WorldWideScience

Sample records for 111-5 magnetic separator

  1. Calibración del separador magnético de alta intensidad magnet-lift mlh (13) 111-5 para su uso en el laboratorio de termocronología de la UCV

    Scientific Electronic Library Online (English)

    A, MAURICIO; CELLA, BERMÚDEZ; RAQUEL C, ANAYA.

    Full Text Available En este artículo se presenta la calibración del separador magnético de alta intensidad Magnet-lift MLH (13) 111-5 existente en el Laboratorio de Termocronología de la Universidad Central de Venezuela con la finalidad de separar magnéticamente minerales pertenecientes a areniscas y muestras granítica [...] s para su posterior fechado por el método de huellas de fisión. Los resultados obtenidos de esta calibración fueron aplicados a una muestra de 10 kilogramos pertenecientes a unaconcentración inicial de minerales de la Formación Betijoque del flanco norte de Los Andes Venezolanos. Se concluye que el Magnet-lift presenta amplias ventajas con respecto a los separadores magnéticos convencionales y además optimiza el tiempo de procesamiento de rocas detríticas que posteriormente serán fechadas por el método de datación empleado eneste laboratorio con el fin de discriminar la edad del último evento tecto-térmico ocurrido en la zona de estudio. Abstract in english In this article we present the calibration of a high intensity Magnet-lift MLH (13) 111-5 magnetic separator located in the Thermochronology Laboratory of the Universidad Central de Venezuela with the purpose of magnetically separating minerals of sandstone and granite samples to be subsequently sub [...] jected to the fission track dating method (FTDM). The results of this calibration were applied to 10 kilogram sample belonging to an initial concentration of minerals of Betijoque´s Formation on the north flank of Venezuelans Andes. We conclude that the Magnet-lift presents a number of advantages with regard to conventional magnetic separators as well as optimizing the preparation time of detritic rocks for their dating by the fission track method.

  2. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined, and it is argued that it is a good measure, when comparing the performance of magnetic bead separators. It is described how numeric modelling is used to aid the design of microfluidic magnetic separation ...

  3. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined, and it is argued that it is a good measure, when comparing the performance of magnetic bead separators. It is described how numeric modelling is used to aid the design of microfluidic magnetic separation systems. An example of a design optimization study is given. A robust fabrication scheme has been developed for fabrication of silicon based systems. This fabrication scheme is explained, and it is shown how, it is applied with variations for several designs of magnetic separators. An experimental setup for magnetic separation experiments has been developed. It has been coupled with an image analysis program to facilitate real-time monitoring of the experiments. The set-up and experimental protocol are described in detail. Results are presented for ’active’ magnetic bead separators, where on-chip microfabricated electromagnets supply the magnetic field and field gradients necessary for magnetic bead separation. It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside a microfluidic channel. Systems with the elements placed beside the microfluidic channel is combined with hydrodynamic focusing to demonstrate a magnetic bead microarray inside a microfluidic channel. Systems where the on-chip magnetic material is placed underneath the microfluidic channel are also presented. One of these designs feature multiple magnetic length scales, and it is shown that this enhances bead capture ability. A ’hybrid’ magnetic separator design, where the magnetic field from on-chip current lines couples with an externally applied homogenous field to create strong fields and gradients is demonstrated. This gives extra magnetic bead manipulation possibilities compared to the passive designs. It is demonstrated how this can be used for magnetic bead microarrays. Finally, it is discussed, based on the research presented in this thesis, how to further develop magnetic separation systems in microfluidic systems, and recommendations are given for the choice of magnetic design based on the desired application.

  4. Continuous magnetic separator and process

    Science.gov (United States)

    Oder, Robin R. (Export, PA); Jamison, Russell E. (Lower Burrell, PA)

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  5. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  6. Magnetic Enhancement in High Gradient Magnetic Separation.

    Science.gov (United States)

    Kelland, David Ross

    Available from UMI in association with The British Library. Requires signed TDF. An effective way to improve the performance of High Gradient Magnetic Separation (HGMS) is to increase the magnetization of small particulates. An example in which this can be demonstrated is in the use of HGMS to desulfurize coal. Part of the sulfur in coal occurs as finely divided pyrite. Is removal before combustion would reduce SO_2 emission with a subsequent reduction in acid rain. Experiments on direct heating of mineral pyrite achieved enhanced pyrite magnetization in several different atmospheres; this increase in magnetization was measured on a vibrating sample magnetometer. Mossbauer and electron microprobe analysis have identified the converted mineral as ferrimagnetic monoclinic pyrrhotite along with iron oxides and even iron. Selective heating of the pyrite in coal. To save energy by not heating the coal itself, was accomplished by employing high power density microwave irradiation. Thermal reflectance measurements clearly showed that the final temperature reached in the heated pyrite was higher than that in the coal. Then the improvement in HGMS separations of the partially converted pyrite from coals was demonstrated in samples irradiated at a frequency of 2.45 gigahertz and 5.4 kW of power. Pyrite removal was improved as much as 30-40% (at constant heating value recovery) over that with HGMS alone. In addition to this improvement in HGMS performance, the work provides a microscopic insight into the process of magnetic conversion.

  7. Magnet design for superconducting open gradient magnetic separator

    International Nuclear Information System (INIS)

    The use of superconductivity opens new applications for magnetic separation because very high magnetic fields become available. In this paper the magnet design for a laboratory scale superconducting open gradient magnetic separator is presented. The separator will be used to optimize the separation parameters for different kinds of applications, such as the foundry sand purification. Therefore, the goal of the magnet design is to obtain a constant magnetic force density distribution inside the working volume. The high magnitude of magnetic force density is required because the materials to be separated have low magnetic susceptibilities. The maximum achievable force density is determined by the critical current in superconducting magnets. The advantages and drawbacks of solenoid, racetrack and saddle coil geometries are compared. Ways for improving the performance of the system is discussed. Finally, the influence of the stray field on the slurry flow outside the working volume is studied

  8. Wide Aperture Multipole Magnets of Separator COMBAS

    CERN Document Server

    Artukh, A G; Gridnev, G F; Gruszecki, M; Koscielniak, F; Semchenkova, O V; Sereda, Yu M; Shchepunov, V A; Szmider, J; Teterev, Yu G; Severgin, Yu P; Rozhdestvensky, B V; Myasnikov, Yu A; Shilkin, N F; Lamzin, E A; Nagaenko, M G; Sytchevsky, S E; Vishnevski, I N

    2000-01-01

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Its magneto-optical structure is based on strong focusing principle. The magnetic fields of analysing magnets M_1, M_2, M_7, M_8, contain quadrupole components of alternating sign that provide necessary beam focusing. Besides, all the magnets M_1-M_8, contain sextupole and octupole field components, which minimizes the 2nd and 3rd order aberrations. All this allowed one to increase their apertures, to effectively form a beam of the required sizes, and to decrease the channel length. This implementation of wide aperture magnets with combined functions is unique for the separation technology. Three-components magnetic measurements of all the magnets were performed. The measured data allow reconstructing the 3D-distributions of the fields in all the magnets. 3D-maps are supposed to be used for particle trajectory simulations throughout the entire separator.

  9. A PURPOSE ORIENTED MAGNETIC SEPARATOR: SKIMMER

    Energy Technology Data Exchange (ETDEWEB)

    Salih Ersayin

    2005-08-09

    A magnetic separator was designed to selectively separate fine-liberated magnetite. The conceptual design was simulated using CFD techniques. A separator tank was fabricated and a magnetic drum was used to capture magnetic particles. The initial tank design was modified to eliminate application oriented problems. The new separator was able to produce a fine product as a concentrate at relatively high feed rates. A plant simulation showed that such a device could lower circulating loads around ball mills by 16%, thereby creating room for a 5-8% increase in throughput at the same energy level. However, it was concluded that further improvements in terms of both size and mineral selectivity are needed to have a marketable product.

  10. Microfluidic magnetic separator using an array of soft magnetic elements

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt; Tang, Peter Torben

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete capture of 1.0 mu m fluorescent magnetic beads from a 7.5 mu L sample volume traveling at an average linear fluid velocity of 5 mm/s.

  11. Magnetic separation of uranium from waste materials

    International Nuclear Information System (INIS)

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in a deflective mode with dry particulate samples or a matrix-gradient mode with either dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both wet and dry systems and could be an important application of the technology. 13 figs., 6 tabs

  12. A Continuous Throughput Micro Magnetic Cell Separator

    Science.gov (United States)

    Inglis, David; Sturm, James C.; Austin, Robert H.

    2004-03-01

    Micro-fluidic total analysis systems for diagnosis, research and treatment require foolproof sorting and separation techniques. A bulk fluid sample invariably contains unwanted and useless matter that must be disposed of. The chip must first be able to separate the wheat from the chaff before doing any analysis. A micro-fluidic device that continuously separates blood cells from a whole blood sample via immunomagnetic labeling has been built. The device differentiates the flow of labeled cells from all other blood components such as RBC's, plasma, viruses, proteins and other unwanted blood components. A fluid sample passes over an array of micro-fabricated permanent magnets which alter the flow of cells tagged with magnetic beads. Separated target cells, for example CD4 positive WBCs, can then be passed on to subsequent phases on the TAS chip, ultimately allowing fast pheno and geno typing of cells from bulk fluid samples.

  13. Magnetic separation using high-Tc superconductors

    International Nuclear Information System (INIS)

    Superconductivity has found in magnetic separation one of its major industrial applications second only to magnetic resonance imaging. Low-Tc superconducting coils have been employed in High Gradient magnetic Separators (HGMS) since the late 80s, the saving in power consumption overcoming the high costs of the liquid helium refrigeration system. The discovery in 1986 of the high-Tc materials has opened the possibility of cooling with liquid nitrogen or cryocoolers, which represents a considerable simplification of the cryogenics involved and a reduction of capital and running costs. But the present high-Tc materials are not sufficiently developed to simply replace low-Tc coils in the opened solenoid configuration of the HGMS, due to their low critical currents around 77 K. This thesis investigates the employment of a high-Tc superconducting coil in a magnetic separator with an iron yoke. In this application the low-Tc coil supplies Ampereturns to a magnetic circuit, which provides a low reluctance path for the magnetic flux and delivers a magnetic field in the air-gap much higher than the field seen by the coil. A small prototype of such a separator has been built. The superconducting coil, a Bi2S2Ca2Cu3O8 solenoid, has been provided by Intermagnetics General Corporation. The use of high-Tc coil as opposed to resistive ones, however, results in different design requirements, ultimately dictated by the sensitivity of the high-Tc material to magnetic fields. Finite elements modelling of the system has provided the framework for the quantitative analysis of the magnetic field distributions on the coil windings and the optimisation of the system configuration. The performance of the separator has been tested at 77 K with liquid nitrogen at atmospheric pressure, and at a temperature ? 67 K by pumping liquid nitrogen at a pressure around 100 Torr. The highest field obtained in the air gap at 67 K was of 340 mT. Magnetic separators with an iron circuit have been in operation for many years in mineral industry, and there appear to be an opportunity of building machines with high-Tc coils or retrofitting existing machines with high-Tc coils to run them closer to saturation in a cheap and effective way. (author)

  14. Magnetic affinity separation of recombinant fusion proteins.

    Czech Academy of Sciences Publication Activity Database

    Šafa?ík, Ivo; Šafa?íková, Miroslava

    2010-01-01

    Ro?. 38, ?. 1 (2010), s. 1-7. ISSN 1303-5002 R&D Projects: GA MŠk(CZ) OC 157; GA MPO(CZ) 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : recombinant fusion proteins * affinity tags * magnetic separation Subject RIV: CE - Biochemistry

  15. Isotope separation utilizing Zeeman compensated magnetic extraction

    International Nuclear Information System (INIS)

    A method and apparatus are described for creating a plasma of ions of one isotope type and magnetically extracting the ions from the plasma without impairing the ionization selectivity and efficiency. In a particle flow of plural isotope types, radiant energy is applied to selectively excite and ionize ions of at least one isotope type without corresponding ionization of particles of other isotope types. A magnetic field is applied to divert the ions of the one isotope type sufficiently to permit separate collection of those ions without the other particle constituents of the flow. The system of the invention balances the requirements for a high magnetic field to provide sufficient diversion before charge exchange with the requirement for a limited magnetic field to prevent interference with the selective ionization process due to Zeeman broadening of the isotope absorption lines. 25 claims, 8 drawing figures

  16. Separation of magnetic affinity biopolymer adsorbents in a Davis tube magnetic separator.

    Czech Academy of Sciences Publication Activity Database

    Šafa?ík, Ivo; Mucha, Pavel; Pecho?, Ji?í; Stoklasa, Jaroslav; Šafa?íková, Miroslava

    2001-01-01

    Ro?. 23, - (2001), s. 851-855. ISSN 0141-5492 R&D Projects: GA ?R GA203/98/1145 Institutional research plan: CEZ:AV0Z6087904 Keywords : Davis tube * magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  17. Optimizing the performance of wet drum magnetic separators

    Scientific Electronic Library Online (English)

    M., Dworzanowski.

    2010-11-01

    Full Text Available The difference in the magnetic properties of minerals is the basis for magnetic separation. All minerals can be generally classified as ferromagnetic (strongly magnetic), paramagnetic (weakly magnetic) or diamagnetic (non-magnetic). Magnetic separation can be conducted dry or wet. The majority of th [...] e applications of wet magnetic separation in the mining industry are based on the wet drum magnetic separator. The wet drum magnetic separator has been in use for over 50 years and its design is based on a rotating drum installed inside a tank. Inside the drum are stationary, permanent magnets arranged in an arc to provide the magnetic field. These magnets can be of the ceramic ferrite type providing a low intensity magnetic field or of the rare earth type providing a high intensity magnetic field. Wet drum magnetic separators are generally applied in three different ways, namely to recover and recycle the medium used in dense medium separation (DMS), to remove magnetic contaminants from ores and concentrates, and to recover valuable magnetic products. Wet drum magnetic separators are applied in the following commodity areas: coal, diamonds, iron ore, chrome, platinum, heavy mineral sands, industrial minerals, and base metals. Whereas the design and operation of wet drum magnetic separators is relatively straightforward, it is very often found that the performance of wet drum magnetic separators is far from optimum. The reason for this is generally a lack of understanding of how the different design and operating variables interact and how they affect performance. This paper examines these variables, describing their importance and impact for all applications of wet drum magnetic separators. It also provides clear guidelines on how to adjust and control these variables so that optimum performance is achieved.

  18. Magnetic circuit with large blocks from NdFeB magnets for suspended magnetic separators.

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav

    2010-01-01

    Ro?. 7, ?. 2 (2010), s. 227-235. ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic circuits * magnetic separation * permanent magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.452, year: 2010 www.irsm.cas.cz/?Lang=CZE& Menu =25,0,0,0

  19. Separation of magnetic fractions from coal by magnetic separation method. Paper no. IGEC-1-041

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, M. [MTA, Mineral Research and Exploration Directorate, Ankara (Turkey)]. E-mail: meryem_seferinoglu66@yahoo.com

    2005-07-01

    The application of the magnetic separation method in the process of cleaning of the coal and the effect of the particular size of coal on the method was investigated in this study. The method is based on the fact that coal is weakly diamagnetic, while most of the minerals present are weakly to moderately paramagnetic. In the experimental studies, Manisa and Can lignites which have three different particular sizes (-1500+1000, -1000+500, -500+100 micron) were used. For the particular size of -1500+1000 micron, the magnetic fraction which was separated from Can lignite contained 24 % pyritic sulfur which was less than that of the ground coal. The amount of pyritic sulfur increased in the non-magnetic fraction of Manisa coal. The ash content of non-magnetic fraction which was separated from the particular size of -1000+500 micron of the Manisa coal reduced 20 %, while the value of calorie of coal was enhanced 15 % according to the ground coal. The amount of ash reduction in the non-magnetic fractions of Can lignites was slightly increased along with the value of calorie of coal was a little enhanced. (author)

  20. Creation of superconducting magnet separators for weakly magnetic mineral raw material processing

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenko, V.D.; Gerasimenko, I.A.; Kutin, A.M. [Mekhanobrchermet Inst., Krivoy Rog (Ukraine); Yupherov, V.B.; Skibenko, Y.I. [National Research Centre Kharkov Physico-Technical Inst. (Ukraine); Gladky, V.V. [Inst. of Low Temperature Physics and Engineering, Kharkov (Ukraine)

    1996-07-01

    The paper describes the investigations to work out the design and process parameters of superconducting commercial separators using laboratory units. The design features of the magnet system and the cryostat of the separator of the disk type for wet separation of weakly magnetic ores and non-ore materials are presented. The results of modelling the technological flowsheets for separation of various types of weakly magnetic material using SC magnetic separators are given. The necessity to further improve the magnetic separators in the direction of generation of the magnetic flux higher magnetic forces and densities is well-grounded.

  1. The design of the drum separator with superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenko, V.D.; Gerasimenko, I.A.; Kretinin, E.A. [Mekhanobrchermet Inst., Krivoy Rog (Ukraine). Lab. for Superconducting Technique and Technologies; Zhelamsky, M.V.; Bondarchuk, E.N.; Rodin, I.Y.; Muratov, V.P. [Scientific and Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation)

    1996-07-01

    This paper describes the open gradient drum type magnetic separator with superconducting magnet system to develop technologies for dry separation of low magnetic mineral raw material of 4-0 mm (medium size) up to 25-0 mm (coarse size). The separation zone is 1200 mm x 50 mm with the magnet system-wrap angle equal to 90{degree}, the magnetic field in the separation zone is at the level of 4.5 T, the average value of the magnetic forces is 120 T{sup 2}/m and the capacity is about 100 t/h. The results of the optimization and numerical calculations of thermophysical processes in magnetic and cryogenic systems are given. The technological developments of the design of some separator units are presented. The paper also presents the techno-economic indices of the separator application at the ore-mining operations.

  2. Separation of magnetic susceptibility components from magnetization curves

    Science.gov (United States)

    Kosareva, L.; Nourgaliev, D.; Kuzina, D.; Spassov, S.; Fattakhov, A.

    2014-12-01

    Modern lake sediments are a unique source of information for climate changes, regionally and globally, because all environmental variations are recorded by these sediments with high resolution. The magnetic properties of Chernyshov Bay (Aral Sea) sediments we investigated from core number 4 (N45o57'04.2''; E59o17'14.3'') are taken at far water depth of 9.5 m. The length of the core is 4.16 m. Samples for measurements were taken to plastic sample boxes with internal dimensions 2x2x2 cm. Remanent magnetization curves were measured by coercivity spectrometer for the separate determination of the different contributions to the total bulk magnetic susceptibility. There was measured also magnetic susceptibility using MS2 susceptibility meter. Those operations were done for data comparison between 2 susceptibilities obtained from different equipment. Our goal is to decipher the magnetic susceptibility signal in lake sediments by decomposing the bulk susceptibility signal of a lake sediment sequence into ferromagnetic (?f), dia-/paramagnetic (?p) and superparamagnetic (?sp) components using data from remanent and indused magnetization curves Each of these component has a different origin: paramagnetic minerals are usually attributed to terrigenous sediment input, ferromagnetics are of biogenic origin, and superparamagnetic minerals may be of either biogenic or terrigenous origin. Comparison between susceptibility measurements of MS2-Bartington susceptometer and of the coercivity spectrometer has shown good correlation. The susceptibility values measured in two different equipment are fairly close and indicate thus the reliability the proposed method. In research also has shown water level changes in Aral Sea based on magnetic susceptibility. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University also by RFBR research projects No. 14-05-31376 - ?, 14-05-00785- ?.

  3. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.j [Niigata University, 8050 Ikarashi-Ninocho, Niigata 950-2181 (Japan); Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Yamaguchi, M. [Japanese Super-Conductivity Organization Co., Ltd., 2-1-6 Etchujima, Koto-ku, Tokyo 135-8533 (Japan)

    2010-11-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  4. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  5. Highly efficient magnetic separation using five-aligned superconducting bulk magnet

    International Nuclear Information System (INIS)

    We have constructed the highly efficient magnetic separation system using five-aligned superconducting bulk magnets, which has ten usable magnetic poles on both sides in open space. We applied the bulk magnet system to the magnetic separation of ferromagnetic particles (magnetite; Fe3O4) and paramagnetic ones (?-hematite; Fe2O3) dispersed in water for various average particle diameters d, flow speeds VF and initial concentrations C0 of the particles. The multi-bulk magnet system has been confirmed to be effective for the magnetic separation and the efficiency of the magnetic separation per one magnetic pole has been estimated using the theoretical relation.

  6. Large-scale separation of magnetic bioaffinity adsorbents.

    Czech Academy of Sciences Publication Activity Database

    Šafa?ík, Ivo; Ptá?ková, Lucie; Šafa?íková, Miroslava

    2001-01-01

    Ro?. 23, - (2001), s. 1953-1956. ISSN 0141-5492 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  7. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles

    OpenAIRE

    Ijiri, Y.; Poudel, C.; Williams, P S; Moore, L.R.; Orita, T.; Zborowski, M.

    2013-01-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment...

  8. Integrated acoustic and magnetic separation in microfluidic channels

    DEFF Research Database (Denmark)

    Adams, Jonathan; Thevoz, Patrick

    2009-01-01

    With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 10(8) particles/hr. (C) 2009 American Institute of Physics. [doi:10.1063/1.3275577

  9. Characteristics of magnetic field induction inside a module of a magnetic separator ?????????????? ???????? ???? ? ?????? ?????????? ??????????

    Directory of Open Access Journals (Sweden)

    Sandulyak Anna Aleksandrovna

    2013-05-01

    Full Text Available Characteristics of magnetic separators are analyzed in the article. Magnetic separators are used to treat various construction materials. Unfortunately, the nature of the magnetic field, generated in their operating zone, is generally not taken into account by their designers. Academic publications fail to provide any detailed basic characteristics of the field induction emitted by magnetic separators in the course of their operation.Magnetic systems of any magnetic separator have a modular structure; they consist of several modules. Single and opposite magnetic elements are usually integrated into one module within a system having permanent magnets. If opposite magnetic elements are used, magnetic field intensity inside the module increases.In this study, characteristics of magnetic induction for single magnetic elements inside various modules of magnetic separators were assessed in a laboratory experiment. Similar characteristics of magnetic induction for single and twin (opposite magnetic elements were compared. In the module consisting of two opposed magnetic elements, the magnetic field becomes stronger compared to the field of a single magnetic element. Magnetic induction in the module recedes as the distance between magnetic elements increases, because of the isolation of the field generated by the opposed magnetic elements.The authors have proven the feasibility and expediency of employment of the superposition principle used to obtain the resulting characteristics. It may be employed to substitute modeling by calculations.???????????????? ???????? ?????????????? ???????? ?????????? ???? ??? ????????? ????????? ? ????????? ??????? ????????? ???????????. ???????????? ?????????????? ???????? ?????????? ???? ??? ????????? ? ????????? ????????? ????????? ??????. ? ??????, ????????? ? ???? ?????????????? ????????? ?????????, ???? ??????????? ?? ????????? ? ????? ?????????? ?????????? ????????, ???? ?? ???? ?????????? ???????????? ?????????? ??????? ???????? ? ?????? ????????? ?? ???? ??? ???????? «??????????» ????????? ?????, ??????????? ??????????????? ?????????? ??????????.???????? ??????????? ? ???????????? ???????????????? ????????????? ???????? ???????????? ??? ???????????? ?????????????? ?????????????? ???????? ???? ????? ??????????????? ?????????? ?????????? ??? ?????? ????????? ????????????? ?????????.

  10. Electron spin separation without magnetic field

    OpenAIRE

    Paw?owski, J.; Szumniak, P.; Skubis, A.; Bednarek, S.

    2013-01-01

    A nanodevice capable of separating spins of two electrons confined in a quantum dot formed in a gated semiconductor nanowire is proposed. Two electrons confined initially in a single quantum dot in the singlet state are transformed into the system of two electrons confined in two spatially separated quantum dots with opposite spins. In order to separate the electrons' spins we exploit transitions between the singlet and the triplet state which are induced by resonantly oscil...

  11. Application of HTS bulk magnet system to the magnetic separation techniques for water purification

    International Nuclear Information System (INIS)

    We have investigated the application of the HTS bulk magnets to the magnetic separation techniques for the waste water drained from the university laboratories. The study has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. A superconducting bulk magnet has the highest value of the trapped magnetic fields at the centre of the sample surface, showing a sharp gradient of the magnetic field on the surface. Magnetic force acting on magnetic particles in magnetic fields is given by the product of a magnetization of particles and a gradient of magnetic field. The HTS bulk is superior to a solenoid magnet which has a poor gradient in magnetic fields in a bore. The separation ratios of ferrite precipitates in the waste slurry were estimated by means of the high gradient magnetic separation method which requires iron filters in the water channel and open gradient magnetic separation without any filters. The magnetic separation using HTS bulk magnet is substantially effective for the practical water purification

  12. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics.

  13. Electron spin separation without magnetic field.

    Science.gov (United States)

    Paw?owski, J; Szumniak, P; Skubis, A; Bednarek, S

    2014-08-27

    A nanodevice capable of separating spins of two electrons confined in a quantum dot formed in a gated semiconductor nanowire is proposed. Two electrons confined initially in a single quantum dot in the singlet state are transformed into the system of two electrons confined in two spatially separated quantum dots with opposite spins. In order to separate the electrons' spins we exploit transitions between the singlet and the triplet state, which are induced by resonantly oscillating Rashba spin-orbit coupling strength. The proposed device is all electrically controlled and the electron spin separation can be realized within tens of picoseconds. The results are supported by solving numerically the quasi-one-dimensional time-dependent Schroedinger equation for two electrons, where the electron-electron correlations are taken into account in the exact manner. PMID:25106038

  14. Electron spin separation without magnetic field

    International Nuclear Information System (INIS)

    A nanodevice capable of separating spins of two electrons confined in a quantum dot formed in a gated semiconductor nanowire is proposed. Two electrons confined initially in a single quantum dot in the singlet state are transformed into the system of two electrons confined in two spatially separated quantum dots with opposite spins. In order to separate the electrons' spins we exploit transitions between the singlet and the triplet state, which are induced by resonantly oscillating Rashba spin–orbit coupling strength. The proposed device is all electrically controlled and the electron spin separation can be realized within tens of picoseconds. The results are supported by solving numerically the quasi-one-dimensional time-dependent Schroedinger equation for two electrons, where the electron–electron correlations are taken into account in the exact manner. (paper)

  15. MAGNETITE RECOVERY IN COAL WASHING BY HIGH GRADIENT MAGNETIC SEPARATION

    Science.gov (United States)

    The report describes a demonstration of the successful recovery of magnetite from mixtures of magnetite and coal, like those found in a coal-washing circuit, by High Gradient Magnetic Separation. The demonstration was part of a research program at Francis Bitter National Magnet L...

  16. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M [Niigata University, 8050 Ikarashi-Nino-cho, Nishi-ku, Niigata 950-2181 (Japan); Yamaguchi, M [Japanese Super-conductivity Organization CO., LTD., 2-1-6 Etchujima, Koto, Tokyo, 135-8533 Japan (Japan); Yokoyama, K [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi, 326-8558 Japan (Japan); Noto, K [Professor Emeritus Iwate University, 3-19-27 Chomeigaoka, Izumi-ku Sendai, 981-3212 Japan (Japan)], E-mail: okat@eng.niigata-u.ac.jp

    2009-03-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  17. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    International Nuclear Information System (INIS)

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  18. "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator"

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Kjeldsen, B.; Reimers, R.L.; Dufva, Hans Martin; Petersen, J.; Hansen, Mikkel Fougt

    2005-01-01

    Implementing DNA and protein microarrays into lab-on-a-chip systems can be problematic since these are sensitive to heat and strong chemicals. Here, we describe the functionalization of a microchannel with two types of magnetic beads using hydrodynamic focusing combined with a passive magnetic separator with arrays of soft magnetic elements. The soft magnetic elements placed on both sides of the channel are magnetized by a relatively weak applied external magnetic field ( 21 mT) and provide magn...

  19. On Poor Separation in Magnetically Driven Shock Tube

    DEFF Research Database (Denmark)

    Chang, C.T.

    1973-01-01

    Observations made at steady-state running conditions in a magnetically driven shock tube, with parallel-plate electrodes, showed that for a given discharge voltage, sufficient separation between the shock and the current-sheet occurred only at relatively high discharge pressures. As a comparison, poor separations were also noted in conventional diaphragm-type shock tubes running at low initial pressures. It is demonstrated that the observed poor separation can be explained by a mass leakage, ins...

  20. Electromagnet with two coils separated by magnetic wall

    International Nuclear Information System (INIS)

    The electromagnet comprises a magnetic core with a magnetic wall fixed to it separating two coaxial coils, a casing surrounding the coils and magnetically coupled to the wall, and a carrying face at the end of the casing, arranged so that the carrying force exerted by energising one of the coils is less than that exerted by energising the other. The invention applies for holding nuclear reactor control rods. The force exerted on a control rod can be varied with its position

  1. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Tsujimura, M. [Aichi Giken Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Terasawa, T. [IMRA Material R and D Co., Ltd., 2-1 Asahimachi, Kariya, Aichi 448-0032 (Japan)

    2013-01-15

    Highlights: ? The magnetic separation was operated for recycling the electroless plating waste. ? The HTS bulk magnet effectively attracted the ferromagnetic precipitates with Ni. ? The separation ratios over 90% were reported under flow rates up to 1.35 L/min. -- Abstract: The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni–P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  2. In Situ Magnetic Separation for Extracellular Protein Production

    DEFF Research Database (Denmark)

    Kappler, T.; Cerff, Martin

    2009-01-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were employed directly in the broth during the fermentation, followed by in situ magnetic separation, Proof of the concept was first demonstrated in shake flask culture, then scaled up and applied during a fed batch cultivation ill a 3.7 L bioreactor. It could be demonstrated that growth of B. licheniformis was not influenced by the in situ product removal step. Protease production also remained the same after the separation step. Furthermore, degradation of the protease, which followed first order kinetics, was reduced by using the method. Using a theoretical modeling approach, we Could show that protease yield in total was enhanced by using in situ magnetic separation. The process described here is a promising technique toimprove overall yield in No production processes which are often limited due to weak downstream operations, Potential limitations encountered during a bioprocess can be overcome such as product inhibition or degradation. We also discuss the key points where research is needed to implement in situ magnetic separation in industrial production.

  3. Magnetic particles for the separation and purification of nucleic acids.

    Science.gov (United States)

    Berensmeier, Sonja

    2006-12-01

    Nucleic acid separation is an increasingly important tool for molecular biology. Before modern technologies could be used, nucleic acid separation had been a time- and work-consuming process based on several extraction and centrifugation steps, often limited by small yields and low purities of the separation products, and not suited for automation and up-scaling. During the last few years, specifically functionalised magnetic particles were developed. Together with an appropriate buffer system, they allow for the quick and efficient purification directly after their extraction from crude cell extracts. Centrifugation steps were avoided. In addition, the new approach provided for an easy automation of the entire process and the isolation of nucleic acids from larger sample volumes. This review describes traditional methods and methods based on magnetic particles for nucleic acid purification. The synthesis of a variety of magnetic particles is presented in more detail. Various suppliers of magnetic particles for nucleic acid separation as well as suppliers offering particle-based kits for a variety of different sample materials are listed. Furthermore, commercially available manual magnetic separators and automated systems for magnetic particle handling and liquid handling are mentioned. PMID:17063328

  4. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the range of motility inhibiting ions is such that MTB cannot be envisaged for general wastewater applications. Radionucleide studies were undertaken targeting a niche application where this metal ion restriction would not apply. Liquid scintillation and ?-ray counting measurements indicated that magnetotactic bacteria accumulate high levels of both plutonium and mercury. A number of both static and flow recovery separators for magnetotactic bacteria were developed. Statistical models predicting the behaviour of these separators were compared to measured results. These comparisons highlighted the problems of 'wash off' of accumulated bacteria in separators where flow was present. The most successful of the flow recovery designs - the channel separator - was then tested using a simulated effluent that contained plutonium. The results confirmed both previous radioisotope uptake studies and separator test results. The channel separator design was enhanced by the introduction of wire arrays into the separation chamber. Orientation magnetic separation in these hybrid-type separators was used to accumulate the biomass and the magnetic gradients generated by the wire arrays to retain the bacteria on the separator walls. These separators achieved increases in efficiency of up to 300% compared with the channel separator. In summary, this thesis describes a successful separation process for the recovery of motile MTB. However, to apply this separator approach to the suggested radioisotope application would require successful large scale culturing. (author)

  5. Iso-geometric shape optimization of magnetic density separators

    DEFF Research Database (Denmark)

    Dang Manh, Nguyen; Evgrafov, Anton

    2014-01-01

    Purpose The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently, a new separator design has been proposed that significantly reduces the required amount of permanent magnet material. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the individual poles. Design/methodology/approach The paper represents the shape of the ferromagnetic pole covers with B-splines and defines a cost functional that measures the non-uniformity of the magnetic field in an area above the poles. The authors apply an iso-geometric shape optimization procedure, which allows us to accurately represent, analyze and optimize the geometry using only a few design variables. The design problem is regularized by imposing constraints that enforce the convexity of the pole cover shapes and is solved by a non-linear optimization procedure. The paper validates the implementation of the algorithm using a simplified variant of the design problem with a known analytical solution. The algorithm is subsequently applied to the problem posed. Findings The shape optimization attains its target and yields pole cover shapes that give rise to a magnetic field that is uniform over a larger domain. Research limitations/implications This increased magnetic field uniformity is obtained at the cost of a pole cover shape that differs per pole. This limitation has negligible impact on the manufacturing of the separator. The new pole cover shapes therefore lead to improved performance of the density separation. Practical implications Due to the larger uniformity the generated field, these shapes should enable larger amounts of waste to be processed than the previous design. Originality/value This paper treats the shapes optimization of magnetic density separators systematically and presents new shapes for the ferromagnetic poles covers.

  6. On heteroclinic separators of magnetic fields in electrically conducting fluids

    CERN Document Server

    Grines, V; Pochinka, O; Zhuzhoma, E

    2014-01-01

    In this paper we partly solve the problem of existence of separators of a magnetic field in plasma. We single out in plasma a 3-body with a boundary in which the movement of plasma is of special kind which we call an (a-d)-motion. We prove that if the body is the 3-annulus or the "fat" orientable surface with two holes the magnetic field necessarily have a heteroclinic separator. The statement of the problem and the suggested method for its solution lead to some theoretical problems from Dynamical Systems Theory which are of interest of their own.

  7. Magnetic driven separation techniques - DNA isolation from probiotic food samples.

    Czech Academy of Sciences Publication Activity Database

    Trachtová, S.; Španová, A.; Prettl, Z.; Horák, Daniel; Rittich, B.

    Wroclaw : Institute of Immunology and Experimental Therapy Polish Academy of Science , 2013 - (Gamian, A.; Górska-Fraczek, S.). s. 27 ISBN 978-83-928488-3-7. [Polish-Czech Probiotics Conference /1./ - Microbiology and Immunology of Mucosa, Probiotics Conference 2013. 28.05.2013-31.05.2013, Kudowa Zdrój] R&D Projects: GA ?R GAP206/12/0381 Institutional support: RVO:61389013 Keywords : magnetic * DNA * separation Subject RIV: CB - Analytical Chemistry, Separation

  8. Ultrasound imaging for quantitative evaluation of magnetic density separation:

    OpenAIRE

    Sanaee, S.A.

    2013-01-01

    This thesis is dedicated to an investigation of the potential and technological possibilities of an inline ultrasound system as a quality control system for wet recycling of solid waste. The main targeted recycling technology is magnetic density separation (MDS), a novel technique that was investigated and technologically matured in a project running in parallel to this work. In MDS, the easily magnetisable ferrofluid is used as the separation medium to sort different materials based on their...

  9. Separation of the Magnetic Field into External and Internal Parts

    DEFF Research Database (Denmark)

    Olsen, Nils; Glassmeier, K.-H.

    2010-01-01

    The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal source contributions, and their application to selected planets and one of Jupiter’s moons, Ganymede.

  10. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  11. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    International Nuclear Information System (INIS)

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable

  12. Magnetic separation using high-T sub c superconductors

    CERN Document Server

    Bolt, L

    2001-01-01

    sensitivity of the high-T sub c material to magnetic fields. Finite elements modelling of the system has provided the framework for the quantitative analysis of the magnetic field distributions on the coil windings and the optimisation of the system configuration. The performance of the separator has been tested at 77 K with liquid nitrogen at atmospheric pressure, and at a temperature approx = 67 K by pumping liquid nitrogen at a pressure around 100 Torr. The highest field obtained in the air gap at 67 K was of 340 mT. Magnetic separators with an iron circuit have been in operation for many years in mineral industry, and there appear to be an opportunity of building machines with high-T sub c coils or retrofitting existing machines with high-T sub c coils to run them closer to saturation in a cheap and effective way. Superconductivity has found in magnetic separation one of its major industrial applications second only to magnetic resonance imaging. Low-T sub c superconducting coils have been employed in Hig...

  13. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation

    International Nuclear Information System (INIS)

    Research highlights: ? Red mud residues (RM) were disposed in alumina production. ? Utilization of Red mud residues was affected by its iron content. ? Superconducting magnetic separation (HGSMS) was used in iron separation from RM. ? RM with high and low iron contents were separated in HGSMS. - Abstract: The disposal of bayer red mud tailings now seriously threats the environment safety. Reduction and recycling of red mud is now an urgent work in aluminum industry. High gradient superconducting magnetic separation (HGSMS) system was applied to separate the extreme fine RM particles (<100 ?m) into high iron content part and low iron content part. Two sorts of RM were fed in the HGSMS. The iron oxide contents in concentrates were about 65% and 45% when RM 1 and RM 2 were fed respectively. Meanwhile, the residues contained 52.0% or 14.1% iron oxide in residues after eight separation stages when RM 1 and RM 2 were fed respectively. The mass recovery of iron concentrates was about 10% after once separation process regardless of RM 1 or RM 2 was fed. Extreme fine particles (<10 ?m) could be captured in the HGSMS. Intergrowth of Fe and other elements is disadvantages for iron mineral separation from RM by HGSMS. Some improvement should be studied to enhance the efficiency of iron separation. It is possible for HGSMS to separate RM into high iron content part and low iron content part, the former part could be used in iron-making furnace and the later part could be recycling to sintering process for alumina production or used as construction material.

  14. Maximizing the recovery of fine iron ore using magnetic separation

    Scientific Electronic Library Online (English)

    M, Dworzanowski.

    2012-03-01

    Full Text Available The beneficiation of fine iron ore will increase in importance in the future because most new iron ore resources will be in the form of lower grade ore deposits that will require liberation of iron ore minerals at finer sizes. Generally this fine iron ore will be benefi-ciated to produce a pelletizi [...] ng concentrate with very strict chemical and physical specifications. In addition, because of the increasing demand for iron ore there are now more opportunities to produce by-product iron ore from mining operations producing other commodities. In the past the associated iron ore minerals would report to final tailings but now there is potential value to be realised from by-product revenue. These by-product iron ore opportunities are almost all centred on producing pelletizing concentrate. Currently pelletizing concentrates are produced mainly by various combinations of flotation and magnetic separation. The selection of the beneficiation route will depend on ore mineralogy and considerations around plant capacity and final concentrate quality. The main economic iron minerals are magnetic, haematite being paramagnetic and magnetite being ferromagnetic. This, therefore, means that magnetic separation can be applied, in principle, to all fine iron-ore beneficiation plants. While flotation has a considerable capacity advantage over magnetic separation, the real advantage of magnetic separation over flotation in fine iron-ore beneficiation is that treatment of -10 µm iron ore is possible-in flotation, the feed is deslimed at 10 µm and the -10 µm stream is considered to be final tailings, even though there is often a significant amount of contained iron ore. This paper describes a study around the recovery of fine magnetite in the form of a pelletizing concentrate. The study is based on an evaluation of an iron ore by-product opportunity from an iron oxide copper-gold (IOCG) deposit. Experiments were conducted to quantify the differences in magnetic separation performance with decrease in particle size treated. A mineralogical evaluation of all the test work products was undertaken to facilitate the interpretation of the test work results. These results were then used to propose an economically viable flowsheet for maximizing fine magnetite recovery using magnetic separation.

  15. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  16. Magnetically modified biological materials as perspective adsorbents for large-scale magnetic separation processes.

    Czech Academy of Sciences Publication Activity Database

    Mosiniewicz-Szablewska, E.; Šafa?íková, Miroslava; Šafa?ík, Ivo

    New York : Nova Science Publishers, 2010 - (Valencia, R.), s. 301-318 ISBN 978-1-60876-074-9. - ( Horizons in World Physics. 266) R&D Projects: GA MPO 2A-1TP1/094; GA MŠk OC09052 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetically modified biological material * magnetic separation * biologically active compounds Subject RIV: CB - Analytical Chemistry, Separation

  17. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    International Nuclear Information System (INIS)

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil

  18. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation

    International Nuclear Information System (INIS)

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 ?m with 4 wt.% over 100 ?m and content metallic iron of 93 wt%. (author)

  19. 3D magnetic measurements of the combined function magnets in separator COMBAS

    Energy Technology Data Exchange (ETDEWEB)

    Artukh, A.G.; Semchenkov, A.G. E-mail: semchenkov@main1.jinr.ru; Gridnev, G.F.; Gruszecki, M.; Koscielniak, F.; Semchenkova, O.V.; Sereda, Yu.M.; Shchepunov, V.A.; Szmider, J.; Teterev, Yu.G.; Severgin, Yu.P.; Rozhdestvensky, B.V.; Myasnikov, Yu.A.; Shilkin, N.F.; Lamzin, E.A.; Nagaenko, M.G.; Sytchevsky, S.E.; Vishnevsky, I.N

    2002-03-01

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Three-component magnetic measurements of all the magnets were performed. The measured data allow reconstruction of the 3D-distributions of the fields in all the magnets. 3D-maps are needed for particle trajectory simulations throughout the entire separator. The magnetic fields of analysing magnets, M{sub 1}, M{sub 2}, M{sub 7}, and M{sub 8}, contain quadrupole components of alternating sign that provide necessary beam focusing. All the magnets M{sub 1}-M{sub 8}, contain sextupole and octupole field components, which minimizes the second and third order aberrations. All this allowed one to increase their apertures, to form effectively a beam of the required sizes and to decrease the channel length.

  20. 3D magnetic measurements of the combined function magnets in separator COMBAS

    CERN Document Server

    Artukh, A G; Gridnev, G F; Gruszecki, M; Koscielniak, F; Semchenkova, O V; Sereda, Yu M; Shchepunov, V A; Szmider, J; Teterev, Y G; Severgin, Y P; Rozhdestvensky, B V; Myasnikov, Y A; Shilkin, N F; Lamzin, E A; Nagaenko, M G; Sytchevsky, S E; Vishnevski, I N

    2002-01-01

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Three-component magnetic measurements of all the magnets were performed. The measured data allow reconstruction of the 3D-distributions of the fields in all the magnets. 3D-maps are needed for particle trajectory simulations throughout the entire separator. The magnetic fields of analysing magnets, M sub 1 , M sub 2 , M sub 7 , and M sub 8 , contain quadrupole components of alternating sign that provide necessary beam focusing. All the magnets M sub 1 -M sub 8 , contain sextupole and octupole field components, which minimizes the second and third order aberrations. All this allowed one to increase their apertures, to form effectively a beam of the required sizes and to decrease the channel length.

  1. 3D magnetic measurements of the combined function magnets in separator COMBAS

    International Nuclear Information System (INIS)

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Three-component magnetic measurements of all the magnets were performed. The measured data allow reconstruction of the 3D-distributions of the fields in all the magnets. 3D-maps are needed for particle trajectory simulations throughout the entire separator. The magnetic fields of analysing magnets, M1, M2, M7, and M8, contain quadrupole components of alternating sign that provide necessary beam focusing. All the magnets M1-M8, contain sextupole and octupole field components, which minimizes the second and third order aberrations. All this allowed one to increase their apertures, to form effectively a beam of the required sizes and to decrease the channel length

  2. Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle

    Science.gov (United States)

    Liu, Zhuonan; Yang, Huihui; Zhang, Hao; Huang, Chuanjun; Li, Laifeng

    2012-12-01

    In the present work, oil-field wastewater purification through superconducting magnetic separation technique using a novel magnetic nanoparticle was investigated. The magnetic nanoparticle, which has a multi-shell structure with ferroferric oxide as core, dense nonporous silica as inter layer and mesoporous silica as outer layer, was synthesized by co-precipitation method. To functionalize the magnetic nanoparticle, plasma polymerization technique was adopted and poly methyl acrylate (PMA) was formed on the surface of the nanoparticle. The multi-shell structure of the nanoparticle was confirmed by transmission electron microscope (TEM) and the characteristic is measurable by FTIR. It is found that most of the pollutants (85% by turbidity or 84% by COD value) in the oil-field wastewater are removed through the superconducting magnetic separation technique using this novel magnetic nanoparticle.

  3. Design of Power Magnetic Chute Separator and Minimization of its External Magnetic Field.

    Czech Academy of Sciences Publication Activity Database

    Karban, P.; Ulrych, B.; Doležel, Ivo

    St. Petersburg : St. Petersburg Polytechnical University, 2005, s. 1-4. ISBN 5-93208-034-0. [International Conference on 2005 IEEE St. Petersburg PowerTech [0046062]. St. Petersburg (RU), 27.06.2005-30.06.2005] Institutional research plan: CEZ:AV0Z20570509 Keywords : magnetic separator * magnetic field * numerical analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Highly Sensitive and Rapid Detection of Pseudomonas aeruginosa Based on Magnetic Enrichment and Magnetic Separation

    OpenAIRE

    Tang, Yongjun; Zou, Jun; Chao MA; Ali, Zeeshan; Li, Zhiyang; LI, Xiaolong; Ma, Ninging; Mou, Xianbo; Deng, Yan; Zhang, Liming(Physics Department, Syracuse University, Syracuse, NY 13244-1130, USA); Li, Kai; Lu, GuangMing; Yang, Haowen; He, Nongyue

    2013-01-01

    A method for highly sensitive and rapid detection of Pseudomonas aeruginosa, based on magnetic enrichment and magnetic separation, is described in this paper. The magnetic nanoparticles (MNPs) were applied to adsorb genome DNA after the sample was lysed. The DNA binding MNPs were directly subjected to polymerase chain reaction (PCR) to amplify gyrB specific sequence of Pseudomonas aeruginosa. The biotin labeled PCR products were detected by chemiluminescence when they were successively incuba...

  5. Magnetic Separation for Nuclear Material Detection and Surveillance

    International Nuclear Information System (INIS)

    A high performance superconducting magnet is being developed for particle retrieval from field collected samples. Results show that maximum separation effectiveness is obtained when the matrix fiber diameter approaches the diameter of the particles to be captured. Experimentally, the authors obtained a single particle capture limit with 0.8microm PuO2 particles with dodecane as a carrier fluid. The development of new matrix materials is being pursued through the controlled corrosion of stainless steel wool, or the deposition of nickel dendrites on the existing stainless steel matrix material. They have also derived a model from a continuity equation that uses empirically determined capture cross section values. This enables the prediction of high gradient magnetic separator performance for a variety of materials and applications. The model can be used to optimize the capture cross section and thus increase the capture efficiency

  6. Magnetic Separation for Nuclear Material Detection and Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Worl, L.A.; Devlin, D.; Hill, D.; Padilla, D.; Prenger, F.C.

    1998-08-01

    A high performance superconducting magnet is being developed for particle retrieval from field collected samples. Results show that maximum separation effectiveness is obtained when the matrix fiber diameter approaches the diameter of the particles to be captured. Experimentally, the authors obtained a single particle capture limit with 0.8{micro}m PuO{sub 2} particles with dodecane as a carrier fluid. The development of new matrix materials is being pursued through the controlled corrosion of stainless steel wool, or the deposition of nickel dendrites on the existing stainless steel matrix material. They have also derived a model from a continuity equation that uses empirically determined capture cross section values. This enables the prediction of high gradient magnetic separator performance for a variety of materials and applications. The model can be used to optimize the capture cross section and thus increase the capture efficiency.

  7. Development of magnetic separator for deironing of paint industrial stock

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, J.; Csoke, B.; Antal, G. [Univ. of Miskolc (Hungary). Dept. of Process Engineering

    1995-12-31

    From the waste material of the production of aluminum foil aluminum pigment is produced for the paint industry by grinding it in white spirit. During grinding 1--2% iron impurity gets into the product, weakening its quality, from the war of the mill armor and the grinding bodies and from the contamination of the raw material. For deironing the product, a stage-operated electrically induced magnetic filter separator was developed and put into operation. The separator was sited in an explosive environment and therefore required a special design and safety system. The paper describes the results of the development work, the device that was developed, the safety system as well as the results of and experiences with the operation of the separator.

  8. Characterization of a Prototype Compact High Gradient Magnetic Separator Device for Blood Detoxification.

    Czech Academy of Sciences Publication Activity Database

    Chen, H.; Kaminski, M. D.; Stepp, Patricia Caviness; Holtzman, S.; Rosengart, A. J.

    2009-01-01

    Ro?. 44, ?. 9 (2009), s. 1954-1969. ISSN 0149-6395 Institutional research plan: CEZ:AV0Z40550506 Keywords : magnetic separation * magnetic separator * detoxification * nanotechnology Subject RIV: CE - Biochemistry Impact factor: 1.028, year: 2009

  9. Magnetically separable titania-coated nickel ferrite photocatalyst

    International Nuclear Information System (INIS)

    A magnetically separable photocatalyst was prepared by a continuous multi-step spray pyrolysis process. In the first step, nickel ferrite core particles were prepared by an ultrasonic spray pyrolysis. In the second step, tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) were sequentially injected and coated on the surface of the core particles. The sequentially coated layers were decomposed to form silica and titania layers in a final furnace reactor. The titania-silica layered particles displayed higher photoactivity than particles coated only with titania and titania-silica mixture-coated particles. The photoactivity of the titania-silica layered particles remained unchanged after magnetic separation and washing. This confirms that the adhesion between the core particles and the coated layer is strong enough to withstand vigorous mixing. It also implies that the formation of free particles of silica or titania is negligible in the second reactor. The strong adhesion between the coated layer and the nickel ferrite core is attributed to the features of the multi-step process, wherein the core particles are exposed to high temperate in the second reactor for only a few seconds and transformation of the core particles into non-magnetic particles is prohibited

  10. Magnetically separable titania-coated nickel ferrite photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yun Seup; Park, Seung Bin; Kang, Duk-Won

    2004-08-15

    A magnetically separable photocatalyst was prepared by a continuous multi-step spray pyrolysis process. In the first step, nickel ferrite core particles were prepared by an ultrasonic spray pyrolysis. In the second step, tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) were sequentially injected and coated on the surface of the core particles. The sequentially coated layers were decomposed to form silica and titania layers in a final furnace reactor. The titania-silica layered particles displayed higher photoactivity than particles coated only with titania and titania-silica mixture-coated particles. The photoactivity of the titania-silica layered particles remained unchanged after magnetic separation and washing. This confirms that the adhesion between the core particles and the coated layer is strong enough to withstand vigorous mixing. It also implies that the formation of free particles of silica or titania is negligible in the second reactor. The strong adhesion between the coated layer and the nickel ferrite core is attributed to the features of the multi-step process, wherein the core particles are exposed to high temperate in the second reactor for only a few seconds and transformation of the core particles into non-magnetic particles is prohibited.

  11. PER - CONCENTRATION OF IRON ORE SLIME IN MAGNETIC SEPARATOR

    Directory of Open Access Journals (Sweden)

    Dr. Nirlipta Nayak

    2015-08-01

    Full Text Available Indian iron ore is generally friable in nature that results in generation of significant quantity of fines (around 35% during mining and processing in the country. The ratio of lumps to fines produced in the country is 2:3. During washing and sizing of the ore, slimes with less than 0.21 mm size are generated and discarded into the tailing pond. It is estimated that around 10 million tons of slimes are being generated in every year during the processing of hematite ore and lost as tailings containing around 48 - 62% of Fe. The slime sample collected from Barsua assaying 54% Fe, 8.3% SiO2 & 11.08% Al2O3 was studied for pre concentration of iron values adopting gravity techniques followed by magnetic separa tion. The results indicated that Magnetic separation is a better pre concentration technique compared to gravity.

  12. Monte Carlo study of phase separation in magnetic insulators

    OpenAIRE

    Murawski, Szymon; Kapcia, Konrad Jerzy; Paw?owski, Grzegorz; Robaszkiewicz, Stanis?aw

    2015-01-01

    In this work we focus on the study of phase separation in the zero-bandwidth extended Hubbard with nearest-neighbors intersite Ising-like magnetic interactions $J$ and on-site Coulomb interactions $U$. The system has been analyzed by means of Monte Carlo simulations (in the grand canonical ensemble) on two dimensional square lattice (with $N=L\\times L =400$ sites) and the results for $U/(4J)=2$ as a function of chemical potential and electron concentration have been obtained...

  13. Plasma separation process: Magnet move to Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    This is the final report on the series of operations which culminated with the delivery of the Plasma Separation Process prototype magnet system (PMS) to Building K1432 at Oak Ridge National Laboratory (ORNL). This procedure included real time monitoring of the cold mass support strut strain gauges and an in-cab rider to monitor the instrumentation and direct the driver. The primary technical consideration for these precautions was the possibility of low frequency resonant vibration of the cold mass when excited by symmetrical rough road conditions at specific speeds causing excess stress levels in the support struts and consequent strut failure. A secondary consideration was the possibility of high acceleration loads due to sudden stops, severe road conditions, of impacts. The procedure for moving and transportation to ORNL included requirements for real time continuous monitoring of the eight strut stain gauges and three external accelerometers. Because the strain gauges had not been used since the original magnet cooldown, it was planned to verify their integrity during magnet warmup. The measurements made from the strut strain gauges resulted in stress values that were physically impossible. It was concluded that further evaluation was necessary to verify the usefulness of these gauges and whether they might be faulty. This was accomplished during the removal of the magnet from the building. 6 figs., 1 tab

  14. Passive magnetic separator integrated with microfluidic mixer: Demonstration of enhanced capture efficiency

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Bruus, Henrik

    2006-01-01

    In this paper, we present two results: (1) a new method for quantifying the efficiency of magnetic bead separators by magnetic measurements, and (2) a new idea for designing efficient magnetic bead separators. For microfluidic magnetic separators, a limiting factor for the capture of magnetic beads is the steep decrease of the magnetic force on the beads as a function of their distance to the magnetic structures. Our idea is to integrate the magnetic separator with a microfluidic mixer to ensure that all beads are brought close to the magnetic structures. We have fabricated a magnetic separator consisting of permalloy elements adjacent to a microfluidic channel. The performance of a system with an integrated surface structured (staggered herringbone) microfluidic mixer is compared to that of an equivalent system without the mixer. It is quantitatively demonstrated that the mixer significantly enhances the bead capture-and-release efficiency.

  15. Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bu, Minqiang; Wolff, Anders; Bruus, Henrik; Hansen, Mikkel Fougt

    2008-01-01

    We present a theoretical analysis of a new design for microfluidic magnetic bead separation. It combines an external array of mm-sized permanent magnets with magnetization directions alternating between up and down with mu m-sized soft magnetic structures integrated in the bottom of the separation channel. The concept is studied analytically for simple representative geometries and by numerical simulation of an experimentally realistic system geometry. The array of permanent magnets provides lon...

  16. Correlations, spin-charge separation, and magnetic anisotropy

    Science.gov (United States)

    Skomski, Ralph; Manchanda, Priyanka

    2015-03-01

    Much of the physics of condensed matter reflects electron-electron correlations. On an independent-electron level, correlations are described by a single Slater determinant with broken spin symmetry. This approach includes Hund's rule correlations as well the LSDA and LSDA+U approximations to density-functional theory (DFT). However, from Kondo and heavy-fermion systems it is known that the independent-electron approach fails to describe spin-charge separation in strongly correlated systems, necessitating the use of two or more Slater determinants. Using first-principle and model calculations, we show that spin-charge separation strongly affects the leading rare-earth anisotropy contribution in top-end permanent magnet materials such as Nd2Fe14B and SmCo5. Explicit correlation results are obtained for two limiting cases. First, we derive the density functional for tripositive rare-earth ions in a Bethe-type crystal field. The potential looks very different from the LSDA(+U) potentials, including gradient corrections. Second, we use a simple model to show that Kondo-type spin-charge separation yield a rare-earth anisotropy contribution absent in the independent-electron approach. This research is supported by DOE (DE-FG02-04ER46152).

  17. Monte Carlo study of phase separation in magnetic insulators

    CERN Document Server

    Murawski, Szymon; Paw?owski, Grzegorz; Robaszkiewicz, Stanis?aw

    2015-01-01

    In this work we focus on the study of phase separation in the zero-bandwidth extended Hubbard with nearest-neighbors intersite Ising-like magnetic interactions $J$ and on-site Coulomb interactions $U$. The system has been analyzed by means of Monte Carlo simulations (in the grand canonical ensemble) on two dimensional square lattice (with $N=L\\times L =400$ sites) and the results for $U/(4J)=2$ as a function of chemical potential and electron concentration have been obtained. Depending on the values of interaction parameters the system exhibits homogeneous (anti-)ferromagnetic (AF) or non-ordered (NO) phase as well as phase separation PS:AF/NO state. Transitions between homogeneous phases (i.e. AF-NO transitions) can be of first or second order and the tricritical point is also present on the phase diagrams. The electron compressibility $K$ is an indicator of the phase separation and that quantity is of particular interest of this paper.

  18. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  19. Tracing magnetic separators and their dependence on IMF clock angle in global magnetospheric simulations

    CERN Document Server

    Komar, C M; Dorelli, J C; Glocer, A; Kuznetsova, M M

    2013-01-01

    A new, efficient, and highly accurate method for tracing magnetic separators in global magnetospheric simulations with arbitrary clock angle is presented. The technique is to begin at a magnetic null and iteratively march along the separator by finding where four magnetic topologies meet on a spherical surface. The technique is verified using exact solutions for separators resulting from an analytic magnetic field model that superposes dipolar and uniform magnetic fields. Global resistive magnetohydrodynamic simulations are performed using the three-dimensional BATS-R-US code with a uniform resistivity, in eight distinct simulations with interplanetary magnetic field (IMF) clock angles ranging from 0 (parallel) to 180 degrees (anti-parallel). Magnetic nulls and separators are found in the simulations, and it is shown that separators traced here are accurate for any clock angle, unlike the last closed field line on the Sun-Earth line that fails for southward IMF. Trends in magnetic null locations and the struc...

  20. Magnetic separation - Advanced nanotechnology for future nuclear fuel recycle

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, M.; Zhang, H.; Qiang, Y. [Department of Physics and Environmental Science, University of Idaho, Moscow, ID 83844 (United States); Martin, L.; Todd, T. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-07-01

    The unique properties of magnetic nanoparticles (MNPs), such as their extremely small size and high surface area to volume ratio, provide better kinetics for the adsorption of metal ions from aqueous solutions. In this work, we demonstrated the separation of minor actinides using complex conjugates of MNPs with diethylenetriamine-pentaacetic acid (DTPA) chelator. The sorption results show the strong affinity of DTPA towards Am (III) and Pu (IV) by extracting 97% and 80% of actinides, respectively. It is shown that the extraction process is highly dependent on the pH of the solution. If these long-term heat generating actinides can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. (authors)

  1. Magnetic separation technique for groundwater by five HTS melt-processed bulk magnets arranged in a line

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Nino-Cho, Nishi-ku, Niigata 950-2181 (Japan); Seki, H.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Nino-Cho, Nishi-ku, Niigata 950-2181 (Japan); Fujishiro, H. [Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hayashi, H. [Kyushu Electric Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Stiehler, C. [IFW Dresden, Helmholzstr., 20-01069 Dresden (Germany)

    2011-11-15

    A magnetic separation was practically conducted by 10-pole HTS bulk magnets. The HTS bulk magnets were activated to 2.5 T by feeding pulsed fields of 6 T. The separation ratio of actual groundwater exceeded 70% at less than 4.8 l/min. The flocks without magnetite powder were obviously attracted to the magnetic poles. A magnetic separation study for groundwater purification has been practically conducted by using the multi-pole magnet system. The magnetic pole was composed of 10 open magnetic spaces by arranging five HTS melt-processed bulk magnets in a line in a vacuum sheath. The individual bulk magnets were activated by feeding intense pulsed magnetic fields up to 6 T. The magnetic field distribution was estimated with respect to various pole arrangements. The actual groundwater samples of Sanjo City were processed so as to form large precipitates by adding the coagulant and pH controlling. The maximum separation ratio of the iron-bearing precipitates has exceeded over 70% when slurry water was exposed to 10 magnetic poles of up to 2.5 T at a flowing rate of less than 4.8 l/min. An obvious attraction of flocks to the magnetic poles was observed even when the water contains no magnetite powder at the flow rate of 1.01 l/min. This implies the validity of the multi-pole magnet system with respect to the actual application to water purification.

  2. Influences of separate position to radial direction between bulk superconductor and permanent magnetic ring about magnetic levitation and rotating characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, S.; Komura, K.; Kashima, N.; Minami, M.; Kawashima, H.; Nara, Y.; Ishigaki, H

    2003-10-15

    The segmental structure of bulk superconductor will be needed designing ultra-large scale high temperature superconducting magnetic bearing for MWh class superconducting flywheel. The N-S poles of permanent magnetic ring assembly were arranged alternately to radial direction and the influences to magnetic levitation and rotating characteristics of the separate position of bulk superconductor to radial direction were tested. It was found when the separate position of bulk superconductor was coincided with the joint of the N-S poles of permanent magnets, both the magnetic levitation and the rotating characteristics were the same as the case of non-separate superconductor. When its position was the center of one side pole of permanent magnets, the levitation was the same as the case of non-separate superconductor, but the behavior of rotating characteristics changed and the loss increased as compared with the case of non-separate type.

  3. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    International Nuclear Information System (INIS)

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  4. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  5. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ? The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ? The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ? Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  6. Exploiting Size-Dependent Drag and Magnetic Forces forSize-Specific Separation of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hunter B. Rogers

    2015-08-01

    Full Text Available Realizing the full potential of magnetic nanoparticles (MNPs in nanomedicinerequires the optimization of their physical and chemical properties. Elucidation of the effectsof these properties on clinical diagnostic or therapeutic properties, however, requires thesynthesis or purification of homogenous samples, which has proved to be difficult. Whileinitial simulations indicated that size-selective separation could be achieved by flowingmagnetic nanoparticles through a magnetic field, subsequent in vitro experiments wereunable to reproduce the predicted results. Magnetic field-flow fractionation, however, wasfound to be an effective method for the separation of polydisperse suspensions of iron oxidenanoparticles with diameters greater than 20 nm. While similar methods have been used toseparate magnetic nanoparticles before, no previous work has been done with magneticnanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM anddynamic light scattering (DLS analysis were used to confirm the size of the MNPs. Furtherdevelopment of this work could lead to MNPs with the narrow size distributions necessary fortheir in vitro and in vivo optimization.

  7. Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bu, Minqiang

    2008-01-01

    We present a theoretical analysis of a new design for microfluidic magnetic bead separation. It combines an external array of mm-sized permanent magnets with magnetization directions alternating between up and down with mu m-sized soft magnetic structures integrated in the bottom of the separation channel. The concept is studied analytically for simple representative geometries and by numerical simulation of an experimentally realistic system geometry. The array of permanent magnets provides long-range magnetic forces that attract the beads to the channel bottom, while the soft magnetic elements provide strong local retaining forces that prevent captured beads from being torn loose by the fluid drag. The addition of the soft magnetic elements increases the maximum retaining force by two orders of magnitude. The design is scalable and provides an efficient and simple solution to the capture of large amounts of magnetic beads on a microsystem platform.

  8. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza, E-mail: amanda@igc.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: amanda@igc.ufmg.br, E-mail: lurdesfernandes@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horionte, MG (Brazil)

    2013-07-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  9. Magnetic separation in microfluidic systems using microfabricated electromagnets - Experiments and simulations

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Hansen, Ole

    2005-01-01

    We present experiments and simulations of magnetic separation of magnetic beads in a microfluidic channel. The separation is obtained by microfabricated electromagnets. The results of our simulations using FEMLAB and Mathematica are compared with experimental results obtained using our own microfabricated systems. (c) 2005 Elsevier B.V. All rights reserved.

  10. Open gradient magnetic separation utilizing NbTi, Nb3Sn and Bi-2223 materials

    International Nuclear Information System (INIS)

    Superconducting magnets enable the magnetic separation of particles with small magnetic susceptibility. In this paper, we compare superconducting separator magnets made of Nb3Sn, NbTi and Bi-2223 materials. The separator system is used to determine the optimal conditions for separation of various slurries. The magnet should provide a high and nearly constant magnetic force density. These requirements are met with racetrack coils. Geometries consisting of one or two racetracks have been examined. In order to keep the material costs at a reasonable level, the volume of the magnet has been minimized taking into account the constraints set by the force and current densities. Sequential quadratic programming (SQP) was used in the optimization procedure. The force density has been calculated using an analytical two-dimensional model. The critical current density of the coil was obtained by solving the magnetic flux density from a three-dimensional model using the finite element method. We have compared magnetic force densities and wire lengths in magnets made of different materials. For magnets made of low-temperature superconductors, the optimized geometry consisted of two coils. For magnets made of high-temperature superconductors, the minimum volume was achieved by using only one coil. (author)

  11. Phase separation in cuprate superconductors: study of magnetic resonance

    International Nuclear Information System (INIS)

    Phase distribution processes in ceramics and crystals of cuprate superconductors of 1-2-3 type compounds are investigated by magnetic resonance and microwave spectroscopy methods. Magnetic resonance signals observed in these compounds after quenching are studied. Magnetic resonance signal intensity anticorrelates with the quantity of a superconducting phase in a sample. An intensive magnetic resonance signal occurs in cuprate superconductor 123 type samples after quenching in air at the temperature exceeding 1000 k and the superconducting phase disappears alsmost completely. During a shortterm annealing in the air at the temperatures exceeding 300 K the magnetic resonance signal disappears and the superconducting phase reconduction takes place. 17 refs.; 6 figs

  12. The electromagnetic design of a permanent magnet based separator

    CERN Document Server

    Nedelcu, S

    2002-01-01

    The aim of this work was to design a permanent magnet based device that can selectively transport paramagnetic particles. Using specialised electromagnetic design software various arrangements of permanent magnets have been investigated. Each test geometry had to be constructively simple and able to produce highly non-uniform magnetic fields before being considered further in any more detail. The main parameter to indicate that the test geometry might be a suitable device has been ascribed to the ratio eta between the highest (ON) and lowest (OFF) magnetic fields that were measured. A linear arrangement of permanent magnets has been considered first. This device produced a ratio eta approx 2. Further, the cylindrical and the tubular arrangements may be considered as substantial improvements over the first geometry. The OFF magnetic fields have been substantially reduced by the method of magnetic shielding. Intensive research and modelling has been spent on addressing the problem of finding the optimal geometr...

  13. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    CERN Document Server

    Huang, Xu-Guang; Liao, Jinfeng

    2015-01-01

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  14. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  15. Purification of condenser water in thermal power station by superconducting magnetic separation

    International Nuclear Information System (INIS)

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly ?-Fe2O3 (hematite) and ?-Fe2O3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  16. Highly Sensitive and Rapid Detection of Pseudomonas aeruginosa Based on Magnetic Enrichment and Magnetic Separation

    Directory of Open Access Journals (Sweden)

    Yongjun Tang, Jun Zou, Chao Ma, Zeeshan Ali, Zhiyang Li, Xiaolong Li, Ninging Ma, Xianbo Mou, Yan Deng, Liming Zhang, Kai Li, Guangming Lu, Haowen Yang, Nongyue He

    2013-01-01

    Full Text Available A method for highly sensitive and rapid detection of Pseudomonas aeruginosa, based on magnetic enrichment and magnetic separation, is described in this paper. The magnetic nanoparticles (MNPs were applied to adsorb genome DNA after the sample was lysed. The DNA binding MNPs were directly subjected to polymerase chain reaction (PCR to amplify gyrB specific sequence of Pseudomonas aeruginosa. The biotin labeled PCR products were detected by chemiluminescence when they were successively incubated with the probes-modified MNPs and alkaline phosphatase (ALP labeled streptavidin (SA. Agarose gel electrophoresis analyses approved the method of in situ PCR to be highly reliable. The factors which could affect the chemiluminiscence were studied in detail. The results showed that the MNPs of 400 nm in diameter are beneficial to the detection. The sequence length and the binding site of the probe with a target sequence have obvious effects on the detection. The optimal concentration of the probes, hybridization temperature and hybridization time were 10 ?M, 60 ºC and 60 mins, respectively. The method of in situ PCR based on MNPs can greatly improve the utilization rate of the DNA template ultimately enhancing the detection sensitivity. Experiment results proved that the primer and probe had high specificity, and Pseudomonas aeruginosa was successfully detected with detection limits as low as 10 cfu/mL by this method, while the detection of a single Pseudomonas aeruginosa can also be achieved.

  17. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    International Nuclear Information System (INIS)

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.007832 =1.4058) in comparison with other samples

  18. Theoretical analysis of a simple yet efficient portable magnetic separator design for separation of magnetic nano/micro-carriers from human blood flow

    International Nuclear Information System (INIS)

    A technology that could physically remove substances from the blood such as biological, chemical, or radiological toxins could dramatically improve treatment of disease. One method in development proposes to use magnetic-polymer spheres to selectively bind toxins and remove them by magnetic filtration. Although magnetic filtration is a developed technology, the clinical boundary conditions described here require a new filter design. We investigated the removal of toxin-bound magnetic carriers from the blood stream using 2-D FEMLAB simulations. The magnetic separator consisted of a permanent magnet with parallel ferromagnetic prisms on the faces and in contact with a straight tube carrying the magnetic-polymer spheres in suspension. We varied the following parameters: blood flow velocity, the size, and number of ferromagnetic prisms, and the ferromagnetic material in both prisms and magnets. The capture efficiency reached maximum values when the depth of the prisms equaled the diameter of the tubing and the saturation magnetization of the prism material equaled twice that of the magnet. With this design a piece of 2 mm (diameter) tube carrying the fluid resulted in 95% capture of 2.0 ?m magnetic-polymer spheres at 10 cm/s flow velocity

  19. Fluctuations of the Solitary Bubble at the Separation from the Air Cavity, Compressed by the Magnetic Field in Magnetic Liquid

    OpenAIRE

    Boev, M.L.; Polunin, V.M.; O.V. Lobova; Shabanova, I.A.; Chervjakov, L.M.; A.N. Ryapolov

    2013-01-01

    In the article, on the basis of the concept of "display" of geometry of a free surface of the "low-magnetic" environment by the topography of isolines of the module of intensity of a magnetic field, it is studied a form of a free surface of magnetic fluid in a static condition at the initial stage of rapprochement of a ring magnet with a surface of a column of magnetic fluid in a tube and at a stage of pressing of a cavity to a bottom. It is shown that the separation of bubbles from an air ca...

  20. Separation and Focusing of Magnetic Beads for Agglutination Tests

    OpenAIRE

    Afshar Ghasemlouy, Rana

    2011-01-01

    Functional magnetic micro- and nanoparticles are used in bioanalytical applications as solid carriers for capture, transport and detection of biomolecules or magnetically labeled cells. Colloidal suspensions of such particles provide a large specific surface for chemical binding and therefore allow highly efficient interactions with target molecules in a sample solution. Controlled actuation and manipulation of these mobile substrates in the microflui...

  1. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water.

    Czech Academy of Sciences Publication Activity Database

    Šafa?ík, Ivo; Horská, Kate?ina; Martinez, L. M.; Šafa?íková, Miroslava

    Melville : American institute of physics, 2010 - (Häfeli, U.; Schütt, W.; Zborowski, M.), s. 146-151 ISBN 978-0-7354-0866-1. ISSN 0094-243X. - (AIP Conference Proceedings. 1311). [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /8./. Rostock (DE), 25.05.2010-29.05.2010] Institutional research plan: CEZ:AV0Z60870520 Keywords : drug delivery * magnetic microspheres and ferrofluids * magnetic nanospheres * molecular biology * stem cell separation * starch production * potato waste water * magnetic separation * chitosan * lectin * Solanum tuberosum Subject RIV: EH - Ecology, Behaviour

  2. Closed-loop magnetic separation of nanoparticles on a packed bed of spheres

    Science.gov (United States)

    Magnet, Cécilia; Akouala, Mesferdon; Kuzhir, Pavel; Bossis, Georges; Zubarev, Andrey; Wereley, Norman M.

    2015-05-01

    In this work, we consider magnetic separation of iron oxide nanoparticles when a nanoparticle suspension (diluted ferrofluid) passes through a closed-loop filter composed of a packed bed of micro-beads magnetized by an externally applied magnetic field. We show that the capture of nanoparticles of a size as small as 60 nm is easily achieved at low-to-moderate magnetic fields (16-32 kA/m) thanks to relatively strong magnetic interactions between them. The key parameter governing the capture process is the Mason number—the ratio of hydrodynamic-to-magnetic forces exerted to nanoparticles. The filter efficiency, ?, defined through the ratio of the inlet-to-outlet concentration shows a power-law dependency on Mason number, ??M a-0.83 , in the range of 102nanoparticles, followed by magnetic separation of the nanoparticles.

  3. Colossal magnetoresistance and phase separation in magnetic semiconductors

    CERN Document Server

    Nagaev, Eduard L

    2002-01-01

    Colossal magnetoresistance materials, to which manganites and conventional ferromagnetic semiconductors belong, draw great attention because of their intriguing physical properties and the excellent prospects for their practical applications in electronic devices. In addition, magnetic semiconductors are basic materials for high-temperature conductors, and it is impossible to construct a theory of the latter without elucidating properties of the former.This book presents theoretical and experimental results on manganites and conventional magnetic semiconductors, with emphasis on the former. It

  4. Elastic oscillations of bubbles separated from an air cavity in a magnetic fluid

    Science.gov (United States)

    Polunin, V. M.; Shabanova, I. A.; Karpova, G. V.; Kobelev, N. S.; Ryabtsev, K. S.; Platonov, V. B.; Aref'ev, I. M.

    2015-07-01

    The elastic oscillations of air bubbles separated from an air cavity compressed by the ponderomotive forces of a magnetic field in a magnetic fluid are accompanied by the appearance of an alternating magnetic field component. The frequency of the alternating component corresponds to the frequency of radial bubble oscillations, and this fact is used to determine the bubble size. A great body of experimental data has been obtained from six magnetic fluid samples with different viscosities. Based on these data, histograms illustrating the bubble radius distribution are plotted. The appearance of the alternating magnetic field component caused by bubble oscillations in a magnetized magnetic fluid can be used to develop a fundamentally new method for supplying small metered gas shots to a reactor, as well as to study the boiling process in a magnetic fluid.

  5. Immunomagnetic separation of Salmonella cells using newly designed magnetic carrriers.

    Czech Academy of Sciences Publication Activity Database

    Rittich, B.; Španová, A.; Su?iková, J.; Štrumcová, S.; Lenfeld, Ji?í; Horák, Daniel

    Frankfurt am Main : Dechema e. V. Society for Chemical Engineering and Biotechnology, 2002. s. P28. [International Symposium on the Separation of Proteins, Peptides and Polynucleotides /22./. 10.11.2002-13.11.2002, Heidelberg] R&D Projects: GA AV ?R KSK4055109 Keywords : Salmonella cells Subject RIV: CC - Organic Chemistry

  6. Fluctuations of the Solitary Bubble at the Separation from the Air Cavity, Compressed by the Magnetic Field in Magnetic Liquid

    Directory of Open Access Journals (Sweden)

    M.L. Boev

    2013-12-01

    Full Text Available In the article, on the basis of the concept of "display" of geometry of a free surface of the "low-magnetic" environment by the topography of isolines of the module of intensity of a magnetic field, it is studied a form of a free surface of magnetic fluid in a static condition at the initial stage of rapprochement of a ring magnet with a surface of a column of magnetic fluid in a tube and at a stage of pressing of a cavity to a bottom. It is shown that the separation of bubbles from an air cavity occurs in close proximity to the plane of symmetry of a ring magnet on its axis. It is described the method and experimental installation for studying the possibility of electromagnetic indication of sizes of the air bubbles, being in magnetic fluid. It is discussed the results of experimental research on process of a separation of solitary air bubble from a cavity, contained in magnetic fluid and squeezed by ponderomotive forces of a magnetic field which are of interest for creation of essentially new technique of the dosed supply of small amount of gas in the reactor.

  7. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis

    Science.gov (United States)

    Florescu, Octavian; Wang, Kevan; Au, Patrick; Tang, Jimmy; Harris, Eva; Beatty, P. Robert; Boser, Bernhard E.

    2010-03-01

    We have demonstrated a postprocessed complementary metal oxide semiconductor (CMOS) integrated circuit (IC) capable of on-chip magnetic separation, i.e., removing via magnetic forces the nonspecifically bound magnetic beads from the detection area on the surface of the chip. Initially, 4.5 ?m wide superparamagnetic beads sedimenting out of solution due to gravity were attracted to the detection area by a magnetic concentration force generated by flowing current through a conductor embedded in the IC. After sedimentation, the magnetic beads that did not bind strongly to the functionalized surface of the IC through a specific biochemical complex were removed by a magnetic separation force generated by flowing current through another conductor placed laterally to the detection area. As the spherical bead pivoted on the surface of the chip, the lateral magnetic force was further amplified by mechanical leveraging, and 50 mA of current flowing through the separation conductor placed 18 ?m away from the bead resulted in 7.5 pN of tensile force on the biomolecular tether immobilizing the bead. This force proved high enough to break nonspecific interactions while leaving specific antibody-antigen bonds intact. A sandwich capture immunoassay on purified human immunoglobulin G showed strong correlation with a control enzyme linked immunosorbent assay and a detection limit of 10 ng/ml or 70 pM. The beads bound to the detection area after on-chip magnetic separation were detected optically. To implement a fully integrated molecular diagnostics platform, the on-chip magnetic separation functionality presented in this work can be readily combine with state-of-the art CMOS-based magnetic bead detection technology.

  8. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    Science.gov (United States)

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  9. Aligning effect of magnetic field on PDLC films during the phase separation

    Science.gov (United States)

    Nazarov, V. G.; Parshin, A. M.; Zyryanov, V. Y.; Shabanov, V. F.; Lapanik, V. I.; Bezborodov, V. S.

    2007-05-01

    The results ofthe study ofthe uniaxially oriented PDLC films prepared by solvent induced phase separation (SIPS) method are presented. The samples were obtained applying a longitudinal magnetic field while the phase separation of the liquid crystal and polymer occurs due to the evaporation of common solvent from the uniform solution. In the presence of magnetic field the nematic liquid crystals 4-n-pentyl-4' -cyanophenylcyclohexane (5PCH), the 4-n-pentyl-4'- cyanobiphenyl (SCB) and nematic mixture LN-394 form the separate droplets in polyvinylbutyral (PVB) matrix. At that, the nematics 5PCH and LN-394 form always the stable bipolar structures with the order parameter of the droplet axes depending on the value of the applied field. In 5CB droplets the bipolar structure is realized only in a weak magnetic field and the radial one is formed in a strong magnetic field. At intermediate field the non-equilibrium structures are appeared that are characterized by the flickering textures.

  10. Circular Halbach Array for Fast Magnetic Separation of Hyaluronan-Expressing Tissue Progenitors.

    Science.gov (United States)

    Joshi, Powrnima; Williams, P Stephen; Moore, Lee R; Caralla, Tonya; Boehm, Cynthia; Muschler, George; Zborowski, Maciej

    2015-10-01

    Connective tissue progenitors (CTPs) are a promising therapeutic agent for bone repair. Hyaluronan, a high molecular mass glycosaminoglycan, has been shown by us to be a suitable biomarker for magnetic separation of CTPs from bone marrow aspirates in a canine model. For the therapy to be applicable in humans, the magnetic separation process requires scale-up without compromising the viability of the cells. The scaled-up device presented here utilizes a circular Halbach array of diametrically magnetized, cylindrical permanent magnets. This allows precise control of the magnetic field gradient driving the separation, with theoretical analysis favoring a hexapole field. The separation vessel has the external diameter of a 50 mL conical centrifuge tube and has an internal rod that excludes cells from around the central axis. The magnet and separation vessel (collectively dubbed the hexapole magnet separator or HMS) was tested on four human and four canine bone marrow aspirates. Each CTP-enriched cell product was tested using cell culture bioassays as surrogates for in vivo engraftment quality. The magnetically enriched cell fractions showed statistically significant, superior performance compared to the unenriched and depleted cell fractions for all parameters tested, including CTP prevalence (CTPs per 10(6) nucleated cells), proliferation by colony forming unit (CFU) counts, and differentiation by staining for the presence of osteogenic and chondrogenic cells. The simplicity and speed of the HMS operation could allow both CTP isolation and engraftment during a single surgical procedure, minimizing trauma to patients and lowering cost to health care providers. PMID:26368657

  11. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison.

    Science.gov (United States)

    Hubbuch, J J; Matthiesen, D B; Hobley, T J; Thomas, O R

    2001-01-01

    A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non-porous superparamagnetic supports followed by rapid separation of the 'loaded' adsorbents from the feedstock using high gradient magnetic separation technology. For the recovery of Savinase from a cell-free Bacillus clausii fermentation liquor using bacitracin-linked adsorbents, the integrated magnetic separation system exhibited substantially enhanced productivity over expanded bed adsorption when operated at processing velocities greater than 48 m h(-1). Use of the bacitracin-linked magnetic supports for a single cycle of batch adsorption and subsequent capture by high gradient magnetic separation at a processing rate of 12 m h(-1) resulted in a 2.2-fold higher productivity relative to expanded bed adsorption, while an increase in adsorbent collection rate to 72 m h(-1) raised the productivity to 10.7 times that of expanded bed adsorption. When the number of batch adsorption cycles was then increased to three, significant drops in both magnetic adsorbent consumption (3.6 fold) and filter volume required (1.3 fold) could be achieved at the expense of a reduction in productivity from 10.7 to 4.4 times that of expanded bed adsorption. PMID:11787803

  12. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Matthiesen, D.B.

    2001-01-01

    A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non-porous superparamagnetic supports followed by rapid separation of the `loaded' adsorbents from the feedstock using high gradient magnetic separation technology. For the recovery of Savinase(R) from a cell-free Bacillus clausii fermentation liquor using bacitracin-linked adsorbents, the integrated magnetic separation system exhibited substantially enhanced productivity over expanded bed adsorption when operated at processing velocities greater than 48 m h(-1). Use of the bacitracin- linked magnetic supports for a single cycle of batch adsorption and subsequent capture by high gradient magnetic separation at a processing rate of 12 m h(-1) resulted in a 2.2-fold higher productivity relative to expanded bed adsorption, while an increase in adsorbent collection rate to 72 m h(-1) raised the productivity to 10.7 times that of expanded bed adsorption. When the number of batch adsorption cycles was then increased to three, significant drops in both magnetic adsorbent consumption (3.6 fold) and filter volume required (1.3 fold) could be achieved at the expense of a reduction in productivity from 10.7 to 4.4 times that of expanded bed adsorption.

  13. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    International Nuclear Information System (INIS)

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration

  14. Particle Capture Efficiency in a Multi-Wire Model for High Gradient Magnetic Separation

    CERN Document Server

    Eisenträger, Almut; Griffiths, Ian M

    2014-01-01

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles, removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle's entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separa...

  15. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    CERN Document Server

    Huang, Xu-Guang

    2015-01-01

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and axial current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Similar effects also exist in rotating trapped Bose gases with Weyl-Zeeman spin orbit coupling. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects.

  16. Botryococcus braunii cells: ultrasound-intensified outdoor cultivation integrated with in situ magnetic separation.

    Science.gov (United States)

    Wang, Shi-Kai; Wang, Feng; Stiles, Amanda R; Guo, Chen; Liu, Chun-Zhao

    2014-09-01

    An integrated system combining ultrasound-intensified outdoor cultivation of Botryococcus braunii with in situ magnetic harvesting of the algal cells was developed. The algal cells were cultivated in 200 L plastic bag reactors, and seven five-minute ultrasonic treatments at a four-day interval using a fixed frequency of 40 kHz and a total power of 300 W improved algal cell biomass and hydrocarbon productivity. The algal cells were harvested using functional magnetic particles and a magnetic separator, and a recovery efficiency of 90% was obtained under continuous operation at a flow rate of 100mL/min using the in situ magnetic separation system. The overall production cost using the integrated system was US$ 25.14 per kilogram of B. braunii dry biomass. The system developed in this study provides a base for the industrial production of B. braunii. PMID:24998478

  17. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells

    OpenAIRE

    Chimma Pattamawan; Pannadaporn Peeranad; Sratongno Panudda; Somsri Sangdao; Ottinger Annette; Bhakdi Sebastian C; Malasit Prida; Pattanapanyasat Kovit; Neumann Hartmut PH

    2010-01-01

    Abstract Background Highly purified infected red blood cells (irbc), or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS) offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported us...

  18. Theoretical and Experimental Study of the Magnetic Separation of Pollutants from Wastewater

    OpenAIRE

    Mariani, Giacomo

    2010-01-01

    This Thesys reports the study of a HGMS (High GradientMagnetic Separation) process for the treatment of industrialwastewaters that considers an assisted chemical-physical pre-treatment for the removal of heavy metals through the bound by adsorption with added iron-oxide particulate matter (hematite). The considered filter, constituted by ferromagnetic stainless steel wool and permanent magnets, is studied with a new approach based on a statistical analysis that requires the study of the traje...

  19. Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia

    OpenAIRE

    Ahedo Galilea, Eduardo; Merino, Mario

    2012-01-01

    A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inerti...

  20. Magselectofection: A novel integrated technology of magnetic separation and genetic modification of target cells

    OpenAIRE

    Sanchez Antequera, Yolanda

    2010-01-01

    Research applications and cell therapies involving genetically modified cells require reliable, standardized and cost-effective methods for cell manipulation. The goal of this work is to provide a novel methodology that produces, in a single standardized techonology, genetic modification and cell isolation. We have named this novel procedure ?Magselectofection”. The approach is based on magnetic cell separation and magnetically-guided gene delivery (magnetofection). Optimized gene vectors ass...

  1. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yali; Li, Huaimei [College of Chemical Engineering, Shandong University of Technology, 255081, Zibo, Shandong (China); Yu, Xianjin, E-mail: xjy@sdut.edu.cn [College of Chemical Engineering, Shandong University of Technology, 255081, Zibo, Shandong (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Using reduction roasting-water leaching-magnetic separation method, the recovery of iron from cyanide tailings was optimized. Black-Right-Pointing-Pointer The recovery of iron was highly depended on the water-leaching process after reduction roasting. Black-Right-Pointing-Pointer The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 Degree-Sign C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 Degree-Sign C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  2. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation

    International Nuclear Information System (INIS)

    Highlights: ? Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ? The recovery of iron was highly depended on the water-leaching process after reduction roasting. ? The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  3. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.

    Science.gov (United States)

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-04-30

    Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism. PMID:22333161

  4. Magnetic separation of colloidal nanoparticle mixtures using a material specific peptide.

    Science.gov (United States)

    Essinger-Hileman, Elizabeth R; Popczun, Eric J; Schaak, Raymond E

    2013-06-18

    A material specific peptide bound to Fe2O3 facilitates the selective sequestration of Au from a colloidal mixture of Au and CdS nanoparticles; the Au-Fe2O3 precipitate can then be magnetically separated from the colloidal CdS, and the Au nanoparticles can be recovered upon release from the Fe2O3. PMID:23661051

  5. APPLICATION OF HIGH-GRADIENT MAGNETIC SEPARATION TO FINE PARTICLE CONTROL

    Science.gov (United States)

    The report gives results of an assessment of the potential use of high-gradient magnetic separation (HGMS) as a means of collecting gas stream particulates. The assessment included both experiments and analyses of theoretical models. Phase I included evaluations of theoretical ex...

  6. Desulphurisation of coal pyrolysis and magnetic separation. Desulfuracion de carbones mediante pirolisis y separacion magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.C.; Ayala, N.; Ibarra, J.V.; Moliner, R.; Miranda, J.L.; Vazquez, A. (CENIM, Madrid (Spain))

    1991-07-01

    The desulphurisation of coal intended for use inthermal power stations is a priority issue in the national strategy for the reduction of acid rain. This article studies the feasibility of eliminating pyritic sulphur from coal by physical methods using high intensity pyrolysis and magnetic separation. 6 refs., 9 figs., 4 tabs.

  7. Separation of flow from chiral magnetic effect in U+U collisions using spectator asymmetry

    CERN Document Server

    Chatterjee, Sandeep

    2014-01-01

    We demonstrate that the prolate shape of the Uranium nucleus generates anti-correlation between spectator asymmetry and initial state ellipticity of the collision zone, providing a way to constrain the initial event shape in U+U collisions. As an application, we show that this can be used to separate the background contribution due to flow from the signals of chiral magnetic effect.

  8. Purification of condenser water in thermal power station by superconducting magnetic separation

    Science.gov (United States)

    Ha, D. W.; Kwon, J. M.; Baik, S. K.; Lee, Y. J.; Han, K. S.; Ko, R. K.; Sohn, M. H.; Seong, K. C.

    2011-11-01

    Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly ?-Fe 2O 3 (hematite) and ?-Fe 2O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  9. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    International Nuclear Information System (INIS)

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  10. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    Science.gov (United States)

    Kondo, K.; Jin, T.; Miura, O.

    2010-11-01

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N 2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  11. Interplay of structural and magnetic nanoscale phase separation in layered cobaltites

    Science.gov (United States)

    Allieta, M.; Scavini, M.; Naldoni, A.; Coduri, M.; Cappelli, S.; Oliva, C.; Santangelo, S.; Triolo, C.; Patané, S.; Lascialfari, A.; Scagnoli, V.

    2015-08-01

    We report on the structural, electronic, and magnetic phases of a previously unexplored region in the phase diagram of GdBaC o2O5+? (? =0.57 and 0.63). Despite a homogenous average structure displayed by both the samples, the orthorhombic highly oxygenated GdBaC o2O5.63 shows clear signatures of structural nanoscale phase separation. By combining a pair distribution function with photoluminescence and electron spin resonance techniques, we found that the nanoscale phase separation is induced by an inhomogeneous distribution of ferromagnetic C o3 +-C o4 + clusters embedded in an antiferromagnetic C o3 + -rich matrix. In addition, we uncovered a phase evolution involving the collapse of the orthorhombic strain below room temperature. The origin of this noncanonical transition seems to be associated with the interplay of the observed nanoscale phase separation and a new magnetic phase transition occurring below T ˜180 K .

  12. Magnetic separation of Dy(III) ions from homogeneous aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pulko, B., E-mail: Barbara.Pulko@tu-dresden.de; Yang, X.; Lei, Z.; Odenbach, S.; Eckert, K., E-mail: Kerstin.Eckert@tu-dresden.de [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, Dresden 01069 (Germany)

    2014-12-08

    The possibility to enrich paramagnetic dysprosium(III) ions in a magnetic field gradient is proved by means of interferometry, which may open the route for a magnetic separation of rare earth ions from aqueous solutions. The separation dynamics are studied for three different concentrations of DyCl{sub 3} and compared with those found recently in a sulphate solution of the 3d ion Mn(II). In view of the similar-sized hydration spheres for Dy(III) and Mn(II), the slower separation dynamics in DyCl{sub 3} is attributed to both a higher densification coefficient and the strong impact of Brownian motion due to the absence of ion-pair clusters.

  13. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    Science.gov (United States)

    Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  14. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    International Nuclear Information System (INIS)

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  15. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    Science.gov (United States)

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  16. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study.

    Science.gov (United States)

    Brandão, Delfina; Liébana, Susana; Campoy, Susana; Alegret, Salvador; Isabel Pividori, María

    2015-10-01

    This paper addresses a comparative study of immunomagnetic separation of Salmonella using micro and nano-sized magnetic carriers. In this approach, nano (300 nm) and micro (2.8 ?m) sized magnetic particles were modified with anti-Salmonella antibody to pre-concentrate the bacteria from the samples throughout an immunological reaction. The performance of the immunomagnetic separation on the different magnetic carriers was evaluated using classical culturing, confocal and scanning electron microscopy to study the binding pattern, as well as a magneto-actuated immunosensor with electrochemical read-out for the rapid detection of the bacteria in spiked milk samples. In this approach, a second polyclonal antibody labeled with peroxidase as electrochemical reporter was used. The magneto-actuated electrochemical immunosensor was able to clearly distinguish between food pathogenic bacteria such as Salmonella enterica and Escherichia coli, showing a limit of detection (LOD) as low as 538 CFU mL(-1) and 291 CFU mL(-1) for magnetic micro and nanocarriers, respectively, in whole milk, although magnetic nanoparticles showed a noticeable higher matrix effect and higher agglomeration effect. These LODs were achieved in a total assay time of 1h without any previous culturing pre-enrichment step. If the samples were pre-enriched for 8 h, the magneto immunosensor based on the magnetic nanoparticles was able to detect as low as 1 CFU in 25 mL of milk (0.04 CFU mL(-1)). PMID:26078149

  17. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p??3.5?kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p??7?kbar. At 3.5?kbar superconductivity abruptly appears with its maximum Tc??1.2?K which decreases upon increasing the pressure. In the intermediate pressure region (3.5??p??7?kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (?s). A scaling of ?s with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  18. Gravitational and magnetic separation in self-assembled clay-ferrofluid nanocomposites

    Scientific Electronic Library Online (English)

    F.L.O., Paula; G.J. da, Silva; R., Aquino; J., Depeyrot; J.O., Fossum; K.D., Knudsen; G., Helgesen; F.A., Tourinho.

    2009-04-01

    Full Text Available We report on experimental observations of self-assemblies in colloidal dispersions of clay nanoplatelets and magnetic nanoparticles. Visual observations have been combined with small angle X-ray scattering (SAXS) in the study of several composites at a fixed clay concentration in the dilute regime, [...] and varying ferrofluid concentrations. Our visual observations which encompass macroscopic separation in gravitational- and magnetic field, indicate that all samples present a concentrated phase and a diluted one. SAXS data obtained from each phase are consistent with the interpretation that the scattering contribution from the clay nano-platelets in the samples can be neglected in comparison with the magnetic particle contribution. The analysis of the scattered intensity is performed combining two models, one based on the global scattering function and the other allowing the extraction of the structure factor of the mixtures. The parameters of the size distribution of magnetic nanoparticles determined by both methods are in good agreement. The structure factor of the mixtures shows that on a local scale, the mixtures behave like a gas of isolated magnetic nanoparticles. It also indicates the presence of interactions between magnetic nanoparticles mediated by the presence of Laponite platelets. Such interactions could be attributed with a progressive partial phase separation between spheres and discs rather than to the formation of dense aggregates.

  19. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p??3.5?kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p??7?kbar. At 3.5?kbar superconductivity abruptly appears with its maximum Tc??1.2?K which decreases upon increasing the pressure. In the intermediate pressure region (3.5??p??7?kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (?s). A scaling of ?s with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  20. A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification

    International Nuclear Information System (INIS)

    A portable magnetic separator device is being developed for a proposed magnetically based detoxification system. In this paper, the performance of this device was evaluated via preliminary in vitro flow experiments using simple fluids and a separator unit consisting of one tube and two metal wires, each at the top and bottom of the tube. The effects of the following factors were observed: mean flow velocity Uo (0.14-45 cm s-1), magnetic field strength ?oHo (0.125-0.50 T), wire size Rw (0.125, 0.250 and 0.500 mm), wire length Lw (2, 5 and 10 cm), wire materials (nickel, stainless steel 304 and 430) and tube size (outer radius Ro = 0.30 mm and inner radius Ri = 0.25 mm; Ro = 0.50 mm and Ri = 0.375 mm; and Ro = 2.0 mm and Ri = 1.0 mm). Our observations showed that the experimental results fit well with the corresponding theoretical results from the model we previously developed at a low flow velocity area (for example, Uo ? 20 cm s-1), strong external magnetic field (for example, ?0.30 T) and long wire length (for example, Lw = 10 cm). The experimental results also showed that more than 90% capture efficiency is indeed achievable under moderate systemic and operational conditions. Pressure drop measurements revealed that the device could work well under human physiological and clinical conditions, and sphere buildup would not have any considerable effect on the pressure drop of the device. The breakthrough experiments demonstrated that a lower flow rate V, higher applied magnetic field ?oHo and diluted sphere suspension, i.e. lower Co, would delay the breakthrough. All the results indicate the promise of this portable magnetic separator device to efficiently in vivo sequestrate nano-/micro-spheres from blood flow in the future magnetically based detoxification system

  1. Magnetic and transport properties of phase-separated manganite BiLaCaMnO

    Science.gov (United States)

    Zhang, R. R.; Kuang, G. L.; Zhao, B. C.; Sun, Y. P.

    2010-01-01

    We have investigated the magnetic and transport properties of Bi 0.1La 0.5Ca 0.4MnO 3 manganite, systematically. Four distinct feature temperature points in the temperature dependence of the magnetization curve M(T) occurring at ˜218 K, ˜181 K,˜112 K and ˜38 K are observed; these are suggested to be related to charge ordered (CO), weak ferromagnetic (FM), strong FM, and blocked metastable state. These temperature points can be changed by applying magnetic fields. The field-cooled (FC) M(T) curves show an obvious thermal hysteresis between the FC cooling (FCC) and FC warming (FCW) measuring process. The large variation between the FC and zero-field-cooled (ZFC) magnetization curves at low temperatures reflects the existence of blocked metastable states separated by high energy barriers. The blocked state can be weakened or eventually destroyed by applying magnetic fields. The field dependence of the magnetization and resistivity at both 5 K and 130 K shows that the magnetic and electrical transport properties are tightly correlated with the same critical field. The results indicate that CO and FM phases coexist in the sample at low temperatures. The local lattice distortion induced by the Bi 3+ doping may play an important role in the complex magnetic and transport properties of the sample.

  2. Model Magnet Development of D1 Beam Separation Dipole for the HL-LHC Upgrade

    CERN Document Server

    Nakamoto, T; Kawamata, H; Enomoto, S; Higashi, N; Idesaki, A; Iio, M; Ikemoto, Y; Iwasaki, R; Kimura, N; Ogitsu, T; Okada, N; Sasaki, K I; Yoshida, M; Todesco, E

    2014-01-01

    KEK has been conducting the design study of the beam separation dipole magnet, D1, for the High Luminosity LHC (HL-LHC) upgrade within a framework of the CERN-KEK collaboration. The D1 magnet has a coil aperture of 150 mm using Nb-Ti superconducting cable and the nominal dipole field of 5.6 T can be generated at 12 kA and 1.9 K. A field integral of 35 T·m is required. The development of the 2-m-long model magnet has been started since May 2013. This paper describes the development status of the short model magnet as well as advancement of the fundamental design studies.

  3. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder [Idaho Univ., Moscow, ID (United States); Johnson, Andrew [Idaho Univ., Moscow, ID (United States); Tian, Guoxin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Jiang, Weilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rao, Linfeng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Paszczynski, Andrzej [Idaho Univ., Moscow, ID (United States); Qiang, You [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Idaho Univ., Moscow, ID (United States)

    2013-01-01

    A nanomagnetic separation method based on Diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at low pH is protected by encapsulating them in silica layer. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelators on MNPs. The particles were characterized before and after surface modification using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and uncoated samples were studied using vibrating sample magnetometer (VSM) to understand the change in magnetic properties due to the influence of the surface functionalization. The hydrodynamic size and surface charge of the particles are investigated using Dynamic Light Scattering (DLS). The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1M NaNO3 solution was investigated. The sorption result shows the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency and fast uptake of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation.

  4. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria.

    Science.gov (United States)

    Li, Yu-Guang; Gao, Hong-Shuai; Li, Wang-Liang; Xing, Jian-Min; Liu, Hui-Zhou

    2009-11-01

    In situ cell separation and immobilization of bacterial cells for biodesulfurization were developed by using superparamagnetic Fe(3)O(4) nanoparticles (NPs). The Fe(3)O(4) NPs were synthesized by coprecipitation followed by modification with ammonium oleate. The surface-modified NPs were monodispersed and the particle size was about 13 nm with 50.8 emu/g saturation magnetization. After adding the magnetic fluids to the culture broth, Rhodococcus erythropolis LSSE8-1 cells were immobilized by adsorption and then separated with an externally magnetic field. The maximum amount of cell mass adsorbed was about 530 g dry cell weight/g particles to LSSE8-1 cells. Analysis showed that the nanoparticles were strongly absorbed to the surface and coated the cells. Compared to free cells, the coated cells not only had the same desulfurizing activity but could also be easily separated from fermentation broth by magnetic force. Based on the adsorption isotherms and Zeta potential analysis, it was believed that oleate-modified Fe(3)O(4) NPs adsorbed bacterial cells mainly because of the nano-size effect and hydrophobic interaction. PMID:19541480

  5. A simple and rapid harvesting method for microalgae by in situ magnetic separation.

    Science.gov (United States)

    Xu, Ling; Guo, Chen; Wang, Feng; Zheng, Sen; Liu, Chun-Zhao

    2011-11-01

    A simple and rapid harvesting method by in situ magnetic separation with naked Fe(3)O(4) nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe(3)O(4) nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe(3)O(4) nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting. PMID:21890346

  6. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater.

    Science.gov (United States)

    Wang, Sheng-ye; Tang, Yan-kui; Li, Kun; Mo, Ya-yuan; Li, Hao-feng; Gu, Zhan-qi

    2014-12-01

    Magnetic biochar was prepared with eucalyptus leaf residue remained after essential oil being extracted. Batch experiments were conducted to examine the capacity of the magnetic biochar to remove Cr (VI) from electroplating wastewater and to be separated by an external magnetic field. The results show that the initial solution pH plays an important role on both sorption and separation. The removal rates of Cr (VI), total Cr, Cu (II), and Ni (II) were 97.11%, 97.63%, 100% and 100%, respectively. The turbidity of the sorption-treated solution was reduced to 21.8NTU from 4075NTU after 10min magnetic separation. The study also confirms that the magnetic biochar still retains the original magnetic separation performance after the sorption process. PMID:25463783

  7. On-chip micro-electromagnets for magnetic-based bio-molecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Qasem E-mail: qasem@pmail.ntu.edu.sg; Samper, Victor; Poenar, Daniel; Yu Chen

    2004-10-01

    This paper reports a comprehensive theoretical, finite element and measurement analysis of different designs of planar micro-electromagnets for bio-molecular manipulation. The magnetic field due to current flowing in complex shapes of current-carrying conductors have been calculated analytically, simulated using finite-element analysis (FEA), and measured using the superconducting quantum interference device technique (SQUID). A comparison of the theoretical and measured magnetic field strength and patterns is presented. The planar electromagnets have been fabricated using patterned Al 2 {mu}m thick. The aim of the study is to explore and optimize the geometrical and structural parameters of planar electromagnets that give rise to the highest magnetic fields and forces for magnetic micro-beads manipulation. Magnetic beads are often used in biochemical assays for separation of bio-molecules. Typical beads are 0.2-10 {mu}m in diameter and have superparamagnetic properties. Increasing the intensity of the magnetic field generated by a coil by injection a larger current is not the most suitable solution as the maximum current is limited by Joule heating. Consequently, in order to maximize the field for a given current, one should optimize the geometry of the coil, as this is an extremely significant factor in determining the magnetic field intensity in 2D planar designs. The theoretical and measured results of this work show that the meander micro-electromagnet with mesh-shaped winding profile produces the strongest magnetic field (about 2.7 {mu}T for a current intensity of 6 mA) compared with other meander designs, such as the serpentine and rosette-shaped ones. The magnetic fields of these three types of meander-shaped micro-electromagnets were compared theoretically with that produced by a spiral micro-electromagnet whose technological realization is more complicated and costly due to the fact that it requires an additional insulation layer with a contact window and a second patterned metal layer as a via. Nevertheless, the spiral design produces a much stronger magnetic field up to five times larger than that of the mesh-shaped micro-electromagnet for the same current and electromagnet area. The measured results strongly agree with these conclusions resulted from the theoretical analysis. The results presented in this paper provide a solid and useful basis for the design of a micro-fluidic bio-molecule separation and detection system using magnetic fields and magnetic beads.

  8. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law. PMID:24943952

  9. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation; Caracterizacao da granalha de aco recuperada do residuo de rochas ornamentais por separacao magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Junca, E.; Telles, V.B.; Rodrigues, G.F.; Oliveira, J.R. de; Tenorio, J.A.S., E-mail: eduardojunca@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2010-07-01

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 {mu}m with 4 wt.% over 100 {mu}m and content metallic iron of 93 wt%. (author)

  10. Treatment of heavy metals and radionuclides in groundwater and wastewater by magnetic separation

    International Nuclear Information System (INIS)

    Removal of trace quantities of heavy metal or radionuclide contamination from solutions at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration demand significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes recent progress with this technique including performance tests of composite materials produced to selectively remove specific contaminants such as cesium, uranium, lead, cadmium, and mercury from solution

  11. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.B.; Rogers, R.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F. [Argonne National Lab., IL (United States)

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  12. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    International Nuclear Information System (INIS)

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (Kd) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles

  13. Separation of true fat and water images by correcting magnetic field inhomogeneity in-situ

    International Nuclear Information System (INIS)

    Dixon's method of chemical shift imaging of a two-component system is modified and extended without requiring additional imaging time. The modified method allows one to obtain truly segregated fat and water images of animal tissues. This is accomplished by acquiring additional image data from which information about in situ magnetic field inhomogeneity and bulk magnetic susceptibility can be derived. Applications to various anatomic sections of the normal human body are illustrated. The method is compared with the standard Dixon technique of chemical shift image separation

  14. Satellite Observations of Separator Line Geometry of Three-Dimensional Magnetic Reconnection

    CERN Document Server

    Xiao, C J; Pu, Z Y; Ma, Z W; Zhao, H; Zhou, G P; Wang, J X; Kivelson, M G; Fu, S Y; Liu, Z X; Zong, Q G; Dunlop, M W; Glassmeier, K-H; Lucek, E; Reme, H; Dandouras, I; Escoubet, C P

    2007-01-01

    Detection of a separator line that connects magnetic nulls and the determination of the dynamics and plasma environment of such a structure can improve our understanding of the three-dimensional (3D) magnetic reconnection process. However, this type of field and particle configuration has not been directly observed in space plasmas. Here we report the identification of a pair of nulls, the null-null line that connects them, and associated fans and spines in the magnetotail of Earth using data from the four Cluster spacecraft. With di and de designating the ion and electron inertial lengths, respectively, the separation between the nulls is found to be ~0.7di and an associated oscillation is identified as a lower hybrid wave with wavelength ~ de. This in situ evidence of the full 3D reconnection geometry and associated dynamics provides an important step toward to establishing an observational framework of 3D reconnection.

  15. Rock Magnetic Mineral Assemblage in Mineral Separates from Xenoliths of Continental Lithospheric Mantle

    Science.gov (United States)

    Khakhalova, E.; Feinberg, J. M.; Ionov, D. A.; Ferre, E. C.; Friedman, S. A.; Hernandez, F. M.; Neal, C. R.; Conder, J. A.

    2014-12-01

    Studies of aeromagnetic anomalies suggest that the lithospheric mantle may contribute to long wavelength features. Examination of unaltered mantle xenoliths may reveal the mineralogical sources of these aeromagnetic anomalies. Prior work has reported microscopic inclusions of magnetic minerals in mantle silicates. Here we explore the magnetism of pure olivine, clinopyroxene, orthopyroxene, and spinel separated from peridotite xenoliths from the Dariganga and Tariat localities in Mongolia that sample the lithospheric mantle. All separates were leached with HF and HCl to remove secondary minerals adhering to the surface of the grains or in cracks. Separates were then mounted in cement to create monomineralic specimens for investigation using hysteresis loops, first order reversal curves (FORC), alternating field and thermal demagnetization of a 1T IRM, and low-temperature magnetometry. All specimens showed trace concentrations of ferromagnetic inclusions with Ms values of ~10-3 Am2kg-1. Thermal demagnetization showed a range of unblocking temperatures with median destructive temperatures of 300-400°C. Two specimens showed a dramatic demagnetization at 585°C, consistent with pure magnetite (Mt). The presence of Mt was confirmed by observations of the Verwey transition at 100-120K and by backfield remanence acquisition curves that plateau at ~300 mT. The median destructive alternating field was ~20 mT and 40-80 mT for specimens from Dariganga and Tariat, respectively. FORC diagrams show single-domain-like behavior with a median Hc of ~20 mT. The demagnetization experiments suggest that Mt inclusions in the lattice of olivine, opx, cpx and spinel carry magnetic remanence. Thus, the lithospheric mantle may exhibit in-situ ferromagnetism carried by Mt below 585°C. The magnetization of separates varies between xenolith localities but is consistent amongst minerals of the same locality. Future work will address whether the Mt formed before or during xenolith ascent.

  16. Magnetic Frustration and Spin-Charge Separation in 2D Strongly Correlated Electron Systems

    OpenAIRE

    Putikka, William; NHMFL

    1995-01-01

    I propose that the ground state of the 2D $t$-$J$ model near half-filling with $J/t\\sim1/3$ has both ferromagnetic and antiferromagnetic fluctuations leading to a magnetically frustrated ground state. I further argue that the frustrated state is spin-charge separated to account for the observed behavior of the equal time spin and charge correlation functions.

  17. Characterization of magnetic ion-exchange composites for protein separation from biosuspensions.

    Science.gov (United States)

    Käppler, Tobias E; Hickstein, Birgit; Peuker, Urs A; Posten, Clemens

    2008-06-01

    Downstream processing is a major issue in biotechnological production. A multitude of unit operations with nonsatisfying yield are often used to reach the desired product purity. Direct recovery technologies such as high-gradient magnetic fishing (HGMF) are advantageous because of their ability to separate the desired product in early stages from crude cultivation broths. However, the use of magnetic particles to capture valuable biotechnological products is often linked to the drawback that support particles are expensive and not available in greater quantities. This current work presents new composite magnetic particles that can be used in biotechnology. They are manufactured by a spray drying process. During this process, the nanosized magnetite particles as well as functional ion-exchange nanoparticles are integrated into one particle in which they are linked by a matrix polymer. The production procedure is flexible, scalable, and therefore economical. These particles have good adsorption capacities of up to 85 mg/g adsorbed protein and good binding kinetics. They are resistant to harsh conditions such as short ultrasonic treatment or extreme pHs. In order to test their usefulness in biosuspensions, model proteins were separated using these particles. The anion and cation exchanger particles separated lysozyme (LZ) or BSA from cultivation suspensions. The selectivity of recovery was dependent on other proteins present as is usual for ion-exchange binding mechanisms. PMID:18640596

  18. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.

    Science.gov (United States)

    Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wang, Chunlei; Xu, Shuhong; Cui, Yiping

    2014-11-01

    A new kind of cancer cell separation method is demonstrated, using surface-enhanced Raman scattering (SERS) and fluorescence dual-encoded magnetic nanoprobes. The designed nanoprobes can realize SERS-fluorescence joint spectral encoding (SFJSE) and greatly improve the multiplexing ability. The nanoprobes have four main components, that is, the magnetic core, SERS generator, fluorescent agent, and targeting antibody. These components are assembled with a multi-layered structure to form the nanoprobes. Specifically, silica-coated magnetic nanobeads (MBs) are used as the inner core. Au core-Ag shell nanorods (Au@Ag NRs) are employed as the SERS generators and attached on the silica-coated MBs. After burying these Au@Ag NRs with another silica layer, CdTe quantum dots (QDs), that is, the fluorescent agent, are anchored onto the silica layer. Finally, antibodies are covalently linked to CdTe QDs. SFJSE is fulfilled by using different Raman molecules and QDs with different emission wavelengths. By utilizing four human cancer cell lines and one normal cell line as the model cells, the nanoprobes can specifically and simultaneously separate target cancer cells from the normal ones. This SFJSE-based method greatly facilitates the multiplex, rapid, and accurate cancer cell separation, and has a prosperous potential in high-throughput analysis and cancer diagnosis. PMID:24862088

  19. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. PMID:25689073

  20. Magnetically separable photocatalytic composite ?-Fe 2O 3@TiO 2 synthesized by heterogeneous precipitation

    Science.gov (United States)

    Tyrpekl, V.; Vejpravová, J. Poltierová; Roca, A. G.; Murafa, N.; Szatmary, L.; Niž?anský, D.

    2011-03-01

    Synthesis of magnetically separable photocatalytic active composite ?-Fe 2O 3@TiO 2 is the main objective of this work. In the first step, maghemite nanoparticles were prepared by a precipitation method and consequently covered by the citric acid in order to adjust the zeta-potential of the particle surface. The magnetic carrier was enfolded by TiO 2 via heterogeneous precipitation of TiOSO 4 using urea as a precipitation agent. The procedure was designed to minimize the production costs in order to be easily transferred into the industry scale conserving the high quality of the photoactive product. Nontoxic element oxides were used because of the ecological acceptance. Various methods were employed to characterize and study the intermediate (magnetic nanoparticles) and final materials (TiO 2-maghemite composite), respectively. Moreover, the influence of the subsequent annealing on the structure, phase composition and properties of the products is discussed.

  1. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation.

    Science.gov (United States)

    Yang, Huifen; Jing, Lili; Zhang, Baogang

    2011-01-30

    A technique with coal-based direct reduction followed by magnetic separation is presented in this study for recovering and reusing iron otherwise wasted in vanadium tailings. Process parameters such as usage of additives, tailings/reductant/additives ratio, reduction temperature and time, as well as particle size were experimentally determined. The optimum process parameters were proposed as follows: using lime as the additive, lignite as the reductant, weight ratios of vanadium tailings/lignite/lime at 100:30:10, reduction roasting at 1200 °C for 60 min, and particle size of 98% less than 30 ?m in the final roasted product feeding to magnetic separation. Under these conditions, a magnetic concentrate containing 90.31% total iron and 89.76% metallization iron with a total iron recovery rate of 83.88% was obtained. In addition, mineralography of vanadium tailings, coal-based reduction product and magnetic concentrate were studied by X-ray powder diffraction technique (XRD). The microstructures of above products were analyzed by scanning electron microscope (SEM) to help understand the mechanism. PMID:21071144

  2. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation

    International Nuclear Information System (INIS)

    A technique with coal-based direct reduction followed by magnetic separation is presented in this study for recovering and reusing iron otherwise wasted in vanadium tailings. Process parameters such as usage of additives, tailings/reductant/additives ratio, reduction temperature and time, as well as particle size were experimentally determined. The optimum process parameters were proposed as follows: using lime as the additive, lignite as the reductant, weight ratios of vanadium tailings/lignite/lime at 100:30:10, reduction roasting at 1200 deg. C for 60 min, and particle size of 98% less than 30 ?m in the final roasted product feeding to magnetic separation. Under these conditions, a magnetic concentrate containing 90.31% total iron and 89.76% metallization iron with a total iron recovery rate of 83.88% was obtained. In addition, mineralography of vanadium tailings, coal-based reduction product and magnetic concentrate were studied by X-ray powder diffraction technique (XRD). The microstructures of above products were analyzed by scanning electron microscope (SEM) to help understand the mechanism.

  3. Lipid-Based Immuno-Magnetic Separation of Archaea from a Mixed Community

    Science.gov (United States)

    Frickle, C. M.; Bailey, J.; Lloyd, K. G.; Shumaker, A.; Flood, B.

    2014-12-01

    Despite advancing techniques in microbiology, an estimated 98% of all microbial species on Earth have yet to be isolated in pure culture. Natural samples, once transferred to the lab, are commonly overgrown by "weed" species whose metabolic advantages enable them to monopolize available resources. Developing new methods for the isolation of thus-far uncultivable microorganisms would allow us to better understand their ecology, physiology and genetic potential. Physically separating target organisms from a mixed community is one approach that may allow enrichment and growth of the desired strain. Here we report on a novel method that uses known physiological variations between taxa, in this case membrane lipids, to segregate the desired organisms while keeping them alive and viable for reproduction. Magnetic antibodies bound to the molecule squalene, which is found in the cell membranes of certain archaea, but not bacteria, enable separation of archaea from bacteria in mixed samples. Viability of cells was tested by growing the separated fractions in batch culture. Efficacy and optimization of the antibody separation technique are being evaluated using qPCR and cell counts. Future work will apply this new separation technique to natural samples.

  4. Magnetic design and field optimization of a superferric dipole for the RISP fragment separator

    Science.gov (United States)

    Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.

    2015-10-01

    The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.

  5. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    Science.gov (United States)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  6. Magnetic particle separation technique: a reliable and simple tool for RIA/IRMA and quantitative PCR assay

    International Nuclear Information System (INIS)

    Five types of magnetic particles without or with aldehyde, amino and carboxyl functional groups, respectively were used to immobilize first or second antibody by three models, i. e. physical adsorption, chemical coupling and immuno-affinity, forming four types of magnetic particle antibodies. The second antibody immobilized on polyacrolein magnetic particles through aldehyde functional groups and the first antibodies immobilized on carboxylic polystyrene magnetic particles through carboxyl functional groups were recommended to apply to RIAs and/or IRMAs. Streptavidin immobilized on commercial magnetic particles through amino functional groups was successfully applied to separating specific PCR product for quantification of human cytomegalovirus. In the paper typical data on reliability of these magnetic particle ligands were reported and simplicity of the magnetic particle separation technique was discussed. The results showed that the technique was a reliable and simple tool for RIA/IRMA and quantitative PCR assay. (author)

  7. Chiral separation and chiral magnetic effects in a slab: the role of boundaries

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2015-01-01

    We study the chiral separation and chiral magnetic effects in a slab of Dirac semimetal of finite thickness, placed in a constant magnetic field perpendicular to its surfaces. We utilize the Bogolyubov boundary conditions with a large Dirac mass outside the slab. We find that a finite thickness of the slab leads to a quantization of the axial current density, which is seen in its stepped shape dependence on the fermion chemical potential and a sawtooth shape dependence on the thickness of the slab. As expected, in the limit of a large thickness, the result reduces to the well known expression for the chiral separation effect. On the other hand, in the same slab geometry, we find that a nonzero chiral chemical potential induces no electric current, as might have been expected from the chiral magnetic effect. We argue that this outcome is natural and points to the truly non-static nature of the latter. By taking into account a nonzero electric field of double layer near the boundaries of the slab, we find that ...

  8. Accessible and green manufacturing of magnetite (ferrous ferric oxide) nanocrystals and their use in magnetic separations

    Science.gov (United States)

    Yavuz, Cafer Tayyar

    This work describes the first size dependent magnetic separation in nanoscale. Magnetite (Fe3O4) nanocrystals of high quality and uniform size were synthesized with monodispersity below 10%. Magnetite nanocrystals of 4 nm to 33 nm (average diameter) were produced. Batch synthesis was shown to go up to 20 grams which is more than 10 times of a standard nanocrystal synthesis, without loosing the quality and monodispersity. Reactor design for mass (1 gram per hour) production of magnetite nanocrystals is reported for the first time. The cost of a kg of lab purity magnetite nanocrystals was shown to be 2600. A green synthesis that utilizes rust and edible oils was developed. The cost of a kg was brought down to 22. Size dependency of magnetism was shown in nanoscale for the first time. Reversible aggregation theory was developed to explain the low field magnetic separation and solution behavior of magnetite nanocrystals. Arsenic was removed from drinking water with magnetite nanocrystals 200 times better than commercial adsorbents. Silica coating was successfully applied to enable the known silica related biotechnologies. Magnetite-silica nanoshells were functionalized with amino groups. For the first time, silver was coated on the magnetite-silica nanoshells to produce triple multishells. Anti-microbial activity of multishells is anticipated.

  9. Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white.

    Science.gov (United States)

    Gao, Ruixia; Zhang, Lili; Hao, Yi; Cui, Xihui; Liu, Dechun; Zhang, Min; Tang, Yuhai

    2015-11-01

    Novel core-shell nanocomposites, consisting of magnetic carbon nanotubes (MCNTs) core surrounded by a thin polydopamine (PDA) imprinting shell for specific recognition of lysozyme (Lyz), were fabricated for the first time. The obtained products were characterized and the results showed that the PDA layer was successfully attached onto the surface of MCNTs and the corresponding thickness of imprinting layer was just about 10nm which could enable the template access the recognition cavities easily. The polymerization conditions and adsorption performance of the resultant nanomaterials were investigated in detail. The results indicated that the obtained imprinted polymers showed fast kinetic and high affinity towards Lyz and could be used to specifically separate Lyz from real egg white. In addition, the prepared materials had excellent stability and no obvious deterioration after five adsorption-regeneration cycles. Easy preparation, rapid separation, high binding capacity, and satisfactory selectivity for the template protein make this polymer attractive in biotechnology and biosensors. PMID:26452937

  10. Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation

    International Nuclear Information System (INIS)

    CdTe-coated magnetic polystyrene nanospheres (MPN) were prepared via a stepwise electrostatic self-assembly approach, and the conjugation of epidermal growth factor (EGF) to the MPN/CdTe core-shell nanocomposites was prepared by using 1-ethyl-3(3-dimethylamino propyl)-carbodiimide (EDC) as a cross-linking reagent. The MPN/CdTe and their bioconjugates yielded not only emitted bright fluorescence, but also exhibited superparamagnetism. The human breast cancer MDA-MB-435S cells could be labelled and rapidly separated by the MPN/CdTe-EGF bioconjugates. These magnetofluorescent nanospheres, consisting of magnetic spheres and quantum dots (QDs), may be of special interest for many biomedical applications

  11. Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Raed Abu-Reziq

    2012-03-01

    Full Text Available The synthesis of magnetically separable quasi-homogeneous base catalyst and heterogeneous base catalyst is described. The quasi-homogeneous catalyst is achieved by supporting silane monomers functionalized with different amine groups directly on the surface of magnetite nanoparticles. The heterogeneous catalyst is prepared via a sol-gel process in which silane monomers containing different amine groups are copolymerized with tetraethoxysilane in the presence of magnetite nanoparticles functionalized with ionic liquid moieties. The reactivity of the quasi-homogeneous and the heterogeneous base catalysts is compared in the nitroaldol condensation.

  12. On the possibility of using neodymium-iron-boron magnets in gas centrifuges for uranium isotopes separation

    International Nuclear Information System (INIS)

    Aimed to decrease mass and dimensions of magnets in gas centrifuges, used for uranium isotope separation, it is suggested that barium ferrite magnets in a top magnetic suspension support (TMSS) be replaced with magnets made of a more high-energy Nd-Fe-B alloy. Experimental and calculated data point to the possibility of using Nd-Fe-B magnets (mass of 150-200 g) if the design of TMSS is optimized and the problems dealt with Nd-Fe-B alloy brittleness and corrosion susceptibility are solved

  13. Magnetization studies of phase separation in La$_{0.5}$Ca$_{0.5}$MnO$_{3}$

    OpenAIRE

    Freitas, R S; Ghivelder, L.; Levy, P; Parisi, F.

    2001-01-01

    We present magnetization studies in a series of phase separated La$_{0.5}$Ca$%_{0.5}$MnO$_{3}$ samples, with different low temperature fractions of the ferromagnetic (FM) and charge ordered-antiferromagnetic (CO-AFM) phases. A particular experimental procedure probes the effect of the magnetic field applied while cooling the samples, which promotes FM fraction enlargement and enhances the melting of the CO phase. The response of the system depending on its magnetic field his...

  14. Removal and recovery of phosphorus in wastewater by superconducting high gradient magnetic separation with ferromagnetic adsorbent

    International Nuclear Information System (INIS)

    Prevention of eutrophication for semi-enclosed bays and ponds is serious and important challenge. In spite of the advanced wastewater treatment, typically 1 mg/L phosphorus is discharged into public water bodies from wastewater treatment plants. The total amount of the discharged water is so large that the further improvement of the removal efficiency of phosphorus in the discharged water is demanded. On the other hand, recently phosphorus has become increasingly recognized as the important strategic material due to the global food problem. Therefore, the recovery and recycling of phosphorus is also important issue. In this work, removal and recovery of phosphorus from treated wastewater by High Gradient Magnetic Separation (HGMS) with ferromagnetic zirconium ferrite adsorbent were studied. Phosphorus in the treated wastewater could be removed from 1.12 mg/L to 0.03 mg/L by the HGMS system with 500 mg/L zirconium ferrite adsorbent for 5 min in adsorption time. The magnetic separation speed achieved 1 m/s at 1 T which was necessary for practical use. We also confirmed that phosphorus could be desorbed from zirconium ferrite adsorbent by alkali treatment in a short time.

  15. Development of high gradient magnetic separation system for removing the metallic wear debris to be present in highly viscous fluid

    International Nuclear Information System (INIS)

    In the industrial plants processing highly viscous fluid such as foods or industrial materials, there is an issue of contamination by metallic wear debris originating from pipe of manufacturing line. It is necessary to remove the metallic wear debris in highly viscous fluid, since these debris causes quality loss. In this study, we developed a high gradient magnetic separation system by using superconducting magnet to remove the metallic wear debris. The particle trajectory simulation and the magnetic separation experiment were conducted with polyvinyl alcohol as a model material. As a result, ca. 100% and 92.2% of the separation efficiency was achieved respectively for the highly viscous fluid of 1 Pa s and 6 Pa s in viscosity, with 14 and 30 mesh magnetic filters.

  16. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Chen, Guo, E-mail: guochen@kmust.edu.cn [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Peng, Jinhui, E-mail: jhpeng@kmust.edu.cn [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates)

    2014-05-01

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite.

  17. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    International Nuclear Information System (INIS)

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite

  18. Development of superconducting magnets for LHC luminosity upgrade (2). Conceptual design of a large aperture dipole magnet for beam separation

    International Nuclear Information System (INIS)

    Upgrade of the low-beta insertion system for the ATLAS and CMS experiments is proposed in the HL-LHC (High Luminosity LHC upgrade) project. It includes the final beam focusing quadrupoles, beam separation and recombination dipoles, and larger aperture matching section quadrupoles. KEK is in charge of conceptual design of the large aperture separation dipole D1. Latest design parameters are a main field of ?5 T at 1.9 K with Nb-Ti superconducting technology, a coil aperture of 160 mm, and a cos-theta 1-layer coil with LHC dipole cable. Since the new D1 is expected to be operated in very high-radiation environment, radiation resistance and cooling scheme are being carefully considered. The collaring-yoke structure is adopted to provide the mechanical support for the single layer Nb-Ti coil. We summarize the design study of this magnet, including (1) the very large iron saturation effect on field quality due to the large aperture and limited size of the iron yoke, (2) the stray field at the outer surface of the iron cryostat, (3) the stress management from room temperature assembly to final operation, and (4) the high-level of heat deposition in the coil due to radiation. (author)

  19. Upgrading of PVC rich wastes by magnetic density separation and hyperspectral imaging quality control.

    Science.gov (United States)

    Luciani, Valentina; Bonifazi, Giuseppe; Rem, Peter; Serranti, Silvia

    2014-11-01

    Polyvinylchloride (PVC) is one of the most produced polymers in Europe, with a share of 11% in terms of mass (8 milliontons) of total polymer consumption, but in 2010 only 5% of the total PVC production came from recycled materials, where other polymer recycling achieves a level of 15% on average. In order to find an innovative process to extract PVC from window frames waste, a combination of two innovative technologies was tested: magnetic density separation (MDS) and hyperspectral imaging (HSI). By its nature, MDS is a flexible high precision density separation technology that is applicable to any mixture of polymers and contaminants with non-overlapping densities. As PVC has a very distinctive high density, this technology was tested to obtain high-grade PVC pre-concentrates from window frame waste. HSI was used to perform a quality control of the products obtained by MDS showing that PVC was clearly discriminated from unwanted rubber particles of different colors. The results showed that the combined application of MDS and HSI techniques allowed to separate and to check the purity of PVC from window frame waste. PMID:25458764

  20. Mass separation of a multi-component plasma flow travelling through a magnetic transport system

    Energy Technology Data Exchange (ETDEWEB)

    Paperny, V L; Krasov, V I [Physics Department, Irkutsk State University, Irkutsk, K. Marx Str., 1, 664003, Irkutsk (Russian Federation); Lebedev, N V; Astrakchantsev, N V [Institute for Physics and Technology, Irkutsk State Technical University, Irkutsk, Lermontov Str., 83, 664074, Irkutsk (Russian Federation)

    2011-06-15

    The travel of plasma flow produced by a dc arc through a transport system based on a curved magnetic field was studied. The characteristics of the system were the absence of a curved metallic plasma guiding duct ('open architecture') and the fact that the magnetic field coils were non-coaxial to the plasma flow. By means of Langmuir probe measurements it was shown that both shape and position of the cathode plasma flow at the exit of the transport system were governed by variation of currents of the magnetic coils as well as by biasing of a special electrode inserted into the plasma flow. It was found that with parameters of the transport system held constant, the plasma ions with lower m/Z were deflected more, e.g. Al ions were deflected more than Ti ions. For an arc with a composite cathode, consisting of mainly Cr-Fe-Ni, the profile of atoms of these elements at the exit of the transport system was measured by x-ray fluorescence spectrometry. The results obtained were consistent with the probe measurements, hence the transport system, in principle, may be used for spatial separation of a multi-component (in masses) plasma flow.

  1. Mass separation of a multi-component plasma flow travelling through a magnetic transport system

    International Nuclear Information System (INIS)

    The travel of plasma flow produced by a dc arc through a transport system based on a curved magnetic field was studied. The characteristics of the system were the absence of a curved metallic plasma guiding duct ('open architecture') and the fact that the magnetic field coils were non-coaxial to the plasma flow. By means of Langmuir probe measurements it was shown that both shape and position of the cathode plasma flow at the exit of the transport system were governed by variation of currents of the magnetic coils as well as by biasing of a special electrode inserted into the plasma flow. It was found that with parameters of the transport system held constant, the plasma ions with lower m/Z were deflected more, e.g. Al ions were deflected more than Ti ions. For an arc with a composite cathode, consisting of mainly Cr-Fe-Ni, the profile of atoms of these elements at the exit of the transport system was measured by x-ray fluorescence spectrometry. The results obtained were consistent with the probe measurements, hence the transport system, in principle, may be used for spatial separation of a multi-component (in masses) plasma flow.

  2. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids

    Science.gov (United States)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-11-01

    A reclaimable Fe3O4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (qm) of the Fe3O4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ?H°, ?S° and ?G° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong ?-? interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe3O4/GO hybrid. Therefore, the Fe3O4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  3. Function of the demagnetization factor in respect of a quasi-solid filtermatrix of a magnetic separator ?????????????? ??? ???????????? ??????????????? ????????????? ??????-??????? ?????????? ??????????

    Directory of Open Access Journals (Sweden)

    Sandulyak Anna Aleksandrovna

    2013-07-01

    Full Text Available The author presents the prospects for the use of a magnetic separator, equipped with a filter matrix, in the treatment of ceramic suspensions and minerals. Particles of ferromagnetic impurities are captured by matrix pores, when purified media is transmitted through the magnetized filter matrix. The particle capture efficiency depends on the level of the filter matrix magnetization. The intensity of demagnetization influences the filter matrix magnetization intensity. Unfortunately, many researchers frequently ignore the demagnetization factor of a filter matrix as a specific (granulated magnet.The effect of self-demagnetization is studied in terms of homogeneous (solid magnets. The effect of self-demagnetization means that poles emerge on the borders of magnetized “short” magnets. Thus, a strong inner demagnetization field emerges. The main parameter of this physical characteristic of sample-magnets is the coefficient of demagnetization, which relates the intensity of the demagnetization field and the magnetization intensity of a sample body. The author considers the relevant issue of influence of the demagnetization intensity on the average values of the magnetic permeability of porous (quasi-solid magnets, for example, a filter matrix. This dependence is relevant for the calculation of magnetic permeability values.??????????? ?????????? ?????? ? ???????????? ??????? ????????????????? ??????? N ?? ??????? ???????? ????????? ????????????? ???????? ?????????? (??????-??????. ????????? ???????? N ? ??????????? ?? ????????? ????? L ????? ?????????? ? ?? ???????? D . ????????, ??? ?????? N ????? ????????? ???????????????? ????? ? ????????? ?????????????? ???????? (? L/D . ????????????? ????? ????????? ???????? ??????????? ???????? ????????? ????????????? «????????» ??????-??????? ? ??? ????? ?????? ? ?? ??????????????? ?????????????????.

  4. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    International Nuclear Information System (INIS)

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994]. Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in short term leachability [Jantzen-1985, Hench-1982]. However, Jantzen et.al. found that leaching increased preferentially at grain boundary interfaces [Jantzen-1985]. For a SRL 165 glass crystallized up to 30% vol., leachability measured by normalized boron release increased by a factor of three compared to the uncrystallized glass [Kelly-1975, Plodinec-1979]. In general, the magnitude of the crystallization effect depends highly on glass composition and cooling rate

  5. Pade-Froissart exact signal-noise separation in nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance spectroscopy is one of the key methods for studying the structure of matter on different levels (sub-nuclear, nuclear, atomic, molecular, cellular, etc). Its overall success critically depends upon reliable mathematical analysis and interpretation of the studied data. This is especially aided by parametric signal processing with the ensuing data quantification, which can yield the abundance or concentrations of the constituents in the examined matter. The sought reliability of signal processing rests upon the possibility of an accurate solution of the quantification problem alongside the unambiguous separation of true from false information in the spectrally analysed data. We presently demonstrate that the fast Pade transform (FPT), as the unique ratio of two polynomials for a given Maclaurin series, can yield exact signal-noise separation for a synthesized free induction decay curve built from 25 molecules. This is achieved by using the concept of Froissart doublets or pole-zero cancellations. Unphysical/spurious (noise or noise-like) resonances have coincident or near-coincident poles and zeros. They possess either zero- or near-zero-valued amplitudes. Such spectral structures never converge due to their instability against even the smallest perturbations. By contrast, upon convergence of the FPT, physical/genuine resonances are identified by their persistent stability against external perturbations, such as signal truncation or addition of random noise, etc. In practice, the computation is carried out by gradually and systematically increasing the common degree of the Pade numerator and denominator polynomials in the diagonal FPT. As this degree changes, the reconstructed parameters and spectra fluctuate until stabilization occurs. The polynomial degree at which this full stabilization is achieved represents the sought exact number of resonances. An illustrative set of results is reported in this work to show the exact separation of genuine from spurious information by reliance upon Froissart doublets and stabilization of reconstructions. The FPT for optimal quantification of the physical constituents of the studied matter and the denoising Froissart filter for unequivocal signal-noise separation is expected to significantly aid nuclear magnetic resonance spectroscopy in achieving the most reliable data analysis and interpretation.

  6. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    International Nuclear Information System (INIS)

    A magnetically separable single-phase MgFe2O4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe2O4 was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe2O4 was studied by measuring their photocurrent–potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm?2 illumination. - Graphical abstract: Highly efficient magnetically separable MgFe2O4 photocatalyst for organic based impurities decomposition as well as for the production of H2 gas was synthesized and characterized successfully (a) MgFe2O4 photocatalyst in polluted water, (b) The photocatalyst (MgFe2O4) is being attracted toward magnetic field for separation, (c) Hysteresis loop of MgFe2O4 showing magnetic behavior. Highlights: ? New photocatalyst working in the visible range have been synthesized by facile cheap route. ? MgFe2O4 photocatalyst showed well defined magnetically separable behavior. ? Excellent water splitting characteristics to produce H2 was observed under visible light irradiation

  7. Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation.

    Science.gov (United States)

    Zhang, Liang; Li, Lili; Dang, Zhi-Min

    2016-02-01

    In the present study, superhydrophobic and superoleophilic microparticles with magnetic property were fabricated by combining the oxidation and self-polymerization of dopamine and formation of Fe3O4 nanoparticles on the surface of the polydopamine (PDA) particles, followed by modification with low surface energy material. The modified PDA/Fe3O4 particles showed high water repellency with contact angle (CA) measured at 153.7±1.6° and high oil affinity. The superhydrophobic microparticles preserved high water CA after aging test, showing excellent durability. The microparticles were employed to effectively remove oil from water in different routes. Superhydrophobic sponge was prepared by modifying with the achieved microparticles. The sponge exhibited high absorption capability of oil, with weight gains ranging from 1348% to 7268%. The results suggest this work might provide a promising candidate for oily pollutants/water separation and transportation. PMID:26550784

  8. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    DEFF Research Database (Denmark)

    Cerff, M.; Scholz, A.

    2013-01-01

    In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS) constitutes an excellent adsorptive method for efficient extracellular protease removal during cultivation. In this work, the impact of semi?continuous ISMS on the overall protease yield has been investigated. Results reveal significant removal of the protease from Bacillus licheniformis cultivations. Bacitracin?functionalized magnetic particles were successfully applied, regenerated and reused up to 30 times. Immediate reproduction of the protease after ISMS proved the biocompatibility of this integrated approach. Six subsequent ISMS steps significantly increased the overall protease yield up to 98% because proteolytic degradation and potential inhibition of the protease in the medium could be minimized. Furthermore, integration of semi?continuous ISMS increased the overall process efficiency due to reduction of the medium consumption. Process simulation revealed a deeper insight into protease production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. Biotechnol. Bioeng. 2013; 110: 2161–2172. © 2013 Wiley Periodicals, Inc.

  9. Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity.

    Science.gov (United States)

    Ji, Zhenyuan; Shen, Xiaoping; Yue, Xiaoyang; Zhou, Hu; Yang, Juan; Wang, Yuqin; Ma, Lianbo; Chen, Kangmin

    2015-12-01

    In this study, the combination of magnetite (Fe3O4) with reduced graphene oxide (RGO) generates a new hybrid substrate for the dispersion of noble metal nanoparticles. Well-dispersed silver (Ag) nanoparticles loaded on the surface of Fe3O4 modified RGO are achieved by an efficient two-step approach. Through reducing Ag(+) ions, highly dispersed Ag nanoparticles are in-situ formed on the RGO/Fe3O4 substrate. It is found that the existence of Fe3O4 nanocrystals can significantly improve the dispersity and decrease the particle size of the in-situ formed Ag nanoparticles. Magnetic study reveals that the as-prepared RGO/Fe3O4/Ag ternary nanocomposites display room-temperature superparamagnetic behavior. The catalytic properties of the RGO/Fe3O4/Ag ternary nanocomposites were evaluated with the reduction of 4-nitrophenol into 4-aminophenol as a model reaction. The as-synthesized RGO/Fe3O4/Ag ternary catalysts exhibit excellent catalytic stability and much higher catalytic activity than the corresponding RGO/Ag catalyst. Moreover, the RGO/Fe3O4/Ag catalysts can be easily magnetically separated for reuse. This study further demonstrates that nanoparticles modified graphene can act as an effective hybrid substrate for the synthesis of multi-component and multifunctional graphene-based composites. PMID:26263498

  10. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells

    Directory of Open Access Journals (Sweden)

    Chimma Pattamawan

    2010-02-01

    Full Text Available Abstract Background Highly purified infected red blood cells (irbc, or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported using polymer coated columns, while HGMS depletion has not been described yet. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary. Methods A dipole magnet generating a strong homogenous field was custom assembled. Polypropylene syringes were fitted with one-way stopcocks and filled with stainless steel wool. Rbc from Plasmodium falciparum cultures were resuspended in density and viscosity optimized HGMS buffers and HGMS processed. Purification and depletion results were analysed by flow cytometer and light microscopy. Viability was evaluated by calculating the infection rate after re-culturing of isolates. Results In HGMS concentration, purity of irbc isolates from asynchronous cultures consistently ranged from 94.8% to 98.4% (mean 95.7%. With further optimization, over 90% of isolated irbc contained segmented schizonts. Processing time was less than 45 min. Reinfection rates ranged from 21.0% to 56.4%. In HGMS depletion, results were comparable to treatment with sorbitol, as demonstrated by essentially identical development of cultures. Conclusion The novel HGMS concentration procedure achieves high purities of segmented stage irbc from standard asynchronous cultures, and is the first HGMS depletion alternative to sorbitol lysis. It represents a simple and highly efficient alternative to conventional irbc concentration and synchronization methods.

  11. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    KAUST Repository

    Shahid, Muhammad

    2013-05-01

    A magnetically separable single-phase MgFe2O4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe2O4 was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe2O4 was studied by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm-2 illumination. © 2013 Elsevier B.V. All rights reserved.

  12. Spatiotemporally separating electron and phonon thermal transport in L10 FePt films for heat assisted magnetic recording

    International Nuclear Information System (INIS)

    We report the spatio-temporal separation of electron and phonon thermal transports in nanostructured magnetic L10 FePt films at the nanometer length scale and the time domain of tens of picosecond, when heated with a pulsed laser. We demonstrate that lattice dynamics measured using the picosecond time-resolved laser pump/X-ray probe method on the FePt (002) and Ag (002) Bragg reflections from different layers provided the information of nanoscale thermal transport between the layers. We also describe how the electron and phonon thermal transports in nanostructured magnetic thin films were separated.

  13. Analytical description of the coefficient of demagnetization for chains of cores of granulesin the filter matrix of a magnetic separator ????????????? ???????? ???????????? ??????????????? ????????????? ????????? ??????? ?????? ??????-??????? ?????????? ??????????

    Directory of Open Access Journals (Sweden)

    Sandulyak Anna Aleksandrovna

    2013-09-01

    Full Text Available Particle capturing efficiency inside the filter matrix of a magnetic separator used in the treatment of ceramic suspensions, minerals, condensates, other liquids and gas depends immediately on the intensity of its magnetization capacity. Chains of granules of a filter matrix represent effective magnetization channels. Demagnetization intensity influences the magnetization intensity of the whole filter matrix and its separate chains that are also considered as magnetization channels. The pattern of calculation of demagnetization factor N (coefficient of demagnetization for such channel magnets is of utmost academic interest, and this pattern is provided in this article. The author provides values for demagnetization factor N for quasi solid cores ofchains of granules having with various lengths L and diameters d (metal concentra-tion 0.78—0.99, if magnetized by the field having the intensity of ? =18–175 k?/m. It isproven that the values of N and ? L / d have an exponential relation.Earlier, the author identified that the values of N for the porous media having a cylindrical form depend on the ratio of the length of magnet L to its diameter D . It is proven that the values of N and those of ? L / D also have an exponential relation. Therefore, this reciprocal conformity of relations in respect of the demagnetization factor for samples of the granulated medium (consisting of chains of magnets-channels and for cores of magnets-channels (having different porosity values has confirmed the similarity of the demagnetization factor for magnets having substantial and high concentration of the ferromagnetic material. The analytical description (the formula of the coefficient of demagnetization of channel cores is provided in the article.?????? ?? ???????????? ????????? ? ??????????? ?????????????? ??????????????? ????, ? ??????? ???????????? ???????????-???????? ???????? ??????? ?????????????? ??????, ?????????? ??????? ??????? ??????? ?????? ? ?????????? ????????????????? ??????? N ????? ???????. ????????? ???????? N ??? ????????????? ????????? ??????? ????????? ???? L ? ????????? d , ? ????? ????????? ??? N ? ?????????? ? ???? ???????? ?????????????? ???????? ?????????? ? L / d , ??? ????????? ??????????? ? ??????????? ?????????? ??? ??????? ??????????????? ????? (????????? ?? ????? ???????.

  14. Stability, interaction and influence of domain boundaries in Ge/Si(111)-5x5.

    Czech Academy of Sciences Publication Activity Database

    Ondrá?ek, Martin; Mutombo, Pingo; Chvoj, Zden?k; Mark, A.G.; Chromcová, Zde?ka; McLean, A.B.; Jelínek, Pavel

    2012-01-01

    Ro?. 24, ?. 44 (2012), 1-13. ISSN 0953-8984 R&D Projects: GA ?R GAP204/10/0952; GA AV ?R IAA100100905; GA MŠk ME09048; GA ?R GA202/09/0775 Institutional research plan: CEZ:AV0Z10100521 Keywords : DFT * domain boundaries * line tension * electronic structure of surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012

  15. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    Science.gov (United States)

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  16. Spin-charge separation in the t-J model: Magnetic and transport anomalies

    International Nuclear Information System (INIS)

    A real spin-charge separation scheme is found based on a saddle-point state of the t-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at finite doping so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic residual couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (?/a,?/a) with a doping-dependent width. This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exists a characteristic temperature scale below thich a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a finite energy regime. In the transport, a strong-range phase intereference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-T resistivity and a T2 Hall angle. We discuss the striking similarities of these theoretical features with those found in the high-Tc cuprates and give a consistent picture for the latter. Electronic properties like Fermi surface and superconducting pairing in this framework are also discussed

  17. Separation of species of a binary fluid mixture confined in a channel in presence of a strong transverse magnetic field

    Directory of Open Access Journals (Sweden)

    Sharma Bishwaram

    2012-01-01

    Full Text Available Effects of a transverse magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids confined between two stationary parallel plates are examined. Both the plates are maintained at constant temperatures. It is assumed that one of the components, which is rarer and lighter, is present in the mixture in a very small quantity. The equations governing the motion, temperature and concentration in Cartesian coordinate are solved analytically. The solution obtained for concentration distribution is plotted against the width of the channel for various values of non-dimensional parameters. It is found that the effect of transverse magnetic field is to separate the species of rarer and lighter component by contributing its effect directly to the temperature gradient and the pressure gradient. The effects of increase in the values of Hartmann number, magnetic Reynolds number, barodiffusion number, thermal diffusion number, electric field parameter and the product of Prandtl number and Eckert number are to collect the rarer and lighter component near the upper plate and throw away the heavier component towards the lower plate. The problem discussed here derives its application in the basic fluid dynamics separation processes to separate the rare component of the different isotopes of heavier molecules where electromagnetic method of separation does not work.

  18. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties

    Science.gov (United States)

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen

    2015-12-01

    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  19. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light

    International Nuclear Information System (INIS)

    Highlights: •The AgCl/iron oxide composites were prepared by a chemical precipitation method. •The composites exhibited improved performances in the photodegradation of pollutants. •The visible light photocatalysts could be recycled easily by a magnet. -- Abstract: In this work, AgCl/iron oxide composites were synthesized by a simple chemical precipitation method and calcining process. The composition of the material and magnetic and optical properties of the composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating specimen magnetometer (VSM) techniques, which confirms the high crystalline and magnetic behavior of the composites. UV-vis diffuse reflectance spectral (DRS) studies showed that the AgCl/iron oxide composites were of much higher absorption in longer wavelength region compared to bare iron oxide. The AgCl/iron oxide composites showed better performance in the photodegradation of organic dyes Rhodamin B (RhB) under the fluorescent lamp irradiation, which is remarkably superior to the N-TiO2. The degradation of microcystin-LR (MC-LR) and phenol was also found to be good owing to its effective electron-hole separation at AgCl/iron oxide interface. The separation of AgCl/iron oxide composites from the treated water was achieved by an external magnetic field as ?-Fe2O3 exhibits enough magnetic power to facilitate the separation

  20. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17?-estradiol in milk.

    Science.gov (United States)

    Gao, Ruixia; Cui, Xihui; Hao, Yi; Zhang, Lili; Liu, Dechun; Tang, Yuhai

    2016-03-01

    In this work, we prepared molecularly imprinted polymers (MIPs) combining surface molecular imprinting technique and magnetic separation for separation and determination of 17?-estradiol (E2) from milk. During the synthesis process, the acryloyl chloride was specially used to graft double bonds on Fe3O4 nanoparticles and served as co-functional monomer cooperating with acrylamide. The morphology, structure property, and the best polymerization and adsorption conditions of the prepared magnetic nanoparticles were investigated in detail. The obtained nanomaterials displayed high adsorption capacity of 12.62mg/g, fast equilibrium time of 10min, and satisfactory selectivity for target molecule. What's more, the MIPs was successfully applied as sorbents to specifically separate and enrich E2 from milk with a relatively high recovery (88.9-92.1%), demonstrating the potential application of the MIPs as solid phase extractant for rapid, highly-efficient, and cost-effective sample analysis. PMID:26471651

  1. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure

    Science.gov (United States)

    Senapati, Samarpita; Srivastava, Suneel K.; Singh, Shiv B.

    2012-09-01

    The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused.The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused. Electronic supplementary information (ESI) available: Fig. S1 Ni/ZnO hybrid nanostructure prepared using (a) 0.195 and (b) 0.25 M [Zn2+] at 90 °C Fig. S2 FTIR spectra of nickel nanoparticles prepared at 140 °C (a), and Ni/ZnO hybrid nanostructure prepared using (b) 0.063, (c) 0.125, (d) 0.195 and (e) 0.25 M [Zn2+]; Fig. S3 Raman spectra of Ni/ZnO nanostructure prepared using (a) 0.063, (b) 0.125, (c) 0.195 and (d) 0.25 M [Zn2+]; Fig. S4 Room temperature PL spectra of (a) ZnO and (b) Ni/ZnO nanostructure prepared using 0.25 M [Zn2+]. See DOI: 10.1039/c2nr31831h

  2. Separation of radioimmunoassay in magnetic phase with particles prepared at the IPEN and its comparison with conventional methodologies

    International Nuclear Information System (INIS)

    In the present work two main objectives were chosen. The first was the preparation for the execution of the magnetic phase separation technique, useful for the radioimmunoassay as well as for the most modern and most efficient immunoradiometric assay. The second objective, of a theoretical-practical kind and directly linked to the first, was the realization of a study about the precision of the technique with synthesized products compared with imported products and with two liquid phase separation techniques: the second antibody and polyethyleneglycol (PEG). This analysis was performed with the help of precision profiles built according to R.P.Ekins' recommendations. (author)

  3. Separation of Water and Fat Signal in Magnetic Resonance Imaging : Advances in Methods Based on Chemical Shift

    OpenAIRE

    Berglund, Johan

    2011-01-01

    Magnetic resonance imaging (MRI) is one of the most important diagnostic tools of modern healthcare. The signal in medical MRI predominantly originates from water and fat molecules. Separation of the two components into water-only and fat-only images can improve diagnosis, and is the premier non-invasive method for measuring the amount and distribution of fatty tissue. Fat-water imaging (FWI) enables fast fat/water separation by model-based estimation from chemical shift encoded data, such as...

  4. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  5. Magnetically separable Ag3PO4/NiFe2O4 composites with enhanced photocatalytic activity.

    Science.gov (United States)

    Patil, Santosh S; Tamboli, Mohaseen S; Deonikar, Virendrakumar G; Umarji, Govind G; Ambekar, Jalindar D; Kulkarni, Milind V; Kolekar, Sanjay S; Kale, Bharat B; Patil, Deepak R

    2015-12-21

    Magnetically separable Ag3PO4/NiFe2O4 (APO/NFO) composites were prepared by an in situ precipitation method. The photocatalytic activity of photocatalysts consisting of different APO/NFO mass ratios was evaluated by degradation of methylene blue (MB) under visible light irradiation. The excellent photocatalytic activity was observed using APO/NFO5 (5% NFO) composites with good cycling stability which is higher than that of pure Ag3PO4 and NiFe2O4. All the APO/NFO composites showed good magnetic behavior, which makes them magnetically separable after reaction and reusable for several experiments. Photoconductivities of pure and composite samples were examined to study the photoresponse characteristics. The current intensity greatly enhanced by loading NFO to APO. Furthermore, the photocatalytic performance of the samples is correlated with the conductivity of the samples. The enhancement in the photocatalytic activity of APO/NFO composites for MB degradation is attributed to the excellent conductivity of APO/NFO composites through the co-catalytic effect of NFO by providing accelerated charge separation through the n-n interface. PMID:26508302

  6. Evidence for magnetic phase separation in La0.86Sr0.14Mn1-xCuxO3+? manganites from NMR and magnetic measurements

    International Nuclear Information System (INIS)

    Polycrystalline La0.86Sr0.14Mn1-xCuxO3+? (x = 0, 0.05, 0.10, 0.15, 0.20) manganites were investigated by means of magnetic measurements and zero-field 139La and 55Mn nuclear magnetic resonance (NMR) spectroscopy. Magnetization versus temperature measurements revealed a paramagnetic to ferromagnetic transition in most samples, with lower Curie temperatures and broader transitions for samples with higher Cu contents. The details of the magnetization measurements suggested a phase-separated scenario, with ferromagnetic clusters embedded in an antiferromagnetic matrix, especially for the samples with large Cu contents (x = 0.15 and 0.20). Zero-field 139La NMR measurements confirmed this finding, since the spectral features remained almost unchanged for all Cu-doped samples, whereas the bulk magnetization was drastically reduced with increasing Cu content. 55Mn NMR spectra were again typical of ferromagnetic regions, with a broadening of the resonance line caused by the disorder introduced by the Cu doping. The results indicate a coexistence of different magnetic phases in the manganites studied, with the addition of Cu contributing to the weakening of the double-exchange interaction in most parts of the material

  7. The effect of particle size and colloid stability on the wet high-intensity magnetic separation of uranium from cyanidation residues

    International Nuclear Information System (INIS)

    This report describes an experimental investigation on the magnetic separation of U3O8 from various size fractions of uranium-gold tailings. High recoveries were obtained at high grades, even from the finest fraction (smaller than 25?m), and an increase in magnetic field did not improve the efficiency of separation. The use of theoretical models did not lead to the correct prediction of the limiting particle size recoverable by magnetic separation. It was shown that the presence of coarse fractions enhances the recovery of uranium from a very fine fraction, and that 'piggy-back' magnetic separation plays an important role in the capture of slimes. The results also showed that the use of a dispersant considerably improves the selectivity of the separation

  8. Phase separation, ferromagnetism and magnetic irreversibility in La1-xSrxMn1-yFeyO3

    International Nuclear Information System (INIS)

    Magnetic susceptibility, ?(T), is investigated in ceramic La1-xSrxMn1-yFeyO3 (LSMFO) samples with x=0.3 and y=0.15-0.25. A ferromagnetic (FM) transition observed in LSMFO is accompanied with an appreciable decrease of the transition temperature with increasing y, which is connected to breaking of the FM double-exchange interaction by doping with Fe. Strong magnetic irreversibility, observed in low (B=10 G) field, gives evidence for frustration of the magnetic state of LSMFO. The FM transition, which is expanded with increasing B, is more pronounced in the samples with y=0.15-0.20 and broadens considerably at y=0.25, where the irreversibility is increased. Well above the transition, ?(T) exhibits a Curie-Weiss asymptotic behavior, yielding very large values of the effective Bohr magneton number per magnetic ion, incompatible with those of Mn or Fe single ions. At y=0.15 and 0.20 a critical behavior of ?-1(T)?(T/TC-1)? in the region of the FM transition is characterized by influence of two different magnetic systems, a 3D percolative one with ?=?p?1.8 and TC=TC(p), and a non-percolative 3D Heisenberg spin system, with ?=?H?1.4 and TC=TC(H), where TC(p)C(H). At y=0.25 the percolative contribution to the critical behavior of ?(T) is not observed. The dependence of ? on T and y gives evidence for phase separation, with onset already near the room temperature, leading to generation of nanosize FM particles in the paramagnetic host matrix of LSMFO. The ferromagnetism of LSMFO is attributable to percolation over the system of such particles and generation of large FM clusters, whereas the frustration is governed presumably by a system of smaller weakly-correlated magnetic units, which do not enter the percolative FM clusters. - Highlights: ? Low-field magnetic susceptibility of La1-xSrxMn1-yFeyO3 is investigated. ? Coexistence of ferromagnetism and magnetic irreversibility is observed. ? This is connected to influence of two different magnetic subsystems. ? Both of them exist due to nanosize ferromagnetic particles in paramagnetic matrix. ? Such effect of phase separation is an intrinsic property of manganites.

  9. Physical and technical aspects for 'Shelter' object rad waste magnetic separation technology

    International Nuclear Information System (INIS)

    The lava-like fuel-containing materials (LFCM) of Shelter object magnetic susceptibility temperature dependences (80-500K) were under the experimental study for the first time. The LFCM magnetic properties changeability under the isochronic annealing have been in fact detected as well

  10. Maximizing haematite recovery within a fine and wide particle-size distribution using wet high-intensity magnetic separation

    Scientific Electronic Library Online (English)

    M, Dworzanowski.

    2014-07-01

    Full Text Available The physical beneficiation of iron ore that has a wide particle-size distribution is problematic, regardless of the process applied, whether dense medium separation, gravity concentration, magnetic separation, or flotation. The problem of particle size is further compounded when there is a significa [...] nt -10 µm fraction. Generally the approach to a wide particle-size distribution is to split into narrower size ranges and treat each separately. More often than not the -10 µm fraction is not treated but discarded. This approach results in a more complicated and expensive flow sheet and the loss of any potential value in the -10 µm fraction. Wet high-intensity magnetic separation (WHIMS) bench-scale test work was conducted on a haematite-rich material with a particle size of -200 µm What made this material different was that it contained a 60% -10 µm fraction, hence discarding the -10 µm material was not an option. The objective of the test work was to determine how to maximize the recovery of the haematite across the full particle size range. Given the unusual particle size distribution, it was concluded that WHIMS would be the only practical beneficiation route. The -200 +10 µm and -10 µm fractions were treated separately and together under varying WHIMS conditions. For a given concentrate grade, the mass yield obtained was greater when the total particle-size distribution was treated. The inferred optimum conditions, using the same material, were tested on a pilot-scale WHIMS and similar results were obtained.

  11. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, Michail, E-mail: msamouhos@metal.ntua.gr [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Taxiarchou, Maria; Tsakiridis, Petros E. [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Potiriadis, Konstantinos [Greek Atomic Energy Commission (GAEC), Patriarxou Grigoriou and Neapoleos, P.O. Box 60092, 15310 Agia Paraskevi, Athens (Greece)

    2013-06-15

    Highlights: • Microwave reduction of a red mud. •Measurement of real and imaginary permittivity of red mud–lignite mixture. •Red mud was subjected to reductive roasting and magnetic separation processes. •The optimum concentrate contains 31.6% iron with a 69.3% metallization degree. •{sup 226}Ra, {sup 228}Ra, {sup 238}U, {sup 228}Th, {sup 232}Th, {sup 40}K were detected in the magnetic concentrate. -- Abstract: The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.% C{sub fix}), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe{sub 2}O{sub 3} ? Fe{sub 3}O{sub 4} ? FeO ? Fe sequence. The dielectric constants [real (??) and imaginary (??) permittivities] of red mud–lignite mixture were determined at 2.45 GHz, in the temperature range of 25–1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained.

  12. Manipulation of magnetic phase separation and orbital occupancy in manganites by strain engineering and electric field

    Science.gov (United States)

    Cui, Bin; Song, Cheng; Pan, Feng; Key Laboratory of Advanced Materials (MOE) Team

    2015-03-01

    The modification of electronic phases in correlated oxides is one of the core issues of condensed matter. We report the reversible control of ferromagnetic phase transition in manganite films by ionic liquid gating, replicating the La1-xSrxMnO3 (LSMO) phase diagram. The formation and annihilation of an insulating and magnetically hard phase in the soft magnetic matrix, which randomly nucleates and grows across the film, is directly observed under different gate voltages (VG) . The realization of reversible metal-insulator transition in colossal magnetoresistance materials can lead to the development of four-state memories. The orbital occupancy and magnetic anisotropy of LSMO films are manipulated by VG in a reversible and quantitative manner. Positive and negative VG increases and reduces the occupancy of the orbital and magnetic anisotropy that were initially favored by strain (irrespective of tensile and compressive), respectively. This finding fills in the blank of electrical manipulation of four degrees of freedom in correlated system.

  13. Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport

    International Nuclear Information System (INIS)

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at TMI and TC. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  14. X-ray photoelectron spectroscopy and nuclear magnetic resonance as complementary probes of pseudogaps and spin-charge separation

    International Nuclear Information System (INIS)

    The possibility that strongly correlated many-electron systems may exhibit spin-charge separation has generated great excitement, particularly in the light of recent experiments on low-dimensional conductors and high-temperature superconductors. However, finding experimental support for this hypothesis has been made difficult by the fact that most commonly used probes couple simultaneously to spin and charge excitations. We argue that core-hole photoemission (XPS)/nuclear magnetic resonance (NMR) couple independently and in exactly comparable ways to the local charge/spin susceptibilities of the system being measured. The explicit comparison of XPS and NMR data, particularly for systems which exhibit a pseudogap, may therefore yield fresh evidence for the existence (or non-existence) of spin-charge separation. Application of these ideas to the normal state of high-temperature superconductors is discussed, and the application is further illustrated in some detail for quasi-one-dimensional systems with charge-density waves. (author)

  15. Superconductivity, metastability and magnetic field induced phase separation in the atomic limit of the Penson-Kolb-Hubbard model

    CERN Document Server

    Kapcia, Konrad Jerzy

    2014-01-01

    We present the analysis of paramagnetic effects of magnetic field ($B$) (Zeeman term) in the zero-bandwidth limit of the extended Hubbard model for arbitrary chemical potential $\\mu$ and electron density $n$. The effective Hamiltonian considered consists of the on-site interaction $U$ and the intersite charge exchange term $I$, determining the hopping of electron pairs between nearest-neighbour sites. The model has been analyzed within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation (rigorous in the limit of infinite dimensions $d\\rightarrow+\\infty$). In this report we focus on metastable phases as well as phase separated (PS) states involving superconducting (SS) and nonordered (NO) phases and determine their ranges of occurrence for $U/I_0=1.05$ ($I_0=zI$) in the presence of magnetic field $B\

  16. Interplay of magnetic order, pairing, and phase separation in a one-dimensional spin-fermion model

    Science.gov (United States)

    Hu, Wenjian; Scalettar, Richard T.; Singh, Rajiv R. P.

    2015-09-01

    We consider a lattice model of itinerant electrons coupled to an array of localized classical Heisenberg spins. The nature of the ground-state-ordered magnetic phases that result from the indirect spin-spin coupling mediated by the electrons is determined as a function of density and the spin-fermion coupling J . At a fixed chemical potential, spiral phases exist only up to values of J which are less than roughly half the electronic bandwidth. At a fixed electron density and near half filling, the system phase-separates into a half-filled antiferromagnetic phase and a spiral phase. The ferromagnetic phases are shown to be fully polarized, while the spiral phases have equal admixture of up and down spins. Phase separation survives in the presence of weak pairing field ? but disappears when ? exceeds a critical value ?c. If pairing fields are large enough, an additional spiral state arises at strong coupling J . The relevance of this study, especially the phase separation, to artificially engineered systems of adjacent itinerant electrons and localized spins is discussed. In particular, we propose a method which might allow for the braiding of Majorana fermions by changing the density and moving their location as they are pulled along by a phase separation boundary.

  17. New high performance hybrid magnet plates for DNA separation andbio-technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, David; Pollard, Martin; Elkin, Chris; Petermann, Karl; Reiter, Charles; Cepeda, Mario

    2004-08-02

    A new class of magnet plates for biological and industrial applications has recently been developed at the D.O.E. Joint Genome Institute and Lawrence Berkeley National Laboratory (JGI/LBNL). These devices utilize hybrid technology that combines linear permanent magnet material and ferromagnetic material to produce significantly higher fields and gradients than currently available commercial magnet plates. These hybrid structures incorporate ferromagnetic poles that can be easily shaped to produce complex field distributions for specialized applications. The higher maximum fields and strong gradients of the hybrid structures result in greater holding forces on magnetized targets that are being processed as well as faster draw-down. Current development versions of these magnet plates have exhibited maximum fields in excess of 9000.0 Gauss. The design of these structures is easily scalable to allow for field increases to significantly above 1.0 tesla (10000.0gauss). Author's note: 11000.0 Gauss peak fields have been achieved as of January 2005.

  18. Separation of fields and 3D inversion of gravity and magnetic data for the Thuringian Basin, Germany

    Science.gov (United States)

    Prutkin, Ilya; Bleibinhaus, Florian; Jahr, Thomas

    2013-04-01

    We have developed a new algorithm for the 3D inversion of potential field data, and we have applied it to gravity and magnetic data from the Thuringian Basin in Mid-Germany to obtain additional constraints for the basin structure. A detailed structural model is an essential boundary condition for models of fluid transport, one of the central goals of the INFLUINS project. Our inversion approach separates the sources (i) in depth using upward and downward continuation, (ii) in the lateral direction by means of approximation with a field generated by 3D line segments, and (iii) according to the density and magnetization contrast on the basis of a pseudo-gravity calculation. Potential field anomalies are modeled either as depth variations of a density interface, or as restricted 3D bodies. We have inverted gravity and magnetic data from the Thuringian Basin for short, intermediate and long wavelengths separately. We assume that the intermediate wavelengths are generated by anomalies in the crystalline basement (~10 km depth), while the short wavelength structure is caused by the variable thickness and structure of the basin sediments. Our 3D model for the main intermediate sources includes three low-density bodies that we interpret as granitic intrusions, and a density interface with topography within the crystalline basement. A significant arc-shaped anomaly, visible both in gravity and in magnetic data, is modeled as an uplift of the crystalline crust. More detailed models for the Tannrodaer anticline are indicative of salt tectonics: the corresponding 3D model includes an uplift of Bundsandstein and a salt deposit. We are currently working on including further constraints on the basin structure from a recently acquired reflection seismic survey.

  19. Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic

    International Nuclear Information System (INIS)

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g?1) barium hexaferrite (BaFe12O19, BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe3O4) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 ?g L?1 As-contaminated water can be purified rapidly at a material cost of less than 2 US cents

  20. Magnetic and noble metal nanocomposites for separation and optical detection of biological species.

    Science.gov (United States)

    Bagga, K; Brougham, D F; Keyes, T E; Brabazon, D

    2015-11-14

    Nanoalloys and nanocomposites are widely studied classes of nanomaterials within the context of biological systems. They are of immense interest because of the possibility of tuning the optical, magnetic, electronic and chemical properties through particle composition and internal architecture. In principle these properties can therefore be optimized for application in biological detections such as of DNA sequences, bacteria, viruses, antibodies, antigens, and cancer cells. This article presents an overview of methods currently used for nanoalloy and nanocomposite synthesis and characterisation, focusing on Au-Ag and FexOy@Au structures as primary components in detection platforms for plasmonic and magnetically enabled plasmonic bio-sensing. PMID:26024367

  1. Separation and purification of hen egg white lysozyme using magnetic particles.

    Czech Academy of Sciences Publication Activity Database

    Šafa?íková, Miroslava; Mad?rová, Zde?ka; Šafa?ík, Ivo

    Patras : University of Patras, 2006, s. 205. [International Congress on Bioprocesses in Food Industries. Patras (GR), 18.06.2006-21.06.2006] R&D Projects: GA MŠk(CZ) 1P05OC053 Institutional research plan: CEZ:AV0Z60870520 Keywords : lysozyme * magnetic particles Subject RIV: EI - Biotechnology ; Bionics

  2. Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation.

    Czech Academy of Sciences Publication Activity Database

    P?ikryl, P.; Horák, Daniel; Tichá, M.; Ku?erová, Z.

    2006-01-01

    Ro?. 29, ?. 16 (2006), s. 2541-2549. ISSN 1615-9306 R&D Projects: GA ?R GA203/05/0241 Institutional research plan: CEZ:AV0Z40500505 Keywords : human IgG * hydrophilic magnetic microspheres * iminodiacetic acid Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.535, year: 2006

  3. Studies in matter antimatter separation and in the origin of lunar magnetism

    Science.gov (United States)

    Barker, W. A.; Greeley, R.; Parkin, C.; Aggarwal, H.; Schultz, P.

    1975-01-01

    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed.

  4. A study on the purification of primary coolant in a nuclear power plant using a magnetic filter - electrodeionization hybrid separation system

    International Nuclear Information System (INIS)

    A study on the purification of primary coolant system in a nuclear power plant is carried out using magnetic filter - electrodeionization hybrid separation process. Magnetic filter system with 3000 Gauss permanent manget is used for the removal of CRUD (Chalk River Unidentified Deposit) and electrodeionization for ionic nuclide species. The removal and transport mechanism of nickel ion in an electrodeionization system is explained. The developed magnetic filter - electrodeionization hybrid separation process showed high removal rate over 98 %. The results suggested the applicable possibility for the purification of primary coolant system in a nuclear power plant

  5. Mass separation of a multicomponent plasma flow in a curvilinear magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Papernyi, V. L.; Krasov, V. I. [Irkutsk State University (Russian Federation)

    2011-11-15

    The motion of a metal plasma flow of a vacuum-arc discharge in a transportation plasma-optical system with a curvilinear magnetic field is studied experimentally and numerically. The flow position at the output of the system is shown to depend on the cathode material, which determines the mass-to-charge ratio of plasma ions. As a result, the flow with a greater ion mass-to-charge ratio moves along a trajectory with a larger radius. A similar effect is observed in the case of a multicomponent plasma flow generated by a composite cathode. The results of two-fluid MHD simulations of a plasma flow propagating in a curvilinear magnetic field agree qualitatively with the experimental data.

  6. Interplay of Magnetic Order, Pairing and Phase Separation in a One Dimensional Spin Fermion Model

    OpenAIRE

    Hu, Wenjian; Scalettar, Richard T.; Singh, Rajiv R. P

    2015-01-01

    We consider a lattice model of itinerant electrons coupled to an array of localized classical Heisenberg spins. The nature of the ground state ordered magnetic phases that result from the indirect spin-spin coupling mediated by the electrons is determined as a function of density and the spin-fermion coupling J. At a fixed chemical potential, spiral phases exist only up to values of J which are less than roughly half the electronic bandwidth. At a fixed electron density and ...

  7. Isolation of Murine Postnatal Brain Microglia for Phenotypic Characterization Using Magnetic Cell Separation Technology

    OpenAIRE

    Harms, Ashley S; Tansey, Malú G.

    2013-01-01

    To shorten the time between brain harvesting and microglia isolation, and characterization we utilized the MACS® neural dissociation kit followed by OctoMACS® CD11b magnetic bead isolation technique to positively select for brain microglia expressing the pan-microglial marker Cd11b, a key subunit of the Membrane Attack Complex (MAC). This protocol yields a viable and highly pure (> 95%) microglial population of approximately 500,000 cells per pup that is amenable for in vitro characterization...

  8. Calculating Separate Magnetic Free Energy Estimates for Active Regions Producing Multiple Flares: NOAA AR11158

    CERN Document Server

    Tarr, Lucas A; Millhouse, Margaret

    2013-01-01

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The \\emph{Helioseismic and Magnetic Imager} (HMI) onboard the \\emph{Solar Dynamics Observatory} (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C--class, 2 M--class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on February 12th, 2011. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600\\AA\\ chann...

  9. Wet high-intensity magnetic separation for the concentration of Witwatersrand gold-uranium ores and residues

    International Nuclear Information System (INIS)

    Wet high-intensity magnetic separation (WHIMS) for the concentration of gold and uranium was tested on many Witwatersrand cyanidation residues, and on some ores and flotation tailings. The results varied, but many indicated recoveries of over 60 per cent of the gold and uranium. The main source of loss is the inefficiency of WHIMS for material of smaller particle size than 20?m. The recoveries in the continuous tests were lower than those in the batch tests. The continuous tests indicated an operational difficulty that could be experienced in practice, namely the tendency for wood chips and ferromagnetic particles to block the matrix of the separator. It was decided that a solution to the problem lies in the modification of the separator to allow continuous removal of the matrix for cleaning. A system has been developed for this purpose and is being demonstrated on a pilot-plant scale. Promising results were obtained in tests on a process that combines a coarse grind, gravity concentration, and WHIMS. In the gravity-concentration step, considerable recoveries, generally over 50 per cent, of high-grade pyrite were obtained, together with high recoveries of gold and moderate, but possibly important, recoveries of uranium. A simple model describing the operation of the WHIMS machine in terms of the operating parameters is described. This should reduce the amount of empirical testwork required for the optimization of operating conditions and should provide a basis for scale-up calculations. The economics of the WHIMS process is discussed

  10. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.

    Science.gov (United States)

    Samouhos, Michail; Taxiarchou, Maria; Tsakiridis, Petros E; Potiriadis, Konstantinos

    2013-06-15

    The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.%Cfix), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe?O? ? Fe?O? ? FeO ? Fe sequence. The dielectric constants [real (?') and imaginary (??) permittivities] of red mud-lignite mixture were determined at 2.45 GHz, in the temperature range of 25-1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained. PMID:23611801

  11. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La$_{2-x}$Sr$_x$CoO$_4$

    CERN Document Server

    Drees, Y; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rütt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C

    2015-01-01

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconduc...

  12. Acid-Stable Magnetic Core?Shell Nanoparticles for the Separation of Rare Earths

    OpenAIRE

    Dupont, David; Luyten, Jakob; Bloemen, Maarten; Verbiest, Thierry; Binnemans, Koen

    2014-01-01

    Core–shell Fe3O4@SiO2 nanoparticles were prepared with a modified Stöber method and functionalized with N-[(3-trimethoxysilyl)propyl]ethylenediamine triacetic acid (TMS-EDTA). The synthesis was optimized to make core–shell nanoparticles with homogeneous and thin SiO2 shells (4.8 ± 0.5 nm) around highly superparamagnetic Fe3O4 cores (14.5 ± 3.0 nm). The core–shell Fe3O4@SiO2(TMS-EDTA) nanoparticles were then used for the extraction and separation of rare-earth ions. By comparing them with prev...

  13. Facile synthesis of porous Fe7Co3/carbon nanocomposites and their applications as magnetically separable adsorber and catalyst support.

    Science.gov (United States)

    Wang, Zhongli; Liu, Ruixia; Zhao, Fengyu; Liu, Xiaojuan; Lv, Minfeng; Meng, Jian

    2010-06-15

    A facile co-gelation route has been developed to synthesize novel porous Fe(7)Co(3)/carbon composites with Fe(7)Co(3) nanoparticles embedded in the porous carbon matrix. The sol-gel process of this route simultaneously involves the hydrolysis of tetraethylorthosilicate (TEOS) and the polymerization of furfuryl alcohol (FA) within an ethanol solution containing TEOS, FA, and metal nitrates, which led to the inorganic/organic hybrid xerogel, accompanying metal salts spontaneously captured in the xerogel, mostly in the framework of poly(furfuryl alcohol) (PFA). Compared to the nanocasting route, the advantage of this method is that the formation of silica template and the impregnation of carbon precursor and metal salts were simultaneously carried out in one co-gelation process, which makes the synthesis very simple and eliminates the time-consuming synthesis of the silica template and multistep impregnation process. Different amounts of Fe(7)Co(3) can be introduced into the composites, which led to different pore structures and magnetic properties. The composites have large surface areas (as high as 651.4 m(2)/g) and high saturation magnetizations (as high as 31.2 emu/g). The Fe(7)Co(3)/carbon composites prepared were successfully applied to the removal of dyes from water and catalysis of hydrogenation as efficient magnetically separable adsober and catalyst support. The facile co-gelation route makes the scalable synthesis of magnetic porous carbon possible for application, and it also provides a promising path to the synthesis of nanoscale metal or alloy embedded in the porous carbon materials. PMID:20369845

  14. Cryo magnetic separation adaptation to environment technologies: application to industrial effluents; Adaptation de la separation cryomagnetique aux technologies de l`environnement: application a l`epuration d`effluents liquides industriels

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, V.

    1993-12-20

    Cryomagnetic separation adaptation to environment technologies application to industrial liquid effluents. The performance, obtained by superconducting high filed - high gradient magnetic separation, permitted to foresee the magnetic treatment of heavy metals in rinse waters, derived from the surface finishing industry. The paramagnetic ions, precipitated in basic media as hydroxides, present a very hydrated amorphous structure, which masks their subjacent magnetic properties. Coprecipitation of a `magnetic carrier`, jointly with the heavy metals, has been studied: ferric chloride forms in basic media, an hydrated iron oxide. Its structure is of the goethite type, and it stabilizes as hematite. The magnetic susceptibility of the obtained product is still weak and its crystalline structure is not enough affirmative to utilize magnetic filtration with efficiency. Mixture of ferrous sulphate and ferric chloride forms, in a basic media, an hydrated magnetite. Initial ideal ratio between divalent iron and trivalent iron, varies between 0,5 and 1,2. This mixture, coprecipitated with the heavy metals, permits to optimize the magnetic cleaning of the fluids in a high field - high gradient filter. (author)

  15. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    Science.gov (United States)

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. PMID:26212997

  16. Enhanced defluoridation and facile separation of magnetic nano-hydroxyapatite/alginate composite.

    Science.gov (United States)

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2015-09-01

    In this research study, a new magnetic biosorbent was developed by the fabrication of magnetic Fe3O4 particles on nano-hydroxyapatite(n-HAp)/alginate (Alg) composite (Fe3O4@n-HApAlg composite) for defluoridation in batch mode. The synthesized Fe3O4@n-HApAlg biocomposite possess an enhanced defluoridation capacity (DC) of 4050mgF(-)/kg when compare to n-HApAlg composite, Fe3O4@n-HAp composite, n-HAp and Fe3O4 which possesses the DCs of 3870, 2469, 1296 and 1050mgF(-)/kg respectively. The structural changes of the sorbent, before and after fluoride sorption were studied using FTIR, XRD and SEM with EDAX techniques. There are various physico-chemical parameters such as contact time, pH, co-existing anions, initial fluoride concentration and temperature were optimized for maximum fluoride removal. The equilibrium data was well modeled by Freundlich, Langmuir, Dubinin-Radushkevich (D-R) and Temkin isotherms. The present system follows Dubinin-Radushkevich isotherm model. The thermodynamic parameters reveals that the feasibility, spontaneity and endothermic nature of fluoride sorption. The performance and efficiency of the adsorbent material was examined with water samples collected from fluoride endemic areas namely Reddiyarchatram and Ammapatti in Dindigul District of Tamil Nadu using standard protocols. PMID:26092170

  17. Preparation of magnetic carbon nanotubes for separation of pyrethroids from tea samples

    International Nuclear Information System (INIS)

    Magnetic carbon nanotubes (MCNTs) have been synthesized by chemical deposition of Fe3O4 nanoparticles onto carbon nanotubes. They were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffraction and physical property measurement system. The MCNTs were used as the sorbents for the extraction of pyrethroids including beta-cyfluthrin, cyhalothrin and cyphenothrin from tea samples. The extraction conditions, such as the amount of magnetic sorbent, shaking time and rate, washing and eluting solution have been fully investigated. The analytes desorbed from MCNTs were determined by HPLC with UV detection. Under the optimal conditions, the linearity of the method is in the range of 0.05-25 ?g g-1. The limits of detection of the three pyrethroids are 0.017, 0.010 and 0.018 ?g g-1, respectively. The relative standard deviations of within- and between-day range from 3.5 % to 6.4 %, and from 4.5 % to 29 7.3 %, respectively. In all three spiked levels (0.05, 0.5 and 5 ?g g-1), the recoveries of pyrethroids are in the range of 82.2 %-94.4 %. This method is much faster and more effective than traditional methods, and it is promising for the analysis of pesticides residues. (author)

  18. Photocatalytic degradation of methylene blue on magnetically separable MgFe{sub 2}O{sub 4} under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shahid, Muhammad [Material Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Jingling, Liu [BK21 Physics Research Division, SKKU Advanced Institute of Nanotechnology, Institute of Basic Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ali, Zahid [National Institute of Lasers and Optronics, Nilore, Islamabad (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, King Saud University, Riyadh (Saudi Arabia); Warsi, Muhammad Farooq, E-mail: farooq.warsi@iub.edu.pk [Chemistry Department, Baghdad-ul-Jaded Campus, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Parveen, Riffat [Institute of Chemistry, University of the Punjab, Lahore (Pakistan); Nadeem, Muhammad [Department of Chemistry, University of Agriculture, Faisalabad 38040, Punjab (Pakistan)

    2013-05-15

    A magnetically separable single-phase MgFe{sub 2}O{sub 4} photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe{sub 2}O{sub 4} was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe{sub 2}O{sub 4} was studied by measuring their photocurrent–potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm{sup ?2} illumination. - Graphical abstract: Highly efficient magnetically separable MgFe{sub 2}O{sub 4} photocatalyst for organic based impurities decomposition as well as for the production of H{sub 2} gas was synthesized and characterized successfully (a) MgFe{sub 2}O{sub 4} photocatalyst in polluted water, (b) The photocatalyst (MgFe{sub 2}O{sub 4}) is being attracted toward magnetic field for separation, (c) Hysteresis loop of MgFe{sub 2}O{sub 4} showing magnetic behavior. Highlights: ? New photocatalyst working in the visible range have been synthesized by facile cheap route. ? MgFe{sub 2}O{sub 4} photocatalyst showed well defined magnetically separable behavior. ? Excellent water splitting characteristics to produce H{sub 2} was observed under visible light irradiation.

  19. Ferromagnetism, spiral magnetic structures and phase separation in the two-dimensional Hubbard model

    International Nuclear Information System (INIS)

    The quasistatic approximation and equation-of-motion decoupling for the electron Green's functions are applied to trace the effect of electronic dispersion and electron correlations on the ferromagnetism of two-dimensional itinerant-electron systems. It is found that next-nearest-neighbor hopping t? is of crucial importance for ferromagnetism formation yielding the magnetic phase diagram which is strongly asymmetric with respect to half-filling. At small t? in the vicinity of half-filling the ferromagnetic phase region is restricted by the spin-density wave instability, and far from half-filling by one-particle (spin-polaron) instability. At t? close to t/2 ferromagnetism is stabilized at moderate Hubbard U due to substantial curvature of the Fermi surface which passes in the vicinity of the van Hove singularity points. The results obtained are of possible importance for high-Tc compounds and layered ruthenates.

  20. The performance of an industrial wet high-intensity magnetic separator for the recovery of gold and uranium

    International Nuclear Information System (INIS)

    After bench-scale and pilot-plant tests in which it was shown that wet high-intensity magnetic separation (WHIMS) can achieve good recoveries of gold and uranium from Witwatersrand residues, a production-size machine was installed at a gold mine. The mechanical and metallurgical performance of this machine have been satisfactory, and the economics of the process are attractive. WHIMS can be combined with other unit operations like flotation for the optimization of overall gold and uranium recoveries. This concept is shown to be relevant, not only to operations for the retreatment of tailings, but to processes for the treatment of coarser material. In the latter, there is a saving in energy consumption compared with the energy required for the fine grinding of the total feed, and a material suitable for underground backfill can be produced. Improved, more cost-effective WHIMS machines currently under development are also described

  1. Fenton-like degradation of Methylene Blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: Characterization and mechanism.

    Science.gov (United States)

    Zhou, Guoqiang; Chen, Ziwen; Fang, Fei; He, Yuefeng; Sun, Haili; Shi, Huixiang

    2015-09-01

    For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst (PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer-Emmet-Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue (MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover, leaching tests indicated that the leached iron is negligible (PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst. PMID:26354688

  2. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator.

    Science.gov (United States)

    Wang, Chengquan; Qian, Jing; Wang, Kun; Yang, Xingwang; Liu, Qian; Hao, Nan; Wang, Chengke; Dong, Xiaoya; Huang, Xingyi

    2016-03-15

    Gold nanoparticles (Au NPs) doped Fe3O4 (Au@Fe3O4) NPs have been synthesized by a facile one-step solvothermal method. The peroxidase-like activity of Au@Fe3O4 NPs was effectively enhanced due to the synergistic effect between the Fe3O4 NPs and Au NPs. On this basis, an efficient colorimetric aptasensor has been developed using the intrinsic dual functionality of the Au@Fe3O4 NPs as signal indicator and magnetic separator. Initially, the amino-modified aptamer specific for a typical mycotoxin, ochratoxin A (OTA), was surface confined on the amino-terminated glass beads surafce using glutaraldehyde as a linker. Subsequently, the amino-modified capture DNA (cDNA) was labeled with the amino-functionalized Au@Fe3O4 NPs and the aptasensor was thus fabricated through the hybridization reaction between cDNA and the aptamers. While upon OTA addition, aptamers preferred to form the OTA-aptamer complex and the Au@Fe3O4 NPs linked on the cDNA were released into the bulk solution. Through a simple magnetic separation, the collected Au@Fe3O4 NPs can produce a blue colored solution in the presence of 3,3',5,5'-tetramethylbenzidine and H2O2. When the reaction was terminated by addition of H(+) ions, the blue product could be changed into a yellow one with higher absorption intensity. This colorimetric aptasensor can detect as low as 30pgmL(-1) OTA with high specificity. To the best of our knowledge, the present colorimetric aptasensor is the first attempt to use the peroxidase-like activity of nanomaterial for OTA detection, which may provide an acttractive path toward routine quality control of food safety. PMID:26583358

  3. Long-Distance Sequential Charge Separation at Micellar Interface Mediated by Dynamic Charge Transporter: A Magnetic Field Effect Study.

    Science.gov (United States)

    Miura, Tomoaki; Maeda, Kiminori; Murai, Hisao; Ikoma, Tadaaki

    2015-01-15

    Construction of photogenerated long-lived charge-separated states is crucial for light-energy conversion using organic molecules. For realization of cheap and easy-to-make long-distance electron transfer (ET) systems, we have developed a supramolecular donor(D)-chromophore(C)-acceptor(A) triad utilizing a micellar interface. Alkyl viologen (A(2+)) is adsorbed on the hydrophilic interface of Triton X-100 micelle, which bears D units in the hydrophobic core. Excited triplet state of a hydrophobic flavin C entrapped in the supercage gives rise to primary ET from D, which is followed by the secondary ET from C(-•) to A(2+) to give the long-lived (>10 ?s) charge-separated state with negligible yield of escaped C(-•). Analysis of magnetic field effect reveals that diffusion of C(-•) from the core to the hydrophilic interface leads to long-distance ET with a low charge recombination yield of ?20%. This novel concept of "dynamic charge transporter" has important implications for development of photon-energy conversion systems in solution phase. PMID:26263461

  4. Coupling Underwater Superoleophobic Membranes with Magnetic Pickering Emulsions for Fouling-Free Separation of Crude Oil/Water Mixtures: An Experimental and Theoretical Study.

    Science.gov (United States)

    Dudchenko, Alexander V; Rolf, Julianne; Shi, Lucy; Olivas, Liana; Duan, Wenyan; Jassby, David

    2015-10-27

    Oil/water separations have become an area of great interest, as growing oil extraction activities are increasing the generation of oily wastewaters as well as increasing the risk of oil spills. Here, we demonstrate a membrane-based and fouling-free oil/water separation method that couples carbon nanotube-poly(vinyl alcohol) underwater superoleophobic ultrafiltration membranes with magnetic Pickering emulsions. We demonstrate that this process is insensitive to low water temperatures, high ionic strength, or crude oil loading, while allowing operation at high permeate fluxes and producing high quality permeate. Furthermore, we develop a theoretical framework that analyzes the stability of Pickering emulsions under filtration mechanics, relating membrane surface properties and hydrodynamic conditions in the Pickering emulsion cake layer to membrane performance. Finally, we demonstrate the recovery and recyclability of the nanomagnetite used to form the Pickering emulsions through a magnetic separation step, resulting in an environmentally friendly, continuous process for oil/water separation. PMID:26422748

  5. Separating spatial and temporal variations in auroral electric and magnetic fields by Cluster multipoint measurements

    Directory of Open Access Journals (Sweden)

    T. Karlsson

    2004-07-01

    Full Text Available Cluster multipoint measurements of the electric and magnetic fields from a crossing of auroral field lines at an altitude of 4RE are used to show that it is possible to resolve the ambiguity of temporal versus spatial variations in the fields. We show that the largest electric fields (of the order of 300mV/m when mapped down to the ionosphere are of a quasi-static nature, unipolar, associated with upward electron beams, stable on a time scale of at least half a minute, and located in two regions of downward current. We conclude that they are the high-altitude analogues of the intense return current/black auroral electric field structures observed at lower altitudes by Freja and FAST. In between these structures there are temporal fluctuations, which are shown to likely be downward travelling Alfvén waves. The periods of these waves are 20-40s, which is not consistent with periods associated with either the Alfvénic ionospheric resonator, typical field line resonances or substorm onset related Pi2 oscillations. The multipoint measurements enable us to estimate a lower limit to the perpendicular wavelength of the Alfvén waves to be of the order of 120km, which suggests that the perpendicular wavelength is similar to the dimension of the region between the two quasi-static structures. This might indicate that the Alfvén waves are ducted within a wave guide, where the quasi-static structures are associated with the gradients making up this waveguide.

  6. Evidence for Two Separate but Interlaced Components of the Chromospheric Magnetic Field

    Science.gov (United States)

    Muglach, K.; Reardon, K. P.; Wang, Y.-M.; Warren, H. P.

    2012-01-01

    Chromospheric fibrils are generally thought to trace out horizontal magnetic fields that fan out from flux concentrations in the photosphere. A high-resolution (0.2") image taken in the core of the Ca IJ854.2 nm line shows the dark fibrils within an active region remnant as fine, loop-like features that are aligned parallel to each other and have lengths on the order of a supergranular diameter (approx.30 Mm). Comparison with a line-of-sight magnetogram confirms that the fibrils are centered above intranetwork areas, with one end rooted just inside the neighboring plage or strong unipolar network but the other endpoint less clearly defined. Focusing on a particular arcade-like structure lying entirely on one side of a filament channel (large-scale polarity inversion), we find that the total amount of positive-polarity flux underlying this "fibril arcade' is 50 times greater than the total amount of negative-polarity flux. Thus, if the fibrils represent closed loops, they must consist of very weak fields (in terms of flux density), which are interpenetrated by a more vertical field that contains most of the flux. This surprising result suggests that the fibrils in unipolar regions connect the network to the nearby intranetwork flux, while the bulk of the network flux is diverted upward into the corona and connects to remote regions of the opposite polarity. We conclude that the chromospheric field near the edge of the network has an interlaced structure resembling that in sunspot penumbrae, with the fibrils representing the low-lying horizontal flux that remains trapped within the highly nonpotential chromospheric layer.

  7. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens.

    Science.gov (United States)

    Ondera, Thomas J; Hamme Ii, Ashton T

    2015-11-01

    A rapid, sensitive and quantitative immunoassay for the targeted detection and decontamination of E. coli based on Fe3O4 magnetic nanoparticles (MNPs) and plasmonic popcorn-shaped gold nanostructure attached single-walled carbon nanotubes (AuNP@SWCNT) is presented. The MNPs were synthesized as the support for a monoclonal antibody (mAb@MNP). E. coli (49979) was captured and rapidly preconcentrated from the sample with the mAb@MNP, followed by binding with Raman-tagged concanavalin A-AuNP@SWCNTs (Con A-AuNP@SWCNTs) as detector nanoprobes. A Raman tag 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) generated a Raman signal upon 670 nm laser excitation enabling the detection and quantification of E. coli concentration with a limit of detection of 10(2) CFU mL(-1) and a linear logarithmic response range of 1.0 × 10(2) to 1.0 × 10(7) CFU mL(-1). The mAb@MNP could remove more than 98% of E. coli (initial concentration of 1.3 × 10(4) CFU mL(-1)) from water. The potential of the immunoassay to detect E. coli bacteria in real water samples was investigated and the results were compared with the experimental results from the classical count method. There was no statistically significant difference between the two methods (p > 0.05). Furthermore, the MNP/AuNP@SWCNT hybrid system exhibits an enhanced photothermal killing effect. The sandwich-like immunoassay possesses potential for rapid bioanalysis and the simultaneous biosensing of multiple pathogenic agents. PMID:26469636

  8. Magnetic source separation in the outer core. Introducing the SCOR-field

    International Nuclear Information System (INIS)

    Complete text of publication follows. We present evidence that the primary source of Earth's axial dipole (AD) is physically distinct from sources responsible for the rest of the geomagnetic field. Support for this claim comes from correlations between the structure of the historic non-axial dipole (NAD) field and transitional paleomagnetic behavior recorded in lavas during the early Brunhes Chron. 40Ar/39Ar age determinations of lavas from West Eifel, Germany, indicate the recording of five excursions spanning ?200 kyr, including the Big Lost Event (?580 ka). Transitional lavas from Tahiti also record the Big Lost as well as the Matuyama-Brunhes reversal. Virtual geomagnetic poles (VGPs) recorded at West Eifel are spread across Eurasia, while those recorded on Tahiti during the two events are associated with the same tightly clustered location west of Australia - the site of the most intense NAD flux feature since direct field measurements started some 400 years ago. The differing locations and amounts of spread of transitional VGPs match - at both sites - virtual poles determined for the historic NAD-field. We contend that (1) the field generated by deep convective columns near the tangent cylinder is the primary source for the AD; and (2) the field arising from flux concentrations held and controlled by lower mantle conditions is the primary source for the NAD. Since there most certainly is a small contribution to the AD term (g10) associated with mantle-held sources, we define this field as the Shallow-Core-Generated (SCOR) field. Paleomagnetic data from Tahiti and Australia strongly suggest that the Australasian flux feature is long-lived, regionally dominating the field when the strength of the main AD had significantly weakened or vanished. We argue that recurrence of transitional VGPs observed over geologic time indicates that (1) the entire field does not reverse as a single unit, and (2) field sources exist in the core that are sufficiently separated to be in 'poor communication.' It follows that subsequent work on spherical harmonic-based field descriptions may now incorporate an understanding of a dichotomy of spatial-temporal dynamo processes.

  9. Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions.

    Science.gov (United States)

    Sheha, Reda R

    2012-12-15

    Nanocrystalline potassium zinc hexacyanoferrate loaded on nanoscale magnetite substrate was successfully synthesized for significantly enhanced removal of cesium from low-level radioactive wastes. A description was given for preparation and properties of these precursors. The physicochemical properties of these nanocomposites were determined using different techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Data clarified that supporting potassium zinc hexacyanoferrates on iron ferrite nanoparticles increased their thermal stability. Further, Fourier transform infrared spectra confirmed that the nanocomposites were well coordinated and incorporated in the polymer matrix. The average particle sizes, of these nanoparticles, determined by SEM had a good agreement with XRD results. Based on characterization data, the prepared zinc hexacyanoferrates were proposed to have a zeolitic rhombohedral structure with cavities can host alkali metal ions and water molecules. The magnetic analysis showed a super-paramagnetic behavior. Batch technique was applied to evaluate the influences of initial pH value, contact time, and competing cations on the efficiency of cesium removal. The sorption process was fast initially, and maximum separation was attained within 2h of contact. Cesium exchange was independent from pH value and deviate from ideal exchange phenomena. In neutral solutions, Cs(+) was retained through exchange with K(+); however, in acidic solution, phase transformation was proposed. Sorption capacity of these materials attained values amounted 1965 mg g(-1). The synthesized nanocomposites exhibited different affinities toward Cs(I), Co(II), and Eu(III) elements and showed a good ability to separate them from each other. PMID:23000210

  10. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples.

    Science.gov (United States)

    Liu, Min; Li, Xiao-Yan; Li, Jun-Jie; Su, Xiao-Meng; Wu, Zong-Yuan; Li, Peng-Fei; Lei, Fu-Hou; Tan, Xue-Cai; Shi, Zhan-Wang

    2015-05-01

    In this study, novel magnetic molecularly imprinted polymers (MMIPs) were developed as a sorbent for solid-phase extraction (SPE) and used for the selective separation of metronidazole (MNZ) in cosmetics; MNZ was detected by high-performance liquid chromatography (HPLC). First, magnetic Fe3O4 nanoparticles (NPs) were prepared by the co-precipitation of Fe(2+)and Fe(3+) ions in an ammonia solution; then oleic acid (OA) was modified onto the surface of Fe3O4NPs. Finally, the MMIP was prepared by aqueous suspension polymerization, involving the copolymerization of Fe3O4NPs@OA with MNZ as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol maleic rosinate acrylate (EGMRA) as the cross-linking agent, and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The MMIP materials showed high selective adsorption capacity and fast binding kinetics for MNZ; the maximum adsorption amount of the MMIP to MNZ was 46.7 mg/g. The assay showed a linear range from 0.1 to 20.0 ?g/mL for MNZ with the correlation coefficient 0.999. The relative standard deviations (RSD) of intra- and inter-day ranging from 0.71 to 2.45% and from 1.06 to 5.20% were obtained. The MMIP can be applied to the enrichment and determination of MNZ in cosmetic products with the recoveries of spiked toner, powder, and cream cosmetic samples ranging from 90.6 to 104.2, 84.1 to 91.4, and 90.3 to 100.4%, respectively, and the RSD was <3.54%. PMID:25749799

  11. ZnO nanostructured film deposition using the separated pulsed laser deposition (SPLD) assisted by electric and magnetic drift motion

    International Nuclear Information System (INIS)

    We have developed the separated pulsed laser deposition (SPLD) technique to prepare high quality ZnO based films exhibiting uniform and droplet-free properties. This SPLD consists of an ablation chamber and a deposition chamber which can be independently evacuated under different ambient gases. The gas species and the pressures in both chambers can be arbitrarily chosen for the specific deposition such as nanostructured films and nanoparticles. The ablation chamber is a stainless steel globe and the deposition chamber is a quartz tube connected to a metallic conic wall with an orifice. We used a KrF excimer laser with ? = 248 nm and 25 ns pulse duration. The different gas conditions in two chambers allow us to realize optimal control of the plasma plume, the gas phase reaction and the film growth by applying the bias voltage between the conic wall and the substrate under the magnetic field. We can expect that at appropriate pressures the electric and magnetic field motion (E x B azimuthal drift velocity) gives significant influences on film growth. We have deposited ZnO thin films at various pressures of ablation chamber (Pab) and deposition chamber (Pd). The deposition conditions used here were laser fluence of 3 J/cm2, laser shot number of 30,000, Pab of 0.67-2.67 Pa (O2 or Ar), Pd of 0.399-2.67 Pa (O2), and substrate temperature of 400 deg. C. Particle-free and uniform ZnO films were obtained at Pab of 0.67 Pa (Ar) and Pd of 1.33 Pa (O2). The ZnO film showed high preferential orientation of (002) plane, optical band gap of 2.7 eV, grain size of 42 nm and surface roughness of 1.2 nm

  12. Ultrasonic-assisted preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites as magnetically separable visible-light-driven photocatalysts with excellent activity.

    Science.gov (United States)

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2016-01-01

    The present work demonstrates preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites, as magnetically separable visible-light-driven photocatalysts using ultrasonic irradiation method. The XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques was applied for characterization of structure, purity, morphology, optical, and magnetic properties of the resultant samples. The superior activity was seen for the nanocomposite with 8 weight ratio of ZnO/AgI to Fe3O4 in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite in degradation of rhodamine B, methylene blue, and methyl orange is about 32, 6, and 5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The highly enhanced activity of the ternary magnetic photocatalyst was mainly attributed to more visible-light absorption ability and efficiently separation of the charge carriers. Furthermore, it was revealed that the ultrasonic irradiation time and calcination temperature affect largely on the photocatalytic activity. Finally, the magnetic photocatalyst was successfully separated from the treated solution using external magnetic field. PMID:26397921

  13. Magnetically Separable Fe3O 4/AgBr Hybrid Materials: Highly Efficient Photocatalytic Activity and Good Stability.

    Science.gov (United States)

    Cao, Yuhui; Li, Chen; Li, Junli; Li, Qiuye; Yang, Jianjun

    2015-12-01

    Magnetically separable Fe3O4/AgBr hybrid materials with highly efficient photocatalytic activity were prepared by the precipitation method. All of them exhibited much higher photocatalytic activity than the pure AgBr in photodegradation of methyl orange (MO) under visible light irradiation. When the loading amount of Fe3O4 was 0.5 %, the hybrid materials displayed the highest photocatalytic activity, and the degradation yield of MO reached 85 % within 12 min. Silver halide often suffers serious photo-corrosion, while the stability of the Fe3O4/AgBr hybrid materials improved apparently than the pure AgBr. Furthermore, depositing Fe3O4 onto the surface of AgBr could facilitate the electron transfer and thereby leading to the elevated photocatalytic activity. The morphology, phase structure, and optical properties of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL) techniques. PMID:26058513

  14. Magnetically separable hybrid CdS-TiO{sub 2}-Fe{sub 3}O{sub 4} nanomaterial: Enhanced photocatalystic activity under UV and visible irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Xiaofang; Hong, Kunquan, E-mail: hongkq@gmail.com; Liu, Liqing; Xu, Mingxiang, E-mail: mxxu@seu.edu.cn

    2013-09-01

    Magnetically separable photocatalyst of TiO{sub 2}-CdS-Fe{sub 3}O{sub 4}@SiO{sub 2} nanocomposite was successfully prepared through a microwave heating method. The products exhibit enhanced photocatalystic activity which is more efficient than that of pure CdS and Degussa P25 TiO{sub 2} toward the degradation of RhB under both UV and visible irradiation. This is attributed to the charge separation and transformation from CdS to TiO{sub 2}. The hysteresis loop of TiO{sub 2}-CdS-Fe{sub 3}O{sub 4}@SiO{sub 2} nanocomposite indicates an excellent magnetic property with the saturated magnetization of 9 emu/g. We also show the fast magnetic separation behaviour of the TiO{sub 2}-CdS-Fe{sub 3}O{sub 4}@SiO{sub 2} nanocomposite to remove and recycle the photocatalyst from the solution. These indicate TiO{sub 2}-CdS-Fe{sub 3}O{sub 4}@SiO{sub 2} nanocomposite is an effective and convenient recyclable photocatalyst.

  15. Magnetically separable hybrid CdS-TiO2-Fe3O4 nanomaterial: Enhanced photocatalystic activity under UV and visible irradiation

    International Nuclear Information System (INIS)

    Magnetically separable photocatalyst of TiO2-CdS-Fe3O4@SiO2 nanocomposite was successfully prepared through a microwave heating method. The products exhibit enhanced photocatalystic activity which is more efficient than that of pure CdS and Degussa P25 TiO2 toward the degradation of RhB under both UV and visible irradiation. This is attributed to the charge separation and transformation from CdS to TiO2. The hysteresis loop of TiO2-CdS-Fe3O4@SiO2 nanocomposite indicates an excellent magnetic property with the saturated magnetization of 9 emu/g. We also show the fast magnetic separation behaviour of the TiO2-CdS-Fe3O4@SiO2 nanocomposite to remove and recycle the photocatalyst from the solution. These indicate TiO2-CdS-Fe3O4@SiO2 nanocomposite is an effective and convenient recyclable photocatalyst.

  16. Separation of species of a binary fluid mixture confined between two concentric rotating circular cylinders in presence of a strong radial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, B.R. [Dibrugarh University, Department of Mathematics, Dibrugarh, Assam (India); Singh, R.N. [Marwari Hindi High School, Dibrugarh (India)

    2010-08-15

    The effect of a radial magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids confined between two concentric rotating circular cylinders with different angular velocity is examined. The equations governing the motion, temperature and concentration in cylindrical polar coordinate are solved analytically. The solution obtained in closed form for concentration distribution is plotted against the radial distances from the surface of the inner circular cylinder for various values of non-dimensional parameters. It is found that the non-dimensional parameters viz. the Hartmann number, thermal diffusion number, baro diffusion number, rotational Reynolds number, the product of Prandtl number and Eckert number, magnetic Prandtl number and the ratio of the angular velocities of inner and outer cylinders affects the species separation of rarer and lighter component significantly. The problem discussed here derives its application in the basic fluid dynamics separation processes to separate the rarer component of the different isotopes of heavier molecules where electromagnetic method of separation does not work. (orig.)

  17. Weak cation magnetic separation technology and MALDI-TOF-MS in screening serum protein markers in primary type I osteoporosis.

    Science.gov (United States)

    Shi, X L; Li, C W; Liang, B C; He, K H; Li, X Y

    2015-01-01

    We investigated weak cation magnetic separation technology and matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) in screening serum protein markers of primary type I osteoporosis. We selected 16 postmenopausal women with osteoporosis and nine postmenopausal women as controls to find a new method for screening biomarkers and establishing a diagnostic model for primary type I osteoporosis. Serum samples were obtained from controls and patients. Serum protein was extracted with the WCX protein chip system; protein fingerprints were examined using MALDI-TOF-MS. The preprocessed and model construction data were handled by the ProteinChip system. The diagnostic models were established using a genetic arithmetic model combined with a support vector machine (SVM). The SVM model with the highest Youden index was selected. Combinations with the highest accuracy in distinguishing different groups of data were selected as potential biomarkers. From the two groups of serum proteins, 123 cumulative MS protein peaks were selected. Significant intensity differences in the protein peaks of 16 postmenopausal women with osteoporosis were screened. The difference in Youden index between the four groups of protein peaks showed that the highest peaks had mass-to-charge ratios of 8909.047, 8690.658, 13745.48, and 15114.52. A diagnosis model was established with these four markers as the candidates, and the model specificity and sensitivity were found to be 100%. Two groups of specimens in the SVM results on the scatterplot were distinguishable. We established a diagnosis model, and provided a new serological method for screening and diagnosis of osteoporosis with high sensitivity and specificity. PMID:26634492

  18. Isolation of prostate cancer cell subpopulations of functional interest by use of an on-chip magnetic bead-based cell separator

    International Nuclear Information System (INIS)

    This work presents the design, fabrication and characterization of a modular magnetic bead-based cell separation device developed for the sequential sorting of a heterogeneous prostate cancer (CaP) cell population. The chief aim is cell sorting carried out on the basis of surface marker expression, serially selecting cellular subpopulations for capture by the use of antibody-coated magnetic beads. The markers of interest, prostate specific membrane antigen (PSMA) and CD10 were selected for their relevance to ongoing CaP development research. The separation device was fabricated out of plastic, by the use of cyclic olefin copolymer (COC) injection molding, nickel–iron electroplating and thermoplastic fusion bonding. Effective depletion and enrichment of cell subsets based on multiple surface markers was achieved. Various flow rates and incubation times were tested for optimizing the sorting procedure

  19. Isolation of prostate cancer cell subpopulations of functional interest by use of an on-chip magnetic bead-based cell separator

    Science.gov (United States)

    Estes, Matthew D.; Ouyang, Bin; Ho, Shuk-mei; Ahn, Chong H.

    2009-09-01

    This work presents the design, fabrication and characterization of a modular magnetic bead-based cell separation device developed for the sequential sorting of a heterogeneous prostate cancer (CaP) cell population. The chief aim is cell sorting carried out on the basis of surface marker expression, serially selecting cellular subpopulations for capture by the use of antibody-coated magnetic beads. The markers of interest, prostate specific membrane antigen (PSMA) and CD10 were selected for their relevance to ongoing CaP development research. The separation device was fabricated out of plastic, by the use of cyclic olefin copolymer (COC) injection molding, nickel-iron electroplating and thermoplastic fusion bonding. Effective depletion and enrichment of cell subsets based on multiple surface markers was achieved. Various flow rates and incubation times were tested for optimizing the sorting procedure.

  20. Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique

    International Nuclear Information System (INIS)

    A loop of soft iron wire or a paper clip or a ferromagnetic grid mounted between the poles of an electromagnet picks up and allows further magnetic separation of zircons previously found to be non-magnetic on a Frantz Isodynamic Separator. Tests on previously analysed samples indicate that most such zircons that are fairly discordant (say approximately 10%) can be picked up and isolated from associated grains that are more concordant. Tests on new samples indicate that even when most grains can be picked up the last few percent of the sample contain less uranium, and are more concordant than the bulk sample. The degree of discordance is the dominant factor affecting the uncertainty of U-Pb zircon ages both because of the error amplification in projections, and because the assumption of a simple two-stage system may not be valid. Only by eliminating or reducing discordance can errors approaching the uncertainty in a single analysis, say +- 2 m.y. for 2700 m.y. rocks, be achieved. Rutile normally concentrated with zircon as non-magnetic has been successfully removed from a small amount of low uranium zircon, using the high intensity separation technique. (author)

  1. Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique

    International Nuclear Information System (INIS)

    A loop of soft iron wire or a paper clip or a ferromagnetic grid mounted between the poles of an electromagnet picks up and allows further magnetic separation of zircons previously found to be non-magnetic on a Frantz Isodynamic Separator. Tests on previously analysed samples indicate that most such zircons that are fairly discordant (say approximately 10%) can be picked up and isolated from associated grains that are more concordant. Tests on new samples indicate that even when most grains can be picked up the last few percent of the sample contain less uranium, and are more concordant than the bulk sample. The degree of discordance is the dominant factor affecting the uncertainty of U-Pb zircon ages both because of the error amplification in projections, and because the assumption of a simple two-stage system may not be valid. Only by eliminating or reducing discordance can errors approaching the uncertainty in a single analysis, say +-2m.y. for 2700m.y. rocks, be achieved. Rutile normally concentrated with zircon as non-magnetic has been successfully removed from a small amount of low uranium zircon, using the high intensity separation technique. (author)

  2. Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride.

    Science.gov (United States)

    Mousavi, Mitra; Habibi-Yangjeh, Aziz

    2016-03-01

    The present work demonstrates preparation of magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites as novel visible-light-driven photocatalysts. The resultant samples were characterized using XRD, EDX, SEM, TEM, UV-Vis DRS, FT-IR, PL, BET, and VSM techniques. The results revealed that weight percent of BiOI has considerable effect on photodegradation of rhodamine B under visible-light irradiation. Among the prepared samples, the g-C3N4/Fe3O4/BiOI (20%) nanocomposite has the best photocatalytic activity. The activity of this nanocomposite is about 10, 22, and 21-fold higher than that of the g-C3N4 sample in degradation of rhodamine B, methylene blue, and methyl orange under the visible-light irradiation. The excellent activity of the magnetic nanocomposite was attributed to more harvesting of the visible-light irradiation and efficiently separation of the electron-hole pairs. More importantly, the nanocomposite was magnetically separated after five successive cycles. PMID:26669494

  3. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix.

    Science.gov (United States)

    Guo, Pei-Lin; Tang, Man; Hong, Shao-Li; Yu, Xu; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-12-15

    Foodborne illnesses have always been a serious problem that threats public health, so it is necessary to develop a method that can detect the pathogens rapidly and sensitively. In this study, we designed a magnetic controlled microfluidic device which integrated the dynamic magnetophoretic separation and stationary magnetic trap together for sensitive and selective detection of Salmonella typhimurium (S. typhimurium). Coupled with immunomagnetic nanospheres (IMNs), this device could separate and enrich the target pathogens and realize the sensitive detection of target pathogens on chip. Based on the principle of sandwich immunoassays, the trapped target pathogens identified by streptavidin modified QDs (SA-QDs) were detected under an inverted fluorescence microscopy. A linear range was exhibited at the concentration from 1.0×10(4) to 1.0×10(6) colony-forming units/mL (CFU/mL), the limit of detection (LOD) was as low as 5.4×10(3) CFU/mL in milk (considering the sample volume, the absolute detection limit corresponded to 540C FU). Compared with the device with stationary magnetic trap alone, the integrated device enhanced anti-interference ability and increased detection sensitivity through dynamic magnetophoretic separation, and made the detection in complex samples more accurate. In addition, it had excellent specificity and good reproducibility. The developed system provides a rapid, sensitive and accurate approach to detect pathogens in practice samples. PMID:26201979

  4. Cluster glass magnetism in the phase-separated Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Fertman, Elena, E-mail: fertman@ilt.kharkov.ua [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Ave., Kharkov 61103 (Ukraine); Dolya, Sergiy; Desnenko, Vladimir; Beznosov, Anatoly [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Ave., Kharkov 61103 (Ukraine); Kajnakova, Marcela; Feher, Alexander [P. J. Safarik University in Kosice, Faculty of Science, Park Angelinum 9, 04154 Kosice (Slovakia)

    2012-09-15

    A detailed study of the low-temperature magnetic state and the relaxation in the phase-separated colossal magnetoresistance Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} perovskite has been carried out. Clear experimental evidence of the cluster-glass magnetic behavior of this compound has been revealed. Well defined maxima in the in-phase linear ac susceptibility {chi} Prime (T) were observed, indicative of the magnetic glass transition at T{sub g}{approx}60 K. Strongly divergent zero-field-cooled and field-cooled static magnetizations and frequency dependent ac susceptibility are evident of the glassy-like magnetic state of the compound at low temperatures. The frequency dependence of the cusp temperature T{sub max} of the {chi} Prime (T) susceptibility was found to follow the critical slowing down mechanism. The Cole-Cole analysis of the dynamic susceptibility at low temperature has shown extremely broad distribution of relaxation times, indicating that spins are frozen at 'macroscopic' time scale. Slow relaxation in the zero-field-cooled magnetization has been experimentally revealed. The obtained results do not agree with a canonical spin-glass state and indicate a cluster glass magnetic state of the compound below T{sub g}, associated with its antiferromagnetic-ferromagnetic nano-phase segregated state. It was found that the relaxation mechanisms below the cluster glass freezing temperature T{sub g} and above it are strongly different. Magnetic field up to about {mu}{sub 0}H{approx}0.4 T suppresses the glassy magnetic state of the compound. - Highlights: Black-Right-Pointing-Pointer Cluster-glass magnetic state of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} below T{sub g}{approx}60 K has been revealed. Black-Right-Pointing-Pointer Magnetic fields up to about {mu}{sub 0}H{approx}0.4 T suppress the glassy magnetic state. Black-Right-Pointing-Pointer Extremely broad distribution of relaxation times has been found below T{sub g}. Black-Right-Pointing-Pointer The relaxation mechanisms below and above T{sub g} are found to be strongly different. Black-Right-Pointing-Pointer Cluster-glass magnetic behavior of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} is associated with its phase segregated state.

  5. In vivo labeling and specific magnetic bead separation of RNA for biofilm characterization and stress-induced gene expression analysis in bacteria.

    Science.gov (United States)

    Stankiewicz, Nikolai; Gold, Andrea; Yüksel, Yousra; Berensmeier, Sonja; Schwartz, Thomas

    2009-12-01

    The method of in vivo labeling and separation of bacterial RNA was developed as an approach to elucidating the stress response of natural bacterial populations. This technique is based on the incorporation of digoxigenin-11-uridine-5'-triphosphate (DIG-11-UTP) in the RNA of active bacteria. The digoxigenin fulfills a dual role as a label of de novo synthesized RNA and a target for magnetic bead separation from a total RNA extract. Depending on the growth conditions and the population's composition, the assembly rate of DIG-11-UTP ranged from 1.2% to 12.5% of the total RNA in gram-positive and gram-negative reference bacteria as well as in natural biofilms from drinking water, surface water, and lake sediment. Separation of DIG-RNA from total RNA extracts was performed with a biotinylated anti-digoxigenin antibody and streptavidin-functionalized magnetic particles. The average separation yield from total RNA extracts was about 95% of labeled RNA. The unspecific bindings of non-labeled nucleic acids were smaller than 0.2%, as was evaluated by spiking experiments with an unmarked DNA amplicon. Applicability of the method developed was demonstrated by rRNA-directed PCR-DGGE population analysis of natural biofilms and expression profiling of two stress-induced genes (vanA and rpoS) in reference bacteria. PMID:19837116

  6. Electronic phase separation and magnetic order in the cobalt doped RFe2-xCoxAs2 (R=Sr, Eu) iron pnictide superconductors

    International Nuclear Information System (INIS)

    We have investigated the magnetic and superconducting properties of RFe2-xCoxAs2 with R=Sr, Eu and 0?x?0.4 by means of muon spin relaxation (?+SR) and Moessbauer spectroscopy. Under ambient pressure the antiferromagnetic ordering temperature, TN of SrFe2-xCoxAs2 decreases with increasing Co-doping. However, TN remains finite even as superconductivity appears as a function of doping. This shows that electronic phase separation plays a role in this system. High pressure experiments show a reduction the magnetic ordering temperature by pressure. On the contrary, EuFe2-xCoxAs2 does not show superconductivity under ambient pressure but a peculiar interplay of the rare earth and iron magnetic order as a function of the Co-doping level.

  7. A novel method for isolating specific endocytic vesicles using very fine ferrite particles coated with biological ligands and the high-gradient magnetic separation technique.

    Science.gov (United States)

    Sato, S B; Sako, Y; Yamashina, S; Ohnishi, S

    1986-12-01

    We have developed a novel method for isolating specific endocytic vesicles using magnetic ligands and high-gradient magnetic separation. Ligands were prepared by coating extremely fine ferrite particles (10-20 nm) with bovine serum albumin and then conjugating asialoglycopeptides. These ligands were introduced into rat liver by perfusion at 16 or 37 degrees C, or by injection through the tail vein. The ligand particles were observed as electron-dense small grains in membrane-bound vesicles in Kupffer as well as parenchymal cells by electron microscopy. Livers were taken out, homogenized and lightly centrifuged. The supernatant was pumped into a separator glass tube filled with very fine ferritic stainless steel fibers and placed in a magnetic field of 0.9-2 T. Vesicles containing ferrite particles were collected with a high efficiency (ca. 70% of endocytosed magnetic ligands). About 70% of uptake appeared to be mediated by the asialoglycoprotein receptors. The captured vesicles were practically free from marker enzymes for plasma membranes, endoplasmic reticulum, and Golgi apparatus. Lysosomal enzyme activity of the vesicles increased with the time of perfusion at 37 degrees C but not at 16 degrees C. Protein composition of the captured vesicles was analyzed by one- and two-dimensional gel electrophoresis. The composition changed characteristically with time on perfusion at 16 and 37 degrees C. The present method provides a powerful tool to collect prelysosomal endocytic vesicles containing specific ligands and lysosomes fused with these specific endocytic vesicles. PMID:3571183

  8. Observation of dynamical spin-dependent electron interactions and screening in magnetic transitions via core-level multiplet-energy separations

    International Nuclear Information System (INIS)

    Highlights: ? Gd 5s and 4s multiplet splittings of Gd(0001) change during magnetic transitions. ?·Atomic multiplet theory and LDA+U calculations partially explain these results. ?·Provide a novel probe of dynamical spin-dependent screening/magnetic fluctuations. ? Suggest future experiments in a time-resolved mode, e.g. using free electron lasers. -- Abstract: The magnetic phase transitions for Gd(0 0 0 1) grown on W(1 1 0) – a bulk transition at 293 K and a surface transition about 85 K above this – are found to influence the energy separation of the Gd 5s and 4s core-photoelectron doublets. The 5s doublet separation ?E5s changes over a range of temperatures spanning these transitions, and decreases by a maximum of 60 meV in this region, but then recovers its original value; the 4s doublet shows a smaller change in the reverse direction, which does not recover at high temperature. Some of these effects are semi-quantitatively understood from free-atom multiplet theory and from theoretical calculations based on all-electron LDA+U calculations including 4f electron correlation effects. However, the high-temperature behavior of the data also suggest a dynamical nature to these effects via spin-dependent electron screening that is influenced by magnetic fluctuations. Several avenues for studying such effects in a time-resolved manner in future experiments are discussed

  9. Observation of dynamical spin-dependent electron interactions and screening in magnetic transitions via core-level multiplet-energy separations

    Energy Technology Data Exchange (ETDEWEB)

    Tober, Eric D.; Palomares, F. Javier; Ynzunza, Ramon X.; Denecke, Reinhard [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Morais, Jonder [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Liesegang, John [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, La Trobe University, Melbourne, VIC 3086 (Australia); Hussain, Zahid [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Shick, Alexander B.; Pickett, Warren E. [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Fadley, Charles S., E-mail: fadley@lbl.gov [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-08-15

    Highlights: ? Gd 5s and 4s multiplet splittings of Gd(0001) change during magnetic transitions. ?·Atomic multiplet theory and LDA+U calculations partially explain these results. ?·Provide a novel probe of dynamical spin-dependent screening/magnetic fluctuations. ? Suggest future experiments in a time-resolved mode, e.g. using free electron lasers. -- Abstract: The magnetic phase transitions for Gd(0 0 0 1) grown on W(1 1 0) – a bulk transition at 293 K and a surface transition about 85 K above this – are found to influence the energy separation of the Gd 5s and 4s core-photoelectron doublets. The 5s doublet separation ?E{sub 5s} changes over a range of temperatures spanning these transitions, and decreases by a maximum of 60 meV in this region, but then recovers its original value; the 4s doublet shows a smaller change in the reverse direction, which does not recover at high temperature. Some of these effects are semi-quantitatively understood from free-atom multiplet theory and from theoretical calculations based on all-electron LDA+U calculations including 4f electron correlation effects. However, the high-temperature behavior of the data also suggest a dynamical nature to these effects via spin-dependent electron screening that is influenced by magnetic fluctuations. Several avenues for studying such effects in a time-resolved manner in future experiments are discussed.

  10. Nuclear magnetic resonance (NMR) probe of magnetic phase separation in electron-doped manganite Ca0.95La0.05MnO3.

    Czech Academy of Sciences Publication Activity Database

    Savosta, M. M.; Novák, Pavel; Englich, J.; Kohout, J.; Hejtmánek, Ji?í; Strejc, Aleš

    242-245, - (2002), s. 676-678. ISSN 0304-8853 R&D Projects: GA ?R GA202/00/1601; GA ?R GA202/99/0413 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetic oxides * NMR- spin echo * relaxation-nuclear * Perovskite structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  11. Magnetically separable ternary hybrid of ZnFe2O4–Fe2O3–Bi2WO6 hollow nanospheres with enhanced visible photocatalytic property

    International Nuclear Information System (INIS)

    Highlights: • Ternary hybrid ZnFe2O4–Fe2O3–Bi2WO6 hollow nanospheres were synthesized. • Ternary hybrid sample exhibited highest performance than the others. • The enhanced activity could be attributed to the cascade electron transfer. • The photocatalyst could be separated by magnetic field. - Abstract: Magnetically separable ternary hybrid ZnFe2O4–Fe2O3–Bi2WO6 hollow nanospheres were designed and synthesized by an effective three-step approach. Specifically, using phenolic formaldehyde microspheres (PFS) as template direct the sequential coating of ?-Fe2O3/ZnFe2O4 layer and subsequent Bi2WO6 layer via impregnating-calcination process. The photocatalytic activity under visible light irradiation is in the order of ZnFe2O4–Fe2O3–Bi2WO6 > ZnFe2O4–Bi2WO6 > Bi2WO6 > ZnFe2O4–Fe2O3 > ZnFe2O4. The enhanced activity could be attributed to the cascade electron transfer from ZnFe2O4 to ?-Fe2O3 then to Bi2WO6 through the interfacial potential gradient in the ternary hybrid conduction bands, which facilitate the charge separation and retard the charge pair recombination. Furthermore, the ternary hybrid ZnFe2O4–Fe2O3–Bi2WO6 hollow nanospheres could be conveniently separated by using an external magnetic field, and be chemically and optically stable after several repetitive tests. The study also provides a general and effective method in the composite hollow nanomaterials with sound heterojunctions that may show a variety of applications

  12. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Graphical abstract: An effective route has been developed to synthesize magnetic Fe3O4@SiO2@TiO2-Ag microspheres with well-defined core–shell nanostructure and enhanced photocatalytic activity. -- Highlights: • Controllable synthesis of core–shell structured Fe3O4@SiO2@TiO2-Ag magnetic nanocomposite. • The unique nanostructure of Fe3O4@SiO2@TiO2-Ag can improve the total photocatalytic performance. • An easy magnetically separable and recoverable process. -- Abstract: Major efforts in modern material chemistry are devoted to the design and fabrication of nanostructured systems with tunable physical–chemical properties for advanced catalytic applications. Here, a novel Fe3O4@SiO2@TiO2-Ag nanocomposite has been synthesized and characterized by a series of techniques including SEM, TEM, XRD, XPS as well as magnetization measurement and subsequently tested for the photocatalytic activities. The well-designed nanocomposite exhibits significantly superior activity to that of the commercial Degussa P25 thanks to the suppression of electron–hole pairs from recombination by Ag nanoparticles, and can be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 10 times. The unique nanostructure makes Fe3O4@SiO2@TiO2-Ag a highly efficient, recoverable, stable, and cost-effective photocatalytic system offering broad opportunities in the field of catalyst synthesis and application

  13. Magnetically separable core-shell structural ?-Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis.

    Science.gov (United States)

    Ling, Yuhan; Long, Mingce; Hu, Peidong; Chen, Ya; Huang, Juwei

    2014-01-15

    To target the low catalytic activity and the inconvenient separation of copper loading nanocatalysts in heterogeneous Fenton-like reaction, a core-shell structural magnetically separable catalyst, with ?-Fe2O3 nanoparticles as the core layer and the copper and aluminum containing MCM-41 as the shell layer, has been fabricated. The role of aluminum has been discussed by comparing the copper containing mesoporous silica with various Cu contents. Their physiochemical properties have been characterized by XRD, UV-vis, FT-IR, TEM, nitrogen physisorption and magnetite susceptibility measurements. Double content Cu incorporation results in an improved catalytic activity for phenol degradation at the given condition (40°C, initial pH=4), but leads to a declined BET surface area and less ordered mesophase structure. Aluminum incorporation helps to retain the high BET surface area (785.2m(2)/g) and the regular hexagonal mesoporous structure of MCM-41, which make the catalyst possess a lower copper content and even a higher catalytic activity than that with the double copper content in the absence of aluminum. The catalysts can be facilely separated by an external magnetic field for recycle usage. PMID:24295771

  14. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    KAUST Repository

    Hassnain Jaffari, G.

    2015-12-16

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100?nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 ?B/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300?K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  15. Self-assembly of an exchange-spring composite via magnetic phase separation in Pr1-xCaxCoO3

    Science.gov (United States)

    El-Khatib, S.; Bose, S.; He, C.; Kuplic, J.; Huang, Q.; Lynn, J. W.; Borchers, J.; Mitchell, J. F.; Leighton, C.

    2010-03-01

    We report structural and magnetic properties in bulk polycrystalline Pr1-xCaxCoO3 (0.00FM phase) first undergoes a transition around 250 K where short-range FM clusters emerge with a size of order 1-2 unit cells. The magnetization and SANS intensity slowly increase on cooling to 70 K, where the system undergoes a transition to a long-range ordered FM state, but with low magnetization, indicative of a small FM volume fraction. Magnetometry and SANS data indicate coexistence of the short-range clusters within a network of long-range FM. The coercivities HC of the short-range and long-range FM regions are very different, and a non-monotonic T dependence of the HC reveals clear evidence of FM exchange coupling between the phase-separated regions. In essence the phase separation leads to natural formation of a hard/soft composite, which displays classic exchange spring behavior. Work at UMN supported by DoE.

  16. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation

    Science.gov (United States)

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2015-10-01

    In this work, we successfully prepared a series of novel magnetically separable ZnO/Ag3VO4/Fe3O4 nanocomposites by a facile refluxing method using Fe3O4, zinc nitrate, silver nitrate, ammonium metavanadate, and sodium hydroxide as starting materials without using any post preparation treatments. The microstructure, purity, morphology, spectroscopic, and magnetic properties of the prepared samples were studied using XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques. The ZnO/Ag3VO4/Fe3O4 nanocomposite with 8:1 weight ratio of ZnO/Ag3VO4 to Fe3O4 has the superior activity in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite is about 11.5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The results showed that the preparation time and calcination temperature significantly affect on the photocatalytic activity. The trapping experiments revealed that superoxide ions and holes have major influence on the degradation reaction. Furthermore, the enhanced activity of the nanocomposite for degradation of two more dye pollutants was confirmed. Finally, the nanocomposite was magnetically separated from the treated solution after four successive cycles.

  17. Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization.

    Science.gov (United States)

    Wu, Zhen; Zhou, Chuan-Hua; Chen, Jian-Jun; Xiong, Chaochao; Chen, Ze; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-06-15

    Bifunctional magnetic nanobeads (bi-MBs) were fabricated by co-immobilizing target recognition molecules and signal molecules on a magnetic nanobead surface, which were used as both separation and enrichment carriers and signal carriers. The bi-MBs could capture and separate avian influenza A (H7N9) virus (H7N9 AIV) from complex samples efficiently based on the specific reaction between antigen-antibody and their good magnetic response, which simplified sample pretreatment and saved the detection time. Taking advantages of their high surface to volume ratio and rich surface functional groups, multiple alkaline phosphatase (ALP) signal molecules were tethered on the surface of bi-MBs which greatly amplified the detection signal. As an efficient signal amplification strategy, enzyme-induced metallization had been integrated with bi-MBs and anodic stripping voltammetry to construct an ultrasensitive electrochemical immunosensor for H7N9 AIV detection. Under the optimal conditions, the introduction of bi-MBs could amplify the detection signal in about four times compared with the same immunoassay without MBs, and the method showed a wide linear range of 0.01-20 ng/mL with a detection limit of 6.8 pg/mL. The electrochemical immunosensor provides a simple and reliable platform with high sensitivity and selectivity which shows great potential in early diagnosis of diseases. PMID:25643598

  18. A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV–vis light

    International Nuclear Information System (INIS)

    Graphical abstract: A novel magnetically separable composite photocatalyst TiO2/CoFe2O4 nanofiber was prepared by sol–gel method and electrospinning technique, which can be reclaimed with a magnet, and the decolorizing efficiency of MB solution reached 95.87%. Highlights: ? The composite TiO2/CoFe2O4 nanofibers with diameter of 110 ± 28 nm have been successfully synthesized by the combination of sol–gel method and electrospinning technique. ? The presence of Co2+ or/and Fe3+ ions may occupy some of the lattice sites of TiO2 to form an iron–titanium solid solution and narrow the band gap, which broadens the response region of visible light. ? The resultant nanofibers not only have high decomposition efficiency with methylene blue (MB) under the UV irradiation, which is close to that of Degussa P25, but also can be separated with a magnet and avoid the secondary pollution of the treated water. -- Abstract: A novel magnetically separable heterogeneous photocatalyst TiO2/CoFe2O4 nanofiber was prepared by sol–gel method and electrospinning technology, followed by heat treatment at 550 °C for 2 h. The phase structure, morphology and magnetic property of the composite nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope and vibrating sample magnetometer analysis. The photocatalytic studies of TiO2/CoFe2O4 fibers suggested that the presence of CoFe2O4 not only enhanced the absorbance of UV light, but also broadened the response region to visible light. The decolorizing efficiency of methylene blue (MB) solution reaches 95.87% over TiO2/CoFe2O4 nanofibers under 300 W Hg lamp after 5 h, which is close to that of Degussa P25. Furthermore, these fibers can be collected with a magnet for reuse and effectively avoid the secondary pollution of the treated water.

  19. Data logging and control of the magnetic optic element currents of separated beams with the help of the M-6000 computer

    International Nuclear Information System (INIS)

    Presented is a description of automation system (ACS) for controlling the operation of magnetic optical elements (MOE) of separated beam channels for the MIRABEL chamber. MOE comprise 6 beam bending magnets and 24 quadrupole lenses. Current control was performed with the M-6000 computer and A-200 digital voltmeter. The system of manual control of MOE currents was used. Structural sheams of ACS and interface device of the A-200 are presented along with test results, block diagram of the control program and MOE operation monitoring, performances of automatic control at the operation with MOE. It has been stated as a result of the ACS performance testing that mean time of the tuning of an element is equal to 30 s while measuring for 0.5 V; the above parameter for more than 5 elements is equal to 2-4 min while measuring for 1 V, and it is not practically dependent on the number of elements being tuned

  20. Volume reduction on all particle size of the contaminated soil. Continuous processing technology of attrition, chemical wash under an ambient temperature and pressure condition and magnetic separation

    International Nuclear Information System (INIS)

    An examination was conducted in order to establish a practical purification system that could largely reduce the storage volume of radioactive waste in the Intermediate Storage Facility. The examination consists of a 3-step washing treatment of contaminated soil, which includes “Milling Washing” of removed contaminated soil, chemical extraction of fine soil fraction resulted from the “Milling Washing” under an ambient temperature and pressure condition, and magnetic separation of cesium from the extracted solution. As a result of the examination, we succeeded in development of a safe system with low initial cost and running cost. (author)

  1. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    Science.gov (United States)

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 ?g g(-1) and 0.03-0.08 ?g g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 ?g g(-1) and 0.005-0.01 ?g g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 ?g g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%). PMID:25962876

  2. Magnetically separable photocatalytic composite gamma-Fe(2)O(3)@TiO(2) synthesized by heterogeneous precipitation.

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, Václav; Vejpravová, J.P.; Roca, A.G.; Murafa, Nataliya; Szatmáry, Lórant; Niž?anský, D.

    2011-01-01

    Ro?. 257, ?. 11 (2011), s. 4844-4848. ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LC06041; GA AV ?R KAN400100653 Institutional research plan: CEZ:AV0Z40320502 Keywords : nano composite * oxides * magnetic properties * transmission electron microscopy * X-ray powder diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.103, year: 2011

  3. Magnets

    International Nuclear Information System (INIS)

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  4. Sm1-xSrxMnO3 manganites: unusual magnetic, electric and elastic properties due to phase separation

    International Nuclear Information System (INIS)

    Colossal magnetoresistance (CMR) (??/?) and giant negative volume magnetostriction (?) have been observed in the Curie temperature region of Sm1-xSrxMnO3 manganites, for x=0.33 compounds containing ferromagnetic (FM) and A-type antiferromagnetic (AFM) clusters and for x 0.4, 0.45 compounds containing FM and both types of AFM clusters (A-type and charge-ordering (CO) type). For x=0.33, the magnetization ?, ??/? and ? increase smoothly with magnetic field increase and saturation of ??/? and ? is not achieved. Isotherms of ?, ??/? and ? for x=0.4 and 0.45 show another behaviour: sharp jumps of ?, ??/? and ? take place at HC1?H?HC2, and saturation is achieved at H?HC2. We consider that the reason for CMR and giant magnetostriction being observed in the compounds investigated is the increase of the FM phase volume under the action of the magnetic field. For x=0.33 this increase is smooth because it arises from FM phase 'sprouting' on FM layers of A-type AFM phase. For x=0.4 and 0.45 the increase of the volume of the FM part arises from CO clusters with CE-type AFM structure too. In this case, CO clusters are completely transformed to the FM state with a large saturation magnetization ?s which is equal to ?70% of ?s at T=1.5 K. This transition is accompanied by crystal structure reconstruction that is manifested in both the temperature and magnetic field dependences of the anisotropic magnetostriction. (author). Letter-to-the-editor

  5. Synthesis of Cu-Fe3O4@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Highlights: • The Cu-Fe3O4@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe3O4@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe3O4@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe3O4@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe3O4 nanoparticles (Fe3O4 NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe3O4 NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe3O4@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability

  6. Superconductivity, metastability and magnetic field induced phase separation in the atomic limit of the Penson-Kolb-Hubbard model

    OpenAIRE

    Kapcia, Konrad Jerzy

    2014-01-01

    We present the analysis of paramagnetic effects of magnetic field ($B$) (Zeeman term) in the zero-bandwidth limit of the extended Hubbard model for arbitrary chemical potential $\\mu$ and electron density $n$. The effective Hamiltonian considered consists of the on-site interaction $U$ and the intersite charge exchange term $I$, determining the hopping of electron pairs between nearest-neighbour sites. The model has been analyzed within the variational approach, which treats ...

  7. Application of spin-orbit-coupling induced magnetic field effects for probing the dynamics of photoinduced charge separation and recombination

    OpenAIRE

    Steiner, Ulrich; Haas, Werner; Wolff, Hans-Joachim; Bürßner, Dieter

    1992-01-01

    In this paper we present two examples demonstrating how magnetic field effects can be utilized for a quantitative exploration of mechanistic details of the behaviour of short-lived redox intermediates in photoelectron transfer reactions with excited triplet states. This magnetokinetic approach takes advantage of the spin memory present in the intermediates (exciplexes, correlated radical pairs) which controls the competition between spin-allowed formation of free redox products and spin-forbi...

  8. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide.

    Science.gov (United States)

    Lai, Li; Xie, Qiang; Chi, Lina; Gu, Wei; Wu, Deyi

    2016-03-01

    Hydrous lanthanum oxide was loaded onto the surface of Fe3O4@SiO2 core/shell magnetic nanoparticles to obtain an easily separable adsorbent (abbreviated as Fe-Si-La) for efficient separation of phosphate from water. Fe-Si-La was characterized with XRF, XRD, TEM, specific surface area and magnetization and their performance for phosphate removal was investigated. The Fe3O4@SiO2 core/shell structure was confirmed and the hydrous lanthanum oxide was successfully loaded onto its surface. The newly developed adsorbent had magnetization of 51.27emu/g. The Langmuir adsorption capacity of phosphate by Fe-Si-La reached 27.8mg/g by loading only 1mmol lanthanum per gram of magnetite. The adsorption was fast; nearly 99% of phosphate could be removed within 10min. The removal of phosphate was favored within the pH range 5.0-9.0. The adsorption on Fe-Si-La was not significantly influenced by ionic strength and by the coexistence of the anions of chloride and nitrate but sulfate, bicarbonate and humic acid showed slightly greater negative effects. Phosphate removal efficiency of higher than 95% was attained for real effluent of a wastewater treatment plant when the dose of adsorbent was >0.2kg/ton. The results showed that adsorbed phosphate could be nearly completely desorbed with NaOH solution for further use. In conclusion, Fe-Si-La is a promising adsorbent for the removal and recovery of phosphate from water. PMID:26641568

  9. Wide aperture kinematical separator COMBAS

    International Nuclear Information System (INIS)

    The high-resolving wide aperture separator COMBAS with advanced ion-optical characteristics has been designed and commissioned at the FLNR JINR. For the first time in the world, the strong focusing magneto-optical system has been realized on the base of wide-aperture bending magnets. The magnetic optics of the separator is formed by a cascade of eight magnets with alternating sign of the quadrupole component of the magnetic field from magnet to magnet. Fields of all the magnets contain sextupole and octupole components in order to compensate higher order aberration. (author)

  10. Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde

    International Nuclear Information System (INIS)

    Magnetic chitosan resin was chemically modified by a Schiff's base cross-linker. The interaction of the resin obtained with Hg(II) was studied and uptake value of 2.8 mmol/g was reported. The kinetic and thermodynamic parameters of the adsorption process were estimated. These data indicated that the adsorption process is exothermic and follow the pseudo-second-order kinetics. The selectivity of Hg(II) from other different metal ions in solutions using the studied resin was also reported. Breakthrough curves for the recovery of Hg(II) were studied. The critical bed height was found to be 2.05 cm. The adsorbed Hg(II) was eluted from the resin effectively using 0.1 M potassium iodide

  11. Potential environmental benefits of improving recycling of polyolefines – LCA of Magnetic density separation (MDS) developed in the EU FP7 funded project W2Plastic

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Bonou, Alexandra

    2012-01-01

    The core of the EU FP7 funded project W2Plastic is development of a magnetic density separation (MDS) of polyolefines in order to improve the sorting efficiency of these polymer types in different waste fractions. As part of the project a life cycle assessment is performed in order to firstly identify eco-design criteria for the development and secondly to document the potential environmental improvement of polyolefin recycling using the MDS technology. A preliminary study focusing solely on the carbon footprint benefits of recycling plastic waste compared to virgin production of polymers showed that there are large benefits to recycling. However, including other uses of the waste illustrates that the benefits to a large extent depend on that the recycled plastic have such high quality that it can actually replace virgin plastic and also to some extent depends on which energy systems e.g. energy recovery from incineration substitutes.

  12. Characterization of flavonoid glycosides from rapeseed bee pollen using a combination of chromatography, spectrometry and nuclear magnetic resonance with a step-wise separation strategy.

    Science.gov (United States)

    Li, Yi; Qi, Yitao; Ritho, Joan; Zhang, Yongxin; Zheng, Xiaowei; Zhou, Jinhui; Sun, Liping

    2016-01-01

    To identify the structures of flavonoid glycosides in bee pollen collected from rapeseed plants (Brassica napus L.), we utilised an approach that combined liquid chromatography-diode array detector-electrospray ionization-mass spectrometry (LC-DAD-ESI-MS) and nuclear magnetic resonance (NMR) technology with a step-wise separation strategy. We identified four constituents of high purity in rape bee pollen samples: (1) quercetin-3-O-?-D-glucosyl-(2?l)-?-glucoside, (2) kaempferol-3, 4'-di-O-?-D-glucoside, (3) 5, 7, 4'-trihydroxy-3'-methoxyflavone-3-O-?-D-sophoroside and (4) kaempferol-3-O-?-D-glucosyl-(2?l)-?-D-glucoside. This study will also provide useful reference standards for qualification and quantification of four flavonoid glycosides in natural products. PMID:25981986

  13. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). PMID:25966414

  14. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food.

    Science.gov (United States)

    Gao, Ming; Wang, Huili; Ma, Meiping; Zhang, Yuna; Yin, Xiaohan; Dahlgren, Randy A; Du, Dongli; Wang, Xuedong

    2015-05-15

    Herein, we developed a novel integrated apparatus to perform phase separation based on magnetic-stirring, salt-induced, liquid-liquid microextraction for determination of five fluoroquinolones in animal-based foods by HPLC analysis. The novel integrated apparatus consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 791 ?L of acetone solvent, 2.5 g of Na2SO4, pH 1.7, 3.0 min of stir time, and 5.5 min centrifugation. The limits of detection were 0.07-0.53 ?g kg(-1) and recoveries were 91.6-105.0% for the five fluoroquinolones from milk, eggs and honey. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinolones in animal-based foods. PMID:25577068

  15. Effective connection of phase-separated metallic pathways under low magnetic fields in charge-ordered insulators of micropatterned perovskite manganite thin films

    International Nuclear Information System (INIS)

    We investigated the probe size dependence of the electrical transport properties of perovskite manganite La0.67Ca0.33MnO3 (LCMO) films with electronic phase separation (EPS) between ferromagnetic metal and charge-ordered insulator phases. A micropatterned wire was fabricated by an excimer-laser-assisted metal organic deposition process. A patterned wire of an LCMO film with a width of 10 ?m had a higher insulator-metal transition temperature associated with the ferromagnetic transition than that of an LCMO film with a large probe size. Moreover, a low-magnetic-field magnetoresistance (LFMR) effect was observed for the micropatterned wire film; the resistivity decreased only from H perpendicular c > 0.02 T. The origin of this LFMR effect is thought to be the effective connections of the ferromagnetic metal domains between the probe contacts with small dimensions similar to the size of the phase-separated metal and insulator domains. These properties were qualitatively explained by numerical simulations of resistance variations for different probe sizes. (author)

  16. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  18. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  20. Magnetically separable reactive sorbent based on the CeO2/?-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents.

    Czech Academy of Sciences Publication Activity Database

    Janoš, P.; Kurá?, P.; Pila?ová, V.; Trögl, J.; Š?astný, M.; Pelant, O.; Henych, Ji?í; Bakardjieva, Snejana; Životský, O.; Kormunda, M.; Mazanec, K.; Skoumal, M.

    2015-01-01

    Ro?. 262, FEB (2015), s. 747-755. ISSN 1385-8947 R&D Projects: GA ?R(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Magnetically separable sorbent * Destructive sorption * Cerium oxide * Parathion methyl * Toxic organophosphates Subject RIV: CA - Inorganic Chemistry Impact factor: 4.321, year: 2014

  1. Detection of hepatitis A virus in seeded oyster digestive tissue by ricin A-linked magnetic separation combined with reverse transcription PCR.

    Science.gov (United States)

    Ko, Sang-Mu; Vaidya, Bipin; Kwon, Joseph; Lee, Hee-Min; Oh, Myung-Joo; Shin, Tai-Sun; Cho, Se-Young; Kim, Duwoon

    2015-05-01

    Outbreaks of hepatitis A virus (HAV) infections are most frequently associated with the consumption of contaminated oysters. A rapid and selective concentration method is necessary for the recovery of HAV from contaminated oysters prior to detection using PCR. In this study, ricin extracted from castor beans (Ricinus communis) was tested as an alternative to antibody used in immunomagnetic separation while concentrating HAV prior to its detection using reverse transcription PCR. Initially, the extracted proteins from castor beans were fractionated into 13 fractions by gel filtration chromatography. Pretreatment of different protein fractions showed a variation in binding of HAV viral protein (VP) 1 to oyster digestive tissue in the range of 25.9 to 63.9%. The protein fraction, which caused the highest reduction in binding of VP1 to the tissue, was identified as ricin A by quadrupole time-of-flight mass spectrometry. Ricin A could significantly inhibit binding of VP1 to the tissue with a 50% inhibitory concentration of 4.5 ?g/ml and a maximal inhibitory concentration of 105.2%. The result showed that the rate of inhibition of HAV binding to tissue was higher compared to the rate of ricin itself binding to HAV (slope: 0.0029 versus 0.00059). However, ricin A concentration showed a higher correlation to the relative binding of ricin itself to HAV than the inhibition of binding of HAV to the tissue (coefficient of determination, R(2): 0.9739 versus 0.6804). In conclusion, ricin A-linked magnetic bead separation combined with reverse transcription PCR can successfully detect HAV in artificially seeded oyster digestive tissue up to a 10(-4) dilution of the virus stock (titer: 10(4) 50% tissue culture infective dose per ml). PMID:25951406

  2. Rapid and Specific Enrichment of Culturable Gram Negative Bacteria Using Non-Lethal Copper-Free Click Chemistry Coupled with Magnetic Beads Separation

    Science.gov (United States)

    Fugier, Emilie; Dumont, Audrey; Malleron, Annie; Poquet, Enora; Mas Pons, Jordi; Baron, Aurélie; Vauzeilles, Boris; Dukan, Sam

    2015-01-01

    Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope. PMID:26061695

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  4. MAGNET

    CERN Document Server

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  5. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  6. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  7. NiO nanosteps on Ni: wide band gap p-type nanostructure for efficient cold cathode and magnetically separable photocatalyst

    Science.gov (United States)

    Das, N. S.; Santra, S.; Banerjee, D.; Das, G. C.; Chattopadhyay, K. K.

    2014-04-01

    Pure nickel micro particles were chemically treated with various concentrations of NaOH and were subsequently annealed in 800 °C. The dimensions of the resulting nanosteps were tuned by simply varying the annealing time durations. Formation of Ni-NiO composite phase was confirmed by x-ray diffraction studies. The morphology of the as-prepared samples was investigated by field emission scanning electron microscope whereas the transmission electron microscope revealed the Ni core NiO shell structure of the samples. The NiO nanosteps showed much improved field emission properties compared to pure Ni micro particles and pure NiO powder synthesized by simply annealing the Ni particles. Finite element based simulation studies revealed strong enhancement of the electric field in the NiO nanostep samples and the simulated results were compared with the experimental outcome. The photocatalytic activities of the as-prepared samples were also investigated, which showed that Ni-NiO nanosteps is a magnetically separable photocatalyst.

  8. Magnetic BaFe{sub 12}O{sub 19} nanofiber filter for effective separation of Fe{sub 3}O{sub 4} nanoparticles and removal of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jeehye; Patel, Hasmukh A.; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of EEWS (Korea, Republic of)

    2014-12-15

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g{sup ?1}) barium hexaferrite (BaFe{sub 12}O{sub 19}, BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe{sub 3}O{sub 4}) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 ?g L{sup ?1} As-contaminated water can be purified rapidly at a material cost of less than 2 US cents.

  9. Magnetization steps in the phase separated manganite La0.275Pr0.35Ca0.375MnO3

    International Nuclear Information System (INIS)

    The low temperature magnetic properties of the La0.275Pr0.35Ca0.375MnO3 manganite have been investigated. Step-like charge ordered antiferromagnetic (AFM)-ferromagnetic (FM) transition is observed in the magnetic field dependence of magnetization M(H) curve below 200 K as the applied magnetic field is only several Tesla, and the magnetic step become ultrasharp at 2 K. The onset magnetic field of the step decreases initially and then increases with increasing temperatures and the critical magnetic field is sensitive to the magnetic history. The results are discussed according to the field-induced reduction of the distortion of Mn?O octahedron as martensitic mechanism. The magnetic phase diagram is also constructed based on the magnetic measurements

  10. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  11. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  12. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  13. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  15. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  16. Electrostatic separator and mass separation

    International Nuclear Information System (INIS)

    Present performance of KEK electrostatic separator (Mark I) and the results of mass separation test using this separator and described. Maximum voltage of 900 kV was obtained with the 3 m separator and of 800 kV with the 9 m separator across the electrode spacing of 10 cm. Mass separation test using the 9 m separator was attempted at the bubble chamber beam Kl, and mass separation between pion and proton was achieved at the momentum of 3.5 GeV/c and 2 GeV/c. Separation ratio of -- 3.6 between pion and proton was obtained. The relative kaon yields were enriched from -- 1/200 to -- 1/15 at the mass slit when the separator was tuned at the momentum of 3.5 GeV/c. (auth.)

  17. Low-temperature magnetization step and its training effects in phase-separated La0.5Ca0.5MnO3

    International Nuclear Information System (INIS)

    We observed a magnetization step accompanied by a metal-insulator transition around 75 K in La0.5Ca0.5MnO3. Repeating measurements under the same condition weaken the magnetization step and enhance the resistance at low temperature. The decayed magnetization step reappears after annealing the sample at high temperature or cooling it under a magnetic field. The low-temperature magnetization step can be attributed to the melting of the overcooled ferromagnetic fragments and its training effect may be related to structure distortions at the interfaces between the ferromagnetic and charge-ordered phases in the investigated system. (author)

  18. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  20. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.

    Science.gov (United States)

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-01-25

    The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of "waste+waste?resources." After mechanical scraping the mixed electrode materials enrich powders of LiCoO2 and graphite. The possible reaction between LiCoO2 and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO2 and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs. PMID:26448495

  1. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Science.gov (United States)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ? 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength ?) far less than nucleonic mass and the electric scattering section (in direct proportion to ?2 ) far large than that of nucleon, then the net ? 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ? 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field (the observational value on the earth surface is about 120 V/m downward equivalent to 500000 Coulomb negative charges in the earth surface). All celestial bodies are gravitation sources and attract the molecules and ions in space to its circumference by the gravitation of own and other celestial bodies, e.g., all planets in the solar system have their own atmospheres. Therefore, the origin mechanism of geo-electric and geomagnetic fields caused by gravitation is very universal, at least it is appli-cable to all the planets in the solar system. For planets, the joint result of the gravitations of the planets and the sun makes the negative charges and dipolar charges distributed in the surfaces of the celestial bodies. The quicker the rotation is, the larger the angular momentum U is, then larger the accompanying current and magnetic moment P, it accord a experiential law found by subsistent observational data of all celestial bodies in solar system: P = -G 1/2 U cos ? / c (1), ? is the angle between the net ? 0 flux direction (mark by CMB) and the rotational axis of celestial body (Chen Shao-Guang, Chinese Science Bulletin, 26,233,1981). Uranian and Neptunian P predicted with Eq.(1) in 1981 are about -3.4•1028 Gs•cm3 and 1.9•1028 Gs•cm3 respectively (use new rotate speed measured by Voyager 2). The P measured by Voyager 2 in 1986 and 1989 are about -1.9 •1028 Gs•cm3 and 1.5•1028 Gs•cm3 respectively (the contribution of quadrupole P is converted into the contribution of dipole P alone). The neutron star pos-sesses much high density and rotational speed because of the conservation of the mass and the angular momentum during the course of the formation, then has strong gravity and largerU. From Eq.(1) there is a larger P and extremely strong surface magnetic field in neutron star. The origin mechanism of basal electric and magnetic fields of celestial bodies will affect directly all fields refer

  2. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    Science.gov (United States)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17?-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17?-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic supplementary information (ESI) available: Supplementary figure S1. The hysteresis loop of Fe3O4 (a), Fe3O4@SiO2 (b), and Fe3O4@SiO2-Dye-SiO2 (c). See DOI: 10.1039/c0nr00614a

  3. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  4. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  5. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  7. Structure, magnetic properties and phase separation of Nd0.5Ca0.5Mn1-xGaxO3 (0?x?0.1)

    International Nuclear Information System (INIS)

    Structure and magnetic properties of Nd0.5Ca0.5Mn1-xGaxO3 (0?x?0.1) were investigated systematically through X-ray diffraction, magnetization and electron spin resonance (ESR) measurements. It was found that substituting Mn with Ga reduces the charge ordering temperature (TCO) and induces an additional peak in magnetization-temperature curve at low temperature. Both the temperature and magnetic field dependence of the magnetization in zero-field-cooling and field-cooling modes suggest that, in the Ga-doped samples, spin-glass-like phase induced by Ga-doping and antiferromagnetic charge-orbital-ordered (COO) phase coexist at low temperature. Furthermore, the ESR spectra indicate that, when the temperature is between the Neel temperature TN and the TCO, the paramagnetic phase and antiferromagnetic COO phase coexist and the volume fraction of the former increases with temperature at the expense of the latter. In addition, magnetization evidences for the interaction between Nd and Mn ions are present

  8. Separation technologies

    International Nuclear Information System (INIS)

    The chemical process industries (CPI), including the petroleum and chemical industries, consume the energy equivalent of about three million barrels of crude oil per day - this translates to 27% of industrial energy consumption in the U.S. (excluding raw materials). This paper discusses separation processes which recover and purify products account for over 40% of CPI energy demand. Separation processes include removal of impurities from raw materials, of products and by-products from reactor crude, and of containments from water and air effluents. Examples of such separation processes include absorption, adsorption, ion exchange, chromatography, crystallization, distillation, drying, electrodialysis, electrolytic processes, evaporation, extraction, filtration, flotation, membranes, and stripping. Because distillation is the most widely used separation process, we will focus on it and its alternatives, adsorption, and membrane processes

  9. Separations chemistry

    International Nuclear Information System (INIS)

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  10. Isotopic separation

    International Nuclear Information System (INIS)

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  11. Isotopic separation

    International Nuclear Information System (INIS)

    A method is described for separating isotopes in an isotopic mixture, in which photo-excitation of selected isotopic species is utilized in conjunction with reaction of the excited species with positive ions of predetermined ionization energy, other excited species or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic or magnetohydrodynamic techniques. (author)

  12. Nano-CuFe2O4 as a magnetically separable and reusable catalyst for the synthesis of diaryl/aryl alkyl sulfides via cross-coupling process under ligand-free conditions.

    Science.gov (United States)

    Swapna, Kokkirala; Murthy, Sabbavarapu Narayana; Jyothi, Mocharla Tarani; Nageswar, Yadavalli Venkata Durga

    2011-09-01

    An efficient protocol was developed for the CuFe(2)O(4) nanopowder-catalyzed aryl-sulfur bond formation between aryl halide and thiol/disulfide. A variety of aryl sulfides were synthesized in impressive yields with good chemoselectivity and functional group tolerance in the presence of a catalytic amount of CuFe(2)O(4), Cs(2)CO(3) as base, in nitrogen atmosphere, under ligand-free conditions, in DMSO as solvent at 100 °C. The catalyst is air-stable, inexpensive, magnetically separable and recyclable up to four cycles. PMID:21769376

  13. Anomalies of magnetic, electric and elastic properties of Sm1-xSrxMnO3 manganites due to phase separation

    International Nuclear Information System (INIS)

    Colossal magnetoresistance (MR) and giant negative volume magnetostriction (MS) have been observed in the Curie temperature region of Sm1-xSrxMnO3 manganites for x=0.33 compounds containing ferromagnetic (FM) and A-type antiferromagnetic (AFM) clusters, and for x=0.4 and 0.45 containing FM and both types of AFM clusters (A type and charge ordering (CO) type). For x=0.33 magnetization, MR and MS increase smoothly with magnetic field increase and saturation of MR and MS is not achieved. For x=0.4 and 0.45 the sharp jump of magnetization, MR and MS takes place at HC1C2, and saturation is achieved at H>HC2. We believe that the reason for colossal MR and giant MS being observed in the investigated compounds is the increase of FM phase volume under magnetic field action. For x=0.33 this increase is smooth because it arises from the FM phase 'sprouting' on FM layers of the A-type AFM phase. For x=0.4 and 0.45 the increase of FM part volume arises from CO clusters with CE type of AFM structure too. In this case, CO clusters are completely transformed to the FM state. This transition is accompanied by crystal structure reconstruction that is manifested in both the temperature and magnetic field dependences of the anisotropic MS

  14. Observation of dynamical spin-dependent electron interactions and screening in magnetic transitions via core-level multiplet-energy separations.

    Czech Academy of Sciences Publication Activity Database

    Tober, E.D.; Palomares, F.J.; Ynzunza, R.X.; Denecke, R.; Morais, J.; Liesegang, J.; Hussain, Z.; Shick, Alexander; Pickett, W. E.; Fadley, C. S.

    2013-01-01

    Ro?. 189, AUG (2013), s. 152-156. ISSN 0368-2048 Institutional support: RVO:68378271 Keywords : photoelectron spectroscopy * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.552, year: 2013 http://www.sciencedirect.com/science/article/pii/S0368204812001880

  15. Studies in matter antimatter separation and in the origin of lunar magnetism. Annual progress report, 1 Sep 1974--31 Aug 1975

    International Nuclear Information System (INIS)

    A progress report covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed

  16. Selective separation and determination of the synthetic colorants in beverages by magnetic solid-phase dispersion extraction based on a Fe3 O4 /reduced graphene oxide nanocomposite followed by high-performance liquid chromatography with diode array detection.

    Science.gov (United States)

    Wang, Xi; Chen, Ning; Han, Qing; Yang, Zaiyue; Wu, Jinhua; Xue, Cheng; Hong, Junli; Zhou, Xuemin; Jiang, Huijun

    2015-06-01

    A facile adsorbent, a nanocomposite of Fe3 O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid-phase dispersion extraction. The nanocomposite was synthesized in a one-step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and Brunauer-Emmett-Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong ?-? interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05-10 ?g/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95-95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3 O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment. PMID:25864558

  17. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field observations.

  18. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rittich, Bohuslav [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic)], E-mail: rittich@sci.muni.cz; Spanova, Alena [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Salek, Petr [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Nemcova, Petra [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Trachtova, Stepanka [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, CZ-162 06 Prague (Czech Republic)

    2009-05-15

    Carboxyl group-containing magnetic nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) and magnetic glass microspheres were used for the isolation of bacterial DNA. P(HEMA-co-GMA) microspheres were prepared by the dispersion polymerization in toluene/2-methylpropan-1-ol mixture in the presence of magnetite nanoparticles obtained by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide. Carboxyl groups were then introduced by oxidation of the microspheres with potassium permanganate. The most extensive DNA recovery was achieved at PEG 6000 concentrations of 12% or 16% and 2 M NaCl. The method proposed was used for bacterial DNA isolation from different dairy products containing Bifidobacterium and Lactobacillus cells. The presence of target DNA and the quality of isolated DNA were checked by polymerase chain reaction (PCR) amplification with specific primers.

  19. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    International Nuclear Information System (INIS)

    Carboxyl group-containing magnetic nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) and magnetic glass microspheres were used for the isolation of bacterial DNA. P(HEMA-co-GMA) microspheres were prepared by the dispersion polymerization in toluene/2-methylpropan-1-ol mixture in the presence of magnetite nanoparticles obtained by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide. Carboxyl groups were then introduced by oxidation of the microspheres with potassium permanganate. The most extensive DNA recovery was achieved at PEG 6000 concentrations of 12% or 16% and 2 M NaCl. The method proposed was used for bacterial DNA isolation from different dairy products containing Bifidobacterium and Lactobacillus cells. The presence of target DNA and the quality of isolated DNA were checked by polymerase chain reaction (PCR) amplification with specific primers.

  20. Phase separation in thermoelectric delafossite CuFe1-xNixO2 observed by soft x-ray magnetic circular dichroism

    Science.gov (United States)

    Kang, J.-S.; Kim, D. H.; Hwang, Jihoon; Lee, Eunsook; Nozaki, T.; Hayashi, K.; Kajitani, T.; Park, B.-G.; Kim, J.-Y.; Min, B. I.

    2011-07-01

    Electronic structures of Ni-doped CuFe1-xNixO2 delafossite oxides (0 ? x ? 0.03) have been investigated by employing soft x-ray magnetic circular dichroism (XMCD). Finite XMCD signals are observed for Fe, Ni, and Cu 2p states, and valence states of Cu, Fe, and Ni ions are nearly monovalent (Cu+), trivalent (Fe3+), and divalent (Ni2+), respectively, for all x ? 0.03. Tiny magnetic impurities could be detected by employing XMCD. Fe and Ni 2p XMCD signals are identified due to ferrimagnetic spinel impurities of CuFe2O4 and NiFe2O4. XMCD signals for Cu 2p states arise from divalent Cu2+ ions. Thermoelectrical properties are found to be very sensitive to the very little impurity phase present in delafossite oxides.

  1. Nuclear magnetic resonance and liquid chromatography-mass spectrometry combined with an incompleted separation strategy for identifying the natural products in crude extract

    International Nuclear Information System (INIS)

    NMR and LC-MS combined with an incompleted separation strategy were proposed to the simultaneous structure identification of natural products in crude extracts, and a novel method termed as NMR/LC-MS parallel dynamic spectroscopy (NMR/LC-MS PDS) was developed to discover the intrinsic correlation between retention time (Rt), mass/charge (m/z) and chemical shift (?) data of the same constituent from mixture spectra by the co-analysis of parallelly visualized multispectroscopic datasets from LC-MS and 1H NMR. The extracted ion chromatogram (XIC) and 1H NMR signals deriving from the same individual constituent were correlated through fraction ranges and intensity changing profiles in NMR/LC-MS PDS spectrum due to the signal amplitude co-variation resulted from the concentration variation of constituents in a series of incompletely separated fractions. NMR/LC-MS PDS was applied to identify 12 constituents in an active herbal extract including flavonol glycosides, which was separated into a series of fractions by flash column chromatography. The complementary spectral information of the same individual constituent in the crude extract was discovered simultaneously from mixture spectra. Especially, two groups of co-eluted isomers were identified successfully. The results demonstrated that NMR/LC-MS PDS combined with the incompleted separation strategy achieved the similar function of on-line LC-NMR-MS analysis in off-line mode and had the potential for simplifying and accelerating the analytical routes for structure identification of constituents in herbs or their active extracts

  2. Nuclear magnetic resonance and liquid chromatography-mass spectrometry combined with an incompleted separation strategy for identifying the natural products in crude extract

    Energy Technology Data Exchange (ETDEWEB)

    Dai Dongmei; He Jiuming [Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050 (China); Sun Ruixiang [Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080 (China); Zhang Ruiping [Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050 (China); Aisa, Haji Akber [Xinjiang Technological Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China); Abliz, Zeper [Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050 (China)], E-mail: zeper@imm.ac.cn

    2009-01-26

    NMR and LC-MS combined with an incompleted separation strategy were proposed to the simultaneous structure identification of natural products in crude extracts, and a novel method termed as NMR/LC-MS parallel dynamic spectroscopy (NMR/LC-MS PDS) was developed to discover the intrinsic correlation between retention time (Rt), mass/charge (m/z) and chemical shift ({delta}) data of the same constituent from mixture spectra by the co-analysis of parallelly visualized multispectroscopic datasets from LC-MS and {sup 1}H NMR. The extracted ion chromatogram (XIC) and {sup 1}H NMR signals deriving from the same individual constituent were correlated through fraction ranges and intensity changing profiles in NMR/LC-MS PDS spectrum due to the signal amplitude co-variation resulted from the concentration variation of constituents in a series of incompletely separated fractions. NMR/LC-MS PDS was applied to identify 12 constituents in an active herbal extract including flavonol glycosides, which was separated into a series of fractions by flash column chromatography. The complementary spectral information of the same individual constituent in the crude extract was discovered simultaneously from mixture spectra. Especially, two groups of co-eluted isomers were identified successfully. The results demonstrated that NMR/LC-MS PDS combined with the incompleted separation strategy achieved the similar function of on-line LC-NMR-MS analysis in off-line mode and had the potential for simplifying and accelerating the analytical routes for structure identification of constituents in herbs or their active extracts.

  3. The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth's magnetic field using synthetic data

    DEFF Research Database (Denmark)

    Olsen, Nils; Haagmans, R.; Sabaka, T.J.; Kuvshinov, A.; Maus, S.; Purucker, M.E.; Rother, M.; Lesur, V.; Mandea, M.

    2006-01-01

    Swarm, a satellite constellation to measure Earth's magnetic field with unpreceded accuracy, has been selected by ESA for launch in 2009. The mission will provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and climate. An End-to-End mission performance simulation was carried out during Phase A of the mission, with the aim of analyzing the key system requiremen...

  4. Separation Logic

    DEFF Research Database (Denmark)

    Reynolds, John C.

    2002-01-01

    In joint work with Peter O'Hearn and others, based on early ideas of Burstall, we have developed an extension of Hoare logic that permits reasoning about low-level imperative programs that use shared mutable data structure. The simple imperative programming language is extended with commands (not expressions) for accessing and modifying shared structures, and for explicit allocation and deallocation of storage. Assertions are extended by introducing a "separating conjunction" that asserts that i...

  5. Microwave-enhanced synthesis of magnetic porous covalent triazine-based framework composites for fast separation of organic dye from aqueous solution

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: A novel type of magnetic porous carbonaceous polymeric material, CTF/Fe2O3 composite (CTF = covalent triazine-based framework), has been synthesized by a facile microwave-enhanced high-temperature ionothermal method. By selecting ZnCl2 as a reaction medium and the Lewis acid catalyst, and choosing FeCl3.6H2O as an iron oxide precursor, a series of CTF/Fe2O3 composites with different ?-Fe2O3 contents has been prepared in 60 min. The resulting samples were characterized by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N2 sorption-desorption isotherms. The obtained CTF/Fe2O3 composites exhibit high surface areas (930-1149 m2 g-1), and their saturation magnetizations at 300 K vary from 1.1 to 5.9 emu g-1, depending respectively on different Fe2O3 contents (6.43-12.43 wt%) in the CTF/Fe2O3 composites. The CTF/Fe2O3 composites were applied to remove organic dye from aqueous solution by selecting methyl orange as a model molecule, and both high adsorption capacity (291 mg g-1, corresponding to 0.889 mmol g-1) and fast adsorption kinetics (kads = 4.31 m2 mg-1 min-1) were observed.

  6. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity.

    Science.gov (United States)

    Chi, Yue; Yuan, Qing; Li, Yanjuan; Zhao, Liang; Li, Nan; Li, Xiaotian; Yan, Wenfu

    2013-11-15

    Major efforts in modern material chemistry are devoted to the design and fabrication of nanostructured systems with tunable physical-chemical properties for advanced catalytic applications. Here, a novel Fe3O4@SiO2@TiO2-Ag nanocomposite has been synthesized and characterized by a series of techniques including SEM, TEM, XRD, XPS as well as magnetization measurement and subsequently tested for the photocatalytic activities. The well-designed nanocomposite exhibits significantly superior activity to that of the commercial Degussa P25 thanks to the suppression of electron-hole pairs from recombination by Ag nanoparticles, and can be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 10 times. The unique nanostructure makes Fe3O4@SiO2@TiO2-Ag a highly efficient, recoverable, stable, and cost-effective photocatalytic system offering broad opportunities in the field of catalyst synthesis and application. PMID:24076477

  7. Separations sciences

    International Nuclear Information System (INIS)

    1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione (HFDMOD) is being studied for extracting cations. Methods and agents for separating actinides from U ore processing streams and fuel reprocessing wastes are being studied. Zinc in HEPA filters was found to increase penetration by alpha-active materials. Distribution data are given for the extraction of acetic acid by amines, of alkali metals by HDEHP and crown ethers, of Eu by DEHDECMP, and of alkali and alkaline-earth metals by HFDMOD. Removal of tritium from lithium by sorption on yttrium was studied

  8. Microwave-enhanced synthesis of magnetic porous covalent triazine-based framework composites for fast separation of organic dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wang; Liang Fei; Li Cun [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, 3rd Feixi Road, Hefei 230039, Anhui Province (China); Qiu Lingguang, E-mail: lgqiu@ahu.edu.cn [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, 3rd Feixi Road, Hefei 230039, Anhui Province (China); Yuan Yupeng; Peng Fumin; Jiang Xia; Xie Anjian; Shen Yuhua [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, 3rd Feixi Road, Hefei 230039, Anhui Province (China); Zhu Junfa [National Synchrocyclotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2011-02-28

    Graphical abstract: - Abstract: A novel type of magnetic porous carbonaceous polymeric material, CTF/Fe{sub 2}O{sub 3} composite (CTF = covalent triazine-based framework), has been synthesized by a facile microwave-enhanced high-temperature ionothermal method. By selecting ZnCl{sub 2} as a reaction medium and the Lewis acid catalyst, and choosing FeCl{sub 3}.6H{sub 2}O as an iron oxide precursor, a series of CTF/Fe{sub 2}O{sub 3} composites with different {gamma}-Fe{sub 2}O{sub 3} contents has been prepared in 60 min. The resulting samples were characterized by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N{sub 2} sorption-desorption isotherms. The obtained CTF/Fe{sub 2}O{sub 3} composites exhibit high surface areas (930-1149 m{sup 2} g{sup -1}), and their saturation magnetizations at 300 K vary from 1.1 to 5.9 emu g{sup -1}, depending respectively on different Fe{sub 2}O{sub 3} contents (6.43-12.43 wt%) in the CTF/Fe{sub 2}O{sub 3} composites. The CTF/Fe{sub 2}O{sub 3} composites were applied to remove organic dye from aqueous solution by selecting methyl orange as a model molecule, and both high adsorption capacity (291 mg g{sup -1}, corresponding to 0.889 mmol g{sup -1}) and fast adsorption kinetics (k{sub ads} = 4.31 m{sup 2} mg{sup -1} min{sup -1}) were observed.

  9. Preparation of combustible material from high sulphur coal by means of pyrolysis: magnetic separation; Obtencion de combustibles limpios a partir de carbones con altos contenidos en azure mediante procesos de pirolisis: separacion magnetica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Basic studies on coal desulphurization by pyrolysis have been carried out with a series of low rank coals with high total sulphur contents and differences in the distribution of sulphur forms. The evolved sulphur compounds were studied by sulphide selective electrode H{sub 2}S and Fourier transform infrared (FTIR) spectroscopy. The mechanisms affecting the sulphur removal during pyrolysis have been studied by scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD) and photoelectronic spectroscopy (XPS). A sample coal of 11 Tm, representative of the Teruel basins was processed at pilot scale in a rotary kiln (coal HR). A series of pyrolysis runs simulating the experimental conditions of the rotary kiln were also carried out in laboratory scale. The magnetic behaviour of the chars from the rotary kiln and from the lab-scale pyrolysis was tested. The efficiency of the desulphurization, including pyrolysis and magnetic separation, was calculated. Chars from rotary kiln were tested by thermogravimetric analysis, air reactivity and carbon efficiency combustion in fluidized bed.

  10. A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core-shell nanocomposites as highly recyclable photocatalysts

    Science.gov (United States)

    Xin, Tiejun; Ma, Mingliang; Zhang, Hepeng; Gu, Junwei; Wang, Shuangjie; Liu, Mengjiao; Zhang, Qiuyu

    2014-01-01

    A facile and efficient approach for the fabrication of Fe3O4@TiO2 nanocomposites with a good core-shell structure has been demonstrated. The approach employed involved the coating of successive titania shell on Fe3O4 core using a mixed solvent method with the catalysis of ammonia followed by the crystallization of TiO2 through solvothermal method. The as-obtained core-shell structure was composed of a central Fe3O4 core with a strong response to external fields, whereas the outer titanium oxide coating was useful for the degradation of organic contaminants. The results showed that Fe3O4@TiO2 nanocomposites exhibited high degree of crystallinity, excellent magnetic properties at room temperature. Furthermore, the as-prepared Fe3O4@TiO2 nanocomposites exhibited good photocatalytic activity toward the degradation of Rhodamine B (RhB) solution, which meant that they can be used as efficient and conveniently recoverable photocatalysts. In addition, the mechanism of coating by ammonia catalysis was also investigated.

  11. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  12. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism.

    Science.gov (United States)

    Zhang, Tao; Zhu, Haibo; Croué, Jean-Philippe

    2013-03-19

    A simple, nonhazardous, efficient and low energy-consuming process is desirable to generate powerful radicals from peroxymonosulfate (PMS) for recalcitrant pollutant removal. In this work, the production of radical species from PMS induced by a magnetic CuFe(2)O(4) spinel was studied. Iopromide, a recalcitrant model pollutant, was used to investigate the efficiency of this process. CuFe(2)O(4) showed higher activity and 30 times lower Cu(2+) leaching (1.5 ?g L(-1) per 100 mg L(-1)) than a well-crystallized CuO at the same dosage. CuFe(2)O(4) maintained its activity and crystallinity during repeated batch experiments. In comparison, the activity of CuO declined significantly, which was ascribed to the deterioration in its degree of crystallinity. The efficiency of the PMS/CuFe(2)O(4) was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe(2)O(4), the radical production yield from PMS was determined to be near 1 mol/mol. The PMS decomposition involved an inner-sphere complexation with the oxide's surface Cu(II) sites. In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)-Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS. PMID:23439015

  13. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism

    KAUST Repository

    Zhang, Tao

    2013-03-19

    A simple, nonhazardous, efficient and low energy-consuming process is desirable to generate powerful radicals from peroxymonosulfate (PMS) for recalcitrant pollutant removal. In this work, the production of radical species from PMS induced by a magnetic CuFe2O4 spinel was studied. Iopromide, a recalcitrant model pollutant, was used to investigate the efficiency of this process. CuFe2O4 showed higher activity and 30 times lower Cu2+ leaching (1.5 ?g L-1 per 100 mg L-1) than a well-crystallized CuO at the same dosage. CuFe 2O4 maintained its activity and crystallinity during repeated batch experiments. In comparison, the activity of CuO declined significantly, which was ascribed to the deterioration in its degree of crystallinity. The efficiency of the PMS/CuFe2O4 was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe 2O4, the radical production yield from PMS was determined to be near 1 mol/mol. The PMS decomposition involved an inner-sphere complexation with the oxide\\'s surface Cu(II) sites. In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)-Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS. © 2013 American Chemical Society.

  14. Electromagnetic Fields of Separable Space-Times

    OpenAIRE

    Gair, Jonathan R; Lynden-Bell, Donald

    2007-01-01

    Carter derived the forms of the metric and the vector potentials of the space-times in which the relativistic Schrodinger equation for the motion of a charged particle separates. Here we show that on each `spheroidal' surface a rotation rate exists such that relative to those rotating axes the electric and magnetic fields are parallel and orthogonal to the spheroid which is thus an equipotential in those axes. All the finite Carter separable systems without magnetic monopole...

  15. Magnetic nanotubes

    Science.gov (United States)

    Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  16. Assembly of metal-organic frameworks based on 3,3',5,5'-azobenzene-tetracarboxylic acid: photoluminescences, magnetic properties, and gas separations.

    Science.gov (United States)

    Zhang, Shaowei; Ma, Jiangong; Zhang, Xiaoping; Duan, Eryue; Cheng, Peng

    2015-01-20

    We systematically studied the solvothermal reactions of transition-metal ions and H4abtc ligand and successfully isolated five metal-organic frameworks with various characterized tools, which are formulated as {[Mn2(abtc)(DMA)2.75]·1.25(DMA)}n (1), {[NH2(CH3)2][Co3(COOH)2.5(abtc)(H2O)2]2·H2O}n (2), {[Zn3(abtc)1.5(DMF)3]·1.75(DMF)}n (3), {[Zn2(abtc)(H2O)0.75(DMA)0.5]·3(DMA)·(H2O)}n (4), and {[Cd2(abtc)(DMA)2]·2(DMA)}n (5), (H4abtc = 3,3',5,5'-azobenzenetetracarboxylic acid, DMF = N,N-dimethylformamide, and DMA = N,N-dimethylacetamide). 1-5 all consist of {Mn(CO2)4}-type clusters and H4abtc ligands; however, they exhibit four distinct architectures resulting from different coordinated modes of H4abtc ligand. A pair of Mn(2+)ions in 1 forms a {Mn2(CO2)4} cluster, which further results in the "PtS"-type three-dimensional (3D) framework. In 2, three independent Co(2+) ions are bridged by COOH(-) groups to afford a {Co3} core, and {Co3} cores are connected by abtc(2-) to generate a "ZSW1"-type topology. Two types of {Zn2(CO2)4} secondary building units in 3 linked by abtc(2-) give the 3D "NbO"-type cage. When DMF is replaced by DMA and CH3OH, the scarce "nou"-type topology of 4 is obtained. And 5 is isomorphous to 1. Photoluminescence properties of 1-5 were characterized. Magnetic measurements demonstrate that dominant antiferromagnetic interactions exist in 1 and 2. In addition, 3 exhibits significant adsorption capability of CO2 and highly selective sorption of CO2 over N2. PMID:25539017

  17. Magnetic nanoparticles for Biomedicine.

    Czech Academy of Sciences Publication Activity Database

    Šafa?ík, Ivo; Horská, Kate?ina; Šafa?íková, Miroslava

    Dodrecht : Springer, 2011 - (Prokop, A.), s. 363-372 ISBN 9789400712478 R&D Projects: GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : maghemite * magnetic iron oxides * magnetic particles * magnetic separation * magnetite Subject RIV: FR - Pharmacology ; Medidal Chemistry

  18. Magnetically responsive enzyme powders.

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafa?ík, Ivo

    2015-01-01

    Ro?. 380, APR 2015 (2015), s. 197-200. ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 1.970, year: 2014

  19. Fictional Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal; Birkedal, Lars

    2012-01-01

    Separation logic formalizes the idea of local reasoning for heap-manipulating programs via the frame rule and the separating conjunction P * Q, which describes states that can be split into \\emph{separate} parts, with one satisfying P and the other satisfying Q. In standard separation logic, separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require p...

  20. Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q2 range from 0.004 to 1 (GeV/c)2

    International Nuclear Information System (INIS)

    The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q2 below 1 (GeV/c)2 are not precise enough for a hard test of theoretical predictions. For a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e, e')p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q2 region from 0.004 to 1 (GeV/c)2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties. To account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event. To separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique. The dip structure in GE that was seen in the analysis of the previous world data shows up in a modi ed form. When compared to the standard-dipole form factor as a smooth curve, the extracted GE exhibits a strong change of the slope around 0.1 (GeV/c)2, and in the magnetic form factor a dip around 0.2 (GeV/c)2 is found. This may be taken as indications for a pion cloud. For higher Q2, the fits yield larger values for GM than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)2. The charge and magnetic rms radii are determined as left angle re right angle =0.879± 0.005stat. ± 0.004syst. ± 0.002model ± 0.004group fm; left angle rm right angle =0.777 ± 0.013stat. ± 0.009syst. ± 0.005model ± 0.002group fm. This charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value. (orig.)

  1. Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q{sup 2} range from 0.004 to 1 (GeV/c){sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan C.

    2010-09-24

    The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q{sup 2} below 1 (GeV/c){sup 2} are not precise enough for a hard test of theoretical predictions. For a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e, e{sup '})p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q{sup 2} region from 0.004 to 1 (GeV/c){sup 2} with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties. To account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event. To separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique. The dip structure in G{sub E} that was seen in the analysis of the previous world data shows up in a modi ed form. When compared to the standard-dipole form factor as a smooth curve, the extracted GE exhibits a strong change of the slope around 0.1 (GeV/c){sup 2}, and in the magnetic form factor a dip around 0.2 (GeV/c){sup 2} is found. This may be taken as indications for a pion cloud. For higher Q{sup 2}, the fits yield larger values for G{sub M} than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q{sup 2} region up to 0.6 (GeV/c){sup 2}. The charge and magnetic rms radii are determined as left angle r{sub e} right angle =0.879{+-} 0.005{sub stat.} {+-} 0.004{sub syst.} {+-} 0.002{sub model} {+-} 0.004{sub group} fm; left angle r{sub m} right angle =0.777 {+-} 0.013{sub stat.} {+-} 0.009{sub syst.} {+-} 0.005{sub model} {+-} 0.002{sub group} fm. This charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value. (orig.)

  2. Particle acceleration at reconnecting separator current layers

    CERN Document Server

    Threlfall, J; Parnell, C E; Neukirch, T

    2015-01-01

    The aim of this work is to investigate and characterise particle behaviour in a 3D MHD model of a reconnecting magnetic separator. We use a relativistic guiding-centre test-particle code to investigate electron and proton acceleration in snapshots from 3D MHD separator reconnection experiments, and compare the results with findings from an analytical separator reconnection model studied in a previous investigation. The behaviour (and acceleration) of large distributions of particles are examined in detail for both analytical and numerical separator reconnection models. Differences in acceleration sites are recovered and discussed, together with the dependence of final particle energy ranges upon the dimensions of the models and the stage of the (time-dependent) MHD reconnection event. We discuss the implications of these results for observed magnetic separators in the solar corona.

  3. The Signal Space Separation method

    CERN Document Server

    Taulu, S; Simola, J; Taulu, Samu; Kajola, Matti; Simola, Juha

    2004-01-01

    Multichannel measurement with hundreds of channels essentially covers all measurable degrees of freedom of a curl and source free vector field, like the magnetic field in a volume free of current sources (e.g. in magnetoencephalography, MEG). A functional expansion solution of Laplace's equation enables one to separate signals arising from the sphere enclosing the interesting sources, e.g. the currents in the brain, from the rest of the signals. The signal space separation (SSS) is accomplished by calculating individual basis vectors for each term of the functional expansion solution to create a signal basis covering all measurable signal vectors. Any signal vector has a unique SSS decomposition with separate coefficients for the interesting signals and signals coming from outside the interesting volume. Thus, SSS basis provides an elegant method to remove external disturbances, and to transform the interesting signals to virtual sensor configurations. SSS can also be used in compensating the movements of the...

  4. Fictional Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal; Birkedal, Lars

    2012-01-01

    Separation logic formalizes the idea of local reasoning for heap-manipulating programs via the frame rule and the separating conjunction P * Q, which describes states that can be split into \\emph{separate} parts, with one satisfying P and the other satisfying Q. In standard separation logic, separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q overlap. We demonstrate, via a range of examples, how fictional separation logic can be used to reason locally and modularly about mutable abstract data types, possibly implemented using sophisticated sharing. Fictional separation logic is defined on top of standard separation logic, and both the meta-theory and the application of the logic is much simpler than earlier related approaches.

  5. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John; Thomas, O.R.T.

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma...

  6. Method of and apparatus for the separation of isotopes

    International Nuclear Information System (INIS)

    A method of separating one isotope of an element from the others which comprises the steps of generating a substantially neutral plasma including an element having at least two ionized isotopes to be separated; generating a substantially steady magnetic field extending through the plasma; imparting more energy to a selected isotope than to the other isotopes while the element is in the magnetic field; and separating the isotopes from each other on the basis of their differential energies

  7. Microfluidic Device for Continuous Magnetophoretic Separation of Red Blood Cells

    OpenAIRE

    Iliescu, Ciprian; Barbarini, Elena; Avram, Marioara; Xu, G; Avram, Andrei

    2008-01-01

    This paper presents a microfluidic device for magnetophoretic separation red blood cells from blood under contionous flow. The separation method consist of continous flow of a blood sample (diluted in PBS) through a microfluidic channel which presents on the bottom "dots" of feromagnetic layer. By appling a magnetic field perpendicular on the flowing direction, the feromagnetic "dots" generates a gradient of magnetic field which amplifies the magnetic force. As a result, the...

  8. The isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a series of experiments for the separation of cadmium isotopes. (M.P.)

  9. The FLNR JINR wide aperture separator COMBAS

    Energy Technology Data Exchange (ETDEWEB)

    Artukh, A.G.; Semchenkov, A.G. E-mail: semchenkov@main1.jinr.ru; Shchepunov, V.A.; Gridnev, G.F.; Semchenkova, O.V.; Sereda, Yu.M.; Teterev, Yu.G.; Budzanowski, A.; Koscielniak, F.; Szmider, J.; Kukhtin, V.P.; Lamzin, E.V.; Severgin, Yu.P.; Sytchevsky, S.E

    2003-05-01

    The high-resolution wide aperture separator COMBAS was installed and commissioned in the Flerov Laboratory of Nuclear Reactions, JINR (Dubna) [Nucl. Instr. and Meth. A 306 (1991) 123; 426 (1999) 605; 479 (2002) 467]. It is designed for in-flight radioactive beam production of short-lived isotopes and experiments with them. The separator operates in the (20-50)A MeV ion energy region. It consists of the two stages, dispersive and achromatising. The second half of the separator is a mirror symmetrical counterpart of the first one, the intermediate focal plane being the plane of the symmetry. Multipole magnets with special profiled poles are used to correct higher order aberrations at the intermediate and final foci. The 3D magnetic measurements of the analysing magnets of the separator were done. The KOMPOT program for the 3D magnetic field calculations [Doinikov et al., 1986, Preprint/CNNI atominform: B-0741, 13p; Belyaev et al., Int. Conf. 'Optimisation of Finite Element Approximations', St.Pt., Russia, 25-29 June 1995, p.101; IEEE Transact. On Magnetics, 28 (1) (1992) 908; Frenkel, Selected works, USSR Academy of Sciences publ., Moscow-Leningrad, v.1 (Electrodynamics), 1956; Proc. IEEE, 114 (7) (1967) 995; Livingston, Blewett, Particle accelerators, No. 7, McGraw-Hill, 1962, p. 253] was used for the analysis of these magnetic measurements data, as well as for the reconstruction of the magnet fields inside the total volume closed by the 3D surface, where the magnetic measurements had been performed. As a result of the magnetic field reconstruction we obtained field maps, which would be used in simulations of particle trajectories.

  10. Three dimensional magnetic abacus memory.

    OpenAIRE

    Zhang, S; Zhang, J.; Baker, AA; S. Wang; Yu, G; Hesjedal, T

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately,...

  11. Three dimensional magnetic abacus memory

    OpenAIRE

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, GuangHua; Hesjedal, Thorsten

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately,...

  12. Isobar separator for radioactive nuclear beams project

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Nolen, J.A.

    1995-08-01

    In order to produce pure beams of radioactive products emanating from the production target/ion source system, both mass and isobar separation is required. A preliminary mass separation with a resolution {triangle}M/M of approximately 10{sup -3} will select the proper mass beam. An isobar separator is needed because the masses of adjacent isobars are usually quite close, especially for beams near stability. In general, a mass resolution of 5 x 10{sup -5} is needed for isobar separation in the A < 120 region, while a resolution of 3 x 10{sup -5} or better is needed for heavier masses. Magnets are used to obtain mass separation. However, in addition to having mass dispersion properties, magnets also have an equal energy dispersion. This means that an energy variation in the beam cannot be distinguished from a mass difference. This is important because ions emerge from the ion source having a small ({approximately} 10{sup -5} - 10{sup -4}) energy spread. In order to make the system respond only to mass differences, it must be made energy dispersion. This is normally accomplished by using a combination of electric and magnetic fields. The most convenient way of doing this is to use an electric deflection following the magnet separator. A preliminary isobar separator which achieves a mass resolution of 2.7 x 10{sup -5} is shown in Figure I-38. It uses two large 60{degrees} bending magnets to obtain a mass dispersion of 140 mm/%, and four electric dipoles with bending angles of 39{degrees} to cancel the energy dispersion. Sextupole and octupole correction elements are used to reduce the geometrical aberrations.

  13. Vacuum arc plasma mass separator

    International Nuclear Information System (INIS)

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste. (paper)

  14. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    The principle of the process of isotopic separation by ionic cyclotron resonance is explained succinctly. The theoretical calculation of the isotopic effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Then, the main parts of the demonstration device which is in operation at the CEA, are described here: the supraconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. Some experimental results are given for chromium. The application of the process to ponderal separation of metal isotopes, as chromium, nickel and molybdenum is discussed in view of production of medical, structural and irradiation isotopes

  15. Electromagnetic Fields of Separable Space-Times

    CERN Document Server

    Gair, J R; Gair, Jonathan R; Lynden-Bell, Donald

    2007-01-01

    Carter derived the forms of the metric and the vector potentials of the space-times in which the relativistic Schrodinger equation for the motion of a charged particle separates. Here we show that on each `spheroidal' surface a rotation rate exists such that relative to those rotating axes the electric and magnetic fields are parallel and orthogonal to the spheroid which is thus an equipotential in those axes. All the finite Carter separable systems without magnetic monopoles or gravomagnetic NUT monopoles have the same gyromagnetic ratio as the Dirac electron.

  16. Rf separators and separated beams at SLAC

    International Nuclear Information System (INIS)

    For particle momenta above approximately 5 GeV/c, the only effective means of separation by particle mass in secondary beams is using rf deflectors. Particle separation at proton synchrotrons requires the use of two rf deflectors. The beam structure at SLAC permits the use of a single deflector. (auth)

  17. Magnetically responsive enzyme powders

    Science.gov (United States)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  18. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma, milk, whey and plant extracts) simply by binding them on magnetic adsorbents before application of a magnetic field. By using magnetic separation in this way, the several stages of sample pretreatment (especially centrifugation, filtration and membrane separation) that are normally necessary to condition an extract before its application on packed bed chromatography columns, may be eliminated. Magnetic separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting and clinical diagnostics. However, despite the highly attractive qualities of magnetic methods on a process scale, with the exception of wastewater treatment, few attempts to scale up magnetic operations in biotechnology have been reported thus far. The purpose of this review is to summarise the current state of development of protein separation using magnetic adsorbent particles and identify the obstacles that must be overcome if protein purification with magnetic adsorbent particles is to find its way into industrial practice.

  19. Magnetic fluids

    Science.gov (United States)

    Rosensweig, R. E.

    1982-10-01

    An overview of studies done on ferrofluids is presented, and recently discovered technological uses for such a fluid are examined. By interacting magnetization and pressure, a ferrofluid plug, held in place by a focused magnetic field imposed from the outside, serves as an airtight seal in rotating machinery. A 160 stage rotary seal has withstood a pressure differential of 66 atmospheres. The fluid has also proved useful in the design of loudspeakers, as it does not drip out of the gap in the cylindrical permanent magnet which allows the voice coil to move, thus serving as a coolant for the system. Finally, the fluid can be used to separate materials according to density, as the magnetic-levitation forces that can be established in the fluid are strong enough to float materials of any density. Other applications are being explored, such as an induced convection that can be much more vigorous than simple gravity convection when a gradient magnetic field is applied to a heated ferrofluid.

  20. Superconducting magnets

    International Nuclear Information System (INIS)

    A superconductor is an electrical conductor which is capable of carrying a 'Supercurrent' and the transmission of energy is 'loss-less'. If such conductors were generally available the implications for industries would be enormous. Unfortunately, superconductivity occurs only in certain materials under certain conditions. The transition of any superconductor from the superconducting mode to 'normal' or resistive mode is a function of absolute temperature, current density within the conductor and local magnetic field intensity. If any one of these parameters exceeds a certain 'critical value' superconductivity is destroyed. Superconducting magnets for high energy physics and medical imaging are discussed. Experience gained in the maturing medical imaging industry has demonstrated beyond doubt that superconducting magnets, even at liquid helium temperatures can today be regarded as industrial pieces of electrical machinery. The advances in magnet stability, cryogenic engineering and refrigeration technology make it feasible for superconductivity to be considered seriously for other electrical engineering applications such as, for example, energy storage, levitation and magnetic separation of ores and minerals. Whereas the impact of the new high temperature superconductors on electrical engineering can at present only be imagined, there is general agreement that ambient temperature superconducting electrical machinery will not be generally available for at least another decade. However, when it does come, electrical engineering will be altered immeasurably. 4 figs., 1 tab

  1. Phase separator safety valve blow-off.

    CERN Multimedia

    G. Perinic

    2006-01-01

    The fast discharge of the CMS solenoid leads to a pressure rise in the phase separator. On August 28th, a fast discharge was triggered at a current level of 19.1 kA. The pressure in the phase separator increased up to the set pressure of the safety valve and some helium was discharged. In consequence of this and prevoious similar observations the liquid helium level in the phase separator has been reduced from 60% to 50% and later to 45% in order to reduce the helium inventory in the magnet.

  2. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  3. On Separation of Variables

    CERN Document Server

    Viazminsky, C P

    2002-01-01

    The necessary and sufficient conditions for a function to be totally or partially separable are derived. It is shown that a function is totally separable if and only if each component of the gradient vector of depends only on the corresponding variable. The conditions of separability are expressed neatly in terms of the matrix which has to be diagonal if the function is to be totally separable, and has to assume a diagonal block form in order that the function is partially separable. The conditions of separability are also given without using derivatives. For polynomials, the conditions of separability are shown to hold if and only if the product of the first column and the first row of the coefficients matrix is equal to the matrix itself. This promotes an easy computational scheme for checking, and actually carrying out, variable separation.

  4. Safety shutdown separators

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  5. Electronic and magnetic phase separation in EuB{sub 6}. Fluctuation spectroscopy and nonlinear transport; Elektronische und magnetische Phasenseparation in EuB{sub 6}. Fluktuationsspektroskopie und nichtlinearer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Amyan, Adham

    2013-07-09

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB{sub 6} as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB{sub 6} and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T{sub MI} and T{sub C}. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  6. Rapid chemical separations

    CERN Document Server

    Trautmann, N

    1976-01-01

    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  7. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    D Bahadur; Jyotsnendu Giri

    2003-06-01

    Magnetism plays an important role in different applications of health care. Magnetite (Fe34) is biocompatible and therefore is one of the most extensively used biomaterials for different applications ranging from cell separation and drug delivery to hyperthermia. Other than this, a large number of magnetic materials in bulk as well as in the form of nano particles have been exploited for a variety of medical applications. In this review, we summarize the salient features of clinical applications, where magnetic biomaterials are used. Magnetic intracellular hyperthermia for cancer therapy is discussed in detail.

  8. Electromagnetic Separator of a Plasma

    International Nuclear Information System (INIS)

    Simple freestanding 90 deg. filter is used for obtaining the metallic vacuum coatings. As the source of metallic plasma adapted standard cathode vaporizer on the installation ''Bulat 6''. Plasma flow from the cathode flowed through the not protected by isolation spiral (solenoid). The solenoid outlet from the side of cathode find under the floating potential. The second solenoid outlet was connected to the autonomous power supply. Solenoid was prepared with the wide interval of the coil winding and with the turning to 90 degrees. Therefore, drifting charged of particle can freely depart from the interior of solenoid outside. The glow of the turned flow of plasma is observed during the supplying to the cathode and the solenoid. Flow is separation from the coils and is extended along the axis of solenoid. In this case over the solenoid flow the current 20-90 A, the voltage of solenoid relative to vessel (earth) + 15 V. We assume, that this device ensures radial electric field relative to the basic nucleus of the plasma (diameter of the nucleus of plasma column it is commensurate with the diameter of cathode) and the current of solenoid creates the longitudinal magnetic field (estimated order 20 oersted). Magnetic field strength is sufficient for the magnetization of electrons, but it is very small for the ions and the charged microdroplets. The carried out experiments on the application of coatings on the dielectric substrate with the use of aluminum and titanium cathodes showed the effectiveness of the work of this separator. Coatings without the drops are obtained also on the glass substrate with HF- displacement. The reflective properties of the metallic films (Ti,Al) on the glass samples were measured

  9. Separator for separating liquid from gas

    Energy Technology Data Exchange (ETDEWEB)

    Kazaryan, V.A.; Chirkin, A.V.; Fedorov, B.N.; Filonenko, N.A.; Pyshkov, N.N.; Rachevskiy, B.S.

    1981-02-07

    A separator is suggested for separating liquid from gas. It includes a housing with sleeve for gas input and conical reflectors arranged on top of each other, and overflow sleeve. In order to improve the effectiveness of separating liquid from gas by eliminating the secondary drop remover, it is equipped with guide sleeves arranged on the surface of the lower reflector, conical settling tank arranged above the sleeve of gas inlet, skirts attached to the lower edges of the lower and middle reflector and lowered under the level of the liquid in the housing, by-pass pipeline connecting the upper and lower part of the housing. The middle reflector is made with openings shifted in relation to the axis of the control sleeves, and the upper reflector is made in the form of a truncated cone attached to the walls of the housing.

  10. Single Photon Atomic Sorting: Isotope Separation with Maxwell's Demon

    OpenAIRE

    Jerkins, M.; Chavez, I.; Even, U.; Raizen, M G

    2010-01-01

    Isotope separation is one of the grand challenges of modern society and holds great potential for basic science, medicine, energy, and defense. We consider here a new and general approach to isotope separation. The method is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in an atomic beam, followed by a magnetic multipole whose gradients deflect and guide the atoms. The underlying mechanism is a reduction of the entropy of the be...

  11. Magnetic and electrostatic deflecting devices

    CERN Document Server

    Middelkoop, Willem Cornelis

    1974-01-01

    A short description is given of a number of deflecting devices in use at CERN, with emphasis on some of their technological aspects. In particular, the cyclotron magnet, the Split-Field Magnet at the ISR, and the magnet of the 2 m Liquid-Hydrogen Bubble Chamber are discussed, as well as the magnets of the synchrotron lattices of the Proton Synchrotron, Intersecting Storage Rings, and Super Proton Synchrotron. In addition, some remarks are made on the technology of septum magnets and fast pulsed magnets. Finally, the application and the technology of electrostatic separators and electrostatic septa are described.

  12. Stem Cell Separation Technologies

    OpenAIRE

    Zhu, Beili; Murthy, Shashi K

    2013-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell so...

  13. Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q 2 range from 0.004 to 1 (GeV/c) 2

    OpenAIRE

    Bernauer, Jan C.

    2010-01-01

    The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within t...

  14. Graph separators, with applications

    CERN Document Server

    Rosenberg, Arnold L

    2001-01-01

    This text is devoted to techniques for obtaining upper and lower bounds on the sizes of graph separators - upper bounds being obtained via decomposition algorithms. The book surveys the main approaches to obtaining good graph separations, while its main focus is on techniques for deriving lower bounds on the sizes of graph separators. This asymmetry in focus reflects the perception that the work on upper bounds, or algorithms, for graph separation is much better represented in the standard theory literature than is the work on lower bounds, which we perceive as being much more scattered throug

  15. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  16. Entrainment separator performance

    International Nuclear Information System (INIS)

    Clean and dust-loaded ACS entrainment separators mounted upstream of HEPA filters were exposed to a combination of fine water mist and steam at about 700C from one to four hours. In every trial, the ACS entrainment separator prevented measurable deterioration of performance in the following HEPA filter. Droplet size-efficiency evaluation of the ACS entrainment separators showed that, within the accuracy of the measurements, they meet all service requirements and are fully equal to the best separator units available for service on pressurized water reactors

  17. Separation method and separation device for technetium

    International Nuclear Information System (INIS)

    A salt-free reagent is added as a reducing agent to radioactive liquid wastes to reduce technetium into a solid state in the presence of a catalyst and the salt-free reagent, and the technetium is separated from the radioactive liquid wastes. In this case, since the technetium is reduced into metal technetium efficiently, the concentration of technetium in the radioactive liquid wastes is extremely lowered after the removal of metal technetium. The effect of promoting the reduction by the catalyst is obtained by adsorbing hydrogen on the surface of the catalyst to react with technetium. The salt-free reagent is decomposed into gas components such as nitrogen and gaseous carbon dioxide by the reaction with technetium or positive holes. Therefore, the salt-free reagent forms no secondary radioactive wastes, so that the amount of secondary radioactive wastes generated along with technetium separation treatment can be decreased. (T.M.)

  18. Isotope separation process

    International Nuclear Information System (INIS)

    A method is described for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption after which more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  19. Isotopic separation by centrifugation. Rotating plasma

    International Nuclear Information System (INIS)

    The motion of a gas simultaneously submitted to an electric discharge and magnetic field has been studied in order to analyze the possibility of producing isotopes separation by rotation of a plasma. Some experimental results obtained under different discharge conditions are also given. Differences of pressure up to 15 mm oil between both electrodes has been attained. No definite conclusion on separation factors could be reached because of the low reproducibility of results, probably due to the short duration of the discharge with a new chamber designed to support stronger thermal shocks more reliable data can be expected. (Author) 16 refs

  20. Water and lipid separation using limited radio frequency pulse bandwidth

    International Nuclear Information System (INIS)

    A new method for separating the spatial components of water and lipid in MR imaging is presented. The method entails the use of a limited radiofrequency (RF) pulse bandwidth together with either two-dimensional or three-dimensional scan sequences. The spectral components of water and lipid are separated by 3.5 ppm, e.g., 300 Hz for a 2-T magnet. For any linear magnetic field gradient and selective RF pulse with a bandwidth that is smaller than 3.5 ppm, the excited spins of proton in water and protons in lipid will be located in two separate and parallel sections along the field gradient axis

  1. Ultra-cold methods of atomic hydrogen electron spin separation

    International Nuclear Information System (INIS)

    Two ultra-cold methods of atomic hydrogen electron spin separation for polarized jet targets and sources will be described and compared. Both of them use a helium-film coated cell at 300 mK located in a high magnetic field. The first one, microwave driven extraction, uses a 212 GHz microwave system and 7.5 T magnetic field with a high uniformity (?B/B? 10-5). The second method employs the gradient of a high magnetic field for the state separation and beam formation. Experimental results from the two methods will be presented

  2. Microfluidic Device for Continuous Magnetophoretic Separation of Red Blood Cells

    CERN Document Server

    Iliescu, Ciprian; Avram, Marioara; Xu, G; Avram, Andrei

    2008-01-01

    This paper presents a microfluidic device for magnetophoretic separation red blood cells from blood under contionous flow. The separation method consist of continous flow of a blood sample (diluted in PBS) through a microfluidic channel which presents on the bottom "dots" of feromagnetic layer. By appling a magnetic field perpendicular on the flowing direction, the feromagnetic "dots" generates a gradient of magnetic field which amplifies the magnetic force. As a result, the red blood cells are captured on the bottom of the microfluidic channel while the rest of the blood is collected at the outlet. Experimental results show that an average of 95 % of red blood cells are trapped in the device

  3. A differential magnetic circuit for teaching purposes

    Energy Technology Data Exchange (ETDEWEB)

    Kraftmakher, Yaakov, E-mail: krafty@mail.biu.ac.i [Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2010-09-15

    A differential magnetic circuit (magnetic bridge) is described. The circuit separates the magnetic field sensor and the sample under study. A Hall probe serves as the sensor. The signal from the sensor can be enhanced by concentrating the magnetic flux. The magnetic bridge works even with dc magnetic fields. The device is used for displaying hysteresis loops of ferromagnets and for observing the superconducting-to-normal phase transition in a high-temperature superconductor and the Curie point of a ferromagnet. The magnetic bridge seems to be useful for undergraduate laboratories in electricity and magnetism.

  4. A new method of assembling large magnetic blocks from permanent NdFeB magnets.

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2007-01-01

    Ro?. 4, ?. 3 (2007), 75-83. ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnet assembly * magnet ic circuits * magnet ic separation Subject RIV: BM - Solid Matter Physics ; Magnet ism www.irsm.cas.cz

  5. Quantification of the magnetization-transfer contrast effect: can it yield additional information in differentiation of musculoskeletal lesions particularly in separation of benign from malignant lesions; Quantifizierung des Magnetization Transfer Contrast (MTC) Effektes durch Berechnung von MT-Quotienten: Ergeben sich Zusatzinformationen fuer die Differenzierung benigner und maligner Erkrankungen des Bewegungsapparates?

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, M.; Traeber, F.; Schild, H. [Radiologische Universitaetsklinik Bonn (Germany); Gieseke, J. [Philips Medizinsysteme (Germany)

    1999-12-01

    Purpose: To investigate the potential information of the amount of magnetization-transfer effect in musculoskeletal lesions and to compare MT ratios from benign and malignant musculoskeletal lesions. Material and Method: 49 patients with malignant tumors (3 osteosarcoma, 3 malignant fibrous histiocytoma, 4 chondrosarcoma, 2 Ewing sarcomas) and benign lesions (8 chondroma, 2 fibrous dysplasia, 3 osteoid-osteoma, 6 ganglion cyst, 3 cyst, 3 osteomyelitis, 4 tendinitis, 3 rotator cuff tear, 5 scar tissue) were scanned using routine MRI protocols including T{sub 1}- and T{sub 2}-weighted spin echo as well as T{sub 2}*-weighted gradient echo (FFE) sequences at 1.5 Tesla (ACS II, Philips Medical). Additionally MTC images were generated by combining the FFE sequence and the off-resonance MT technique (-1500 Hz off-resonance frequency, 1770 flip angle and 50 ms pulse duration). MT ratios were calculated as SI{sub o}-SI{sub m}/SI{sub o}. Results: The MT ratio of benign lesions was 26{+-}15%, that of malignant lesions was 22{+-}6%. The difference was statistically not significant. As expected muscle showed a high MT ratio of 50{+-}8%. Scar tissue demonstrated an MT ratio of 39{+-}16% which was significantly higher than the tumor MT ratios. Conclusion: MTC (MT ratios) failed to show significant differences between benign and malignant lesions as was expected due to basic differences in cellularity, rate of mitosis and chromatin content. MTC might however gain more importance in separating scar tissue from recurrent tumor in the future. (orig.) [German] Zielsetzung: Durch die Quantifizierung des Magnetization Transfer Contrastes sollte untersucht werden, ob sich Zusatzinformationen in der Magnetresonanztomographie des Stuetz- und Bewegungsapparates ergeben. Insbesondere sollte ermittelt werden, ob gut- und boesartige Laesionen unterschiedliche MT-Quotienten aufweisen. Material und Methode: 49 Patienten mit boesartigen Tumoren (3 Osteosarkom, 4 Chondrosarkom, 3 Malignes Fibroeses Histiozytom, 2 Ewing-Sarkom) and gutartigen Erkrankungen (8 Chondrom, 2 Fibroese Dysplasie, 3 Osteoid-Osteom, 6 Ganglion, 3 Zysten, 3 Osteomyelitis, 4 Tendinitis, 3 Rotatorenmanschettenruptur, 5 Narbengewebe) wurden mit herkoemmlicher MRT sowie resonanz-frequenzferner MTC-Methode (-1500 Hz Resonanzverschiebung, 50 ms Pulslaenge, 1770 MT-Pulswinkel) bei 1,5 Tesla (ACS II, Philips Medizinsysteme) untersucht. Der MTC-Effekt wurde durch Berechnung des MT-Quotienten (MT-ratio) quantifiziert. Ergebnisse: Der MT-Quotient gutartiger Laesionen lag im Mittel gering ueber dem maligner Laesionen (26{+-}15% versus 22{+-}6%). Der Unterschied war statistisch nicht signifikant. Narbengewebe wies einen signifikant hoeheren MT-Quotienten (39{+-}16%) als Tumoren auf. Schlussfolgerung: Die Berechnung des MT-Quotienten ist nicht geeignet, um gutartige von boesartigen Erkrankungen des Stuetz- und Bewegungsapparates zu unterscheiden. Zur Differenzierung von Narbengewebe gegenueber Tumorrezidiv koennte MTC einen Stellenwert erlangen. (orig.)

  6. Evidence for strong effect of quenched correlated disorder on phase separation and magnetism in (La_{1-y}Pr_{y})_{0.7}Ca_{0.3}MnO_3

    OpenAIRE

    Pomjakushin, V. Yu.; Sheptyakov, D. V.; Pomjakushina, E. V.; Conder, K; Balagurov, A. M.

    2009-01-01

    High resolution neutron diffraction shows that the mesoscopic separation into ferromagnetic (FM) and antiferromagnetic (AFM) phases and the FM transition temperature T_C in the perovskite manganite (La_{1-y}Pr_{y})_{0.7}Ca_{0.3}MnO_3 strongly depend on the quenched correlated disorder. The different disorder strengths are achieved by different procedures of the sample synthesis and quantitatively characterized by the micro-strain-type diffraction peak broadening. The system ...

  7. A ‘Magnetic’ Gram Stain for Bacterial Detection

    OpenAIRE

    Budin, Ghyslain; Chung, Hyun Jung; Lee, Hakho; Weissleder, Ralph

    2012-01-01

    Magnetic stain. Bacteria are often classified into Gram-positive and Gram-negative strains by their visual staining properties using crystal violet (CV), a triarylmethane dye. Here we show, that bioorthogonal modification of crystal violet with transcyclooctene (TCO) can be used to render Gram-positive bacteria magnetic with magneto-nanoparticles-Tetrazine (MNP-Tz). This allows for class specific automated magnetic detection, magnetic separation or other magnetic manipulations.

  8. 48 CFR 870.111-5 - Frozen processed food products.

    Science.gov (United States)

    2010-10-01

    ...processed food products that contain meat, poultry, or a significant...processed food products that contain meat, poultry or a significant...with USDA regulations governing meat, poultry, or egg inspection...meet Federal, State, and city sanitation and health regulations....

  9. On Separate Universes

    CERN Document Server

    Dai, Liang; Schmidt, Fabian

    2015-01-01

    The separate universe conjecture states that in General Relativity a density perturbation behaves locally (i.e. on scales much smaller than the wavelength of the mode) as a separate universe with different background density and curvature. We prove this conjecture for a spherical compensated tophat density perturbation of arbitrary amplitude and radius in $\\Lambda$CDM. We then use Conformal Fermi Coordinates to generalize this result to scalar perturbations of arbitrary configuration and scale in a general cosmology with a mixture of fluids, but to linear order in perturbations. In this case, the separate universe conjecture holds for the isotropic part of the perturbations. The anisotropic part on the other hand is exactly captured by a tidal field in the Newtonian form. We show that the separate universe picture is restricted to scales larger than the sound horizons of all fluid components. We then derive an expression for the locally measured matter bispectrum induced by a long-wavelength mode of arbitrary...

  10. Ultrathin gas separation membranes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian W.M.; Wu, Jeremy P.; Smith, Geoff [Industrial Research Ltd. (IRL), MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)

    2010-07-01

    Nanostructured alumina ceramic templates prepared by advanced anodising techniques have been used to support ultrathin membranes for the separation and purification of hydrogen and oxygen gases from mixed gas streams. Pd-based hydrogen separation membranes separate H{sub 2} from H{sub 2}/N{sub 2}/CO{sub 2} gas mixtures at 100% purity with a permeance of {proportional_to} 1.8{mu}mol/m{sup 2}.s.Pa at 700 C. Continuous thin films of cubic ZrO{sub 2} - 8 mol % Y{sub 2}O{sub 3} up to 400 nm thick have been deposited by electron beam evaporation as the first stage of developing an oxygen separation membrane. (orig.)

  11. Separator for alkaline batteries

    Science.gov (United States)

    Hoyt, H. W.; Pfluger, H. L.

    1968-01-01

    Separator compositions have been tested as components of three-plate silver-zinc oxide cells in a standard cycling test. Six materials meet imposed requirements, giving cycling performance superior to cellophane.

  12. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  13. Separable Arrowhead Microneedles

    OpenAIRE

    Chu, Leonard Y.; PRAUSNITZ, MARK R.

    2010-01-01

    Hypodermic needles cause pain and bleeding, produce biohazardous sharp waste and require trained personnel. To address these issues, we introduce separable arrowhead microneedles that rapidly and painlessly deliver drugs and vaccines to the skin. These needles are featured by micron-size sharp tips mounted on blunt shafts. Upon insertion in the skin, the sharp-tipped polymer arrowheads encapsulating drug separate from their metal shafts and remain embedded in the skin for subsequent dissoluti...

  14. Magnetic ratchet for biotechnological applications

    Science.gov (United States)

    Auge, A.; Weddemann, A.; Wittbracht, F.; Hütten, A.

    2009-05-01

    Transport and separation of magnetic beads are important in "lab on a chip" environments for biotechnological applications. One possible solution for this is the on-off ratchet concept. An asymmetric magnetic potential and Brownian motion of magnetic beads are required for such a ratchet. The asymmetric magnetic potential is achieved by combining an external magnetic field with a spatially periodic array of conducting lines. In this work finite element method simulations are carried out to design this asymmetric potential and to evaluate transport rates. Furthermore, experiments are carried out so as to compare to the simulation results.

  15. Determination of magnetic susceptibility of sedimentation rock in Java island

    International Nuclear Information System (INIS)

    Determination of magnetic susceptibility of sedimentation rock in java island. It has been done a research on detemlination of magnetic susceptibility of sedimentation and intrusion rock. A simple magnetic separation method was used to separate material with high contain magnetic mineral from the low contain magnetic mineral. Besides a data measurement from magnetic susceptibility and intensity there are also X-ray diffraction data available as suppolling data. The result shown that every material has magnetic mineral In it with different contain. And sedimentation rock has higher magnetic mineral than the intrusion rock

  16. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles

    KAUST Repository

    Stipsitz, Martin

    2015-05-01

    Microfluidic platforms are well-suited for biomedical analysis and usually consist of a set of units which guarantee the manipulation, detection and recognition of bioanalyte in a reliable and flexible manner. Additionally, the use of magnetic fields for perfoming the aforementioned tasks has been steadily gainining interest. This is due to the fact that magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the diagnostic system. In combination with these applied magnetic fields, magnetic nanoparticles are used. In this paper, we present some of our most recent results in research towards a) microfluidic diagnostics using MR sensors and magnetic particles and b) single cell analysis using magnetic particles. We have successfully manipulated magnetically labeled bacteria and measured their response with integrated GMR sensors and we have also managed to separate magnetically labeled jurkat cells for single cell analysis. © 2015 Trans Tech Publications, Switzerland.

  17. Bacteriophage-based nanoprobes for rapid bacteria separation.

    Science.gov (United States)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M; Nugen, Sam R

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes. PMID:26315848

  18. Plated lamination structures for integrated magnetic devices

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  19. Anisotropically structured magnetic aerogel monoliths.

    Science.gov (United States)

    Heiligtag, Florian J; Airaghi Leccardi, Marta J I; Erdem, Derya; Süess, Martin J; Niederberger, Markus

    2014-11-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. PMID:25255203

  20. Chiral Magnetic-Vortical Wave

    CERN Document Server

    Frenklakh, David

    2015-01-01

    We study collective excitations in rotating chiral media in presence of magnetic fi?eld both in hydrodynamic framework and in kinetic theory. We ?find that the velocity of the mixed Chiral Magnetic-Vortical Wave is a vector sum of velocities of pure Magnetic and Vortical waves which do not exist separately under these conditions. We also use relaxation time approximation to prove that this wave itself is a non-dissipative phenomenon.

  1. Bacteriophage-based nanoprobes for rapid bacteria separation

    Science.gov (United States)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03779d

  2. Magnetically Responsive (Nano) Biocomposites.

    Czech Academy of Sciences Publication Activity Database

    Šafa?ík, Ivo; Pospíšková, K.; Horská, Kate?ina; Mad?rová, Zde?ka; Šafa?íková, Miroslava

    Vol. II. Dodrecht : Springer, 2014 - (Prokop, A.), s. 17-34 ISBN 978-94-007-1248-5. - (Fundamental Biomedical Technologies. 7) R&D Projects: GA MŠk(CZ) LD13021; GA ?R(CZ) GAP503/11/2263 Institutional support: RVO:67179843 Keywords : biological materials * postmagnetization * magnetic composite materials * magentic separation Subject RIV: CE - Biochemistry

  3. Organic Separation Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  4. X-ray magnetic dichroism: from quantitative determination of magnetic moments to imaging of magnetization dynamics

    International Nuclear Information System (INIS)

    In this document, I use some results of my research activities of the last ten years to show the power of x-ray magnetic dichroism for determining magnetic properties of thin layers, multilayers and nano-structures. The use of sum rules for x-ray dichroism allows a quantitative determination of the spin and orbital contributions to the magnetic moment, for each element of a heterogeneous material separately. Used in a qualitative way, x-ray dichroism allows monitoring the magnetization of the different layers in a multilayer material as a function of applied field. In combination with the temporal structure of synchrotron radiation, it is possible to study fast magnetization reversal with element selectivity, which is important for devices like spin valves and magnetic tunnel junctions. Adding the spatial resolution of a photoelectron emission microscope (PEEM), it becomes possible to study all the details of the fast magnetization reversal in complex magnetic systems. (author)

  5. Hydraulic cyclones with magnetic filter

    Energy Technology Data Exchange (ETDEWEB)

    Volny, M.; Snyta, B.; Szostek, Z.; Havirov, F. (Vedeckovyzkumny Uhelny Ustav, Ostrava Radvanice (Czechoslovakia))

    1990-08-01

    Discusses design and operation of a magnetic filter developed in the Frantisek coal preparation plant in Czechoslovakia and used for regeneration of magnetite suspension. The suspension is used in hydraulic cyclones for preparation of black coal with size from 0.5 to 10 mm. A magnetic filter consists of 22 permanent magnets of the Durox D 280 type (50x45x17 mm) installed on a steel ring. Magnetite particles leaving a hydraulic cyclone are separated from water during discharge. Magnetite regeneration and recirculation increase separation efficiency, reduce preparation cost and reduce magnetite consumption rates.

  6. Results of the Main Phase of Ion Separation in the Process of Plasma-Optical Mass Separation

    Science.gov (United States)

    M. Bardakov, V.; D. Ivanov, S.; V. Kazantsev, A.; A. Strokin, N.

    2015-10-01

    This paper presents separation results of a mixture of nitrogen, argon and krypton ions in the process of plasma-optical mass separation on the POMS-E-3 separator model. We determined the behavior of the separation with a change in the value of magnetic field induction in the azimuthator and in the degree of compensation of the spatial charge in ion flows. An analysis is performed for experimental data by correlation with the results of a theoretical study and numerical experiments. The objectives of future experiments are outlined.

  7. Spontaneous reconnection at a separator current layer. I. Nature of the reconnection

    CERN Document Server

    Stevenson, Julie E H

    2015-01-01

    Magnetic separators, which lie on the boundary between four topologically-distinct flux domains, are prime locations in three-dimensional magnetic fields for reconnection. Little is known about the details of separator reconnection and so the aim of this paper, which is the first of two, is to study the properties of magnetic reconnection at a single separator. Three-dimensional, resistive magnetohydrodynamic numerical experiments are run to study separator reconnection starting from a magnetohydrostatic equilibrium which contains a twisted current layer along a single separator linking a pair of opposite-polarity null points. The resulting reconnection occurs in two phases. The first is short involving rapid-reconnection in which the current at the separator is reduced by a factor of around 2.3. Most ($75\\%$) of the magnetic energy is converted during this phase, via Ohmic dissipation, directly into internal energy, with just $0.1\\%$ going into kinetic energy. During this phase the reconnection occurs along ...

  8. Isotope separation process

    International Nuclear Information System (INIS)

    The instant invention relates to an improved process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same element in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than non-excited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  9. Immunoassay separation technique

    International Nuclear Information System (INIS)

    A method for effecting the immunoassay of a multiplicity of samples, each possibly containing an antigen or an antibody to be assayed, is discussed. Each sample is incubated with a solution containing a detectable antigen or antibody to form a multiplicity of mixtures, each mixture containing as components antigen-antibody, non-complexed antigen and non-complexed antibody. At least one of the components of the said mixture is separated by adsorption. There after, quantity of detectable antigen or antibody is detected in one of the non-adsorbed portions of the mixture. An improvement, compared to other techniques, is the continuous and sequential separation of at least one component, which is intended to be separated from each said multiplicity of mixtures

  10. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ?-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

  11. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  12. Separators for electrochemical cells

    Science.gov (United States)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  13. '' Smoluchowski Type '' Equations for Modelling of Air Separation by Membranes with Various Structure

    International Nuclear Information System (INIS)

    The problem of a membrane air separation in the presence of a magnetic field, is considered. Paramagnetism of oxygen and diamagnetic behaviour of nitrogen form the basis for air separation. A new concept of polymer membranes filled with neodymium powder and magnetized ('' magnetic membranes ''), was applied. The Smoluchowski equation for oxygen, and simple diffusion equation for nitrogen behaviour in the air have been used. Multifractal analysis of structure and morphology of membranes were applied to optical microscopy images. (author)

  14. Eddy current separation apparatus, separation module, separation method and method for adjusting an eddy current separation apparatus:

    OpenAIRE

    Rem, P.C.; Bakker, M. C. M.; Berkhout, S.P.M.; Rahman, M.A.

    2012-01-01

    Eddy current separation apparatus (1) for separating particles (20) from a particle stream (w), wherein the apparatus (1) comprises a separator drum (4) adapted to create a first particle fraction (21) and a second particle fraction (23), a feeding device (2) upstream of the separator drum (4) for supplying particles (20) to said separator drum (4), and a splitter element (14) provided downstream of the separator drum (4) for splitting the respective fractions (21,23), wherein the apparatus (...

  15. Analytical Computation of the Magnetic Field Distribution in a Magnetic Gear

    OpenAIRE

    Lubin, Thierry; Mezani, Smail; Rezzoug, Abderrezak

    2010-01-01

    We propose an analytical computation of the magnetic field distribution in a magnetic gear. The analytical method is based on the resolution of Laplace's and Poisson's equations (by the separation of variables technique) for each subdomain, i.e., magnets, air gap, and slots. The global solution is obtained using boundary and continuity conditions. Our analytical model can be used as a tool for design optimization of a magnetic gear. Here, we compare magnetic field distributions and electromag...

  16. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    OpenAIRE

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological ce...

  17. Isotope separation process

    International Nuclear Information System (INIS)

    In accordance with the present invention, a process for the separation of isotopes has now been discovered which utilizes a uranyl compound having the formula(UOsub(2)AA')sub(n) where A and A' are monovalent anions and n is an integer greater than 1, that is generally from 2 to 4 which compounds exhibit unexpected spectral properties which make it possible to selectively excite the uranyl ion at commercially acceptable conditions. The process is carried out by irradiating these uranyl compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing the element whose isotopes are to be separated, with infrared radiation which is preferentially absorbed by a molecular vibration of molecules of uranyl ions of the uranyl compound containing a predetermined isotope of the element whose isotopes are to be separated, in order to provide excited molecules of that compound enriched in molecules containing the predetermined isotope, thus enabling separation of those excited molecules. It is most preferred that these uranyl compounds be irradiated at a wavelength of from about 8.0 to 1116 cmsup(-1). The most preferred means of providing such infrared radiation within those wavelengths is by the use of a COsub(2) laser

  18. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 16 Claims, 8 Drawing Figures

  19. Electrostatically Enhanced Vortex Separator

    Science.gov (United States)

    Collins, Earl R.

    1993-01-01

    Proposed device removes fine particles from high-pressure exhaust gas of chemical reactor. Negatively charged sectors on rotating disks in vortex generator attracts positively charged particles from main stream of exhaust gas. Electrostatic charge enhances particle-separating action of vortex. Gas without particles released to atmosphere.

  20. Separation problems and forcing.

    Czech Academy of Sciences Publication Activity Database

    Zapletal, Jind?ich

    2013-01-01

    Ro?. 13, ?. 1 (2013), s. 1350002. ISSN 0219-0613 R&D Projects: GA AV ?R IAA100190902 Institutional research plan: CEZ:AV0Z10190503 Keywords : separation * set of uniqueness * forcing Subject RIV: BA - General Mathematics Impact factor: 0.364, year: 2012 http://www.worldscientific.com/doi/abs/10.1142/S0219061313500025

  1. Memories of Professor Sugimoto and isotope separator

    International Nuclear Information System (INIS)

    Usual magnetic isotope-separators select the particles with the same Z/A value which may include different nuclides. Identification of the isotope with the same Z/A value but different Z or A value is an universal requirement for nuclear physics experiments. If one knows, together with the A/Z value, the dE/dx or the range of the isotope in some energy absorber, which are the function of Z2/A, its nuclide can be specified. This idea can be realized by arranging proper energy-absorber at the focal point of magnetic analyzer. The author proposes another novel method in which two dipole-magnets are excited with some difference, and an energy absorber corresponding to that energy difference is situated between two magnets. It can also be devised so that the dispersion at the final focal-point depends only on the emission angle of the isotope at production. Professor Sugimoto recognized the significance of this scheme and proposed to employ it in the experiment at BEVATRON. The unbalanced two dipole-magnets method is employed at RIKEN and RCNP, Osaka University. The author's creative idea originated in Sugimoto Laboratory at Osaka University. (author)

  2. Separation science and technology

    International Nuclear Information System (INIS)

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO2 thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO2 films in reaction with chlorophenol

  3. High performance hybrid magnetic structure for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  4. Mitigated-force carriage for high magnetic field environments

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  5. HGMS coal desulfurization with microwave magnetization enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Kelland, D.R.; Lai-Fook, M.; Maxwell, E.; Takayasu, M.; Jacobs, I.S.; McConnell, M.D.

    1988-11-01

    The performance of high gradient magnetic separation (HGMS) in removing mineral pyrite from coal has been improved by increasing the pyrite's magnetization. This was achieved through selective heating of the pyrite by high power density microwave irradiation. Separations were made on conventional 2-Tesla (T) iron magnet separators and using a superconducting magnet capable of 15T. A critical temperature for conversion of pyrite to ferrimagnetic monoclinic pyrrhotite was determined by vibrating-sample magnetometer measurements, also used to assess the conversion of pyrite in irradiated coal samples. Mossbauer measurements were made and electron microprobe photographs were taken to show the degree of shift in iron-compound stoichiometry. Thermal analysis demonstrated that temperatures reached after heating were higher in the pyrite than in the coal. Separations of pyrite-coal samples were performed using continuous axial separation and conventional wire-matrix HGMS. 8 refs., 8 figs.

  6. Magnetism and magnetic materials

    CERN Document Server

    Coey, J M D

    2010-01-01

    Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data. Accessible, authoritative, and assuming undergraduate familiarity with vectors, electromagnetism and quantum mechanics, this textbook is well suited to graduate courses. Emphasis is placed on practical calculations and numerical magnitudes - from nanoscale to astronomical scale - focussing on modern applications, including permanent magnet structures and spin electronic devices. Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and clearly explain ideas. Easily digestible tables and data sheets provide a wealth of useful information on magnetic properties. The 38 principal magnetic materials, and many more related compounds, are treated in detail

  7. Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctic

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Ramprasad, T.; Desa, M.

    particularly for the early separation of India from Antarctica. Analysis of magnetic and satellite-derived gravity data in the Enderby Basin, East Antarctica, reveals the presence of seafloor spreading type linear magnetic anomalies and eight new fracture zones...

  8. Laser isotope separation

    International Nuclear Information System (INIS)

    This work describes the atomic route to laser isotope separation. This is a process which uses intense pulsed lasers to photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The paper describes only the isotopic enrichment of uranium for nuclear fuel cycles. It makes brief mention of the traditional cascade processes used at present, and then turns to the atomic physics of laser photoionization. The principles of the laser isotope separation process, important spectroscopic experiments and considerations which determine the design of a plant are described. This review concentrates on the laser ionization process, few details of vaporization of uranium metal or the extraction of ions are given. (author)

  9. Curium-248 separation

    International Nuclear Information System (INIS)

    Results concerning the processing of the active part of a californium neutron source are presented. An extraction method with the use of di-2-ethylhexylphosphoric acid and a centrifugal apparatus was used to advantage to effect the separation of 280 mcg of californium-252 and 355 mcg of curium-248. 260 mcg californium and 290 mcg of curium were isolated. Curium affinage was performed by the extraction-chromatographic method. The content of californium-252 in the curium preparation was 0.06% (by activity), and the neutral impurities-1 mg. Preliminary findings are also given showing the possibility of employing extraction-chromatographic and extraction methods in the separation of the microgram quantities of curium and californium

  10. Lithium isotope separation

    International Nuclear Information System (INIS)

    Published methods for 6Li-7Li lithium isotope separation have been reviewed. Future demand for 6Li, whose main use will be as a tritium breeder in blankets surrounding the core of DT fusion power reactors, is likely to exceed 5 Mg/a in the next century. The applicability of the various available methods to such a large scale production rate has been assessed. Research on improving the effectiveness of current lithium isotope separation processes has been carried out worldwide in several major areas during the past decade; these include two-phase chemical exchange systems, ion exchange resin chromatography, highly isotope-selective techniques like laser photoactivation and radiofrequency spectroscopy. Chemical exchange systems appear to offer good potential in the near term for 6Li enrichment

  11. Isotope separation process

    International Nuclear Information System (INIS)

    A method of separating the isotopes of an element is described, which comprises the steps of (i) subjecting molecules of a gaseous compound of the element simultaneously to two infrared radiations of different wavelengths, the first radiation having a wavelength which corresponds to an absorption band of the compound, which in turn corresponds to a mode of molecular motion in which there is participation by atoms of the element, and the second radiation having a power density greater than 106 watts per cm2, thereby exciting molecules of the compound in an isotopically selective manner, this step being conducted in such manner that the excited molecules either receive a level of energy sufficient to cause them to undergo conversion by unimolecular decomposition or receive a level of energy sufficient to cause them to undergo conversion by reaction with molecules of another gas present for that purpose; and (ii) separating and recovering converted molecules from unconverted molecules. (author)

  12. Nylon separators. [thermal degradation

    Science.gov (United States)

    Lim, H. S.

    1977-01-01

    A nylon separator was placed in a flooded condition in K0H solution and heated at various high temperatures ranging from 60 C to 110 C. The weight decrease was measured and the molecular weight and decomposition product were analyzed to determine: (1) the effect of K0H concentration on the hydrolysis rate; (2) the effect of K0H concentration on nylon degradation; (3) the activation energy at different K0H concentrations; and (4) the effect of oxygen on nylon degradation. The nylon hydrolysis rate is shown to increase as K0H concentration is decreased 34%, giving a maximum rate at about 16%. Separator hydrolysis is confirmed by molecular weight decrease in age of the batteries, and the reaction of nylon with molecular oxygen is probably negligible, compared to hydrolysis. The extrapolated rate value from the high temperature experiment correlates well with experimental values at 35 degrees.

  13. Combination of separating apparatuses

    International Nuclear Information System (INIS)

    Object: To increase a separating efficiency through a small piping, to uniform inlet and outlet of each separator and to prevent a chain destruction at the time of failure. Structure: Inner peripheral machines and outer peripheral machines of each centrifuge are alternately connected. Light gases and heavy gases from each inner peripheral machine are mixed and fed to the outer peripheral machines, whereas light gases and heavy gases from each outer peripheral machines are mixed and fed to the inner peripheral machines. In this case, cut value of light gases in the inner peripheral machine is less than 0.5 and cut value of light gases in the outer peripheral machine is from 0.5 to 1. (Furukawa, Y.)

  14. Rapid, continuous chemical separations

    International Nuclear Information System (INIS)

    The authors report on a number of on-line chemical procedures which were developed for the study of short-lived fission products and products from heavy-ion interactions. These techniques combine gas-jet recoil-transport systems with (I) multistage solvent extraction methods using high-speed centrifuges for rapid phase separation and (II) thermochromatographic columns. The formation of volatile species between recoil atoms and reactive gases is another alternative. The authors have also coupled a gas-jet transport system to a mass separator equipped with a hollow cathode- or a high temperature ion source. Typical applications of these methods for studies of short-lived nuclides are described

  15. Materials separation and enrichment

    International Nuclear Information System (INIS)

    This volume supplies information in 16 individual contributions on projects sponsored by the Federal Ministry for Research and Technology (BMFT) with regard to the above mentioned topic, on the state of the art, on new technologies, and on international cooperation; two of the contributions have been recorded separately for the databases INIS and ENERGY. The contributions are supplemented by a survey of the projects sponsored and by a list of publications which have resulted from the sponsored projects. (EF)

  16. Rare earth separation process

    International Nuclear Information System (INIS)

    Light rare earths including yttrium (i.e. Z<63) are separated from other rare earths by contacting an aqueous solution with an organic solution containing an extracting agent, which is a mixture of a carboxylic acid (water-insoluble and comprising more than 6 carbon atoms) and a neutral organic phosphorus compound or an alcohol with more than 6 carbon atoms. Heavy rare earths are re-extracted with an aqueous acid solution

  17. Separation of enantiomers

    CERN Document Server

    Todd , Matthew H

    2014-01-01

    In one handy volume this handbook summarizes the most common synthetic methods for the separation of racemic mixtures, allowing an easy comparison of the different strategies described in the literature.Alongside classical methods, the authors also consider kinetic resolutions, dynamic kinetic resolutions, divergent reactions of a racemic mixture, and a number of ""neglected"" cases not covered elsewhere, such as the use of circularly polarized light, polymerizations, ""ripening"" processes, dynamic combinatorial chemistry, and several thermodynamic processes. The result is a thorough introdu

  18. On separate universes

    Science.gov (United States)

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian

    2015-10-01

    The separate universe conjecture states that in General Relativity a density perturbation behaves locally (i.e. on scales much smaller than the wavelength of the mode) as a separate universe with different background density and curvature. We prove this conjecture for a spherical compensated tophat density perturbation of arbitrary amplitude and radius in ?CDM. We then use Conformal Fermi Coordinates to generalize this result to scalar perturbations of arbitrary configuration and scale in a general cosmology with a mixture of fluids, but to linear order in perturbations. In this case, the separate universe conjecture holds for the isotropic part of the perturbations. The anisotropic part on the other hand is exactly captured by a tidal field in the Newtonian form. We show that the separate universe picture is restricted to scales larger than the sound horizons of all fluid components. We then derive an expression for the locally measured matter bispectrum induced by a long-wavelength mode of arbitrary wavelength, a new result which in standard perturbation theory is equivalent to a relativistic second-order calculation. We show that nonlinear gravitational dynamics does not generate observable contributions that scale like local-type non-Gaussianity flocNL, and hence does not contribute to a scale-dependent galaxy bias ? b propto k?2 on large scales; rather, the locally measurable long-short mode coupling assumes a form essentially identical to subhorizon perturbation theory results, once the long-mode density perturbation is replaced by the synchronous-comoving gauge density perturbation. Apparent flocNL-type contributions arise through projection effects on photon propagation, which depend on the specific large-scale structure tracer and observable considered, and are in principle distinguishable from the local mode coupling induced by gravity. We conclude that any observation of flocNL beyond these projection effects signals a departure from standard single-clock inflation.

  19. Unity Through Separation

    DEFF Research Database (Denmark)

    Dabelsteen, Hans B.

    2015-01-01

    This PhD thesis asks how we can conceptualize the current separation doctrine of religion and politics in a country like Denmark, where the structure of the established church and peoplehood overlap. In order to answer this question, Hans Bruun Dabelsteen maps the current discussion of secularism and proposes two conceptual expansions. The first is to include modest establishment in a framework of secularism defensible by political liberalism, and the second is to consider secularism in close co...

  20. Electron-transporter spectrometer for on-line isotope separator

    International Nuclear Information System (INIS)

    ELLI - a conversion-electron and beta-ray spectrometer for an on-line isotope separator - is described. The instrument is a broad-range, high-transmission device consisting of a two-coil magnetic transporter plus a cooled Si(Li) detector. The spectrometer was designed to perform several kinds of coincidence measurements. A number of representative spectra of fission-product activities separated on-line at the IGISOL facility demonstrate the performance of the spectrometer. (orig.)

  1. Method and apparatus for the separation of isotopes by centrifugation

    International Nuclear Information System (INIS)

    This apparatus produces between two electrodes an arcuate plasma from which uranium isotopes in particular are extracted by means of interior cylindrical electrodes an negative potential. The ion gas compound in the separation chamber is enriched with higher isotopes, whereas the heavier isotope are collected by the outer electrode. This apparatus is in principle a magnetron diode operating magnetically or electrostatically locked to enhance separation effect and efficiency. (DG)

  2. 170 Nanometer Nuclear Magnetic Resonance Imaging using Magnetic Resonance Force Microscopy

    OpenAIRE

    Thurber, Kent R.; Harrell, Lee E.; Smith, Doran D.

    2002-01-01

    We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nanometer slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nanometers. This is achieved by force detection of the magnetic resonance, Magnetic Resonance Force Microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs creates spin polarization up to 12...

  3. Laser isotope separation

    International Nuclear Information System (INIS)

    This patent describes a process for separating isotopes which comprises (1) irradiating a gaseous compound containing a mixture of isotopes with differing excitation energy levels with radiation of a first frequency which will selectively excite molecules of the compound containing a first isotopic species but not those molecules containing other isotopic species, and (2) subjecting the excited molecules to physical or chemical processes or a combination thereof. The first isotopic species contained in the excited molecules is separated from the isotopic species contained in the excited molecules. The improvement consists of adiabatically expanding the gaseous compound to form a highly cooled supersaturated gas in which spectrum simplification has occurred, flowing the supersaturated gas through a region wherein the supersaturated gas behaves as a continuous medium, irradiating the supersaturated gas in the region with the first frequency radiation, irradiating the supersaturated gas in the region with radiation having a second frequency sufficient to induce photochemical reaction in those molecules selectively excited by the first frequency radiation, and separating the reaction product produced thereby containing the first isotopic species from those molecules containing other isotopic species before substantial condensation occurs

  4. Airborne rotary separator study

    Science.gov (United States)

    Drnevich, R. F.; Nowobilski, J. J.

    1992-12-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle mission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. The purpose of this study was to evaluate various fuels and fuel combinations with the objective of minimizing the weight and increase the ready alert capability of the plane. Fuels will be used to provide energy as well as act as heat sinks for the on-board heat rejection system. Fuel energy was used to provide power for air separation as well as to produce refrigeration for liquefaction of oxygen enriched air, besides its primary purpose of vehicle propulsion. The heat generated in the cycle was rejected to the fuel and water which is also carried on board the vehicle.The fuels that were evaluated include JP4, methane, and hydrogen. Hydrogen served as a comparison to the JP4 and methane cases.

  5. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  6. Innovative Separations Technologies

    Energy Technology Data Exchange (ETDEWEB)

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  7. Magnetic bead handling on-chip: new opportunities for analytical applications

    OpenAIRE

    A. M. Gijs, M.

    2004-01-01

    This review describes recent advances in the handling and manipulation of magnetic particles in microfluidic systems. Starting from the properties of magnetic nanoparticles and microparticles, their use in magnetic separation, immuno-assays, magnetic resonance imaging, drug delivery, and hyperthermia is discussed. We then focus on new developments in magnetic manipulation, separation, transport, and detection of magnetic microparticles and nanoparticles in microfluidic systems, pointing out t...

  8. Perpendicular transport and magnetization processes in magnetic multilayers with strongly and weakly coupled magnetic layers

    CERN Document Server

    Zwierzycki, M

    1999-01-01

    Within the framework of a two-band tight-binding model, we have performed calculations of giant magnetoresistance, exchange coupling and thermoelectric power (TEP) for a system consisting of three magnetic layers separated by two non-magnetic spacers with the first two magnetic layers strongly antiferromagnetically exchange-coupled. We have shown how does the GMR relate with the corresponding regions of magnetic structure phase diagrams and computed some relevant hysteresis loops, too. The GMR may take negative values for specific layers thicknesses, and the TEP reveals quite pronounced oscillations around a negative bias.

  9. One-step preparation of magnetically responsive materials from non-magnetic powders.

    Czech Academy of Sciences Publication Activity Database

    Šafa?ík, Ivo; Horská, Kate?ina; Pospíšková, K.; Šafa?íková, Miroslava

    2012-01-01

    Ro?. 229, OCT 2012 (2012), s. 285-289. ISSN 0032-5910 R&D Projects: GA ?R(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : magnetic fluid * magnetic separations * magnetic modification * spent tea leaves * montmorillonite Subject RIV: BO - Biophysics Impact factor: 2.024, year: 2012

  10. Magnetic light

    OpenAIRE

    Igor I. Smolyaninov; Elliott, Jill; Zayats, Anatoly V.

    2003-01-01

    In this paper we report on the observation of novel and highly unusual magnetic state of light. It appears that in small holes light quanta behave as small magnets so that light propagation through such holes may be affected by magnetic field. When arrays of such holes are made, magnetic light of the individual holes forms novel and highly unusual two-dimensional magnetic light material. Magnetic light may soon become a great new tool for quantum communication and computing.

  11. Neodymium Magnets.

    Science.gov (United States)

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  12. Process and device for isotope separation

    International Nuclear Information System (INIS)

    A beam of particles is scattered by a standing electromagnetic wave. The particles can be either atoms or molecules, which contain the required isotope and at least one other isotope. The beam of particles is directed at right angles to the standing wave, for example a light wave. The electro-magnetic wave with its vibration nodes and anti-nodes acts like a diffraction grating for the particles, ie for the quantum mechanics atomic or molecular waves. The frequency of the electro-magnetic wave corresponds to a transition between the energy levels of the required isotope. In this way, the required isotope is separated spatially from the other isotope or isotopes by scatter of diffraction. (orig./HP)

  13. Effects of final state interactions on charge separation in relativistic heavy ion collisions

    OpenAIRE

    Ma, Guo-Liang; Zhang, Bin

    2011-01-01

    Charge separation is an important consequence of the Chiral Magnetic Effect. Within the framework of a multi-phase transport model, the effects of final state interactions on initial charge separation are studied. We demonstrate that charge separation can be significantly reduced by the evolution of the Quark-Gluon Plasma produced in relativistic heavy ion collisions. Hadronization and resonance decay can also affect charge separation. Moreover, our results show that the Chi...

  14. A study of liberation and separation process of metals from printed circuit boards (PCBs) scrap

    International Nuclear Information System (INIS)

    Since the metallic elements are covered with or encapsulated by various plastic or ceramic materials on printed circuit boards, a mechanical pre-treatment process allowing their liberation and separation is first needed in order to facilitate their efficient extraction with hydrometallurgy route. Even though many studies have been performed on the mechanical pre-treatment processing for the liberation and separation of the metallic components of printed circuit boards scrap, further studies are required to pave the way for efficient recycling of waste printed circuit boards through a combination of mechanical pre-treatment and hydrometallurgical technology. In this work, a fundamental study has been carried out on the mechanical pre-treatment that is necessary to recover metallic concentrates from printed circuit boards scraps. The most important problem is to separate or release particles from the associated gangue minerals at the possible liberation particle size. The distribution of metallic elements has been also investigated in relation to the particle size of the milled printed circuit boards. The samples of printed circuit boards were separated into the magnetic and non-magnetic fractions by Rare-earth Roll Magnetic separator. Thereafter, the magnetic and non-magnetic fractions were separated to heavy fraction (metallic elements) and light fraction (plastic) by Mozley Laboratory Table Separator. The recovery ratios and the evaluation of the metallic concentrates recovered by each separation process were also investigated. This study is expected to provide useful data for the efficient mechanical separation of metallic components from printed circuit boards scraps. (author)

  15. SPIRAL2/DESIR high resolution mass separator

    International Nuclear Information System (INIS)

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/?m of 31,000 for a 1 ?-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given

  16. ITER isotope separation system

    International Nuclear Information System (INIS)

    This document presents the results of a study that examined the technical operating and economic viability of an alternative Isotope Separation System (ISS) design based on the distributed design concept. In the distributed design, the ISS is broken up into local independently operable subsystems matched to local processing requirements. The distributed design accepts the same feeds and produces essentially the same products as the reference design. The distributed design consists of two separate, independent subsystems. The first, called ISS-H, receives only protium-dominated streams and waste water from tritium extraction. It has two cryogenic distillation columns and can produce a 50 percent D, 50 percent T product since it lacks D/T separation capability. A final 80 percent T2 concentration product can be obtained by blending the 50 percent T2 stream from ISS-H with the more than 99 percent T2 stream from the second subsystem, ISS-D. The second subsystem receives only deuterium-dominated feeds, which also contain some protium. ISS-D is as complex as the reference design, but smaller. Although each subsystem has some advantages, such as only two cryogenic distillation columns in ISS-H and better than 99 percent steady state T2 product in ISS-D, the combined subsystems do not offer any real advantage compared to the reference IISS. The entire distributed ISS design has been simulated using Ontario Hydro's FLOSHEET steady state process simulator. Dynamic analysis has not been done for the distributed design. (10 refs., 3 figs., 8 tabs.)

  17. Electrostatic Spray Separator

    International Nuclear Information System (INIS)

    The capture of micron and sub-micron particles in gases can be increased by using small collectors. However, this leads either to a considerably increased overall charge loss or to partial entrainment of the primary collectors. To overcome these two drawbacks, the author has developed an electrostatic process for giving the primary collectors an electrical charge. When particles are captured, the effectiveness of the primary collector increases. On the basis of the results obtained it is possible to compare the instrument with traditional separators. (author)

  18. Advanced Separations at SRS

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) has many waste streams which are contaminated with radionuclides and/or hazardous materials which must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (polychlorinated biphenyls, cyanide, metal ions). This task provides test beds for ESP-developed separations materials and technologies using actual SRS waste streams. The work includes different SRS waste streams; high level waste solutions presently stored in underground tanks onsite, water recycled from the waste vitrification plant, and reactor basin water in excess facilities

  19. Phase separation in supersolids

    CERN Document Server

    Batrouni, G G

    2000-01-01

    We study quantum phase transitions in the ground state of the two dimensional hard-core boson Hubbard Hamiltonian. Recent work on this and related models has suggested ``supersolid'' phases with simultaneous diagonal and off-diagonal long range order. We show numerically that, contrary to the generally held belief, the most commonly discussed ``checkerboard'' supersolid is thermodynamically unstable. Furthermore, this supersolid cannot be stabilized by next near neighbour interaction. We obtain the correct phase diagram using the Maxwell construction. We demonstrate the ``striped'' supersolid is thermodynamically stable and is separated from the superfluid phase by a continuous phase transition.

  20. The ion-optical design of the MARA recoil separator and absolute transmission measurements of the RITU gas-filled recoil separator

    OpenAIRE

    Sare?n, Jan

    2011-01-01

    In this thesis work, the use of two complementary recoil separators for studies of nuclear structure via fusion-evaporation reactions are discussed. The design and the main ion-optical properties of the vacuum-mode recoil-mass separator MARA, intended for studies of nuclei with N Z close to the proton drip-line, are presented. MARA (Mass Analysing Recoil Apparatus) consists of a magnetic quadrupole triplet followed by an electrostatic de ector and a magnetic dipole. The...

  1. CI-140 electromagnetic isotope separator of production type

    International Nuclear Information System (INIS)

    The main specifications of CI-140 electromagnetic isotope separator of production type is given and the characteristics of the focus magnet, the intensive heavy ion source, the collector and so on are described. The separator is an isotope separation equipment manufactured by China Institute of Atomic Energy for the Nuclear Research Centre for Agriculture and Medicine in Iran. It was put into operation in 1993. Its products are mainly used as target raw material of a cyclotron to produce short life-time radioactive isotopes. (8 refs., 10 figs., 2 tabs.)

  2. Method of and apparatus for the separation of isotopes

    International Nuclear Information System (INIS)

    The method comprises basically three steps. Initially, a substantially neutral, dense plasma is generated including the isotopes in question. The next step is to inject this neutral, dense plasma into a magnetic field where one of the isotopes is given more energy than the others. Finally, the selected isotope is separated from the others on the basis of their differential energies. This may, for example, consist of a differential diffusion of the ions across a magnetic field, or magnetic mirrors may be utilized which confine the more energetic species

  3. Oil/water separation in a novel cyclone separator

    OpenAIRE

    Stone, Andrew Colin

    2007-01-01

    Conventional bulk oil-water separation is performed in large gravity separators that take up large areas and potentially contain large volumes of hazardous material. An intensified bulk separator has the potential to provide significant benefit in saving space, especially where this is at a premium, and in improving safety. The I-SEP, a novel geometry of Axial-Flow Cyclone (also known as Uniflow or straight-through) separator, has been tested as an intensified bulk oil-water se...

  4. Four Degrees of Separation

    CERN Document Server

    Backstrom, Lars; Rosa, Marco; Ugander, Johan; Vigna, Sebastiano

    2011-01-01

    Frigyes Karinthy, in his 1929 short story "L\\'aancszemek" ("Chains") suggested that any two persons are distanced by at most six friendship links. (The exact wording of the story is slightly ambiguous: "He bet us that, using no more than five individuals, one of whom is a personal acquaintance, he could contact the selected individual [...]". It is not completely clear whether the selected individual is part of the five, so this could actually allude to distance five or six in the language of graph theory, but the "six degrees of separation" phrase stuck after John Guare's 1990 eponymous play. Following Guare's interpretation, we will assume that "degree of separation" is the same as "distance minus one".) Stanley Milgram in his famous paper challenged people to route postcards to a fixed recipient by passing them only through direct acquaintances. The average length of the path of the postcards layed between 4.6 and 6.1, depending on the sample of people chosen. We report the results of the first world-scale...

  5. Separation of gases

    International Nuclear Information System (INIS)

    A process for separating gaseous mixtures of molecules of different mass comprises the steps of: causing a rotational nozzle to eject a contiguous plurality of successive groups of molecules into an evacuated space, the groups mutually overlapping to form a continuous stream of the mixture in the form of an Archimedean spiral, allowing the molecules of each group of molecules to move in accordance with their thermal velocities for a predetermined period of time following ejection, thereby to allow each group of molecules to form a generally spherical configuration the outer portion of which will be enriched, in molecules of lighter mass, relative to the inner portion thereof, using a deflector means co-rotating with the rotating nozzle to deflect molecules, which have been allowed to move for the predetermined period of time in accordance with their thermal velocities, from at least one desired portion of the stream and using a stationary collector means to collect the deflected molecules. The process is described with reference to the separation of isotopes of uranium hexafluoride. (author)

  6. New mega-sized wet high intensity magnetic separator: a cost-effective solution to reclaim iron ore fines from tailing dams / Novo super separador magnético de alta intensidade: uma solução econômica para recuperação de finos de barragens de minério de ferro

    Scientific Electronic Library Online (English)

    José Pancrácio, Ribeiro; Claudio Henrique T., Ribeiro.

    2013-12-01

    Full Text Available Dez anos de pesquisa e estudos levaram a um importante desenvolvimento no campo da separação magnética de alta intensidade - WHIMS. Com essa tecnologia de ponta, a Gaustec estabeleceu um novo recorde mundial nessa classe de separadores magnéticos, alcançando a capacidade de até 1400 tph de alimentaç [...] ao de finos de minério de ferro com o novo GHX-1400. Embora minas com baixo teor de ferro sejam beneficiadas com essa tecnologia, o foco aqui é centrado na recuperação de barragens de rejeitos de minério de ferro de baixo teor, considerando o seu impacto positivo no meio ambiente e em função de tal tecnologia permitir a sua viabilização comercial. Com base na nova tecnologia desenvolvida, a construção, na Itaminas Mineração/Brazil, de uma planta de concentração foi iniciada em 2012 para tratar rejeitos com 45% de ferro. Essa planta entrou em operação no corrente ano. Em função dos bons resultados obtidos com essa primeira unidade, foi iniciado o projeto de construção de uma segunda planta do mesmo tipo, com o objetivo de reduzir o rejeito para 18% de ferro, com operação prevista para 2014. Abstract in english Ten years of continuous research and development have led to a major improvement in the field of iron ore Wet High Intensity Magnetic Separation - WHIMS. With this cutting-edge technology, Gaustec has established a new world record in this class of Magnetic Separators, by providing a sheer feed rate [...] of up to 1400 tph for iron ore fines. Although low-grade iron ore mines will benefit from this new technology, focused on herein is the reclaiming of low-grade iron ore tailing from ponds, having in mind its huge positive environment impact and business opportunity. Based on this newly developed technology, the construction in Brazil of a Concentration Plant started in 2012 for dressing iron ore tailings at 45% Fe grade, at Itaminas Mine. This plant went into operation this year. Based on the good performance of this first unit, the construction of a second Concentration Plant of the same type, to further reduce to 18% Fe in the tailings, is under way, scheduled to be started-up in 2014.

  7. Magnetophoretic separation of blood cells at the microscale

    CERN Document Server

    Furlani, E P

    2006-01-01

    We present a method and model for the direct and continuous separation of red and white blood cells in plasma. The method is implemented at the microscale using a microfluidic system that consists of an array of integrated soft-magnetic elements embedded beneath a microfluidic channel. The microsystem is passive, and is activated via application of a bias field that magnetizes the elements. Once magnetized, the elements produce a nonuniform magnetic field distribution in the microchannel, which gives rise to a force on blood cells as they pass through the microsystem. In whole blood, white blood cells behave as diamagnetic microparticles while red blood cells exhibit diamagnetic or paramagnetic behavior depending on the oxygenation of their hemoglobin. We develop a mathematical model for predicting the motion of blood cells in the microsystem that takes into account the dominant magnetic, fluidic and buoyant forces on the cells. We use the model to study red/white blood cell transport, and our analysis indica...

  8. Magnetic Particles

    CERN Document Server

    Novotny, M A

    1998-01-01

    We present an overview of the subject of Magnetic Particles, starting at a level suitable for advanced high-school students and ending at a level suitable for current practitioners in the field. The sub-topics covered include: Types of Magnetic Materials, Relationships Between the Vector Fields, Magnetic Energies, Dynamics of Magnetic Particles, and Magnetocaloric Effects.

  9. Modeling spin magnetization transport in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of magnetization transport. • Validation with respect to existing theory and experiment

  10. High performance hybrid magnetic structure for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, David E. (El Cerrito, CA); Pollard, Martin J. (El Cerrito, CA); Elkin, Christopher J. (San Ramon, CA)

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  11. High performance hybrid magnetic structure for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  12. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    2015-01-01

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. M...

  13. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    This invention relates to the isotope separation art and, more particularly, to a selectively photon-induced energy level transition of an isotopic molecule containing the isotope to be separated and a chemical reaction with a chemically reactive agent to provide a chemical compound containing atoms of the isotope desired. In particular a description is given of a method of laser isotope separation applied to the separation of 235UF6 from 238UF6. (U.K.)

  14. Physical Separation in the Workplace

    DEFF Research Database (Denmark)

    Stea, Diego; Foss, Nicolai Juul; Holdt Christensen, Peter

    2015-01-01

    Physical separation is pervasive in organizations, and has powerful effects on employee motivation and organizational behaviors. However, research shows that workplace separation is characterized by a variety of tradeoffs, tensions, and challenges that lead to both positive and negative outcomes. We develop new theory on the nature, antecedents, and motivational implications of separation awareness - a psychological state in which people are aware of their physical separation from others—and pro...

  15. Physical Separation in the Workplace

    DEFF Research Database (Denmark)

    Stea, Diego; Foss, Nicolai Juul; Holdt Christensen, Peter

    2015-01-01

    Physical separation is pervasive in organizations, and has powerful effects on employee motivation and organizational behaviors. However, research shows that workplace separation is characterized by a variety of tradeoffs, tensions, and challenges that lead to both positive and negative outcomes. We develop new theory on the nature, antecedents, and motivational implications of separation awareness—a psychological state in which people are aware of their physical separation from others—and proff...

  16. Determine separations process strategy decision

    International Nuclear Information System (INIS)

    This study provides a summary level comparative analysis of selected, top-level, waste treatment strategies. These strategies include No Separations, Separations (high-level/low-level separations), and Deferred Separations of the tank waste. These three strategies encompass the full range of viable processing alternatives based upon full retrieval of the tank wastes. The assumption of full retrieval of the tank wastes is a predecessor decision and will not be revisited in this study

  17. Magnetic filaments in resistive manganites.

    Science.gov (United States)

    Viret, M; Ott, F; Renard, J P; Glättli, H; Pinsard-Gaudart, L; Revcolevschi, A

    2004-11-19

    The magnetic phase separation in single crystals of the Pr0.67Ca0.33MnO3 manganites is studied using polarized small angle neutron scattering. The measured spectra give a fractal dimension consistent with a configuration in ferromagnetic filaments of nanometric diameter. We argue here that localized charge carriers hop in a random walk fashion mediating a ferromagnetic "hopping exchange" which coexists with superexchange to create the filamentary phase separation. The arguments for this physical picture are validated by Monte Carlo simulations, where magnetism and transport are treated in a self-consistent manner. PMID:15601063

  18. Russian separation program

    International Nuclear Information System (INIS)

    A small contract signed in FY92 with the Khlopin Radium Institute marked the beginning of the Russian Separations program. Under this contract the Khlopin Radium Institute performed laboratory and dynamic hot-cell testing using cobalt dicarbollide technology on simulated radioactive wastes similar to those found at DOE sites in the United States. The current scope of investigation has been extended to identify prospective technologies for application to other United States needs. The Khlopin Radium Institute project served as a model for three other pilot scale technology development projects. The premise of the pilot scale projects is to enable Russian scientists to demonstrate their technology in the context of DOE needs, using Russian technical expertise has proven to be a cost-effective means of screening Russian technologies

  19. Effect of Magnetic Misalignment on Protobinary Evolution

    CERN Document Server

    Zhao, Bo; Kratter, Kaitlin M

    2013-01-01

    The majority of solar-type stars reside in multiple systems, especially binaries. They form in dense cores of molecular clouds that are observed to be significantly magnetized. Our previous study shows that magnetic braking can tighten the binary separation during the protostellar mass accretion phase by removing the angular momentum of the accreting material. Recent numerical calculations of single star formation have shown that misalignment between the magnetic field and rotation axis may weaken both magnetic braking and the associated magnetically driven outflows. These two effects allow for disk formation even in strongly magnetized cores. Here we investigate the effects of magnetic field misalignment on the properties of protobinaries. Somewhat surprisingly, the misaligned magnetic field is more efficient at tightening the binary orbit compared to the aligned field. The main reason is that the misalignment weakens the magnetically-driven outflow, which allows more material to accrete onto the binary. Eve...

  20. Magnets in the pep injection lines

    Energy Technology Data Exchange (ETDEWEB)

    Reimers, R.; Peterson, J.; Avery, R.; Halbach, K.; Kaviany, M.; Lake, A.; Main, R.; Nissen, R.; Singh, J.

    1979-03-01

    The electron and positron beams from the Stanford two-mile linear accelerator are brought to the PEP storage ring via two beam-transport lines, each about 225 meters in length. The beam pulses intended for PEP are switched out of the SLAC beam line by a pair of pulsed dipole bend magnets, which deflects them downward into a d.c. dipole magnet, where positron beams are bent into the south line and electrons into the north. See Figure 1. Each line beyond this common d.c. magnet contains 10 principal dipole magnets and 24 d.c. quadrupole magnets. The common beam-splitter magnet and the last dipole in each line are iron-septum (Lambertson-type) magnets, in which regions of strong and weak magnetic field are separated by thin iron septa. The other magnets are of a more conventional design but have design features with cost or size advantages.