magnetite was used as a sorption material for the treatment of water from the Vltava River. Detailed experimental research resulted in a proposal for a technology of water treatment, schematic description of which is presented. The results of HGMS of chemically precipitated magnetite together with those of water treatmen...

  14. Magnetically separable Ag3PO4/NiFe2O4 composites with enhanced photocatalytic activity.

    Patil, Santosh S; Tamboli, Mohaseen S; Deonikar, Virendrakumar G; Umarji, Govind G; Ambekar, Jalindar D; Kulkarni, Milind V; Kolekar, Sanjay S; Kale, Bharat B; Patil, Deepak R

    2015-12-21

    Magnetically separable Ag3PO4/NiFe2O4 (APO/NFO) composites were prepared by an in situ precipitation method. The photocatalytic activity of photocatalysts consisting of different APO/NFO mass ratios was evaluated by degradation of methylene blue (MB) under visible light irradiation. The excellent photocatalytic activity was observed using APO/NFO5 (5% NFO) composites with good cycling stability which is higher than that of pure Ag3PO4 and NiFe2O4. All the APO/NFO composites showed good magnetic behavior, which makes them magnetically separable after reaction and reusable for several experiments. Photoconductivities of pure and composite samples were examined to study the photoresponse characteristics. The current intensity greatly enhanced by loading NFO to APO. Furthermore, the photocatalytic performance of the samples is correlated with the conductivity of the samples. The enhancement in the photocatalytic activity of APO/NFO composites for MB degradation is attributed to the excellent conductivity of APO/NFO composites through the co-catalytic effect of NFO by providing accelerated charge separation through the n-n interface. PMID:26508302

  15. Magnetically separable mesoporous Fe3O4/silica catalysts with very low Fe3O4 content

    Grau-Atienza, A.; Serrano, E.; Linares, N.; Svedlindh, P.; Seisenbaeva, G.; García-Martínez, J.

    2016-05-01

    Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3‧,5,5‧-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.

  16. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania.

    Cao, Muhan; Wang, Peifang; Ao, Yanhui; Wang, Chao; Hou, Jun; Qian, Jin

    2016-04-01

    In this study, magnetic graphene oxide-loaded Ce-doped titania (MGO-Ce-TiO2) hybridized composite was prepared by a facile method. The as-prepared samples exhibited good adsorption capacity, high visible-light photoactive and magnetic separability as a novel photocatalyst in the degradation of tetracyclines (TC). The intermediate products and photocatalytic route of TC were proposed based on the analysis results of LC-MS. Moreover, the repeatability of the photoactivity with the use of MGO-Ce-TiO2 was investigated in the multi-round experiments with the assistance of an applied magnetic field. Therefore, the prepared composite photocatalysts were considered as a kind of promising photocatalyst in a suspension reaction system, in which they can offer effectively recovery ability. The effect of MGO content on the photocatalytic performance was also studied, and an optimum content was obtained. PMID:26799623

  17. Separation of the contributions to the magnetization of Tm1−xYbxB12 solid solutions in steady and pulsed magnetic fields

    The magnetization of substitutional Tm1−xYbxB12 solid solutions is studied in the composition range 0 1−xYbxB12 compounds to be separated. These contributions include a Pauli component, which corresponds to the response of the heavy-fermion manybody states that appears in the energy gap in the vicinity of the Fermi level (density of states (3−4) × 1021 cm−3 meV−1), and a contribution with saturation in high magnetic fields attributed to the localized magnetic moments ((0.8–3.7)μB per unit cell) of the nanoclusters formed by rare-earth ions with an antiferromagnetic interaction.

  18. Correspondence between neutron depolarization and higher order magnetic susceptibility to investigate ferromagnetic clusters in phase separated systems

    It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal. (paper)

  19. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure

    A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO2 shell for photocatalysis. The SiO2 layer between the NiFe2O4 core and the TiO2 shell effectively prevents the injection of charges from TiO2 particles to NiFe2O4, which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity

  20. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure

    Xu, Shihong; Shangguan, Wenfeng; Yuan, Jian; Chen, Mingxia; Shi, Jianwei; Jiang, Zhi

    2008-03-01

    A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO2 shell for photocatalysis. The SiO2 layer between the NiFe2O4 core and the TiO2 shell effectively prevents the injection of charges from TiO2 particles to NiFe2O4, which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity.

  1. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure

    Xu Shihong; Shangguan Wenfeng; Yuan Jian; Chen Mingxia; Shi Jianwei; Jiang Zhi [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: shangguan@sjtu.edu.cn

    2008-03-05

    A magnetically separable photocatalyst TiO{sub 2}/SiO{sub 2}/NiFe{sub 2}O{sub 4} (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO{sub 2} shell for photocatalysis. The SiO{sub 2} layer between the NiFe{sub 2}O{sub 4} core and the TiO{sub 2} shell effectively prevents the injection of charges from TiO{sub 2} particles to NiFe{sub 2}O{sub 4}, which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity.

  2. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr0.67Ca0.33MnO3 (PCMO) and ferromagnetic La0.67Sr0.33MnO3 (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects. - Highlights: • The resistance value in Pr0.67Ca0.33MnO3 nanoparticles is found to increase owing to the magnetic field cycling. • No anomaly in resistance was found in Pr0.67Ca0.33MnO3–La0.67Sr0.33MnO3 nanocomposite. • Magnetic measurements indicate the training effect in nanostructure compounds

  3. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    Das, Kalipada, E-mail: kalipada.das@saha.ac.in; Das, I.

    2015-12-01

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} (PCMO) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects. - Highlights: • The resistance value in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} nanoparticles is found to increase owing to the magnetic field cycling. • No anomaly in resistance was found in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3}–La{sub 0.67}Sr{sub 0.33}MnO{sub 3} nanocomposite. • Magnetic measurements indicate the training effect in nanostructure compounds.

  4. The effect of particle size and colloid stability on the wet high-intensity magnetic separation of uranium from cyanidation residues

    This report describes an experimental investigation on the magnetic separation of U3O8 from various size fractions of uranium-gold tailings. High recoveries were obtained at high grades, even from the finest fraction (smaller than 25?m), and an increase in magnetic field did not improve the efficiency of separation. The use of theoretical models did not lead to the correct prediction of the limiting particle size recoverable by magnetic separation. It was shown that the presence of coarse fractions enhances the recovery of uranium from a very fine fraction, and that 'piggy-back' magnetic separation plays an important role in the capture of slimes. The results also showed that the use of a dispersant considerably improves the selectivity of the separation

  5. Manipulation of magnetic phase separation and orbital occupancy in manganites by strain engineering and electric field

    Cui, Bin; Song, Cheng; Pan, Feng; Key Laboratory of Advanced Materials (MOE) Team

    2015-03-01

    The modification of electronic phases in correlated oxides is one of the core issues of condensed matter. We report the reversible control of ferromagnetic phase transition in manganite films by ionic liquid gating, replicating the La1-xSrxMnO3 (LSMO) phase diagram. The formation and annihilation of an insulating and magnetically hard phase in the soft magnetic matrix, which randomly nucleates and grows across the film, is directly observed under different gate voltages (VG) . The realization of reversible metal-insulator transition in colossal magnetoresistance materials can lead to the development of four-state memories. The orbital occupancy and magnetic anisotropy of LSMO films are manipulated by VG in a reversible and quantitative manner. Positive and negative VG increases and reduces the occupancy of the orbital and magnetic anisotropy that were initially favored by strain (irrespective of tensile and compressive), respectively. This finding fills in the blank of electrical manipulation of four degrees of freedom in correlated system.

  6. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1+ cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1+ cells corresponding to a 17-fold enrichment was achieved.

  7. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Chung, T.-H.; Chang, J.-Y. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China); Lee, W.-C. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China)], E-mail: chmwcl@ccu.edu.tw

    2009-05-15

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1{sup +} cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1{sup +} cells corresponding to a 17-fold enrichment was achieved.

  8. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Chung, Ting-Hao; Chang, Jing-Yi; Lee, Wen-Chien

    2009-05-01

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1 + cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1 + cells corresponding to a 17-fold enrichment was achieved.

  9. Magnetoresistance and magnetic susceptibility of phase-separated La-Pr-Ca manganites

    Babushkina, N A; Kugel, K I; Rakhmanov, A L; Gorbenko, O Y; Kaul, A R

    2003-01-01

    Electrical resistivity, magnetoresistance and magnetic susceptibility were measured for ceramic (La sub 1 sub - sub y Pr sub y) sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 samples (y 0.75 and 1) with different content of sup 1 sup 8 O isotope. All samples were paramagnetic insulators in the high-temperature range. Some of them became ferromagnetic (FM) metals at temperatures below 60-80 K. The high-temperature behaviour of the resistivity, magnetoresistance and magnetic susceptibility was practically identical for all samples in spite of the significant difference in their low-temperature properties. In particular, the magnetoresistance was proportional to the magnetic field squared and decreased approximately as 1/T sup 5 in a wide magnetic field and temperature range. The results were interpreted based on the concept of an inhomogeneous state with pronounced FM correlations in the paramagnetic phase.

  10. Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at TMI and TC. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  11. Superconductivity and magnetism in RbxFe2-ySe2: Impact of thermal treatment on mesoscopic phase separation

    Weyeneth, S.; Bendele, M.; von Rohr, F.; Dluzewski, P.; Puzniak, R.; Krzton-Maziopa, A.; Bosma, S.; Guguchia, Z.; Khasanov, R.; Shermadini, Z.; Amato, A.; Pomjakushina, E.; Conder, K.; Schilling, A.; Keller, H.

    2012-10-01

    An extended study of the superconducting and normal-state properties of various as-grown and post-annealed RbxFe2-ySe2 single crystals is presented. Magnetization experiments evidence that annealing of RbxFe2-ySe2 at 413 K, well below the onset of phase separation Tp≃489 K, neither changes the magnetic nor the superconducting properties of the crystals. In addition, annealing at 563 K, well above Tp, suppresses the superconducting transition temperature Tc and leads to an increase of the antiferromagnetic susceptibility accompanied by the creation of ferromagnetic impurity phases, which are developing with annealing time. However, annealing at T=488K≃Tp increases Tc up to 33.3 K, sharpens the superconducting transition, increases the lower critical field, and strengthens the screening efficiency of the applied magnetic field. Resistivity measurements of the as-grown and optimally annealed samples reveal an increase of the upper critical field along both crystallographic directions as well as its anisotropy. Muon spin rotation and scanning transmission electron microscopy experiments suggest the coexistence of two phases below Tp: a magnetic majority phase of Rb2Fe4Se5 and a nonmagnetic minority phase of Rb0.5Fe2Se2. Both microscopic techniques indicate that annealing the specimens just at Tp does not affect the volume fraction of the two phases, although the magnetic field distribution in the samples changes substantially. This suggests that the microstructure of the sample, caused by mesoscopic phase separation, is modified by annealing just at Tp, leading to an improvement of the superconducting properties of RbxFe2-ySe2 and an enhancement of Tc.

  12. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Zhong, Suting; Jiang, Wei, E-mail: superfine_jw@126.com; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-30

    Graphical abstract: - Highlights: • The composites were synthesized via a facile and effective process. • Plenty of Fe{sub 3}O{sub 4} and Ag@AgCl nanoparticles are deposited on the reduced graphene oxide nanosheets. • The catalyst exhibited an enhanced photocatalytic performance and magnetic property. • The catalyst is stable under the visible light irradiation. - Abstract: A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe{sub 3}O{sub 4}) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron–hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  13. Upgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process

    Xianlin Zhou

    2016-03-01

    Full Text Available The huge consumption of iron ores in China has attracted much attention to utilizing low grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory resource and difficult to upgrade by traditional physical concentration processes due to the superfine size and close dissemination of iron minerals with gangue minerals. An innovative technology for a high temperature reduction-magnetic separation process was studied to upgrade a high-aluminum iron ore assaying 41.92% Fetotal, 13.74% Al2O3 and 13.96% SiO2. The optimized results show that the final metal iron powder, assaying 90.46% Fetotal, was manufactured at an overall iron recovery of 90.25% under conditions as follows: balling the high aluminum iron ore with 15% coal blended and at 0.3 basicity, reducing the dried pellets at 1350 °C for 25 min with a total C/Fe mass ratio of 1.0, grinding the reduced pellets up to 95%, passing at 0.074 mm and magnetically separating the ground product in a Davis Tube at a 0.10-T magnetic field intensity. The metal iron powder can be used as the burden for an electric arc furnace (EAF. Meanwhile, the nonmagnetic tailing is suitable to produce ceramic, which mainly consists of anorthite and corundum. An efficient way has been found to utilize high-aluminum iron resources.

  14. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Graphical abstract: - Highlights: • The composites were synthesized via a facile and effective process. • Plenty of Fe3O4 and Ag@AgCl nanoparticles are deposited on the reduced graphene oxide nanosheets. • The catalyst exhibited an enhanced photocatalytic performance and magnetic property. • The catalyst is stable under the visible light irradiation. - Abstract: A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe3O4) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron–hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts

  15. A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water.

    Liu, Wanpeng; Ma, Jianqing; Shen, Chensi; Wen, Yuezhong; Liu, Weiping

    2016-03-01

    In order to control the antibiotic-related crisis and reduce the negative impacts on the environment and human health, it is urgent to develop effective technologies to eliminate residual antibiotics in water. Herein, we successfully fabricated a novel, pH-responsive and magnetically separable dynamic system for micropollutant adsorption and oxidation degradation in graphene oxide (GO)/nanoscale zero-valent iron (nZVI) composite with macroscopic structure. The pH-responsive self-assembly behavior of GO/nZVI composite was explored. The macroscopic structure of GO/nZVI composite serves as an excellent adsorbent for antibiotic removal in water. The adsorption process is fast and highly efficient even in high salty and humic acid containing water under acid to neutral conditions. After removal antibiotics, GO/nZVI composite is conveniently separated by magnetic system and put into alkaline solution (pH > 9) for adsorbent regeneration. Interestingly, it is found that at pH > 9, GO/nZVI composite disassembles partly upon increasing pH values, leading to the elution of antibiotics for efficient antibiotics degradation by ozonization. More importantly, this pH-responsive GO/nZVI system exhibits high removal efficiency, high stability, reusability and easily separation, making it a promising method for treatment of water with micropollutants. PMID:26724436

  16. Development of magnetic separation and quantum dots labeled immunoassay for the detection of mercury in biological samples.

    Sun, Hubo; Wang, Mengmeng; Wang, Jilong; Tian, Mi; Wang, Hui; Sun, Zhiwei; Huang, Peili

    2015-04-01

    A rapid and sensitive immunoassays of mercury (Hg) in biological samples was developed using quantum dots (QDs) and magnetic beads (MBs) as fluorescent and separated probes, respectively. A monoclonal antibody (mAb) that recognizes an Hg detection antigen (BSA-DTPA-Hg) complex was produced by the injection of BALB/c mice with an Hg immunizing antigen (KLH-DTPA-Hg). Then the ascites monoclonal antibodies were purified. The Hg monoclonal antibody (Hg-mAb) is conjugated with MBs to separate Hg from biological samples, and the other antibody, which is associated with QDs, is used to detect the fluorescence. The Hg in biological samples can be quantified using the relationship between the QDs fluorescence intensity and the concentration of Hg in biological samples following magnetic separation. In this method, the detection linear range is 1-1000ng/mL, and the minimum detection limit is 1ng/mL. The standard addition recovery rate was 94.70-101.18%. The relative standard deviation values were 2.76-7.56%. Furthermore, the Hg concentration can be detected in less than 30min, the significant interference of other heavy metals can be avoided, and the simultaneous testing of 96 samples can be performed. These results indicate that the method could be used for rapid monitoring Hg in the body. PMID:25744508

  17. Phase separation and magnetic order in K-doped iron selenide superconductor

    Li, Wei; Ding, Hao; Deng, Peng; Chang, Kai; Song, Canli; He, Ke; Wang, Lili; Ma, Xucun; Hu, Jiang-Ping; Chen, Xi; Xue, Qi-Kun

    2012-02-01

    The newly discovered alkali-doped iron selenide superconductors not only reach a superconducting transition temperature as high as 32K, but also exhibit unique characteristics that are absent from other iron-based superconductors, such as antiferromagnetically ordered insulating phases, extremely high Nel transition temperatures and the presence of Fe vacancies and ordering. These features have generated considerable excitement as well as confusion, regarding the delicate interplay between Fe vacancies, magnetism and superconductivity. Here we report on molecular beam epitaxy growth of high-quality KxFe2-ySe2 thin films and in situ low-temperature scanning tunnelling microscope measurement of their atomic and electronic structures. We demonstrate that a KxFe2-ySe2 sample contains two distinct phases: an insulating phase with well-defined order of Fe vacancies, and a superconducting KFe2Se2 phase containing no Fe vacancies. An individual Fe vacancy can locally destroy superconductivity in a similar way to a magnetic impurity in conventional superconductors. Measurement of the magnetic-field dependence of the Fe-vacancy-induced bound states reveals a magnetically related bipartite order in the tetragonal iron lattice. These findings elucidate the existing controversies on this new superconductor and provide atomistic information on the interplay between magnetism and superconductivity in iron-based superconductors.

  18. New high performance hybrid magnet plates for DNA separation andbio-technology applications

    Humphries, David; Pollard, Martin; Elkin, Chris; Petermann, Karl; Reiter, Charles; Cepeda, Mario

    2004-08-02

    A new class of magnet plates for biological and industrial applications has recently been developed at the D.O.E. Joint Genome Institute and Lawrence Berkeley National Laboratory (JGI/LBNL). These devices utilize hybrid technology that combines linear permanent magnet material and ferromagnetic material to produce significantly higher fields and gradients than currently available commercial magnet plates. These hybrid structures incorporate ferromagnetic poles that can be easily shaped to produce complex field distributions for specialized applications. The higher maximum fields and strong gradients of the hybrid structures result in greater holding forces on magnetized targets that are being processed as well as faster draw-down. Current development versions of these magnet plates have exhibited maximum fields in excess of 9000.0 Gauss. The design of these structures is easily scalable to allow for field increases to significantly above 1.0 tesla (10000.0gauss). Author's note: 11000.0 Gauss peak fields have been achieved as of January 2005.

  19. Quantitative characterization of magnetic separators: Comparison of systems with and without integrated microfluidic mixers

    Lund-Olesen, Torsten; Bruus, Henrik; Hansen, Mikkel Fougt

    2006-01-01

    and magnetized by an external magnetic field. In one of the systems, a staggered herringbone microfluidic mixer is integrated in the channel. The characterization of the systems includes magnetic measurements of the capture-and-release efficiencies, estimates of distributions of captured beads in a...... channel from micrographs, and simulations and analytical models of bead trajectories, capture efficiencies, and capture distributions. We show that the efficiencies of both systems compare favorably to those in the literature. For the studied geometries, the mixer is demonstrated to increase the bead...... capture-and-release efficiency for a fixed flow rate by up to a factor of two. Moreover, high capture efficiencies can be achieved in the system with mixer at up to ten times higher flow rates than in the system without mixer....

  20. Water-compatible magnetic imprinted microspheres for rapid separation and determination of triazine herbicides in environmental water.

    Qiao, Fengxia; Row, Kyung Ho; Wang, Mengge

    2014-04-15

    A novel kind of water-compatible magnetic imprinted cyromazine microsphere (WCMM) was synthesized by water/oil/water suspension polymerization. The obtained WCMM was homogenously spherical with porous morphology and strong magnetic properties. The microspheres were successfully used as adsorbent in dispersive solid-phase extraction (WCMM-dSPE) to selectively extract cyanazine and atrazine from environmental water. Good linearity of the two analytes was observed in the range from 2.5 to 200.0ngmL(-1). The average recoveries at three spiking levels ranged from 84.8% to 104.3% with relative standard deviations (RSD) less than 6.9%. Compared with magnetic non-imprinted particles (WCMN), the proposed WCMM adsorbent of dSPE efficiently improved the efficiency of extracting cyanazine and atrazine from environmental water samples and eliminated the effect of cyromazine leakage on the quantitative analysis of cyanazine and atrazine. The proposed WCMM-dSPE method combined the advantages of magnetic separation, molecular imprinted microspheres and dSPE. PMID:24657415

  1. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions

    Geissel, H.; Armbruster, P.; Behr, K.H.; Bruenle, A.; Burkard, K.; Chen, M.; Folger, H.; Franczak, B.; Keller, H.; Klepper, O.; Langenbeck, B.; Nickel, F.; Pfeng, E.; Pfuetzner, M.; Roeckl, E.; Rykaczewski, K.; Schall, I.; Schardt, D.; Scheidenberger, C.; Schmidt, K.H.; Schroeter, A.; Schwab, T.; Suemmerer, K.; Weber, M.; Muenzenberg, G. (Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)); Brohm, T.; Clerc, H.G.; Fauerbach, M.; Gaimard, J.J.; Grewe, A.; Hanelt, E.; Knoedler, B.; Steiner, M.; Voss, B.; Weckenmann, J.; Ziegler, C. (TH Darmstadt (Germany). Inst. fuer Kernphysik); Magel, A.; Wollnik, H. (Giessen Univ. (Germany)); Dufour, J.P. (CEN, 33 - Bordeaux (France)); Fujita, Y. (Osaka Univ., Toyonaka (Japan). Coll. of General Education); Vieira, D.J. (Los Alamos National Lab., NM (United States)); Sherrill, B. (NSCL, East Lansing, MI (United States))

    1992-08-01

    The projectile fragment separator FRS designed for research and applied studies with relativistic heavy ions was installed at GSI as a part of the new high-energy SIS/ESR accelerator facility. This high-resolution forward spectrometer has been successfully used in first atomic and nuclear physics experiments using neon, argon, krypton, xenon, and gold beams in the energy range from 500 to 2000 MeV/u. For the first time relativistic xenon and gold fragments have been isotopically separated. In this contribution we describe first experiments characterizing the performance of the spectrometer. (orig.).

  2. Application of Graphene Oxide-MnFe2O4 Magnetic Nanohybrids as Magnetically Separable Adsorbent for Highly Efficient Removal of Arsenic from Water

    Huong, Pham Thi Lan; Huy, Le Thanh; Phan, Vu Ngoc; Huy, Tran Quang; Nam, Man Hoai; Lam, Vu Dinh; Le, Anh-Tuan

    2016-01-01

    In this work, a functional magnetic nanohybrid consisting of manganese ferrite magnetic nanoparticles (MnFe2O4) deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. The as-prepared GO-MnFe2O4 magnetic nanohybrids were characterized using x-ray diffraction, transmission electron microscopy, Fourier transformed infrared spectroscopy, and vibrating sample magnetometer measurements. Adsorption experiments were performed to evaluate the adsorption capacities and efficient removal of arsenic of the nanohybrid and compared with bare MnFe2O4 nanoparticles and GO nanosheets. Our obtained results reveal that the adsorption process of the nanohybrids was well fitted with a pseudo-second-order kinetic equation and a Freundlich isotherm model; the maximum adsorption capacity and removal efficiency of the nanohybrids obtained ~240.385 mg/g and 99.9% with a fast response of equilibrium adsorption time ~20 min. The larger adsorption capacity and shorter equilibrium time of the GO-MnFe2O4 nanohybrids showed better performance than that of bare MnFe2O4 nanoparticles and GO nanosheets. The advantages of reusability, magnetic separation, high removal efficiency, and quick kinetics make these nanohybrids very promising as low-cost adsorbents for fast and effective removal of arsenic from water.

  3. Application of Graphene Oxide-MnFe2O4 Magnetic Nanohybrids as Magnetically Separable Adsorbent for Highly Efficient Removal of Arsenic from Water

    Huong, Pham Thi Lan; Huy, Le Thanh; Phan, Vu Ngoc; Huy, Tran Quang; Nam, Man Hoai; Lam, Vu Dinh; Le, Anh-Tuan

    2016-05-01

    In this work, a functional magnetic nanohybrid consisting of manganese ferrite magnetic nanoparticles (MnFe2O4) deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. The as-prepared GO-MnFe2O4 magnetic nanohybrids were characterized using x-ray diffraction, transmission electron microscopy, Fourier transformed infrared spectroscopy, and vibrating sample magnetometer measurements. Adsorption experiments were performed to evaluate the adsorption capacities and efficient removal of arsenic of the nanohybrid and compared with bare MnFe2O4 nanoparticles and GO nanosheets. Our obtained results reveal that the adsorption process of the nanohybrids was well fitted with a pseudo-second-order kinetic equation and a Freundlich isotherm model; the maximum adsorption capacity and removal efficiency of the nanohybrids obtained ~240.385 mg/g and 99.9% with a fast response of equilibrium adsorption time ~20 min. The larger adsorption capacity and shorter equilibrium time of the GO-MnFe2O4 nanohybrids showed better performance than that of bare MnFe2O4 nanoparticles and GO nanosheets. The advantages of reusability, magnetic separation, high removal efficiency, and quick kinetics make these nanohybrids very promising as low-cost adsorbents for fast and effective removal of arsenic from water.

  4. Separation of quadrupolar and magnetic contributions to spin-lattice relaxation in the case of a single isotope

    Suter, A.; Mali, M.; Ross, J. (Jeff); Brinkmann, D.

    1999-01-01

    We present a NMR pulse double-irradiation method which allows one to separate magnetic from quadrupolar contributions in the spin-lattice relaxation. The pulse sequence fully saturates one transition while another is observed. In the presence of a Delta m = 2 quadrupolar contribution, the intensity of the observed line is altered compared to a standard spin-echo experiment. We calculated analytically this intensity change for spins I=1, 3/2, 5/2, thus providing a quantitative analysis of the ...

  5. Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1-T2 magnetic resonance imaging performance.

    Guldris, Noelia; Argibay, Bárbara; Kolen'ko, Yury V; Carbó-Argibay, Enrique; Sobrino, Tomás; Campos, Francisco; Salonen, Laura M; Bañobre-López, Manuel; Castillo, José; Rivas, José

    2016-06-15

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) coated with polyacrylic acid (PAA) were synthesized by a hydrothermal method in gram-scale quantity and extensively characterized. Only the nanoparticles subjected to an additional centrifugation step showed narrow size distribution, high polymeric coverage, and ideal superparamagnetism. In addition to improved physico-chemical properties, these nanoparticles feature high stability in vitro as well as dual T1-T2 performance as contrast agents (CAs) for magnetic resonance imaging (MRI), highlighting the importance of the additional separation step in obtaining material with the desired properties. PMID:27038785

  6. Studies in matter antimatter separation and in the origin of lunar magnetism

    Barker, W. A.; Greeley, R.; Parkin, C.; Aggarwal, H.; Schultz, P.

    1975-01-01

    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed.

  7. Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation

    Přikryl, P.; Horák, Daniel; Tichá, M.; Kučerová, Z.

    2006-01-01

    Roč. 29, č. 16 (2006), s. 2541-2549. ISSN 1615-9306 R&D Projects: GA ČR GA203/05/0241 Institutional research plan: CEZ:AV0Z40500505 Keywords : human IgG * hydrophilic magnetic microspheres * iminodiacetic acid Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.535, year: 2006

  8. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison

    Hubbuch, Jürgen; Matthiesen, D.B.; Hobley, Timothy John; Thomas, Owen R. T.

    A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non-porous superpa...

  9. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation.

    Gui, Xuchun; Zeng, Zhiping; Lin, Zhiqiang; Gan, Qiming; Xiang, Rong; Zhu, Yuan; Cao, Anyuan; Tang, Zikang

    2013-06-26

    Development of sorbent materials with high selectivity and sorption capacity, easy collection and recyclability is demanding for spilled oil recovery. Although many sorption materials have been proposed, a systematic study on how they can be reused and possible performance degradation during regeneration remains absent. Here we report magnetic carbon nanotube sponges (Me-CNT sponge), which are porous structures consisting of interconnected CNTs with rich Fe encapsulation. The Me-CNT sponges show high mass sorption capacity for diesel oil reached 56 g/g, corresponding to a volume sorption capacity of 99%. The sponges are mechanically strong and oil can be squeezed out by compression. They can be recycled using through reclamation by magnetic force and desorption by simple heat treatment. The Me-CNT sponges maintain original structure, high capacity, and selectivity after 1000 sorption and reclamation cycles. Our results suggest that practical application of CNT macrostructures in the field of spilled oil recovery is feasible. PMID:23721652

  10. Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation

    The performance of magnetically separable N-doped TiO2 was found to be significantly improved when compared with a non-magnetic N-doped TiO2 for the aqueous removal of cyanotoxin Microcystin-LR. The observed enhanced photocatalytic activity may be related to the presence of ferri...

  11. Isolation of Murine Postnatal Brain Microglia for Phenotypic Characterization Using Magnetic Cell Separation Technology

    Harms, Ashley S; Tansey, Malú G.

    2013-01-01

    To shorten the time between brain harvesting and microglia isolation, and characterization we utilized the MACS® neural dissociation kit followed by OctoMACS® CD11b magnetic bead isolation technique to positively select for brain microglia expressing the pan-microglial marker Cd11b, a key subunit of the Membrane Attack Complex (MAC). This protocol yields a viable and highly pure (> 95%) microglial population of approximately 500,000 cells per pup that is amenable for in vitro characterization...

  12. Calculating Separate Magnetic Free Energy Estimates for Active Regions Producing Multiple Flares: NOAA AR11158

    Tarr, Lucas A; Millhouse, Margaret

    2013-01-01

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The \\emph{Helioseismic and Magnetic Imager} (HMI) onboard the \\emph{Solar Dynamics Observatory} (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C--class, 2 M--class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on February 12th, 2011. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600\\AA\\ chann...

  13. Novel Monoclonal Antibody and Peptide Binders for Mycobacterium avium subsp. paratuberculosis and Their Application for Magnetic Separation.

    O'Brien, Lorna M; Stewart, Linda D; Strain, Sam A J; Grant, Irene R

    2016-01-01

    The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extracted antigens (EEA) from these cells were used to elicit an immune response and as phage-display biopanning targets. A range of novel binders was obtained and coated onto paramagnetic beads, both individually and in various combinations, for MS evaluation. IS900 PCR was employed after MS to provide quick results. Capture sensitivity was assessed using a range of MAP concentrations after which the most promising beads were tested for their specificity for MAP, by performing MS followed by culture using 10 other Mycobacterium species. Magnetic beads coated with the biotinylated EEA402 peptide demonstrated a greater level of MAP capture than the current PMS method, even when low numbers of MAP (PMS method, but with little cross-reactivity to other Mycobacterium spp. Therefore, two new MS protocols are suggested, the application of which would be dependent upon the required endpoint. Biotinylated EEA402-coated beads could potentially be used with a MAP-specific PCR to ensure detection specificity, while beads coated with 6G11 and 15D10 monoclonal antibodies could be used with culture or the phage amplification assay. PMID:26815790

  14. A study on the purification of primary coolant in a nuclear power plant using a magnetic filter - electrodeionization hybrid separation system

    A study on the purification of primary coolant system in a nuclear power plant is carried out using magnetic filter - electrodeionization hybrid separation process. Magnetic filter system with 3000 Gauss permanent manget is used for the removal of CRUD (Chalk River Unidentified Deposit) and electrodeionization for ionic nuclide species. The removal and transport mechanism of nickel ion in an electrodeionization system is explained. The developed magnetic filter - electrodeionization hybrid separation process showed high removal rate over 98 %. The results suggested the applicable possibility for the purification of primary coolant system in a nuclear power plant

  15. Wet high-intensity magnetic separation for the concentration of Witwatersrand gold-uranium ores and residues

    Wet high-intensity magnetic separation (WHIMS) for the concentration of gold and uranium was tested on many Witwatersrand cyanidation residues, and on some ores and flotation tailings. The results varied, but many indicated recoveries of over 60 per cent of the gold and uranium. The main source of loss is the inefficiency of WHIMS for material of smaller particle size than 20?m. The recoveries in the continuous tests were lower than those in the batch tests. The continuous tests indicated an operational difficulty that could be experienced in practice, namely the tendency for wood chips and ferromagnetic particles to block the matrix of the separator. It was decided that a solution to the problem lies in the modification of the separator to allow continuous removal of the matrix for cleaning. A system has been developed for this purpose and is being demonstrated on a pilot-plant scale. Promising results were obtained in tests on a process that combines a coarse grind, gravity concentration, and WHIMS. In the gravity-concentration step, considerable recoveries, generally over 50 per cent, of high-grade pyrite were obtained, together with high recoveries of gold and moderate, but possibly important, recoveries of uranium. A simple model describing the operation of the WHIMS machine in terms of the operating parameters is described. This should reduce the amount of empirical testwork required for the optimization of operating conditions and should provide a basis for scale-up calculations. The economics of the WHIMS process is discussed

  16. Magnetic separation of heavy metal ions and evaluation based on surface-enhanced Raman spectroscopy: copper(II) ions as a case study.

    Yan, Xue; Zhang, Xue-Jiao; Yuan, Ya-Xian; Han, San-Yang; Xu, Min-Min; Gu, Ren'ao; Yao, Jian-Lin

    2013-11-01

    A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p-Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface-enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface-enhanced Raman spectroscopy bands from p-mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions. PMID:24106161

  17. Preparation of magnetic carbon nanotubes for separation of pyrethroids from tea samples

    Magnetic carbon nanotubes (MCNTs) have been synthesized by chemical deposition of Fe3O4 nanoparticles onto carbon nanotubes. They were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffraction and physical property measurement system. The MCNTs were used as the sorbents for the extraction of pyrethroids including beta-cyfluthrin, cyhalothrin and cyphenothrin from tea samples. The extraction conditions, such as the amount of magnetic sorbent, shaking time and rate, washing and eluting solution have been fully investigated. The analytes desorbed from MCNTs were determined by HPLC with UV detection. Under the optimal conditions, the linearity of the method is in the range of 0.05-25 μg g-1. The limits of detection of the three pyrethroids are 0.017, 0.010 and 0.018 μg g-1, respectively. The relative standard deviations of within- and between-day range from 3.5 % to 6.4 %, and from 4.5 % to 29 7.3 %, respectively. In all three spiked levels (0.05, 0.5 and 5 μg g-1), the recoveries of pyrethroids are in the range of 82.2 %-94.4 %. This method is much faster and more effective than traditional methods, and it is promising for the analysis of pesticides residues. (author)

  18. Enhanced defluoridation and facile separation of magnetic nano-hydroxyapatite/alginate composite.

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2015-09-01

    In this research study, a new magnetic biosorbent was developed by the fabrication of magnetic Fe3O4 particles on nano-hydroxyapatite(n-HAp)/alginate (Alg) composite (Fe3O4@n-HApAlg composite) for defluoridation in batch mode. The synthesized Fe3O4@n-HApAlg biocomposite possess an enhanced defluoridation capacity (DC) of 4050 mgF(-)/kg when compare to n-HApAlg composite, Fe3O4@n-HAp composite, n-HAp and Fe3O4 which possesses the DCs of 3870, 2469, 1296 and 1050 mgF(-)/kg respectively. The structural changes of the sorbent, before and after fluoride sorption were studied using FTIR, XRD and SEM with EDAX techniques. There are various physico-chemical parameters such as contact time, pH, co-existing anions, initial fluoride concentration and temperature were optimized for maximum fluoride removal. The equilibrium data was well modeled by Freundlich, Langmuir, Dubinin-Radushkevich (D-R) and Temkin isotherms. The present system follows Dubinin-Radushkevich isotherm model. The thermodynamic parameters reveals that the feasibility, spontaneity and endothermic nature of fluoride sorption. The performance and efficiency of the adsorbent material was examined with water samples collected from fluoride endemic areas namely Reddiyarchatram and Ammapatti in Dindigul District of Tamil Nadu using standard protocols. PMID:26092170

  19. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. PMID:26212997

  20. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La$_{2-x}$Sr$_x$CoO$_4$

    Drees, Y; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rtt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C

    2015-01-01

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconduc...

  1. EVIDENCE FOR TWO SEPARATE BUT INTERLACED COMPONENTS OF THE CHROMOSPHERIC MAGNETIC FIELD

    Chromospheric fibrils are generally thought to trace out low-lying, mainly horizontal magnetic fields that fan out from flux concentrations in the photosphere. A high-resolution (∼0.''1 pixel–1) image, taken in the core of the Ca II 854.2 nm line and covering an unusually large area, shows the dark fibrils within an active region remnant as fine, looplike features that are aligned parallel to each other and have lengths comparable to a supergranular diameter. Comparison with simultaneous line-of-sight magnetograms confirms that the fibrils are centered above intranetwork areas (supergranular cell interiors), with one end rooted just inside the neighboring plage or strong unipolar network but the other endpoint less clearly defined. Focusing on a particular arcade-like structure lying entirely on one side of a filament channel (large-scale polarity inversion), we find that the total amount of positive-polarity flux underlying this 'fibril arcade' is ∼50 times greater than the total amount of negative-polarity flux. Thus, if the fibrils represent closed loops, they must consist of very weak fields (in terms of total magnetic flux), which are interpenetrated by a more vertical field that contains most of the flux. This surprising result suggests that the fibrils in unipolar regions connect the network to the nearby intranetwork flux, while the bulk of the network flux links to remote regions of the opposite polarity, forming a second, higher canopy above the fibril canopy. The chromospheric field near the edge of the network thus has an interlaced structure resembling that in sunspot penumbrae.

  2. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  3. Phase separation instabilities and magnetism in two dimensional square and honeycomb Hubbard model

    Kocharian, A. N.; Fang, Kun; Fernando, G. W.; Balatsky, A. V.

    2015-06-01

    The variational cluster approximation is applied to rigorously calculate intrinsic local electron correlations in bipartite square and honeycomb Hubbard lattices. The Mott-Hubbard gap at half filling is manifested by a smooth metal-insulator transition in both lattices in agreement with the generic two-dimensional phase diagram. However, a density variation with the chemical potential shows the distinct structural differences away from half filling. The square lattice exhibits electron density discontinuity accompanied with spontaneous transition from antiferromagnetic Mott-Hubbard insulator into nonmagnetic metal. The spectral density anomaly and spin susceptibility peaks also are signaling on coexistence of hole rich metallic and hole poor insulating regions. In contrast, honeycomb lattice does not show density anomaly but displays a smooth transition with continuous evolution of a homogenous metallic state. These calculations provide strong evidence for spontaneous phase separation instability found in our quantum cluster calculations at moderate U

  4. Cryo magnetic separation adaptation to environment technologies: application to industrial effluents; Adaptation de la separation cryomagnetique aux technologies de l`environnement: application a l`epuration d`effluents liquides industriels

    Bureau, V.

    1993-12-20

    Cryomagnetic separation adaptation to environment technologies application to industrial liquid effluents. The performance, obtained by superconducting high filed - high gradient magnetic separation, permitted to foresee the magnetic treatment of heavy metals in rinse waters, derived from the surface finishing industry. The paramagnetic ions, precipitated in basic media as hydroxides, present a very hydrated amorphous structure, which masks their subjacent magnetic properties. Coprecipitation of a `magnetic carrier`, jointly with the heavy metals, has been studied: ferric chloride forms in basic media, an hydrated iron oxide. Its structure is of the goethite type, and it stabilizes as hematite. The magnetic susceptibility of the obtained product is still weak and its crystalline structure is not enough affirmative to utilize magnetic filtration with efficiency. Mixture of ferrous sulphate and ferric chloride forms, in a basic media, an hydrated magnetite. Initial ideal ratio between divalent iron and trivalent iron, varies between 0,5 and 1,2. This mixture, coprecipitated with the heavy metals, permits to optimize the magnetic cleaning of the fluids in a high field - high gradient filter. (author)

  5. The performance of an industrial wet high-intensity magnetic separator for the recovery of gold and uranium

    After bench-scale and pilot-plant tests in which it was shown that wet high-intensity magnetic separation (WHIMS) can achieve good recoveries of gold and uranium from Witwatersrand residues, a production-size machine was installed at a gold mine. The mechanical and metallurgical performance of this machine have been satisfactory, and the economics of the process are attractive. WHIMS can be combined with other unit operations like flotation for the optimization of overall gold and uranium recoveries. This concept is shown to be relevant, not only to operations for the retreatment of tailings, but to processes for the treatment of coarser material. In the latter, there is a saving in energy consumption compared with the energy required for the fine grinding of the total feed, and a material suitable for underground backfill can be produced. Improved, more cost-effective WHIMS machines currently under development are also described

  6. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator.

    Wang, Chengquan; Qian, Jing; Wang, Kun; Yang, Xingwang; Liu, Qian; Hao, Nan; Wang, Chengke; Dong, Xiaoya; Huang, Xingyi

    2016-03-15

    Gold nanoparticles (Au NPs) doped Fe3O4 (Au@Fe3O4) NPs have been synthesized by a facile one-step solvothermal method. The peroxidase-like activity of Au@Fe3O4 NPs was effectively enhanced due to the synergistic effect between the Fe3O4 NPs and Au NPs. On this basis, an efficient colorimetric aptasensor has been developed using the intrinsic dual functionality of the Au@Fe3O4 NPs as signal indicator and magnetic separator. Initially, the amino-modified aptamer specific for a typical mycotoxin, ochratoxin A (OTA), was surface confined on the amino-terminated glass beads surafce using glutaraldehyde as a linker. Subsequently, the amino-modified capture DNA (cDNA) was labeled with the amino-functionalized Au@Fe3O4 NPs and the aptasensor was thus fabricated through the hybridization reaction between cDNA and the aptamers. While upon OTA addition, aptamers preferred to form the OTA-aptamer complex and the Au@Fe3O4 NPs linked on the cDNA were released into the bulk solution. Through a simple magnetic separation, the collected Au@Fe3O4 NPs can produce a blue colored solution in the presence of 3,3',5,5'-tetramethylbenzidine and H2O2. When the reaction was terminated by addition of H(+) ions, the blue product could be changed into a yellow one with higher absorption intensity. This colorimetric aptasensor can detect as low as 30 pgmL(-1) OTA with high specificity. To the best of our knowledge, the present colorimetric aptasensor is the first attempt to use the peroxidase-like activity of nanomaterial for OTA detection, which may provide an acttractive path toward routine quality control of food safety. PMID:26583358

  7. Magnetic phase transition for defect induced electron spins from fully metal-semiconductor separated SWCNTs

    Havlicek, M.; Jantsch, W. [Institut f. Halbleiter- und Festkoerperphysik, Johannes Kepler Universitaet, 4040 Linz (Austria); Chernov, A.; Kuzmany, H. [Fakultaet fuer Physik, Universitaet Wien, Strudlhofgasse 4, 1090 Wien (Austria); Wilamowski, Z. [Polish Academy of Sciences, Al. Lotnikov 32/46, 02-668 Warsaw (Poland); Yanagi, K. [Department of Physics, Tokyo Metropolitan University (Japan); Kataura, H. [Nanotechnology Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Ruemmeli, M.H. [Leibniz Institut fuer Festkoerperphysik und Werkstoffforschung, Dresden (Germany); Malissa, H. [Department of Electrical Engineering, Princeton University, Princeton, NJ (United States)

    2012-12-15

    ESR experiments from PtRhRe grown and highly semiconductor - metal separated single-walled carbon nanotubes (SWCNTs) were performed at 9.45 GHz and temperatures T between 0.39 and 200 K. No explicit evidence was found for a response from itinerant electrons in the metallic tubes. Rather, in both the metallic (M) and the semiconducting (SC) tubes, the ESR signal originates from quasi-localized defect spins but interactions with free electrons render the two systems characteristically different. The spin susceptibility was of Curie-Weiss type for T {>=} 10 K. For annealed samples it drops for lower T indicating a transition to a ferromagnetic state. Linewidths decrease and increase with increasing T for M and SC tubes, respectively. As a consequence they cross for the two systems. Interaction of spins with free carriers in M tubes via an RKKY type mechanism and increase of linewidth with temperature for SC tubes due to spin-lattice interaction is suggested to be responsible for this. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Photocatalytic degradation of methylene blue on magnetically separable MgFe{sub 2}O{sub 4} under visible light irradiation

    Shahid, Muhammad [Material Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Jingling, Liu [BK21 Physics Research Division, SKKU Advanced Institute of Nanotechnology, Institute of Basic Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ali, Zahid [National Institute of Lasers and Optronics, Nilore, Islamabad (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, King Saud University, Riyadh (Saudi Arabia); Warsi, Muhammad Farooq, E-mail: farooq.warsi@iub.edu.pk [Chemistry Department, Baghdad-ul-Jaded Campus, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Parveen, Riffat [Institute of Chemistry, University of the Punjab, Lahore (Pakistan); Nadeem, Muhammad [Department of Chemistry, University of Agriculture, Faisalabad 38040, Punjab (Pakistan)

    2013-05-15

    A magnetically separable single-phase MgFe{sub 2}O{sub 4} photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe{sub 2}O{sub 4} was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe{sub 2}O{sub 4} was studied by measuring their photocurrent–potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm{sup −2} illumination. - Graphical abstract: Highly efficient magnetically separable MgFe{sub 2}O{sub 4} photocatalyst for organic based impurities decomposition as well as for the production of H{sub 2} gas was synthesized and characterized successfully (a) MgFe{sub 2}O{sub 4} photocatalyst in polluted water, (b) The photocatalyst (MgFe{sub 2}O{sub 4}) is being attracted toward magnetic field for separation, (c) Hysteresis loop of MgFe{sub 2}O{sub 4} showing magnetic behavior. Highlights: ► New photocatalyst working in the visible range have been synthesized by facile cheap route. ► MgFe{sub 2}O{sub 4} photocatalyst showed well defined magnetically separable behavior. ► Excellent water splitting characteristics to produce H{sub 2} was observed under visible light irradiation.

  9. Separation of Quadrupolar and Magnetic Contributions to Spin-Lattice Relaxation in the Case of a Single Isotope

    Suter, A.; Mali, M.; Roos, J.; Brinkmann, D.

    2000-04-01

    We present a NMR pulse double-irradiation method which allows one to separate magnetic from quadrupolar contributions in the spin-lattice relaxation. The pulse sequence fully saturates one transition while another is observed. In the presence of a ‖Δm‖ = 2 quadrupolar contribution, the intensity of the observed line is altered compared to a standard spin-echo experiment. We calculated analytically this intensity change for spins I = 1, {3}/{2}, {5}/{2}, thus providing a quantitative analysis of the experimental results. Since the pulse sequence we used takes care of the absorbed radiofrequency power, no problems due to heating arise. The method is especially suited when only one NMR sensitive isotope is available. Different cross-checks were performed to prove the reliability of the results obtained. The applicability of this method is demonstrated by a study of the plane oxygen 17O (I = {5}/{2}) in the high-temperature superconductor YBa2Cu4O8: the 17O spin-lattice relaxation rate consists of magnetic as well as quadrupolar contributions.

  10. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. PMID:27209393

  11. Separating spatial and temporal variations in auroral electric and magnetic fields by Cluster multipoint measurements

    T. Karlsson

    2004-07-01

    Full Text Available Cluster multipoint measurements of the electric and magnetic fields from a crossing of auroral field lines at an altitude of 4RE are used to show that it is possible to resolve the ambiguity of temporal versus spatial variations in the fields. We show that the largest electric fields (of the order of 300mV/m when mapped down to the ionosphere are of a quasi-static nature, unipolar, associated with upward electron beams, stable on a time scale of at least half a minute, and located in two regions of downward current. We conclude that they are the high-altitude analogues of the intense return current/black auroral electric field structures observed at lower altitudes by Freja and FAST. In between these structures there are temporal fluctuations, which are shown to likely be downward travelling Alfvén waves. The periods of these waves are 20-40s, which is not consistent with periods associated with either the Alfvénic ionospheric resonator, typical field line resonances or substorm onset related Pi2 oscillations. The multipoint measurements enable us to estimate a lower limit to the perpendicular wavelength of the Alfvén waves to be of the order of 120km, which suggests that the perpendicular wavelength is similar to the dimension of the region between the two quasi-static structures. This might indicate that the Alfvén waves are ducted within a wave guide, where the quasi-static structures are associated with the gradients making up this waveguide.

  12. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens.

    Ondera, Thomas J; Hamme, Ashton T

    2015-12-01

    A rapid, sensitive and quantitative immunoassay for the targeted detection and decontamination of E. coli based on Fe3O4 magnetic nanoparticles (MNPs) and plasmonic popcorn-shaped gold nanostructure attached single-walled carbon nanotubes (AuNP@SWCNT) is presented. The MNPs were synthesized as the support for a monoclonal antibody (mAb@MNP). E. coli (49979) was captured and rapidly preconcentrated from the sample with the mAb@MNP, followed by binding with Raman-tagged concanavalin A-AuNP@SWCNTs (Con A-AuNP@SWCNTs) as detector nanoprobes. A Raman tag 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) generated a Raman signal upon 670 nm laser excitation enabling the detection and quantification of E. coli concentration with a limit of detection of 10(2) CFU mL(-1) and a linear logarithmic response range of 1.0 10(2) to 1.0 10(7) CFU mL(-1). The mAb@MNP could remove more than 98% of E. coli (initial concentration of 1.3 10(4) CFU mL(-1)) from water. The potential of the immunoassay to detect E. coli bacteria in real water samples was investigated and the results were compared with the experimental results from the classical count method. There was no statistically significant difference between the two methods (p > 0.05). Furthermore, the MNP/AuNP@SWCNT hybrid system exhibits an enhanced photothermal killing effect. The sandwich-like immunoassay possesses potential for rapid bioanalysis and the simultaneous biosensing of multiple pathogenic agents. PMID:26469636

  13. A flexible lab-on-a-chip for the synthesis and magnetic separation of magnetite decorated with gold nanoparticles.

    Cabrera, Flvio C; Melo, Antonio F A A; de Souza, Joo C P; Job, Aldo E; Crespilho, Frank N

    2015-04-21

    Magnetite decorated with gold nanoparticles (Fe3O4-AuNPs) is a ferrimagnetic material with unprecedented applications in immunosensors, as a contrast agent for imaging diagnosis, and for the photothermal ablation of tumor cells. Here, we show the preparation of controlled amounts of Fe3O4-AuNPs without organic solvents, surfactants, or heat treatment. For this, we have developed a customized natural-rubber-based microfluidic device (NRMD) as a flexible lab-on-a-chip for the decoration of Fe3O4 with AuNPs. With a novel NRMD configuration, monodisperse Fe3O4-NPs (? = 10 nm) decorated with AuNPs (? = 4 nm) were readily obtained. The AuNPs were homogenous in terms of their size and their distribution on the Fe3O4-NP surfaces. Furthermore, the lab-on-a-chip was projected with an internal system for magnetic separation, an innovation in terms of aqueous/carrier phase separation. Finally, the nanomaterials produced with this NRMD are free of organic solvents and surfactants, allowing them to be used directly for medical applications. PMID:25723569

  14. Magnetic source separation in the outer core. Introducing the SCOR-field

    Complete text of publication follows. We present evidence that the primary source of Earth's axial dipole (AD) is physically distinct from sources responsible for the rest of the geomagnetic field. Support for this claim comes from correlations between the structure of the historic non-axial dipole (NAD) field and transitional paleomagnetic behavior recorded in lavas during the early Brunhes Chron. 40Ar/39Ar age determinations of lavas from West Eifel, Germany, indicate the recording of five excursions spanning ?200 kyr, including the Big Lost Event (?580 ka). Transitional lavas from Tahiti also record the Big Lost as well as the Matuyama-Brunhes reversal. Virtual geomagnetic poles (VGPs) recorded at West Eifel are spread across Eurasia, while those recorded on Tahiti during the two events are associated with the same tightly clustered location west of Australia - the site of the most intense NAD flux feature since direct field measurements started some 400 years ago. The differing locations and amounts of spread of transitional VGPs match - at both sites - virtual poles determined for the historic NAD-field. We contend that (1) the field generated by deep convective columns near the tangent cylinder is the primary source for the AD; and (2) the field arising from flux concentrations held and controlled by lower mantle conditions is the primary source for the NAD. Since there most certainly is a small contribution to the AD term (g10) associated with mantle-held sources, we define this field as the Shallow-Core-Generated (SCOR) field. Paleomagnetic data from Tahiti and Australia strongly suggest that the Australasian flux feature is long-lived, regionally dominating the field when the strength of the main AD had significantly weakened or vanished. We argue that recurrence of transitional VGPs observed over geologic time indicates that (1) the entire field does not reverse as a single unit, and (2) field sources exist in the core that are sufficiently separated to be in 'poor communication.' It follows that subsequent work on spherical harmonic-based field descriptions may now incorporate an understanding of a dichotomy of spatial-temporal dynamo processes.

  15. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples.

    Liu, Min; Li, Xiao-Yan; Li, Jun-Jie; Su, Xiao-Meng; Wu, Zong-Yuan; Li, Peng-Fei; Lei, Fu-Hou; Tan, Xue-Cai; Shi, Zhan-Wang

    2015-05-01

    In this study, novel magnetic molecularly imprinted polymers (MMIPs) were developed as a sorbent for solid-phase extraction (SPE) and used for the selective separation of metronidazole (MNZ) in cosmetics; MNZ was detected by high-performance liquid chromatography (HPLC). First, magnetic Fe3O4 nanoparticles (NPs) were prepared by the co-precipitation of Fe(2+)and Fe(3+) ions in an ammonia solution; then oleic acid (OA) was modified onto the surface of Fe3O4NPs. Finally, the MMIP was prepared by aqueous suspension polymerization, involving the copolymerization of Fe3O4NPs@OA with MNZ as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol maleic rosinate acrylate (EGMRA) as the cross-linking agent, and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The MMIP materials showed high selective adsorption capacity and fast binding kinetics for MNZ; the maximum adsorption amount of the MMIP to MNZ was 46.7 mg/g. The assay showed a linear range from 0.1 to 20.0 μg/mL for MNZ with the correlation coefficient 0.999. The relative standard deviations (RSD) of intra- and inter-day ranging from 0.71 to 2.45% and from 1.06 to 5.20% were obtained. The MMIP can be applied to the enrichment and determination of MNZ in cosmetic products with the recoveries of spiked toner, powder, and cream cosmetic samples ranging from 90.6 to 104.2, 84.1 to 91.4, and 90.3 to 100.4%, respectively, and the RSD was <3.54%. PMID:25749799

  16. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation.

    Wu, Lei; Li, Lingxiao; Li, Bucheng; Zhang, Junping; Wang, Aiqin

    2015-03-01

    Magnetic, durable, and superhydrophobic polyurethane (PU) sponges were fabricated by chemical vapor deposition (CVD) of tetraethoxysilane (TEOS) to bind the Fe3O4 nanoparticles tightly on the sponge and then dip-coating in a fluoropolymer (FP) aqueous solution. The sponges were characterized using scanning electron microscopy and other analytical techniques. The effects of CVD time of TEOS and FP concentration on wettability, mechanical properties, oil absorbency, and oil/water selectivity of the sponges were also investigated. The sponges exhibit fast magnetic responsivity and excellent superhydrophobicity/superoleophilicity (CAwater = 157 and CAoil ? 0). The sponges also show very high efficiency in oil/water separation and could, driven by a magnet, quickly absorb floating oils on the water surface and heavy oils under water. Moreover, the PU@Fe3O4@SiO2@FP sponges could be used as membranes for oil/water separation and for continuous separation of large amounts of oil pollutants from the water surface with the help of a pump. The in turn binding of Fe3O4 nanoparticles, SiO2, and FP can also improve mechanical properties of the PU sponge. The sponges maintain the superhydrophobicity even when they are stretched with 200% strain or compressed with 50% strain. The sponges also show excellent mechanical stability, oil stability, and reusability in terms of superhydrophobicity and oil absorbency. The magnetic, durable, and superhydrophobic PU sponges are very promising materials for practical oil absorption and oil/water separation. PMID:25671386

  17. Ultrasonic-assisted preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites as magnetically separable visible-light-driven photocatalysts with excellent activity.

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2016-01-01

    The present work demonstrates preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites, as magnetically separable visible-light-driven photocatalysts using ultrasonic irradiation method. The XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques was applied for characterization of structure, purity, morphology, optical, and magnetic properties of the resultant samples. The superior activity was seen for the nanocomposite with 8 weight ratio of ZnO/AgI to Fe3O4 in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite in degradation of rhodamine B, methylene blue, and methyl orange is about 32, 6, and 5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The highly enhanced activity of the ternary magnetic photocatalyst was mainly attributed to more visible-light absorption ability and efficiently separation of the charge carriers. Furthermore, it was revealed that the ultrasonic irradiation time and calcination temperature affect largely on the photocatalytic activity. Finally, the magnetic photocatalyst was successfully separated from the treated solution using external magnetic field. PMID:26397921

  18. Fenton-like degradation of Methylene Blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: Characterization and mechanism.

    Zhou, Guoqiang; Chen, Ziwen; Fang, Fei; He, Yuefeng; Sun, Haili; Shi, Huixiang

    2015-09-01

    For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst (PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer-Emmet-Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue (MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover, leaching tests indicated that the leached iron is negligible (<0.5mg/L). This study provides an alternative environmentally friendly reuse method for paper mill sludge and a novel catalyst PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst. PMID:26354688

  19. Magnetically Separable Fe3O4/AgBr Hybrid Materials: Highly Efficient Photocatalytic Activity and Good Stability

    Cao, Yuhui; Li, Chen; Li, Junli; Li, Qiuye; Yang, Jianjun

    2015-06-01

    Magnetically separable Fe3O4/AgBr hybrid materials with highly efficient photocatalytic activity were prepared by the precipitation method. All of them exhibited much higher photocatalytic activity than the pure AgBr in photodegradation of methyl orange (MO) under visible light irradiation. When the loading amount of Fe3O4 was 0.5 %, the hybrid materials displayed the highest photocatalytic activity, and the degradation yield of MO reached 85 % within 12 min. Silver halide often suffers serious photo-corrosion, while the stability of the Fe3O4/AgBr hybrid materials improved apparently than the pure AgBr. Furthermore, depositing Fe3O4 onto the surface of AgBr could facilitate the electron transfer and thereby leading to the elevated photocatalytic activity. The morphology, phase structure, and optical properties of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL) techniques.

  20. Preparation of magnetically separable Fe3O4/BiOI nanocomposites and its visible photocatalytic activity

    Novel magnetic Fe3O4/BiOI nanocomposites with visible light response were successfully fabricated through a facile and economical method at low temperature and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), respectively. The Fe3O4/BiOI nanocomposites were further employed in photodegrading rhodamine B (RhB). After 40 min, RhB removal rate reached to 90.1%, which was superior to the pure BiOI (50.3%). The enhanced photocatalytic performance of Fe3O4/BiOI nanocomposites may be attributed to the separation efficiency of the carriers. After five recycles for the photodegradation of RhB, the Fe3O4/BiOI nanocomposites did not exhibit any significant loss of activity, confirming the photocatalyst was essentially stable. Moreover, direct hole transfers and ·O2− are proved to be the dominant reactive species in the photodegradation of RhB over Fe3O4/BiOI nanocomposites.

  1. Enrichment of Rare Earth and Niobium from a REE-Nb-Fe Associated Ore via Reductive Roasting Followed by Magnetic Separation

    Liu, Mudan; You, Zhixiong; Peng, Zhiwei; Li, Xiang; Li, Guanghui

    2016-02-01

    REE-Nb-Fe ore is a typical refractory resource rich in valuable elements. In this article, coal-based reductive roasting followed by magnetic separation is proposed to recover rare earth element (REE), niobium (Nb), and powdered metallic iron (Fe) concentrate from a REE-Nb-Fe raw concentrate containing 31.9% total iron grade (TFe), 3.2% rare earth oxides (REO), and 2.9% Nb2O5. Sodium sulfate is employed to enhance the reduction of iron oxide and to facilitate the growth of metallic iron grains. A magnetic fraction with TFe of 89.3%, iron metallization of 95.8% and iron recovery of 91.5% is obtained by magnetic separation after the raw concentrate is reduced to 1100C for 120 min in the presence of 15 wt.% sodium sulfate. The contents of rare earth and niobium in the nonmagnetic fraction are enriched to 5.4% (REO) and 4.6% (Nb2O5) with recoveries of 96.1% and 95.8%, respectively. The TFe in the nonmagnetic fraction obtained after the separation is decreased to 4.8% accordingly. The reactions between sodium sulfate and SiO2/Al2O3 enhance the reduction by destroying the mineral structure. The separation of iron from rare earth and niobium is highly improved as metallic iron grains grow markedly when roasted in the presence of sodium sulfate.

  2. Ferrimagnetism and magnetic phase separation in Nd{sub 1?x}Y{sub x}MnO{sub 3} studied by magnetization and high frequency electron paramagnetic resonance

    Nair, Harikrishnan S., E-mail: krishnair1@gmail.com [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Yadav, Ruchika [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Adiga, Shilpa [Jlich Center for Neutron Sciences 2/Peter Grnberg Institute 4, Forschungszentrum Jlich GmbH, 52425 Jlich (Germany); Rao, S.S. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Tol, Johan van [National High Magnetic Field Laboratory, Centre for Interdisciplinary Magnetic Resonance, Florida State University,1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Elizabeth, Suja [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-01-01

    Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd{sub 1?x}Y{sub x}MnO{sub 3}, for x=0.10.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO{sub 3}. Magnetization studies reveal a phase transition of the Mn-sublattice below T{sub N}{sup Mn}?80K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x<0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd{sub 1?x}Y{sub x}MnO{sub 3} can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation.

  3. Separation of species of a binary fluid mixture confined between two concentric rotating circular cylinders in presence of a strong radial magnetic field

    Sharma, B.R. [Dibrugarh University, Department of Mathematics, Dibrugarh, Assam (India); Singh, R.N. [Marwari Hindi High School, Dibrugarh (India)

    2010-08-15

    The effect of a radial magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids confined between two concentric rotating circular cylinders with different angular velocity is examined. The equations governing the motion, temperature and concentration in cylindrical polar coordinate are solved analytically. The solution obtained in closed form for concentration distribution is plotted against the radial distances from the surface of the inner circular cylinder for various values of non-dimensional parameters. It is found that the non-dimensional parameters viz. the Hartmann number, thermal diffusion number, baro diffusion number, rotational Reynolds number, the product of Prandtl number and Eckert number, magnetic Prandtl number and the ratio of the angular velocities of inner and outer cylinders affects the species separation of rarer and lighter component significantly. The problem discussed here derives its application in the basic fluid dynamics separation processes to separate the rarer component of the different isotopes of heavier molecules where electromagnetic method of separation does not work. (orig.)

  4. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix.

    Guo, Pei-Lin; Tang, Man; Hong, Shao-Li; Yu, Xu; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-12-15

    Foodborne illnesses have always been a serious problem that threats public health, so it is necessary to develop a method that can detect the pathogens rapidly and sensitively. In this study, we designed a magnetic controlled microfluidic device which integrated the dynamic magnetophoretic separation and stationary magnetic trap together for sensitive and selective detection of Salmonella typhimurium (S. typhimurium). Coupled with immunomagnetic nanospheres (IMNs), this device could separate and enrich the target pathogens and realize the sensitive detection of target pathogens on chip. Based on the principle of sandwich immunoassays, the trapped target pathogens identified by streptavidin modified QDs (SA-QDs) were detected under an inverted fluorescence microscopy. A linear range was exhibited at the concentration from 1.0×10(4) to 1.0×10(6) colony-forming units/mL (CFU/mL), the limit of detection (LOD) was as low as 5.4×10(3) CFU/mL in milk (considering the sample volume, the absolute detection limit corresponded to 540C FU). Compared with the device with stationary magnetic trap alone, the integrated device enhanced anti-interference ability and increased detection sensitivity through dynamic magnetophoretic separation, and made the detection in complex samples more accurate. In addition, it had excellent specificity and good reproducibility. The developed system provides a rapid, sensitive and accurate approach to detect pathogens in practice samples. PMID:26201979

  5. Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride.

    Mousavi, Mitra; Habibi-Yangjeh, Aziz

    2016-03-01

    The present work demonstrates preparation of magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites as novel visible-light-driven photocatalysts. The resultant samples were characterized using XRD, EDX, SEM, TEM, UV-Vis DRS, FT-IR, PL, BET, and VSM techniques. The results revealed that weight percent of BiOI has considerable effect on photodegradation of rhodamine B under visible-light irradiation. Among the prepared samples, the g-C3N4/Fe3O4/BiOI (20%) nanocomposite has the best photocatalytic activity. The activity of this nanocomposite is about 10, 22, and 21-fold higher than that of the g-C3N4 sample in degradation of rhodamine B, methylene blue, and methyl orange under the visible-light irradiation. The excellent activity of the magnetic nanocomposite was attributed to more harvesting of the visible-light irradiation and efficiently separation of the electron-hole pairs. More importantly, the nanocomposite was magnetically separated after five successive cycles. PMID:26669494

  6. Preparations and photocatalytic degradation of methyl orange in water on magnetically separable Bi12TiO20 supported on nickel ferrite

    Shihong Xu, Wenfeng Shangguan, Jian Yuan, Jianwei Shi and Mingxia Chen

    2007-01-01

    Full Text Available A magnetically separable photocatalyst Bi12TiO20/SiO2/NiFe2O4 (BSN with a typical ferromagnetic hysteresis was prepared by a simple process: the magnetic 200 wt% SiO2/NiFe2O4 (SN dispersion prepared by a liquid catalytic phase transformation method and the visible-light-active photocatalyst Bi12TiO20 prepared by a simple coprecipitation processing were mixed, sonificated, dried, and calcined at 550 C. The prepared photocatalyst showed high photocatalytic activity for the degradation of methyl orange in water under UV irradiation and visible-light irradiation (?>400 nm, and it was easy to be separated from a slurry-type photoreactor under the application of an external magnetic field, being one of promising photocatalysts for wastewater treatment. Transmission electron microscope (TEM and X-ray diffractometer (XRD were used to characterize the structure of the photocatalyst, indicating that the magnetic SN particles adhered to the surface of the Bi12TiO20 congeries. SiO2 layer round the surface of NiFe2O4 nanoparticles prevented effectively the injection of charges from TiO2 particles to NiFe2O4, which gave rise to the increase in photocatalytic activity.

  7. Novel Phase Separation and Magnetic Volume Tuning in Underdoped NaFe1-xCoxAs (x 0.01)

    Ma, Long; Dai, J.; Lu, X. R.; Tan, Guotai; Song, Yu; Dai, Pengcheng; Zhang, C. L.; Normand, B.; Yu, Weiqiang

    2013-03-01

    NaFeAs is a quasi-2D pnictide parent compound with a weak magnetic moment and separate structural and antiferromagnetic transitions. Because Co doping leads to a superconductor with Tc ~= 20 K at a very low optimal doping of x = 0 . 02 , NaFe1-xCoxAs is uniquely suited to sensitive studies of the cohabitation and competition between magnetism and superconductivity. Using NMR as a local probe of both antiferromagnetic order and superconductivity, we have compared Knight shifts and relaxation rates on the Na, As, and Co nuclei. Above Tc, we find weak doping inhomogeneity, in the form of residual paramagnetic regions with differing TN values, and a strongly field-controlled magnetic volume. Below Tc, we observe a strong competition between antiferromagnetism and superconductivity, in which the temperature is the dominant control parameter, suppressing the magnetic volume fraction very significantly in favor of the superconducting one, while the external field suppresses Tc. Our results suggest both a microscale phase separation in real space and in reciprocal space a competition between two order parameters requiring the same electrons on the quasi-2D Fermi surface.

  8. Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments

    Udby, Linda; Andersen, Niels Hessel; Chou, F.C.; Christensen, Niels Bech; Emery, S.B.; Lefmann, Kim; Lynn, J.W.; Mohottala, H.E.; Niedermayer, Ch.; Wells, B.O.

    2009-01-01

    We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting...

  9. Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method. I. Background and concept

    A wide variety of iron oxides has been used for the removal of radioactive and toxic metals from aqueous solutions. Natural magnetite and iron ferrite (FeO x Fe2O3) in a batch mode to remove actinides (Pu and Am) from wastewater have been utilized. Compared to the batch process, enhanced capacity for actinide removal was observed using supported magnetite in a column surrounded by an external magnetic field (0.3 tesla). The enhanced magnetite capacity in the column is primarily due to magnetic filtration of colloidal and submicron actinide particles along with some actinide complex and ion exchange sorption mechanisms. The removal of the magnetic field from around the column and use of a regenerating solution will easily remove the actinides loaded on the magnetite. The magnetic field-enhanced column process is under development for a variety of applications. Previous work on using ferrites for water treatment is reviewed and the potential for using the magnetic field-enhanced column process as a pre-analysis separation and concentration method for actinides in groundwater is discussed. (author)

  10. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity

    Graphical abstract: An effective route has been developed to synthesize magnetic Fe3O4@SiO2@TiO2-Ag microspheres with well-defined coreshell nanostructure and enhanced photocatalytic activity. -- Highlights: Controllable synthesis of coreshell structured Fe3O4@SiO2@TiO2-Ag magnetic nanocomposite. The unique nanostructure of Fe3O4@SiO2@TiO2-Ag can improve the total photocatalytic performance. An easy magnetically separable and recoverable process. -- Abstract: Major efforts in modern material chemistry are devoted to the design and fabrication of nanostructured systems with tunable physicalchemical properties for advanced catalytic applications. Here, a novel Fe3O4@SiO2@TiO2-Ag nanocomposite has been synthesized and characterized by a series of techniques including SEM, TEM, XRD, XPS as well as magnetization measurement and subsequently tested for the photocatalytic activities. The well-designed nanocomposite exhibits significantly superior activity to that of the commercial Degussa P25 thanks to the suppression of electronhole pairs from recombination by Ag nanoparticles, and can be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 10 times. The unique nanostructure makes Fe3O4@SiO2@TiO2-Ag a highly efficient, recoverable, stable, and cost-effective photocatalytic system offering broad opportunities in the field of catalyst synthesis and application

  11. Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts.

    Liu, Shujun; Fu, Jianwei; Wang, Minghuan; Yan, Ya; Xin, Qianqian; Cai, Lu; Xu, Qun

    2016-05-01

    Magnetic Fe3O4-polydopamine (PDA) hybrid hollow microspheres, in which Fe3O4 nanoparticles were firmly incorporated in the cross-linked PDA shell, have been prepared through the formation of core/shell PS/Fe3O4-PDA composites based on template-induced covalent assembly method, followed by core removal in a tetrahydrofuran solution. The morphology, composition, thermal property and magnetic property of the magnetic hybrid hollow microspheres were characterized by SEM, TEM, FT-IR, XRD, TGA, and vibrating sample magnetometer, respectively. Results revealed that the magnetic hybrid hollow microspheres had about 380nm of inner diameter and about 30nm of shell thickness, and 13.6emug(-1) of magnetization saturation. More importantly, the Fe3O4-PDA hybrid hollow microspheres exhibited intrinsic peroxidase-like activity, as they could quickly catalyze the oxidation of typical substrates 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Compared with PDA/Fe3O4 composites where Fe3O4 nanoparticles were loaded on the surface of PDA microspheres, the stability of Fe3O4-PDA hybrid hollow microspheres was greatly improved. As-prepared magnetic hollow microspheres might open up a new application field in biodetection, biocatalysis, and environmental monitoring. PMID:26871276

  12. The evaluation of the influence of drying the ore before the dry high - intensity magnetic separation on the efficiency production process of blastfurnace pellets in the Siderit Niná Slaná plant

    Kuffnerová Andrea; Spiák Ján

    2001-01-01

    In the contribution is described the evaluation of the influence of the parameters on the input to the dry high - intensity magnetic separation (SVIMS), on the technological production process of the blastfurnace pellets in the condition of the company elba, a.s., o.z. Siderit Niná Slaná.By the dry high - intensity magnetic separation (SVIMS) separates siderite from inherent rock by the activity effect of the strong magnetic field of the electromagnets. The realisation of the dry high - inten...

  13. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2015-10-01

    In this work, we successfully prepared a series of novel magnetically separable ZnO/Ag3VO4/Fe3O4 nanocomposites by a facile refluxing method using Fe3O4, zinc nitrate, silver nitrate, ammonium metavanadate, and sodium hydroxide as starting materials without using any post preparation treatments. The microstructure, purity, morphology, spectroscopic, and magnetic properties of the prepared samples were studied using XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques. The ZnO/Ag3VO4/Fe3O4 nanocomposite with 8:1 weight ratio of ZnO/Ag3VO4 to Fe3O4 has the superior activity in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite is about 11.5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The results showed that the preparation time and calcination temperature significantly affect on the photocatalytic activity. The trapping experiments revealed that superoxide ions and holes have major influence on the degradation reaction. Furthermore, the enhanced activity of the nanocomposite for degradation of two more dye pollutants was confirmed. Finally, the nanocomposite was magnetically separated from the treated solution after four successive cycles.

  14. Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization.

    Wu, Zhen; Zhou, Chuan-Hua; Chen, Jian-Jun; Xiong, Chaochao; Chen, Ze; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-06-15

    Bifunctional magnetic nanobeads (bi-MBs) were fabricated by co-immobilizing target recognition molecules and signal molecules on a magnetic nanobead surface, which were used as both separation and enrichment carriers and signal carriers. The bi-MBs could capture and separate avian influenza A (H7N9) virus (H7N9 AIV) from complex samples efficiently based on the specific reaction between antigen-antibody and their good magnetic response, which simplified sample pretreatment and saved the detection time. Taking advantages of their high surface to volume ratio and rich surface functional groups, multiple alkaline phosphatase (ALP) signal molecules were tethered on the surface of bi-MBs which greatly amplified the detection signal. As an efficient signal amplification strategy, enzyme-induced metallization had been integrated with bi-MBs and anodic stripping voltammetry to construct an ultrasensitive electrochemical immunosensor for H7N9 AIV detection. Under the optimal conditions, the introduction of bi-MBs could amplify the detection signal in about four times compared with the same immunoassay without MBs, and the method showed a wide linear range of 0.01-20 ng/mL with a detection limit of 6.8 pg/mL. The electrochemical immunosensor provides a simple and reliable platform with high sensitivity and selectivity which shows great potential in early diagnosis of diseases. PMID:25643598

  15. A novel magnetically separable TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber with high photocatalytic activity under UV-vis light

    Li, Cong-Ju, E-mail: congjuli@gmail.com [Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Wang, Jiao-Na; Wang, Bin [Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Gong, Jian Ru, E-mail: gongjr@nanoctr.cn [National Center for Nanoscience and Technology, China, 11 Zhongguancun Beiyitiao, Beijing 100190 (China); Lin, Zhang [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002 (China)

    2012-02-15

    Graphical abstract: A novel magnetically separable composite photocatalyst TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber was prepared by sol-gel method and electrospinning technique, which can be reclaimed with a magnet, and the decolorizing efficiency of MB solution reached 95.87%. Highlights: Black-Right-Pointing-Pointer The composite TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofibers with diameter of 110 {+-} 28 nm have been successfully synthesized by the combination of sol-gel method and electrospinning technique. Black-Right-Pointing-Pointer The presence of Co{sup 2+} or/and Fe{sup 3+} ions may occupy some of the lattice sites of TiO{sub 2} to form an iron-titanium solid solution and narrow the band gap, which broadens the response region of visible light. Black-Right-Pointing-Pointer The resultant nanofibers not only have high decomposition efficiency with methylene blue (MB) under the UV irradiation, which is close to that of Degussa P25, but also can be separated with a magnet and avoid the secondary pollution of the treated water. -- Abstract: A novel magnetically separable heterogeneous photocatalyst TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber was prepared by sol-gel method and electrospinning technology, followed by heat treatment at 550 Degree-Sign C for 2 h. The phase structure, morphology and magnetic property of the composite nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope and vibrating sample magnetometer analysis. The photocatalytic studies of TiO{sub 2}/CoFe{sub 2}O{sub 4} fibers suggested that the presence of CoFe{sub 2}O{sub 4} not only enhanced the absorbance of UV light, but also broadened the response region to visible light. The decolorizing efficiency of methylene blue (MB) solution reaches 95.87% over TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofibers under 300 W Hg lamp after 5 h, which is close to that of Degussa P25. Furthermore, these fibers can be collected with a magnet for reuse and effectively avoid the secondary pollution of the treated water.

  16. A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV–vis light

    Graphical abstract: A novel magnetically separable composite photocatalyst TiO2/CoFe2O4 nanofiber was prepared by sol–gel method and electrospinning technique, which can be reclaimed with a magnet, and the decolorizing efficiency of MB solution reached 95.87%. Highlights: ► The composite TiO2/CoFe2O4 nanofibers with diameter of 110 ± 28 nm have been successfully synthesized by the combination of sol–gel method and electrospinning technique. ► The presence of Co2+ or/and Fe3+ ions may occupy some of the lattice sites of TiO2 to form an iron–titanium solid solution and narrow the band gap, which broadens the response region of visible light. ► The resultant nanofibers not only have high decomposition efficiency with methylene blue (MB) under the UV irradiation, which is close to that of Degussa P25, but also can be separated with a magnet and avoid the secondary pollution of the treated water. -- Abstract: A novel magnetically separable heterogeneous photocatalyst TiO2/CoFe2O4 nanofiber was prepared by sol–gel method and electrospinning technology, followed by heat treatment at 550 °C for 2 h. The phase structure, morphology and magnetic property of the composite nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope and vibrating sample magnetometer analysis. The photocatalytic studies of TiO2/CoFe2O4 fibers suggested that the presence of CoFe2O4 not only enhanced the absorbance of UV light, but also broadened the response region to visible light. The decolorizing efficiency of methylene blue (MB) solution reaches 95.87% over TiO2/CoFe2O4 nanofibers under 300 W Hg lamp after 5 h, which is close to that of Degussa P25. Furthermore, these fibers can be collected with a magnet for reuse and effectively avoid the secondary pollution of the treated water.

  17. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    Hassnain Jaffari, G.

    2015-12-16

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  18. A Quantitative Determination of Magnetic Nanoparticle Separation Using On-Off Field Operation of Quadrupole Magnetic Field-Flow Fractionation (QMgFFF)

    Orita, Toru; Moore, Lee R.; Joshi, Powrnima; Tomita, Masahiro; Horiuchi, Takashi; Zborowski, Maciej

    2014-01-01

    Quadrupole Magnetic Field-Flow Fractionation (QMgFFF) is a technique for characterization of sub-micrometer magnetic particles based on their retention in the magnetic field from flowing suspensions. Different magnetic field strengths and volumetric flow rates were tested using on-off field application and two commercial nanoparticle preparations that significantly differed in their retention parameter, ? (by nearly 8-fold). The fractograms showed a regular pattern of higher retention (98.6% v. 53.3%) for the larger particle (200 nm v. 90 nm) at the higher flow rate (0.05 mL/min v. 0.01 mL/min) at the highest magnetic field (0.52 T), as expected because of its lower retention parameter. The significance of this approach is a demonstration of a system that is simpler in operation than a programmed field QMgFFF in applications to particle mixtures consisting of two distinct particle fractions. This approach could be useful for detection of unwanted particulate contaminants, especially important in industrial and biomedical applications. PMID:23842422

  19. Magnetic field structure effect on the spatial flow in a supersonic MHD generator with boundary layer separation

    Calculational experiment for evaluating the role of the inhomogeneous two-component magnetic field constants in the MHD-channel is carried out. Difference of the medium-integral magnetic induction from the values on the axis is within the range of 2 up 4%. It is shown that availability of additional component of the magnetic field in the electrode direction in the channel cross sections intensifies the secondary flows and thereby increases the danger of the boundary layers break-off. The negative effect of the additional component by the beginning of the break-off regime is surpassed by stabilizing effect from decrease in the basic component to electrodes. By developed break-off flow the effects related to the availability of the additional component are prevailing

  20. Magnetic composite of Fe3O4 and activated carbon as a adsorbent for separation of trace Sr(II) from radioactive wastewater

    Magnetic adsorbent of Fe3O4 and activated carbon (Fe3O4/AC) was prepared by chemical coprecipitation technique, and was characterized by SEM, TEM, BET, XRD, and VSM techniques in details. The adsorption results of Sr(II) on Fe3O4/AC revealed that Sr(II) adsorption on Fe3O4/AC surface was an spontaneous and endothermic process, and can be well described by the pseudo-second-order model. The adsorption of Sr(II) on Fe3O4/AC increased with increasing pH, and decreased with increasing ionic strength. Fe3O4/AC can be easily separated from aqueous solution with an external magnetic field after application. (author)

  1. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares

  2. Current switching and slow magnetic relaxation behaviour in phase-separated Ca0.85La0.15MnO3 system showing colossal electroresistance

    From the study of current-voltage (I-V) characteristics, current switching (at temperatures ≤100 K) has been observed in the electron doped charge-ordered polycrystalline manganite Ca0.85La0.15MnO3. The threshold switching voltage is found to decrease with an increase in temperature. The sample also shows colossal electroresistance (ER) when resistance is measured using various measuring currents. The ER, interestingly, undergoes an unusual sign change from negative to positive at a temperature (Tt) ascending with increasing applied current. These effects are analysed in terms of electric field induced collapse of the charge-ordered state and modification of percolative conduction by the applied field, within the phase separation scenario. The phase separation hypothesis has been verified by magnetic relaxation measurements.

  3. Volume reduction on all particle size of the contaminated soil. Continuous processing technology of attrition, chemical wash under an ambient temperature and pressure condition and magnetic separation

    An examination was conducted in order to establish a practical purification system that could largely reduce the storage volume of radioactive waste in the Intermediate Storage Facility. The examination consists of a 3-step washing treatment of contaminated soil, which includes “Milling Washing” of removed contaminated soil, chemical extraction of fine soil fraction resulted from the “Milling Washing” under an ambient temperature and pressure condition, and magnetic separation of cesium from the extracted solution. As a result of the examination, we succeeded in development of a safe system with low initial cost and running cost. (author)

  4. Magnetically assisted chemical separation (MACS): a promising technique for the uptake of actinides, lanthanides and fission products from nuclear wastes

    The present work deals with the development of MACS process for the uptake of various actinides, lanthanides and fission products from nitric acid solutions using tiny magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size 1-60 ?m) coated with N,N'-dimenthyl N,N'-dubutyl tetradecyl melonamide (DMDBTDMA)

  5. Resource Recovery and Reuse: Recycled Magnetically Separable Iron-based Catalysts for Phosphate Recovery and Arsenic Removal

    Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...

  6. Magnetically separable photocatalytic composite gamma-Fe(2)O(3)@TiO(2) synthesized by heterogeneous precipitation

    Tyrpekl, Václav; Vejpravová, J.P.; Roca, A.G.; Murafa, Nataliya; Szatmáry, Lórant; Nižňanský, D.

    2011-01-01

    Roč. 257, č. 11 (2011), s. 4844-4848. ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LC06041; GA AV ČR KAN400100653 Institutional research plan: CEZ:AV0Z40320502 Keywords : nano composite * oxides * magnetic properties * transmission electron microscopy * X-ray powder diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.103, year: 2011

  7. The use of magnetic poly(N-isopropylacrylamide) microspheres for separation of DNA from probiotic dairy products

    Macková, Hana; Horák, Daniel; Trachtová, Š.; Rittich, B.; Španová, A.

    2012-01-01

    Roč. 1, č. 2 (2012), s. 235-240. ISSN 2164-9634 R&D Projects: GA AV ČR(CZ) KAN401220801; GA MŠk 2B06053; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : magnetic particles * thermosensitive * poly(N-isopropylacrylamide) Subject RIV: EE - Microbiology, Virology

  8. Magnetic Th(IV)-ion imprinted polymers with salophen schiff base for separation and recognition of Th(IV)

    A new complex of N,N'-bis(3-allyl salicylidene)o-phenylenediamine and thorium(IV) (Th(IV)) was synthesized and used as the functional monomer for a novel Th(IV) magnetic ion-imprinted polymer; this polymer was synthesized using a surface imprinting technique that included the modified magnetic Fe3O4 particle and used tetraethyl orthosilicate, 3-Aminopropyltriethoxysilane and maleic anhydride in the process. The magnetic polymer was characterized using FT-IR, and powder- and single crystal-XRD. The behavior of Th(IV) was investigated using batch experiments. At pH 4.5, the uptake capacity of this adsorbent and that of the non-imprinted polymer was 42.54 and 14.10 mg g-1, respectively, and the relative selectivity coefficient values of the synthesized adsorbent for Th(IV)/La(III), Th(IV)/Ce(III), Th(IV)/Nd(III), and Th(IV)/U(VI) were 82.2, 93.1, 21.0 and 62.4 times greater than that of the non-imprinted matrix, respectively. In addition, the Th(IV) adsorption process using Fe3O4aSiO2-IIP follows pseudo-second-order reaction kinetics and the Langmuir adsorption isotherm. The thermodynamic parameters also suggest that the adsorption of Th(IV) onto Fe3O4aSiO2-IIPs was a spontaneous and endothermic process. (author)

  9. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation

    The percolation leaching of the Cuban nickel tailings containing 0.34% Ni, 0.08% Co and 44.2% Fe was investigated by using tartaric and oxalic acids at different concentrations. About 70% Ni, 80% Co and 30% Fe were extracted after 5 days of leaching with the mixture of 0.15 mol/L tartaric acid and 0.05 mol/L oxalic acid at ambient temperature and normal pressure. Nickel and cobalt extraction of 80% as well as iron extraction of 50% were achieved from the pregnant solution by means of precipitation at 80 deg. C for 2 h. The precipitation at ambient temperature led to a similar result after 16 days. Cobalt, nickel and iron oxalates were found in the precipitate by using the X-ray diffraction method. The regeneration of acids during the precipitation step made possible the reuse of the raffinate at the leaching step. Heating of the precipitate at 200 deg. C increased the metal concentration to 1.22% Ni and 0.33% Co, which can be fed in the existing nickel plant in Moa, Cuba. The magnetic processing of the leaching residues led to a non-magnetic product containing less than 20% Fe and a magnetic product containing more than 50% Fe

  10. Magnets

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  11. Supported hydrophobic ionic liquid on magnetic nanoparticles as a new sorbent for separation and preconcentration of lead and cadmium in milk and water samples

    We have prepared a highly selective and efficient sorbent for the simultaneous separation and preconcentration of lead and cadmium ions from milk and water samples. An ionic liquid was deposited on the surface of magnetic nanoparticles (IL-MNPs) and used for solid phase extraction of these ions. The IL-MNPs carrying the target metals were then separated from the sample solution by applying an external magnetic field. Lead and cadmium were almost quantitatively retained by the IL-MNPs, and then eluted with nitric acid. The effect of different variables on solid phase extraction was investigated. The calibration curve is linear in the range from 0.3 to 20 ng mL-1 of Cd(II), and from 5 to 330 ng mL-1 of Pb(II) in the initial solution. Under optimum conditions, the detection limits are 1.61 and 0.122 μg L-1 for Pb(II) and Cd(II) respectively. Relative standard deviations (n=10) were 2.87 % and 1.45 % for 0.05 μg mL-1 and 0.2 μg mL-1 of Cd (II) and Pb (II) respectively. The preconcentration factor is 200 for both of ions. (author)

  12. Thermodynamic calculations of phase equilibria of Co-Cr-Pt ternary system and magnetically induced phase separation in the FCC and HCP phases

    The calculations of phase equilibria of the Co-Cr-Pt ternary system have been carried out based on the thermodynamic assessments of Co-Cr, Co-Pt and Cr-Pt binary systems by the calculation of phase diagram technique. The Gibbs energies of the liquid, FCC, BCC and HCP solution phases were approximated by a sub-regular solution model, while those of σ and Cr3Pt phases were approximated by a compound energy model. Almost all the experimental information on each sub-system has been well described by the present set of thermodynamic parameters. A critical calculation of the magnetically induced miscibility gap between the ferromagnetic HCP and the paramagnetic HCP phase has been conducted, where the two-phase separation has been found at the Curie temperature. The Cr content in the ferromagnetic HCP phase increases and the width of the two-phase separation becomes narrower with increasing Pt content. The present calculations would be useful for the design and development of the perpendicular magnetic recording media

  13. Synthesis of Cu-Fe3O4@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    Highlights: • The Cu-Fe3O4@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe3O4@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe3O4@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe3O4@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe3O4 nanoparticles (Fe3O4 NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe3O4 NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe3O4@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability

  14. Magnetically separable Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    Cao, Chunhua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Cao, Qihua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2015-04-01

    Highlights: • A novel magnetically-separable Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} photocatalyst was in situ prepared. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs had rough and porous chitosan surface layer embedded with Fe{sub 3}O{sub 4} NPs. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed large surface areas and special dimodal pore structure. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed superparamagnetism and could be easily magnetic separated. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited good visible-light photocatalytic activity and stability. - Abstract: A novel magnetically-separable visible-light-induced photocatalyst, Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposite (Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NC), was prepared via a facile one-step precipitation–reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV–vis/DRS. The photocatalytic activity of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu{sub 2}O was wrapped in chitosan matrix embedded with Fe{sub 3}O{sub 4} nanoparticles. The tight combination of magnetic Fe{sub 3}O{sub 4} and semiconductor Cu{sub 2}O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B were still above 87% after five reaction cycles, indicating that Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs had excellent reusability and stability.

  15. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide.

    Lai, Li; Xie, Qiang; Chi, Lina; Gu, Wei; Wu, Deyi

    2016-03-01

    Hydrous lanthanum oxide was loaded onto the surface of Fe3O4@SiO2 core/shell magnetic nanoparticles to obtain an easily separable adsorbent (abbreviated as Fe-Si-La) for efficient separation of phosphate from water. Fe-Si-La was characterized with XRF, XRD, TEM, specific surface area and magnetization and their performance for phosphate removal was investigated. The Fe3O4@SiO2 core/shell structure was confirmed and the hydrous lanthanum oxide was successfully loaded onto its surface. The newly developed adsorbent had magnetization of 51.27emu/g. The Langmuir adsorption capacity of phosphate by Fe-Si-La reached 27.8mg/g by loading only 1mmol lanthanum per gram of magnetite. The adsorption was fast; nearly 99% of phosphate could be removed within 10min. The removal of phosphate was favored within the pH range 5.0-9.0. The adsorption on Fe-Si-La was not significantly influenced by ionic strength and by the coexistence of the anions of chloride and nitrate but sulfate, bicarbonate and humic acid showed slightly greater negative effects. Phosphate removal efficiency of higher than 95% was attained for real effluent of a wastewater treatment plant when the dose of adsorbent was >0.2kg/ton. The results showed that adsorbed phosphate could be nearly completely desorbed with NaOH solution for further use. In conclusion, Fe-Si-La is a promising adsorbent for the removal and recovery of phosphate from water. PMID:26641568

  16. Efficient separation and sensitive detection of Listeria monocytogenes using an impedance immunosensor based on magnetic nanoparticles, a microfluidic chip, and an interdigitated microelectrode.

    Kanayeva, Damira A; Wang, Ronghui; Rhoads, Douglas; Erf, Gisela F; Slavik, Michael F; Tung, Steve; Li, Yanbin

    2012-11-01

    Listeria monocytogenes continues to be a major foodborne pathogen that causes food poisoning, and sometimes death, among immunosuppressed people and abortion among pregnant women. In this study, magnetic nanoparticles with a diameter of 30 nm were functionalized with anti-L. monocytogenes antibodies via biotin-streptavidin bonds to become immunomagnetic nanoparticles (IMNPs) to capture L. monocytogenes in a sample during a 2-h immunoreaction. A magnetic separator was used to collect and hold the IMNPs-L. monocytogenes complex while the supernatants were removed. After the washing step, the nanoparticle-L. monocytogenes complex was separated from the sample and injected into a microfluidic chip. The impedance change caused by L. monocytogenes was measured by an impedance analyzer through the interdigitated microelectrode in the microfluidic chip. For L. monocytogenes in phosphate-buffered saline solution, up to 75% of the cells in the sample could be separated, and as few as three to five cells in the microfluidic chip could be detected, which is equivalent to 10(3) CFU/ml of cells in the original sample. The detection of L. monocytogenes was not interfered with by other major foodborne bacteria, including E. coli O157:H7, E. coli K-12, L. innocua, Salmonella Typhimurium, and Staphylococcus aureus. A linear correlation (R(2) = 0.86) was found between the impedance change and the number of L. monocytogenes in a range of 10(3) to 10(7) CFU/ml. Equivalent circuit analysis indicated that the impedance change was mainly due to the decrease in medium resistance when the IMNPs-L. monocytogenes complexes existed in mannitol solution. Finally, the immunosensor was evaluated with food sample tests; the results showed that, without preenrichment and labeling, 10(4) and 10(5) CFU/ml L. monocytogenes in lettuce, milk, and ground beef samples could be detected in 3 h. PMID:23127703

  17. Using shell-tunable mesoporous Fe3O4-HMS and magnetic separation to remove DDT from aqueous media

    1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is of concern in water treatment because of its persistence and health effects. A new concept is proposed to synthesize hexagonal mesoporous silica (HMS) with magnetic functionalization for DDT removal from aqueous media. Fe3O4 nanocrystals were synthesized by a low-temperature solvothermal process, and then encapsulated in mesoporous silica through a packing approach, forming core-shell structured Fe3O4-HMS microspheres. The synthesized materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen adsorption-desorption techniques. The results indicate that the silica shell conserves mesoporous structure after the removal of surfactant templates. Different from previous studies, the thickness, pore volume and surface area of silica shell can be controlled by adjusting the reaction condition. These Fe3O4-HMS materials show high adsorption capacity and fast adsorption rate for DDT. Because of the useful magnetic property and unique mesoporous structure, the synthesized materials provide a fast, convenient and highly efficient means to remove DDT from aqueous media.

  18. Separation of lanthanides and actinides using magnetic silica particles bearing covalently attached tetra-CMPO-calix[4]arenes.

    Böhmer, Volker; Dozol, Jean-François; Grüttner, Cordula; Liger, Karine; Matthews, Susan E; Rudershausen, Sandra; Saadioui, Mohamed; Wang, Pingshan

    2004-08-21

    Calix[4]arene tetraethers in the cone conformation bearing four -NH-CO-CH2-P(O)Ph2 (= CMPO) residues on their wide rim and one, two or four omega-amino alkyl residues of various lengths at the narrow rim were synthesized. Reaction with dichlorotriazinyl (DCT) functionalized magnetic particles led to complete coverage of the available surface by covalently linked CMPO-calix[4]arenes in all cases. Magnetically assisted removal of Eu(iii) and Am(iii) from acidic solutions was distinctly more efficient with these particles in comparison to analogous particles bearing the same amount of analogous single-chain CMPO-functions. The best result, an increase of the extraction efficiency by a factor of 140-160, was obtained for attachment via two propyl spacers. The selectivity Am/Eu was in the range of 1.9-2.8. No decrease of the extraction ability was observed, when the particles were repeatedly used, after simple back extraction with water. PMID:15305214

  19. Quantitative estimation of left ventricular ejection fraction from mitral valve E-point to septal separation and comparison to magnetic resonance imaging.

    Silverstein, Jay R; Laffely, Nicholas H; Rifkin, Robert D

    2006-01-01

    This study tested the hypothesis that the mitral valve E point-to-septal separation (EPSS) can be used to quantify the left ventricular (LV) ejection fraction (EF) on a continuous scale rather than simply as "normal" or "reduced." After excluding 5 patients with mitral valve prostheses, asymmetric septal hypertrophy, or significant aortic insufficiency, EPSS was measured in 42 patients by 3 independent observers on a cardiac magnetic resonance image identical to the echocardiographic parasternal long-axis view. In each patient, the reference standard LVEF was calculated from the magnetic resonance short-axis cross-sectional stack images by Simpson's rule and ranged from 11% to 72%. For all 42 patients, linear regression revealed the relation magnetic resonance imaging (MRI) LVEF = 75.5 - 2.5. EPSS (millimeters). Correlation between EPSS and the MRI LVEF for the 3 observers agreed closely, ranging from r = 0.78 to r = 0.82 (SEE 9 to 10), with similar regression coefficients. After blinded segmental wall motion scoring of the gated magnetic resonance cine images of the left ventricle in each patient, correlations, SEEs, and regression coefficients were found to be very similar in the 21 patients with the most homogenous wall motion, compared with the 21 patients with the most heterogenous wall motion. In conclusion, clinically useful quantitative prediction of the LVEF as a continuous variable can be obtained from the EPSS with a simple linear regression equation in a substantial portion of patients and may be a useful adjunct for assessment of LV function. PMID:16377299

  20. Potential environmental benefits of improving recycling of polyolefines – LCA of Magnetic density separation (MDS) developed in the EU FP7 funded project W2Plastic

    Olsen, Stig Irving; Bonou, Alexandra

    identify eco-design criteria for the development and secondly to document the potential environmental improvement of polyolefin recycling using the MDS technology. A preliminary study focusing solely on the carbon footprint benefits of recycling plastic waste compared to virgin production of polymers...... showed that there are large benefits to recycling. However, including other uses of the waste illustrates that the benefits to a large extent depend on that the recycled plastic have such high quality that it can actually replace virgin plastic and also to some extent depends on which energy systems e......The core of the EU FP7 funded project W2Plastic is development of a magnetic density separation (MDS) of polyolefines in order to improve the sorting efficiency of these polymer types in different waste fractions. As part of the project a life cycle assessment is performed in order to firstly...

  1. Characterization of flavonoid glycosides from rapeseed bee pollen using a combination of chromatography, spectrometry and nuclear magnetic resonance with a step-wise separation strategy.

    Li, Yi; Qi, Yitao; Ritho, Joan; Zhang, Yongxin; Zheng, Xiaowei; Zhou, Jinhui; Sun, Liping

    2016-01-01

    To identify the structures of flavonoid glycosides in bee pollen collected from rapeseed plants (Brassica napus L.), we utilised an approach that combined liquid chromatography-diode array detector-electrospray ionization-mass spectrometry (LC-DAD-ESI-MS) and nuclear magnetic resonance (NMR) technology with a step-wise separation strategy. We identified four constituents of high purity in rape bee pollen samples: (1) quercetin-3-O-?-D-glucosyl-(2?l)-?-glucoside, (2) kaempferol-3, 4'-di-O-?-D-glucoside, (3) 5, 7, 4'-trihydroxy-3'-methoxyflavone-3-O-?-D-sophoroside and (4) kaempferol-3-O-?-D-glucosyl-(2?l)-?-D-glucoside. This study will also provide useful reference standards for qualification and quantification of four flavonoid glycosides in natural products. PMID:25981986

  2. Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction.

    Lu, Lei; Hao, Qingli; Lei, Wu; Xia, Xifeng; Liu, Peng; Sun, Dongping; Wang, Xin; Yang, Xujie

    2015-11-01

    Catalysts with low-cost, high activity and stability toward oxygen reduction reaction (ORR) are extremely desirable, but its development still remains a great challenge. Here, a novel magnetically separable hybrid of multimetal oxide, cobalt ferrite (CoFe2 O4 ), anchored on nitrogen-doped reduced graphene oxide (CoFe2 O4 /NG) is prepared via a facile solvothermal method followed by calcination at 500 °C. The structure of CoFe2 O4 /NG and the interaction of both components are analyzed by several techniques. The possible formation of Co/FeN interaction in the CoFe2 O4 /NG catalyst is found. As a result, the well-combination of CoFe2 O4 nanoparticles with NG and its improved crystallinity lead to a synergistic and efficient catalyst with high performance to ORR through a four-electron-transfer process in alkaline medium. The CoFe2 O4 /NG exhibits particularly comparable catalytic activity as commercial Pt/C catalyst, and superior stability against methanol oxidation and CO poisoning. Meanwhile, it has been proved that both nitrogen doping and the spinel structure of CoFe2 O4 can have a significant contribution to the catalytic activity by contrast experiments. Multimetal oxide hybrid demonstrates better catalysis to ORR than a single metal oxide hybrid. All results make the low-cost and magnetically separable CoFe2 O4 /NG a promising alternative for costly platinum-based ORR catalyst in fuel cells and metal-air batteries. PMID:26390018

  3. Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples

    Chen, Jieping; Zhu, Xiashi

    2015-02-01

    Three hydrophobic ionic liquids (ILs) including 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluorophosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluoro-phosphate ([OMIM]PF6) coated Fe3O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (Fe3O4@SiO2@ILs) and establish a new method of magnetic solid phase extraction (MSPE) coupled with UV spectrometry for separation/analysis of linuron. The results showed that linuron was adsorbed rapidly by Fe3O4@SiO2@[OMIM]PF6 and eluanted by ethanol. Under the optimal conditions, preconcentration factor of the proposed method was 10-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.04-20.00 μg mL-1, 5.0 ng mL-1, 0.9993 and 2.8% (n = 3, c = 4.00 μg mL-1), respectively. The Fe3O4@SiO2 nanoparticles could be used repeatedly for 10 times. This proposed method has been successfully applied to the determination of linuron in food samples.

  4. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). PMID:25966414

  5. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe?O?@LDHs composites with easy magnetic separation assistance.

    Yan, Liang-guo; Yang, Kun; Shan, Ran-ran; Yan, Tao; Wei, Jing; Yu, Shu-jun; Yu, Hai-qin; Du, Bin

    2015-06-15

    In this study, three different magnetic core-shell Fe3O4@LDHs composites, Fe3O4@Zn-Al-, Fe3O4@Mg-Al-, and Fe3O4@Ni-Al-LDH were prepared via a rapid coprecipitation method for phosphate adsorptive removal. The composites were characterized by XRD, FTIR, TEM, VSM and BET analyses. Characterization results proved the successful synthesis of core-shell Fe3O4@LDHs composites with good superparamagnetisms. Batch experiments were conducted to study the adsorption efficiency of phosphate. Optimal conditions for the phosphate adsorption were obtained: 0.05 g of adsorbent, solution pH of 3, and contact time of 60 min. Proposed mechanisms for the removal of phosphate species onto Fe3O4@LDHs composites at different initial solution pH were showed. The kinetic data were described better by the pseudo-second-order kinetic equation and KASRA model. The adsorption isotherm curves showed a three-region behavior in the ARIAN model. It had a good fit with Langmuir model and the maximum adsorption capacity followed the order of Fe3O4@Zn-Al-LDH>Fe3O4@Mg-Al-LDH>Fe3O4@Ni-Al-LDH. Thermodynamic analyses indicated that the phosphate adsorption process was endothermic and spontaneous in nature. The three Fe3O4@LDHs composites could be easily separated from aqueous solution by the external magnetic field in 10s. These novel magnetic core-shell Fe3O4@LDHs adsorbents may offer a simple single step adsorption treatment option to remove phosphate from water without the requirement of pre-/post-treatment for current industrial practice. PMID:25778739

  6. MAGNET

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  7. Magnetogravimetric Separation in a Rotational Device

    Bunge, R. C.; Fuerstenau, D. W.

    1996-01-01

    Magnetogravimetric separation in a rotational device is a promising method for effecting sharp separation of minerals according to density. Separation is accomplished by two competing forces with opposite directions, namely the magnetic buoyancy and the centrifugal force. Magnetic buoyancy is experienced by particles which are suspended in a magnetic fluid when exposed to a non—homogeneous magnetic field. Since the magnetic buoyancy depends on particle volume whereas the centrifugal depends o...

  8. Magnetically separable Prussian blue analogue Mn3[Co(CN)6]2.nH2O porous nanocubes as excellent absorbents for heavy metal ions

    Hu, Lin; Mei, Ji-Yang; Chen, Qian-Wang; Zhang, Ping; Yan, Nan

    2011-10-01

    The application of Prussian blue analogue (PBA) Mn3[Co(CN)6]2.nH2O porous nanocubes as absorbents for heavy metal ions has been demonstrated. The result indicates that Mn3[Co(CN)6]2.nH2O porous nanocubes with average diameter of 240 nm possess excellent adsorption efficiency for Pb2+ ions (94.21% at initial Pb2+ concentration of 10 mg L-1). Moreover, Mn3[Co(CN)6]2.nH2O porous nanocubes can also show high adsorption efficiency on heavy metal ions even in a strong acidic solution due to its chemical stability. Notably, an external magnet could be used to accelerate the separation of Mn3[Co(CN)6]2.nH2O from the treated solution. It is suggested that the high adsorption efficiency may derive from the large surface area, M3II[MIII(CN)6]2.nH2O porous framework structure and affinity between polarizable π-electron clouds of the cyanide bridges and heavy metals ions.The application of Prussian blue analogue (PBA) Mn3[Co(CN)6]2.nH2O porous nanocubes as absorbents for heavy metal ions has been demonstrated. The result indicates that Mn3[Co(CN)6]2.nH2O porous nanocubes with average diameter of 240 nm possess excellent adsorption efficiency for Pb2+ ions (94.21% at initial Pb2+ concentration of 10 mg L-1). Moreover, Mn3[Co(CN)6]2.nH2O porous nanocubes can also show high adsorption efficiency on heavy metal ions even in a strong acidic solution due to its chemical stability. Notably, an external magnet could be used to accelerate the separation of Mn3[Co(CN)6]2.nH2O from the treated solution. It is suggested that the high adsorption efficiency may derive from the large surface area, M3II[MIII(CN)6]2.nH2O porous framework structure and affinity between polarizable π-electron clouds of the cyanide bridges and heavy metals ions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10506j

  9. Rapid and Specific Enrichment of Culturable Gram Negative Bacteria Using Non-Lethal Copper-Free Click Chemistry Coupled with Magnetic Beads Separation.

    Fugier, Emilie; Dumont, Audrey; Malleron, Annie; Poquet, Enora; Mas Pons, Jordi; Baron, Aurélie; Vauzeilles, Boris; Dukan, Sam

    2015-01-01

    Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope. PMID:26061695

  10. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-04-01

    Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  11. MAGNET

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  12. MAGNET

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  13. MAGNET

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  14. Neptunium separations

    Two procedures for the separation of Np are presented; the first involves separation of 239Np from irradiated 238U, and the second involves separation of 237Np from a solution representing that from a dissolved fuel element

  15. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples.

    Khan, Sumaira; Kazi, Tasneem Gul; Soylak, Mustafa

    2014-04-01

    A rapid and innovative microextraction technique named as, ionic liquid-based ultrasound-assisted dual magnetic microextraction (IL-UA-DMME) was developed for the preconcentration and extraction of trace cadmium from environmental and biological samples, prior to analyzed by flame atomic absorption spectrometry (FAAS). The proposed method has many obvious advantages, including evading the use of organic solvents and achieved high extraction yields by the combination of dispersive liquid-liquid microextraction (DLLME) and magnetic mediated-solid phase extraction (MM-SPE). In this approach ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] play an important role to extract the cadmium-4-(2-thiazolylazo)-resorcinol (Cd-TAR) complex from acid digested sample solutions and ultrasonic irradiation was applied to assist emulsification. After then, dispersed small amount of Fe3O4 magnetic nanoparticles (MNPs) in sample solutions to salvaged the IL and complete phase separation was attained. Some analytical parameters that influencing the efficiency of proposed (IL-UA-DMME) method, such as pH, volume of IL, ligand concentration, ultra-sonication time, amount of Fe3O4 MNPs, sample volume and matrix effect were optimized. Limit of detection (LOD) and enrichment factor (EF) of the method under optimal experimental conditions were found to be 0.40μgL(-1) and 100, respectively. The relative standard deviation (RSD) of 50μgL(-1) Cd was 4.29%. The validity and accuracy of proposed method, was assessed to analyzed certified reference materials of fortified lake water TMDA-54.4, SPS-WW2 waste water, spinach leaves 1570a and also checked by standard addition method. The obtained values showed good agreement with the certified values and sufficiently high recovery were found in the range of 98.1-101% for Cd. The proposed method was facile, rapid and successfully applied for the determination of Cd in environmental and different biological samples. PMID:24398463

  16. Magnetically separable reactive sorbent based on the CeO2/γ-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents

    Janoš, P.; Kuráň, P.; Pilařová, V.; Trögl, J.; Šťastný, M.; Pelant, O.; Henych, Jiří; Bakardjieva, Snejana; Životský, O.; Kormunda, M.; Mazanec, K.; Skoumal, M.

    2015-01-01

    Roč. 262, FEB (2015), s. 747-755. ISSN 1385-8947 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Magnetically separable sorbent * Destructive sorption * Cerium oxide * Parathion methyl * Toxic organophosphates Subject RIV: CA - Inorganic Chemistry Impact factor: 4.321, year: 2014

  17. Preparation of magnetically separable Fe{sub 3}O{sub 4}/BiOI nanocomposites and its visible photocatalytic activity

    Li, Xiangwei; Niu, Chenggang, E-mail: cgniu@hnu.edu.cn; Huang, Dawei; Wang, Xiaoyu; Zhang, Xuegang; Zeng, Guangming, E-mail: zgming@hnu.edu.cn; Niu, Qiuya

    2013-12-01

    Novel magnetic Fe{sub 3}O{sub 4}/BiOI nanocomposites with visible light response were successfully fabricated through a facile and economical method at low temperature and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), respectively. The Fe{sub 3}O{sub 4}/BiOI nanocomposites were further employed in photodegrading rhodamine B (RhB). After 40 min, RhB removal rate reached to 90.1%, which was superior to the pure BiOI (50.3%). The enhanced photocatalytic performance of Fe{sub 3}O{sub 4}/BiOI nanocomposites may be attributed to the separation efficiency of the carriers. After five recycles for the photodegradation of RhB, the Fe{sub 3}O{sub 4}/BiOI nanocomposites did not exhibit any significant loss of activity, confirming the photocatalyst was essentially stable. Moreover, direct hole transfers and O{sub 2}{sup ?} are proved to be the dominant reactive species in the photodegradation of RhB over Fe{sub 3}O{sub 4}/BiOI nanocomposites.

  18. Quantification of the magnetization-transfer contrast effect: can it yield additional information in differentiation of musculoskeletal lesions particularly in separation of benign from malignant lesions

    Purpose: To investigate the potential information of the amount of magnetization-transfer effect in musculoskeletal lesions and to compare MT ratios from benign and malignant musculoskeletal lesions. Material and Method: 49 patients with malignant tumors (3 osteosarcoma, 3 malignant fibrous histiocytoma, 4 chondrosarcoma, 2 Ewing sarcomas) and benign lesions (8 chondroma, 2 fibrous dysplasia, 3 osteoid-osteoma, 6 ganglion cyst, 3 cyst, 3 osteomyelitis, 4 tendinitis, 3 rotator cuff tear, 5 scar tissue) were scanned using routine MRI protocols including T1- and T2-weighted spin echo as well as T2*-weighted gradient echo (FFE) sequences at 1.5 Tesla (ACS II, Philips Medical). Additionally MTC images were generated by combining the FFE sequence and the off-resonance MT technique (-1500 Hz off-resonance frequency, 1770 flip angle and 50 ms pulse duration). MT ratios were calculated as SIo-SIm/SIo. Results: The MT ratio of benign lesions was 26±15%, that of malignant lesions was 22±6%. The difference was statistically not significant. As expected muscle showed a high MT ratio of 50±8%. Scar tissue demonstrated an MT ratio of 39±16% which was significantly higher than the tumor MT ratios. Conclusion: MTC (MT ratios) failed to show significant differences between benign and malignant lesions as was expected due to basic differences in cellularity, rate of mitosis and chromatin content. MTC might however gain more importance in separating scar tissue from recurrent tumor in the future. (orig.)

  19. A separation mechanism of photogenerated charges and magnetic properties for BiFeO3 microspheres synthesized by a facile hydrothermal method.

    Zheng, Haiwu; Liu, Xiangyang; Diao, Chunli; Gu, Yuzong; Zhang, Weifeng

    2012-06-21

    BiFeO(3) (BFO) microspheres were synthesized by a facile hydrothermal method. The optical absorption spectrum indicates that on site Fe(3+) crystal-field transitions and the charge transfer excitations can be observed. Magnetic measurements show a spin-glass behavior and room temperature weak ferromagnetism. The surface photovoltage spectroscopy of the BFO shows two response peaks centered at about 370 and 400 nm, respectively. Under an ambient atmosphere, the maximum surface photovoltage of the BFO reaches 180 ?V with the bias (+2 V) and is three times larger than that with zero bias. It is found that the surface photovoltage response intensity increases with an increase in applied bias, regardless of positive or negative bias. It is suggested that the surface photovoltaic properties are related to both the depolarization field owing to ferroelectric polarization and the build-in electric field due to the Schottky barrier. The micro-process and the physical mechanism of the separation of photogenerated charges for BFO are fully explained. PMID:22588092

  20. MAGNET

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  1. MAGNET

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  2. MAGNET

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  3. MAGNET

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  4. Application of Magstream in Mineral Sands Separation

    Kojovic, T.

    1994-01-01

    The Magstream separation process, developed by Intermagnetics General corporation, offers an alternative method for both laboratory and plant mineral separations. It is based on the concept of using a fluid whose effective density is magnetically derived. The separator can be applied to both purely gravimetric separation of non–magnetic materials and magnetic–gravimetric separation of paramagnetic material.The separation density can be easily adjusted by changing the speed of rotation or proc...

  5. Continuous microfluidic immunomagnetic cell separation

    Inglis, David; Riehn, Robert; Sturm, James

    2005-03-01

    We present a continuous-flow microfluidic device that enables cell by cell separation of cells selectively tagged with magnetic nanoparticles. The cells flow over an array of microfabricated magnetic stripes, which create a series of high magnetic field gradients that trap the magnetically labeled cells and alter their flow direction. The process was observed in real-time using a low power microscope. The device has been demonstrated by the continuous flow separation of leukocytes from whole human blood. The dependence of the process on the flow rates and direction of flow with respect to the magnetic stripes will be described.

  6. Nanomechanical biosensing with immunomagnetic separation

    Icoz, Kutay; Savran, Cagri

    2010-09-01

    We report a biosensing method that combines immunomagnetic separation and nanomechanical detection. In this method, same magnetic beads that are used to "fish" biomolecules from complex mixtures enable deflection of a cantilever structure upon excitation by an oscillating magnetic field. Biotin-coated magnetic beads were used to capture and separate streptavidin from serum. Streptavidin loaded magnetic beads were exposed to a differential cantilever system whose sensing arm was functionalized with biotin. The magnetic force applied on the streptavidin-beads resulted in differential cantilever deflections that could be detected down to 0.26 Årms in air.

  7. Magnetic BaFe{sub 12}O{sub 19} nanofiber filter for effective separation of Fe{sub 3}O{sub 4} nanoparticles and removal of arsenic

    Byun, Jeehye; Patel, Hasmukh A.; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of EEWS (Korea, Republic of)

    2014-12-15

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g{sup −1}) barium hexaferrite (BaFe{sub 12}O{sub 19}, BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe{sub 3}O{sub 4}) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 μg L{sup −1} As-contaminated water can be purified rapidly at a material cost of less than 2 US cents.

  8. MAGNET

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  9. Electrostatic separator and mass separation

    Present performance of KEK electrostatic separator (Mark I) and the results of mass separation test using this separator and described. Maximum voltage of 900 kV was obtained with the 3 m separator and of 800 kV with the 9 m separator across the electrode spacing of 10 cm. Mass separation test using the 9 m separator was attempted at the bubble chamber beam Kl, and mass separation between pion and proton was achieved at the momentum of 3.5 GeV/c and 2 GeV/c. Separation ratio of -- 3.6 between pion and proton was obtained. The relative kaon yields were enriched from -- 1/200 to -- 1/15 at the mass slit when the separator was tuned at the momentum of 3.5 GeV/c. (auth.)

  10. MAGNET

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  11. MAGNET

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  12. MAGNET

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  13. MAGNET

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  14. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field (the observational value on the earth surface is about 120 V/m downward equivalent to 500000 Coulomb negative charges in the earth surface). All celestial bodies are gravitation sources and attract the molecules and ions in space to its circumference by the gravitation of own and other celestial bodies, e.g., all planets in the solar system have their own atmospheres. Therefore, the origin mechanism of geo-electric and geomagnetic fields caused by gravitation is very universal, at least it is appli-cable to all the planets in the solar system. For planets, the joint result of the gravitations of the planets and the sun makes the negative charges and dipolar charges distributed in the surfaces of the celestial bodies. The quicker the rotation is, the larger the angular momentum U is, then larger the accompanying current and magnetic moment P, it accord a experiential law found by subsistent observational data of all celestial bodies in solar system: P = -G 1/2 U cos θ / c (1), θ is the angle between the net ν 0 flux direction (mark by CMB) and the rotational axis of celestial body (Chen Shao-Guang, Chinese Science Bulletin, 26,233,1981). Uranian and Neptunian P predicted with Eq.(1) in 1981 are about -3.4•1028 Gs•cm3 and 1.9•1028 Gs•cm3 respectively (use new rotate speed measured by Voyager 2). The P measured by Voyager 2 in 1986 and 1989 are about -1.9 •1028 Gs•cm3 and 1.5•1028 Gs•cm3 respectively (the contribution of quadrupole P is converted into the contribution of dipole P alone). The neutron star pos-sesses much high density and rotational speed because of the conservation of the mass and the angular momentum during the course of the formation, then has strong gravity and largerU. From Eq.(1) there is a larger P and extremely strong surface magnetic field in neutron star. The origin mechanism of basal electric and magnetic fields of celestial bodies will affect directly all fields referring to the electromagnetic characteristics in space science, e.g., it predict that the spin speed of the sunspot is in direct proportion to its magnetic moment.

  15. Low-temperature magnetization step and its training effects in phase-separated La0.5Ca0.5MnO3

    We observed a magnetization step accompanied by a metal-insulator transition around 75 K in La0.5Ca0.5MnO3. Repeating measurements under the same condition weaken the magnetization step and enhance the resistance at low temperature. The decayed magnetization step reappears after annealing the sample at high temperature or cooling it under a magnetic field. The low-temperature magnetization step can be attributed to the melting of the overcooled ferromagnetic fragments and its training effect may be related to structure distortions at the interfaces between the ferromagnetic and charge-ordered phases in the investigated system. (author)

  16. Electronic phase separation in La sub 1 sub . sub 2 Sr sub 1 sub . sub 8 Mn sub 2 O sub 7 observed by sup 5 sup 5 Mn nuclear magnetic resonance

    Shimizu, K; Renard, J P; Pevcolevschi, A

    2003-01-01

    A single crystal of perovskite bilayer manganite La sub 1 sub . sub 2 Sr sub 1 sub . sub 8 Mn sub 2 O sub 7 has been studied by the sup 5 sup 5 Mn NMR technique. The observed spectra at 4.2 K in zero external magnetic field are broad and spread in the frequency range 310-480 MHz. The shape of the spectrum depends strongly on the rf radiation field for exciting and refocusing a spin-echo signal. In external magnetic fields up to 1.75 T, signals arising from both metallic and insulating phases are observed, which is an evidence of the electronic phase separation. (author)

  17. MAGNET

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  18. MAGNET

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  19. Prediction of separation process results in OGMS

    Borzov, V. L.; Dmitrievskaya, T. Yu.; Piskunov, A. N.; Fedorov, V. K.; Cheremnykh, P. A.; Yaremenko, V. N.

    1990-01-01

    The wet magnetic separation of ore fine particles containing 32-40% of iron in the form of hematite is experimentally investigated. The extraction parameter distribution W( X) of particles is obtained at the open-gradient magnetic separator, X = κD2, κ - being the relative magnetic susceptibility of a paramagnetic or diamagnetic particle, D, its size.

  20. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-01-25

    The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of "waste+waste→resources." After mechanical scraping the mixed electrode materials enrich powders of LiCoO2 and graphite. The possible reaction between LiCoO2 and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO2 and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs. PMID:26448495

  1. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  2. Battery separators.

    Arora, Pankaj; Zhang, Zhengming John

    2004-10-01

    The ideal battery separator would be infinitesimally thin, offer no resistance to ionic transport in electrolytes, provide infinite resistance to electronic conductivity for isolation of electrodes, be highly tortuous to prevent dendritic growths, and be inert to chemical reactions. Unfortunately, in the real world the ideal case does not exist. Real world separators are electronically insulating membranes whose ionic resistivity is brought to the desired range by manipulating the membranes thickness and porosity. It is clear that no single separator satisfies all the needs of battery designers, and compromises have to be made. It is ultimately the application that decides which separator is most suitable. We hope that this paper will be a useful tool and will help the battery manufacturers in selecting the most appropriate separators for their batteries and respective applications. The information provided is purely technical and does not include other very important parameters, such as cost of production, availability, and long-term stability. There has been a continued demand for thinner battery separators to increase battery power and capacity. This has been especially true for lithiumion batteries used in portable electronics. However, it is very important to ensure the continued safety of batteries, and this is where the role of the separator is greatest. Thus, it is essential to optimize all the components of battery to improve the performance while maintaining the safety of these cells. Separator manufacturers should work along with the battery manufacturers to create the next generation of batteries with increased reliability and performance, but always keeping safety in mind. This paper has attempted to present a comprehensive review of literature on separators used in various batteries. It is evident that a wide variety of separators are available and that they are critical components in batteries. In many cases, the separator is one of the major factors limiting the life and/or performance of batteries. Consequently, development of new improved separators would be very beneficial for the advanced high capacity batteries. PMID:15669158

  3. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic supplementary information (ESI) available: Supplementary figure S1. The hysteresis loop of Fe3O4 (a), Fe3O4@SiO2 (b), and Fe3O4@SiO2-Dye-SiO2 (c). See DOI: 10.1039/c0nr00614a

  4. Optics of mass separator I

    The ion optics of an existing mass separator are documented. The elctrostatic and magnetic stages are analyzed theoretically, both separately and in combination, by paying particular attention to the ion trajectories, the linear and angular magnifications, and the dispersion. The possibility of converting the magnet into a tunable unit by means of current-carrying elements in the gap is demonstrated. The feasibility of correction coils constructed from printed circuit board is shown

  5. Optics of mass separator I

    Balestrini, S.J.

    1981-07-01

    The ion optics of an existing mass separator are documented. The elctrostatic and magnetic stages are analyzed theoretically, both separately and in combination, by paying particular attention to the ion trajectories, the linear and angular magnifications, and the dispersion. The possibility of converting the magnet into a tunable unit by means of current-carrying elements in the gap is demonstrated. The feasibility of correction coils constructed from printed circuit board is shown.

  6. Extraction of 3D field maps of magnetic multipoles from 2D surface measurements with applications to the optics calculations of the large-acceptance superconducting fragment separator BigRIPS

    Takeda, Hiroyuki, E-mail: takeda@ribf.riken.jp [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kubo, Toshiyuki; Kusaka, Kensuke; Suzuki, Hiroshi; Inabe, Naohito [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nolen, Jerry A. [Argonne National Laboratory (ANL), 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2013-12-15

    Highlight: • Novel practical method to extract 3D magnetic field maps from 2D surface measurements. • Full 3D maps of multipoles are numerically deduced using Fourier transforms. • Only one component on a cylindrical surface is needed for the 2D field measurements. • Successfully applied to field measurements and optics calculations of BigRIPS separator. -- Abstract: The fringing fields of magnets with large apertures and short lengths greatly affect ion-optical calculations. In particular, for a high magnetic field where the iron core becomes saturated, the effective lengths and shapes of the field distribution must be considered because they change with the excitation current. Precise measurement of the three-dimensional magnetic fields and the correct application of parameters in the ion-optical calculations are necessary. First we present a practical numerical method of extracting full 3D magnetic field maps of magnetic multipoles from 2D field measurements of the surface of a cylinder. Using this novel method, we extracted the distributions along the beam axis for the coefficient of the first-order quadrupole component, which is the leading term of the quadrupole components in the multipole expansion of magnetic fields and proportional to the distance from the axis. Higher order components of the 3D magnetic field can be extracted from the leading term via recursion relations. The measurements were done for many excitation current values for the large-aperture superconducting triplet quadrupole magnets (STQs) in the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory. These distributions were parameterized using the Enge functions to fit the fringe field shapes at all excitation current values, so that unmeasured values are interpolated. The extracted distributions depend only on the position along the beam axis, and thus the measured three-dimensional field can easily be parameterized for ion-optical calculations. We implemented these parameters in the ion-optical calculation code COSY INFINITY and realized a first-order calculation that incorporates the effect of large and varying fringe fields more accurately. We applied the calculation to determine the excitation current settings of the STQs to realize various optics modes of BigRIPS and the effectiveness of this approach has been demonstrated.

  7. MAGNET

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  8. MAGNET

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  9. MAGNET

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  10. Analytical model of batch magnetophoretic separation

    Kashevsky, S. B.; Kashevsky, B. E.

    2013-06-01

    Magnetophoresis (the motion of magnetic particles driven by the nonuniform magnetic field), that for a long time has been used for extracting magnetically susceptible objects in diverse industries, now attracts interest to develop more sophisticated microfluidic and batch techniques for separation and manipulation of biological particles, and magnetically assisted absorption and catalysis in organic chemistry, biochemistry, and petrochemistry. A deficiency of magnetic separation science is the lack of simple analytical models imitating real processes of magnetic separation. We have studied the motion of superparamagnetic (generally, soft magnetic) particles in liquid in the three-dimensional field of the diametrically polarized permanent cylindrical magnet; this geometry is basically representative of the batch separation mode. In the limit of the infinite-length magnet, we found the particle magnetophoresis proceeds independently of the magnet polarization direction, following the simple analytical relation incorporating all the relevant physical and geometrical parameters of the particle-magnet system. In experiments with a finite-length magnet we have shown applicability of the developed theory as to analyze the performance of the real batch separation systems in the noncooperative mode, and finally, we have presented an example of such analysis for the case of immunomagnetic cell separation and developed a criterion of the model limitation imposed by the magnetic aggregation of particles.

  11. Novel magnetic flux penetration in overdoped La2-xSrxCuO4 single crystals: macroscopic phase separation in a heavily overdoped regime

    Superconducting diamagnetic properties and magnetic flux penetration have been comparatively investigated on two La2-xSrxCuO4 single crystals: one underdoped (x=0.092) and the other overdoped (x = 0.24). Both samples have only a single transition when the external field is low. While when a relatively high external field is applied, a large distinction between these two samples is observed: there is only one transition for the underdoped sample, but an unexpected second transition appears for the overdoped sample. Further investigation on the overdoped sample shows that it has a novel property of magnetic flux penetration, which is characterized by the vanishing of the usual central peak near zero field on the magnetization hysteresis loops. This easy penetration of magnetic flux can be understood in the picture of percolative superconductivity due to the inhomogeneous electronic state in a heavily overdoped regime. (author)

  12. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    Rittich, B.; Španová, A.; Šálek, P.; Němcová, P.; Trachtová, Š.; Horák, Daniel

    2009-01-01

    Roč. 321, č. 10 (2009), s. 1667-1670. ISSN 0304-8853. [International Conference on Scientific and Clinical Applications of Magnetic Carriers /7./. Vancouver, 20.05.2008-24.05.2008] R&D Projects: GA ČR GA203/09/1242 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic microsphere * P(HEMA-co-GMA) * DNA isolation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.204, year: 2009

  13. Field dependence of the electronic phase separation in Pr0.67Ca0.33MnO3 by small angle magnetic neutron scattering

    Mercone, S; Martin, C; Simon, C; Saurel, D; Brulet, A; Mercone, Silvana; Hardy, Vincent; Martin, Christine; Simon, Charles; Saurel, Damien; Brulet, Annie

    2003-01-01

    We have studied by small angle neutron scattering the evolution induced by the application of magnetic field of the coexistence of ferromagnetism (F) and antiferromagnetism (AF) in a crystal of Pr$_{0.67}$Ca$_{0.33}$MnO$_3$. The results are compared to magnetic measurements which provide the evolution of the ferromagnetic fraction. These results show that the growth of the ferromagnetic phase corresponds to an increase of the thickness of the ferromagnetic ''cabbage'' sheets.

  14. Isotopic separation

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  15. Stereoisomers Separation

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  16. Separations chemistry

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  17. Isotopic separation

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  18. Product separator

    A description is given of a secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted, nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present

  19. The superconducting OGMS separator optimization

    Janowski, T.; Kozak, S. (Institute of Electrotechnics, Warszawa (Poland))

    1993-11-01

    The constructional parameters of the electromagnet influence the efficiency of the OGMS (Open Gradient Magnetic Separation) process. An analysis of the relationships between the superconducting magnet dimensions and the efficiency of the separator for the paramagnetic ([chi]=5e[sup [minus]3]) and ferromagnetic (iron) particles with the diameters 20[mu]m and 100[mu]m for different medium velocities is presented In this paper. The mathematical model of particle's trajectory passing through the separator has been used for numerical calculations.

  20. Correlation of physical coal separations: Part I

    Hise, E.C.

    1979-09-01

    Experimental separations of the inorganic material from a coal by the specific-gravity (wet), high-gradient magnetic (dry), and open-gradient magnetic (dry) processes were performed and analyzed to compare for Btu recovery vs efficiency of removal of pyrite and ash and to determine the degree of liberation of the inorganics by the crushing. It is shown that the liberated minerals can be separated from dry crushed coal by both the high-gradient magnetic separation (HGMS) and the open-gradient magnetic separation (OGMS) processes with an efficiency comparable to the specific-gravity (float-sink) process. Coal feed through the HGMS was by gravity with low-velocity transport air and through the OGMS by vibrating tray and by gravity free fall. The degree of liberation of the minerals was assayed by a set of specific-gravity separations. These separations were performed with size fractions in the range of -14 +100 mesh of Western Kentucky seam No. 9 coal in the laboratories of the Bureau of Mines (specific gravity), the Oak Ridge National Laboratory (ORNL) (open-gradient magnetic and specific gravity), and of a magnetic separator manufacturer (high-gradient magnetic). Several magnetic processes have been shown to separate efficiently the liberated minerals from dry crushed coal. The high-gradient magnetic separator can attract and retain the paramagnetic particles on the magnetized mesh. Production-scale machines suited for HGMS of dry crushed coal are commercially available. The open-gradient magnetic separator can deflect both the diamagnetic and the paramagnetic particles in a freely falling stream of coal into a spectrum that can be split to separate the minerals from the clean coal. The process, as demonstrated on a laboratory scale, appears to be simple and efficient and, therefore, merits further development.