WorldWideScience

Sample records for 111-5 magnetic separator

  1. Magnetic separator

    Křupka, Jiří

    2015-01-01

    Cílem bakalářské práce je návrh konstrukčního řešení magnetického separátoru určeného k separaci drobného průmyslového odpadu. Tato zpráva obsahuje přehled zařízení světových výrobců, která slouží k magnetické separaci ocelového odpadu. Dále pak posouzení variant technických řešení konstrukčních uzlů magnetického separátoru a následný výběr konkrétního řešení. Dle vstupních parametrů jsou vypočteny všechny parametry potřebné ke správnému návrhu stroje. Ve výpočtech jsou zahrnuty i odůvodnění ...

  2. Magnetic Separation in Romania

    Rezlescu, Nicolae; Bradu, Elena-Brandusa; Iacob, Gheorghe; Badescu, Vasile; Iacob, Lavinia

    1986-01-01

    The utilization of the magnetic separators of foreign and Romanian source is presented and the most important achievements in research, engineering design and manufacturing activity concerning the magnetic separation in Romania are reviewed.

  3. Magnetic Separation in Czechoslovakia

    Hencl, Vladimir

    1991-01-01

    The use of magnetic separation in various mineral processing facilities in Czechoslovakia is described. The manufacture of assorted types of magnetic separation machines is highlighted. Potential applications and research and development activities are discussed.

  4. Magnetic separation of algae

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  5. High gradient magnetic separation

    In a process in which magnetic material is trapped in a filter disposed in a magnetic field, and is unloaded by passing a fluid through the filter in the absence of the initial magnetic field, the magnetic field is first reduced to an intermediate value to allow unloading of the more weakly magnetic particles, the more strongly magnetic particles being retained and subsequently unloaded by further reduction of the magnetic field. Stage by stage reduction of the magnetic field during unloading allows separation of different species from the mixture. As an example the method can be applied to the separation of uranium compounds from mine ores. The uranium compounds are magnetic, while most of the other constituents of the ore are non-magnetic. The starting material is a suspension of the ore. Water is used for unloading. The filter material in this case is stainless steel balls. (author)

  6. Superconducting magnetic separation

    The initially high hopes of a speedy replacement of conventional magnetic separators by superconducting ones have not been realised. The reasons for this are complex, ranging from the conservative nature of the mineral processing industry to insufficient cryogenic reliability and poor magnet design. The major systems delivered to industry will be described and some possible future developments will be outlined

  7. USE OF SUPERCONDUCTING MAGNETS IN MAGNETIC SEPARATION

    Parker, M.

    1984-01-01

    A review is given assessing the potential for superconducting high-field magnet systems in magnetic separation. Particular attention is given to the advantages of the reciprocating canister approach to high gradient magnetic separation and to the use of quadrupole magnets in open gradient magnetic separation.

  8. 25 CFR 111.5 - Future payments.

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Future payments. 111.5 Section 111.5 Indians BUREAU OF... § 111.5 Future payments. Indians who have received or applied for their pro rata shares of an interest... act of May 18, 1916 (39 Stat. 128), will not be permitted to participate in future payments made...

  9. Magnetic separation in microfluidic systems

    Smistrup, Kristian

    2007-01-01

    This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined, and...... it is argued that it is a good measure, when comparing the performance of magnetic bead separators. It is described how numeric modelling is used to aid the design of microfluidic magnetic separation systems. An example of a design optimization study is given. A robust fabrication scheme has been...... separation. It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients...

  10. Magnetic separation in microfluidic systems

    Smistrup, Kristian; Hansen, Mikkel Fougt; Bruus, Henrik; Tang, Peter Torben; Kruhne, Ulrich Willi Walter

    2007-01-01

    This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined, and it is argued that it is a good measure, when comparing the performance of magnetic bead separators. It is described how numeric modelling is used to aid the design of microfluidic magnetic separati...

  11. Magnetic Separation in South Africa

    Corrans, Ian James; Svoboda, Jan

    1985-01-01

    The use of magnetic separators in the various mineral processing facilities in South Africa is described. A large number are used to recover medium in dense medium plants. The manufacture of various types of magnetic separation machines by three local suppliers is highlighted. The potential use of highgradient and/or high–intensity magnetic separation in the recovery of gold, uranium, and phosphate minerals is discussed.

  12. Magnetic separation for soil decontamination

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology

  13. Continuous magnetic separator and process

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  14. Magnetic separation for environmental remediation

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO2, U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS

  15. The Physical Model of Magnetic Separation in a Plate Separator

    Brożek, M.

    1999-01-01

    The results of magnetic separation depend on many factors, such as physical properties of particles of the separated mixture, magnetic intensity, particle sizes, separation conditions (constant or alternating field, dry or wet separation) and others. The formulae representing the dependence of separation results on the above mentioned factors are obtained from the model. The mathematical model presents only some general dependences of separations results on time or length of the separation pa...

  16. Recent Activities in Magnetic Separation in Sweden

    Wang, Yanmin; Forssberg, Eric

    1995-01-01

    This paper describes some industrial applications of magnetic separation in Swedish mineral industry. Recent studies on magnetic treatment of minerals in Sweden are also presented. These studies involve selectivity of wet magnetic separation, wet magnetic recovery of mineral fines and ultrafines, sulphide processing by magnetic means, as well as dry magnetic purification of industrial minerals.

  17. Magnetic separation of organic dyes using superconducting bulk magnets

    Kondo, N.; Yokoyama, K.; Hosaka, S.

    Organic dyes were separated from wastewater using superconducting bulk magnets. Two types of particles, magnetic activated carbon (MAC) and reactive nanoscale iron particles (RNIP), were used as magnetic seeds. We set up a magnetic separator consisting of an acrylic pipe located between the magnetic poles of a face-to-face superconducting bulk magnet. We tested the separator under both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS). Adsorption ratios greater than 95% were achieved for sufficient concentrations of both MAC and RNIP, and separation ratios greater than 90% were achieved in HGMS and OGMS for certain dye-particle combinations.

  18. Magnetic particle separation using controllable magnetic force switches

    Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.

  19. Method of magnetic separation and apparatus therefore

    Oder, Robin R. (Inventor)

    1991-01-01

    An apparatus for magnetically separating and collecting particulate matter fractions of a raw sample according to relative magnetic susceptibilities of each fraction so collected is disclosed. The separation apparatus includes a splitter which is used in conjunction with a magnetic separator for achieving the desired fractionation.

  20. Magnetic Separator Enhances Treatment Possibilities

    2008-01-01

    Since the earliest missions in space, NASA specialists have performed experiments in low gravity. Protein crystal growth, cell and tissue cultures, and separation technologies such as electrophoresis and magnetophoresis have been studied on Apollo 14, Apollo 16, STS-107, and many other missions. Electrophoresis and magnetophoresis, respectively, are processes that separate substances based on the electrical charge and magnetic field of a molecule or particle. Electrophoresis has been studied on over a dozen space shuttle flights, leading to developments in electrokinetics, which analyzes the effects of electric fields on mass transport (atoms, molecules, and particles) in fluids. Further studies in microgravity will continue to improve these techniques, which researchers use to extract cells for various medical treatments and research.

  1. Application of Superconducting Magnets to Magnetic Separation. Some Selected Aspects.

    Cieśla, Antoni

    1992-01-01

    One of the possible magnetic separation processes, the highgradient magnetic separation, is analysed. Mathematical model of separation for two alternative constructions, namely deflecting and matrix separators, is presented. The model enables the efficiency of separation to be analysed as a function of selected parameters. The performance of the matrix separator, as well as the phenomena that take place during the matrix replacement are described. Computed values of the magnetic force acting ...

  2. Magnetic Carbon Nanotubes for Protein Separation

    Xiaobin Fan; Fengbao Zhang; Guoliang Zhang; Xiuhui Diao; Hongyu Chen

    2012-01-01

    Magnetic separation is a promising strategy in protein separation. Owing to their unique one-dimensional structures and desired magnetic properties, stacked-cup carbon nanotubes (CSCNTs) with magnetic nanoparticles trapped in their tips can serve as train-like systems for protein separation. In this study, we functionalized the magnetic CSCNTs with high density of carboxyl groups by radical addition and then anchored 3-aminophenylboronic acid (APBA) through amidation reaction to achieve orien...

  3. Random porous media and magnetic separation of magnetic colloids

    Baars, R.J.

    2016-01-01

    The separation of magnetic nanoparticles from a stable dispersion is a challenging task because of the nanoparticles' thermal motion and relatively small magnetic moments. Strong magnetic gradients are required to capture such particles, which can be achieved in a high-gradient magnetic separator. In this work, several facets of this separation process are studied by simulation and experiment. Our method uses a fibrous porous separation matrix comprising magnetisable metallic fibres acting as...

  4. Application of High-Gradient Magnetic Separation

    Svoboda, J

    1986-01-01

    Some problems of practical applications of magnetic separation, primarily in mineral industry, are outlined. The work shows that current theoretical models are inadequate in accounting for the magnetic separation of valuable mineral components. The negative impact of a lack of cost-effective separators in the mining industry is discussed.

  5. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  6. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Ihara, I; Toyoda, K [Department of Agricultural Engineering and Socio Economics, Kobe University, Nada, Kobe 657-8501 (Japan); Beneragama, N; Umetsu, K [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)], E-mail: ihara@port.kobe-u.ac.jp

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  7. Isogeometric shape optimization of magnetic density separators

    Dang Manh, N.; Evgrafov, A.; Gravesen, J; Lahaye, D

    2013-01-01

    Purpose: The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently a new separator design that significantly reduces the required amount of permanent magnet material has been proposed. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the...

  8. Magnetic Separation of Weakly Magnatic Copper Minerals

    Agricola, J. N.M.; Top, J. L.; Fort, A. F.

    1989-01-01

    High Gradient Magnetic Separation of small (5-38 µm) weakly magnetic copper mineral particles from a copper concentrate and ore has been performed. In previous work coarser fractions of these minerals, bornite and chalcopyrite, were separated successfully. The recovery of the smaller particles in the magnetic fraction decreases but their grade increases compared to the results obtained on the larger particles. At a magnetic background field of 1.3 T the concentrate was upgraded from 72% borni...

  9. High gradient magnetic separation using superconducting bulk magnets

    We aim to apply the superconducting bulk magnets to high gradient magnetic separation technique. Two bulk magnets are face-to-face arranged and a pipe stuffed magnetic filters composed of ferromagnetic wires is placed between the magnetic poles. We setup the magnetic separation system and test it using slurry mixed with hematite particles (Fe2O3). Y123 bulk superconductors are magnetized by the 'IMRA' method (pulsed-field magnetization), and consequently a magnetic field of 1.59 T is generated at the center of 20 mm gap between the magnetic poles. As a result of experiment on the magnetic separation, hematite particles of over 90% were removed from slurry at the flow rate of 2 l/min

  10. Microfabricated Passive Magnetic Bead separators

    Hansen, Mikkel Fougt; Lund-Olesen, Torsten; Smistrup, Kristian;

    2006-01-01

    The use and manipulation of functionalized magnetic beads for bioanalysis in lab-on-a-chip systems is receiving growing interest. We have developed microfluidic systems with integrated magnetic structures for the capture and release of magnetic beads. The systems are fabricated in silicon by deep...

  11. Particle acceleration at a reconnecting magnetic separator

    Threlfall, J; Parnell, C E; Oskoui, S Eradat

    2014-01-01

    While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. The effect upon particle behaviour of initial position, pitch angle and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains ...

  12. The Selection and Application of Magnetic Separation Euipment. Part I

    Morgan, D G; Bronkala, W. J.

    1991-01-01

    A survey of magnetic separators and of their selection in applications for tramp iron removal is given. Magnetic pulleys, suspended magnets, drum magnetic separators, plate and grate magnets are described and selection procedures are outlined.

  13. Magnetic separation of uranium from magnesium fluoride

    The attraction or repulsion of particles by a magnetic gradient, based on the respective susceptibilities, provides the basis for physical separation of particles that are comprised predominantly of uranium from those that are predominantly magnesium fluoride (MgF2). To determine the effectiveness of this approach, a bench-scale magnetic separator from the S.G. Frantz Co., Inc. was used. In the Frantz Model L-1, particles are fed through a funnel onto a vibration tray and through a magnetic field. The specific design of the Frantz magnet causes the magnetic field strength to vary along the width of the magnet, setting up a gradient. The tray in the magnetic field is split at a point about half way down its length so that the separated material does not recombine. A schematic is presented of Frantz Model L-1 CN - the same magnet configured for high gradient magnetic separation of liquid-suspended particles. Here different pole pieces create a uniform magnetic field, and stainless steel wood in the canister between the pole pieces creates the high gradient. 1 ref., 6 figs., 2 tabs

  14. Magnetic separation of uranium from magnesium fluoride

    Hoegler, J.M.

    1987-01-01

    The attraction or repulsion of particles by a magnetic gradient, based on the respective susceptibilities, provides the basis for physical separation of particles that are comprised predominantly of uranium from those that are predominantly magnesium fluoride (MgF/sub 2/). To determine the effectiveness of this approach, a bench-scale magnetic separator from the S.G. Frantz Co., Inc. was used. In the Frantz Model L-1, particles are fed through a funnel onto a vibration tray and through a magnetic field. The specific design of the Frantz magnet causes the magnetic field strength to vary along the width of the magnet, setting up a gradient. The tray in the magnetic field is split at a point about half way down its length so that the separated material does not recombine. A schematic is presented of Frantz Model L-1 CN - the same magnet configured for high gradient magnetic separation of liquid-suspended particles. Here different pole pieces create a uniform magnetic field, and stainless steel wood in the canister between the pole pieces creates the high gradient. 1 ref., 6 figs., 2 tabs.

  15. Rapid Characterization of Magnetic Moment of Cells for Magnetic Separation

    Ooi, Chinchun; Earhart, Christopher M.; Wilson, Robert J.; Wang, Shan X.

    2013-01-01

    NCI-H1650 lung cancer cell lines labeled with magnetic nanoparticles via the Epithelial Cell Adhesion Molecule (EpCAM) antigen were previously shown to be captured at high efficiencies by a microfabricated magnetic sifter. If fine control and optimization of the magnetic separation process is to be achieved, it is vital to be able to characterize the labeled cells’ magnetic moment rapidly. We have thus adapted a rapid prototyping method to obtain the saturation magnetic moment of these cells....

  16. Microfluidic magnetic separator using an array of soft magnetic elements

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt;

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete...... capture of 1.0 mu m fluorescent magnetic beads from a 7.5 mu L sample volume traveling at an average linear fluid velocity of 5 mm/s....

  17. Microfluidic magnetic separator using an array of soft magnetic elements

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt; Tang, Peter Torben

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete capture of 1.0 mu m fluorescent magnetic beads from a 7.5 mu L sample volume traveling at an average linear fluid velocity of 5 mm/s.

  18. A PURPOSE ORIENTED MAGNETIC SEPARATOR: SKIMMER

    Salih Ersayin

    2005-08-09

    A magnetic separator was designed to selectively separate fine-liberated magnetite. The conceptual design was simulated using CFD techniques. A separator tank was fabricated and a magnetic drum was used to capture magnetic particles. The initial tank design was modified to eliminate application oriented problems. The new separator was able to produce a fine product as a concentrate at relatively high feed rates. A plant simulation showed that such a device could lower circulating loads around ball mills by 16%, thereby creating room for a 5-8% increase in throughput at the same energy level. However, it was concluded that further improvements in terms of both size and mineral selectivity are needed to have a marketable product.

  19. High gradient magnetic separation for powder material processing

    Idziaszek-Gonzalez, Alicja; Kozlowski, Waldemar

    2013-01-01

    High gradient magnetic separators are widely used in both research and industry. The aim of the work is the analysis of magnetic separation for powder material processing. The paper presents the simulations of magnetic field for magnetic separators with various filter shapes. Finite Element Analysis has been used to get the magnetic field over the studied separator grid.

  20. Magnetic separation of uranium from waste materials

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in a deflective mode with dry particulate samples or a matrix-gradient mode with either dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both wet and dry systems and could be an important application of the technology. 13 figs., 6 tabs

  1. Development of magnetic separation system of magnetoliposomes

    The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe3O4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe3O4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.

  2. The Concept of Magnetic Mineral Separation by Particle Rotation

    Allen, N. R.

    2002-01-01

    At present all magnetic separators use particle attraction as the separating criterion. Differences in magnetic susceptibility then determine whether or not two mineral particles can be magnetically separated. Some separators, such as the Magstream separator, have gone a step further and combined magnetic attraction with particle specific gravity.Mineral particles have a second, largely ignored, magnetic property that can be used as a separating criterion, and this property is particle rotati...

  3. The separation velocity of emerging magnetic flux

    Chou, Dean-Yi; Wang, Haimin

    1987-01-01

    The separation velocities and magnetic fluxes of 24 emerging bipoles on the sun are measured in order to provide data on the emerging mechanism. Velocities are shown to range from about 0.2-1 km/s, bipole fluxes to range over more than two orders of magnitude, and the mean field strength and the sizes to range over one order of magnitude. No correlation is noted between measured separation velocities and either the flux or the mean field strength of the bipole. Predicted separation velocities are found be about one order of magnitude greater than measured values.

  4. Multistage Magnetic Separator of Cells and Proteins

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to

  5. Plasma separation from magnetic field lines in a magnetic nozzle

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  6. Method of magnetically separating particulate materials

    Rem, P.C.; Zhang, S.

    2000-01-01

    The present invention relates to a method of separating non-ferro metal particles using a rotating magnetic field. According to the invention the particles are surrounded by a fluid restricting the fall-velocity significantly, suitably a fluid having a density of at least 0.1 kg/l. The presence of s

  7. The Selection and Application of Magnetic Separation Equipment. Part II.

    Morgan, D G; Bronkala, W. J.

    1993-01-01

    A survey of magnetic separators and of their selection in application for concentration and purification is given. Wet and dry low–intensity drum separators, magnetic pulleys, induced magnetic roll separator and cross–belt separator are described and selection procedures are outlined.

  8. Separation of magnetic affinity biopolymer adsorbents in a Davis tube magnetic separator

    Šafařík, Ivo; Mucha, Pavel; Pechoč, Jiří; Stoklasa, Jaroslav; Šafaříková, Miroslava

    2001-01-01

    Roč. 23, - (2001), s. 851-855. ISSN 0141-5492 R&D Projects: GA ČR GA203/98/1145 Institutional research plan: CEZ:AV0Z6087904 Keywords : Davis tube * magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  9. A Study of Magnetic Aggregation—Gravity Separation for Separation of Coarse Magnetite Ores

    Yu–Shu, Zhang; De–Zhang, Luo; Shuyi, Liu

    1997-01-01

    This paper describes experiments on separation of coarse magnetite ores using magnetic aggregation—gravity separation (MAGS) process for the first time. The results show that the MAGS technology can have a coarser separation size as well as a higher grade of the the magnetic product than the traditional low—intensity magnetic separation technology.

  10. A new industrial application of magnetic separation

    The aim of this work was to investigate the application of magnetic separation to the removal and recovery of carbon steel grinding swarf from machining fluids used in large-scale industrial manufacturing processes such as in the automotive industry. Magnetic separation is a technology which has found widespread application in the mineral processing industry and in particular the beneficiation of kaolin clay for use in the paper industry. The technical feasibility of the application was demonstrated in the early stages of the work by the successful treatment of industrial samples using a crude laboratory-scale separator. In addition, the fluid and swarf material underwent extensive analysis using electron microscope-based optical and spectroscopic techniques in order to ascertain the presence of other undesirable components of the fluid that would require removal also. It was demonstrated by these results that the overall objective of the project was the development and testing of a laboratory-scale system which would allow the optimum operational parameters to be ascertained for the design of a commercially viable, large-scale system. A series of detailed trials on large volumes of industrial samples was carried out in conjunction with the development of the modifications that were required to existing magnetic separation theory in order to accommodate the particulars of this application. The trial system was tested to low applied magnetic strengths and high fluid flow velocities in order to optimise the economics of the application, resulting in extraction efficiencies of the order of 99.998% being achieved. During the course of the project, a new type of matrix cleaning system was developed for which a patent was applied and this was successfully tested in the trial system. Economic appraisal of the application suggests that an industrial-scale system could provide reliable, high quality recovery of grinding swarf at a cost of around one cent per cubic metre of

  11. Fundamental study of phosphor separation by controlling magnetic force

    Highlights: •We tried to separate the phosphor using the magnetic Archimedes separation method. •In this method, vertical and radial components of the magnetic force were used. •We succeeded to separate HP and developed the continuous separation system. •The separation system enables successive separation and recovery of HP. -- Abstract: The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used

  12. Fundamental study of phosphor separation by controlling magnetic force

    Wada, Kohei, E-mail: kohei@qb.see.eng.osaka-u.ac.jp; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@qb.see.eng.osaka-u.ac.jp; Nishijima, Shigehiro

    2013-11-15

    Highlights: •We tried to separate the phosphor using the magnetic Archimedes separation method. •In this method, vertical and radial components of the magnetic force were used. •We succeeded to separate HP and developed the continuous separation system. •The separation system enables successive separation and recovery of HP. -- Abstract: The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  13. Magnetic force on a magnetic particle within a high gradient magnetic separator

    Baik, S. K.; Ha, D. W.; Kwon, J. M.; Lee, Y. J.; Ko, R. K.

    2013-01-01

    HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station.

  14. A Study of Matrices for High–Intensity Magnetic Separators

    Maly, V. M.

    1995-01-01

    This paper summarises the results of the research carried out, for the last 15 years, by the Department of Separation of Weakly Magnetic Ores of the Mekhanobrchermet Institute, Krivoy Rog, Ukraine, on the matrices of high–intensity magnetic separators foe beneficiation of weakly magnetic iron ores and other weakly magnetic materials.

  15. High Radiation Environment Nuclear Fragment Separator Magnet

    Kahn, Stephen [Muons, Inc., Batavia, IL (United States); Gupta, Ramesh [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the

  16. Potential of a Dry Rotating-Disk Magnetic Separator

    Gerhold, J.

    1992-01-01

    Selectivity is a severe problem in dry magnetic separation. Dry rotating-disk magnetic separator utilizes radial magnetic forces that compete against centrifugal mass forces. Genuine equilibrium of forces, which is compulsory for high selectivity can thus be achieved at a high level of magnetic force. The potential of an iron-pole separator for intergrown ferromagnetics, as well as of a superconducting system for paramagnetic materials is discussed.

  17. Magnetic force on a magnetic particle within a high gradient magnetic separator

    Baik, S.K., E-mail: skbaik@keri.re.kr [Korea Electrotechnology Research Institute, Seongju-dong 28-1, Changwon (Korea, Republic of); Ha, D.W.; Kwon, J.M.; Lee, Y.J.; Ko, R.K. [Korea Electrotechnology Research Institute, Seongju-dong 28-1, Changwon (Korea, Republic of)

    2013-01-15

    Highlights: ► Magnetic field and the gradient decide magnetic force on a particle in HGMS (High Gradient Magnetic Separation). ► We calculated the field and the gradient of a superconducting HGMS system by finite element method. ► We could calculate magnetic force on a particle consisting of major impurities in the condenser water of a thermal power station. -- Abstract: HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station.

  18. Magnetic force on a magnetic particle within a high gradient magnetic separator

    Highlights: ► Magnetic field and the gradient decide magnetic force on a particle in HGMS (High Gradient Magnetic Separation). ► We calculated the field and the gradient of a superconducting HGMS system by finite element method. ► We could calculate magnetic force on a particle consisting of major impurities in the condenser water of a thermal power station. -- Abstract: HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station

  19. The Separation Performance of the Pulsating High–Gradient Magnetic Separator

    Peng, Yang; Shuyi, Liu; Jin, Chen

    1993-01-01

    In order to develop the pulsating high–gradient magnetic separation technology, a laboratory pulsating high–gradient magnetic separator (PHGMS) has been manufactured.. Experiments on its separation performance were carried out. The results show that PHGMS can significantly increase the grade of the magnetic product and it can eliminate the matrix clogging. The characteristic curve of the pulsating fluid was measured and a formula for estimating the grade of the magnetic product from PHGMS was...

  20. High-gradient magnetic separation using ferromagnetic membrane

    Podoynitsyn, Sergey N.; Sorokina, Olga N.; Kovarski, Alexander L.

    2016-01-01

    The magnetic separator with the membrane separating unit made of laser-perforated thick ferromagnetic foil was tested using composite water suspension of magnetic nanoparticles adsorbed on hydroxylapatite microparticles. The average sizes of the particles in the suspension and the magnetic moment of the suspension were measured by dynamic light scattering and electron magnetic resonance correspondingly to evaluate the efficiency of the separation. It was shown experimentally that the separation is effected by the membrane type and the flow rate. Magnetic coarse grains (larger than 1 μm) were captured by the membrane preferably and the magnetic moment of the suspension decreased by 20-25% after the separation. The magnetic field simulation and experimental results demonstrate the higher separation efficiency for thicker membranes.

  1. Integrated acoustic and magnetic separation in microfluidic channels

    Adams, Jonathan; Thevoz, Patrick; Bruus, Henrik; Soh, H. Tom

    2009-01-01

    With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our devic...

  2. Iso-geometric shape optimization of magnetic density separators

    Dang Manh, Nguyen; Evgrafov, Anton; Gravesen, Jens;

    2014-01-01

    Purpose The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently, a new separator design has been proposed that significantly...

  3. Highly efficient magnetic separation using five-aligned superconducting bulk magnet

    We have constructed the highly efficient magnetic separation system using five-aligned superconducting bulk magnets, which has ten usable magnetic poles on both sides in open space. We applied the bulk magnet system to the magnetic separation of ferromagnetic particles (magnetite; Fe3O4) and paramagnetic ones (α-hematite; Fe2O3) dispersed in water for various average particle diameters d, flow speeds VF and initial concentrations C0 of the particles. The multi-bulk magnet system has been confirmed to be effective for the magnetic separation and the efficiency of the magnetic separation per one magnetic pole has been estimated using the theoretical relation.

  4. Highly efficient magnetic separation using five-aligned superconducting bulk magnet

    Fujishiro, Hiroyuki; Miura, Takashi; Naito, Tomoyuki; Hayashi, Hidemi

    2010-06-01

    We have constructed the highly efficient magnetic separation system using five-aligned superconducting bulk magnets, which has ten usable magnetic poles on both sides in open space. We applied the bulk magnet system to the magnetic separation of ferromagnetic particles (magnetite; Fe3O4) and paramagnetic ones (α-hematite Fe2O3) dispersed in water for various average particle diameters d, flow speeds VF and initial concentrations C0 of the particles. The multi-bulk magnet system has been confirmed to be effective for the magnetic separation and the efficiency of the magnetic separation per one magnetic pole has been estimated using the theoretical relation.

  5. The Application of Superconducting Magnet Systems to Dry Magnetic Separation of Coal

    Pitel, J.; Chovanec, F.; Hencl, V.

    1992-01-01

    Two laboratory-scale facilities for dry magnetic separation using superconducting magnet systems are described. The results of magnetic separation of pulverized coal samples from various open-cast mines in Czechoslovakia, using these facilities, are presented. The efficiency of both open-gradient and high-gradient magnetic separation techniques, together with pretreatment of coal samples, are discussed.

  6. MSWI boiler fly ashes: magnetic separation for material recovery.

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. PMID:21306886

  7. Large-scale separation of magnetic bioaffinity adsorbents

    Šafařík, Ivo; Ptáčková, Lucie; Šafaříková, Miroslava

    2001-01-01

    Roč. 23, - (2001), s. 1953-1956. ISSN 0141-5492 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  8. An isotope separation magnet for the injector test experiment (MITE)

    A magnet has been designed for space-charge neutralization studies on the Injector Test Experiment at the Chalk River Nuclear Laboratories. Augmented by suitable collectors, the magnet could also be used for pilot-scale isotope separations. The present report documents the design of this particular magnet and illustrates the process of designing beam transport magnets in general

  9. Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation

    Earhart, Christopher M.; Wilson, Robert J.; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2009-01-01

    A microfabricated magnetic sifter has been designed and fabricated for applications in biological sample preparation. The device enables high-throughput, high-gradient magnetic separation of magnetic nanoparticles by utilizing columnar fluid flow through a dense array (~5000/mm2) of micropatterned slots in a magnetically soft membrane. The potential of the sifter for separation of magnetic nanoparticles conjugated with capture antibodies is demonstrated through quantitative separation experim...

  10. In Situ Magnetic Separation for Extracellular Protein Production

    Kappler, T.; Cerff, Martin; Ottow, Kim Ekelund;

    2009-01-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were em...

  11. High gradient magnetic separation applied to environmental remediation

    High Gradient Magnetic Separation (HGMS) is an application of superconducting magnet technology to the separation of magnetic solids from other solids, liquids, or gases. The production of both high magnetic fields (>4 T) and large field gradients using superconducting magnet technology has made it possible to separate a previously unreachable but large family of paramagnetic materials. This is a powerful technique that can be used to separate widely dispersed contaminants from a host material and may be the only technique available for separating material in the colloidal state. Because it is a physical separation process, no additional waste is generated. We are applying this technology to the treatment of radioactive wastes for environmental remediation. We have conducted tests examining slurries containing nonradioactive, magnetic surrogates. Results from these studies were used to verify our analytical model of the separation process. The model describes the rate process for magnetic separation and is based on a force balance on the paramagnetic species. This model was used to support bench scale experiments and prototype separator design

  12. Rare Cell Separation and Analysis by Magnetic Sorting

    Zborowski, Maciej; Chalmers, Jeffrey J.

    2011-01-01

    The separation and or isolation of rare cells using magnetic forces is commonly used and growing in use ranging from simple sample prep for further studies to a FDA approved, clinical diagnostic test. This grown is the result of both the demand to obtain homogeneous rare cells for molecular analysis and the dramatic increases in the power of permanent magnets that even allow the separation of some unlabeled cells based on intrinsic magnetic moments, such as malaria parasite-infected red blood...

  13. SLon Magnetic Separator Applied to Upgrading the Iron Concentrate

    Dahe, Xiong

    2003-01-01

    SLon vertical ring and pulsating high gradient magnetic separator is a new generation of a highly efficient equipment for processing weakly magnetic minerals[1–3]. It possesses advantages of a large beneficiation ratio, high recovery, a matrix that cannot easily be blocked and excellent performance. In the technical reform of upgrading the iron concentrate in Qi Dashan Mineral Processing Plant of Anshan Iron and Steel Company in 2001 to 2002, ten SLon-1750 magnetic separators were successfull...

  14. Magnetic separator having a multilayer matrix, method and apparatus

    Kelland, David R.

    1980-01-01

    A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.

  15. Remediation of Hanford tank waste using magnetic separation

    Large volumes of high-level radioactive waste are stored at the Department of Energy's Hanford site. Magnetic separation, a physical separation, process, can be used to segregate actinides and certain fission products from the waste. High gradient magnetic separation (HGMS) tests have been performed successfully using a simulated, nonradioactive underground storage tank (UST) waste. Variations in HGMS test parameters included separator matrix material, magnetic field strength, slurry surfactant, and slurry solids loading. Cerium was added to the simulated tank waste to act as a uranium surrogate. Results show that over 77% of the uranium surrogate can be captured and concentrated from the original bulk with a simple procedure. The results of these tests and the feasibility of magnetic separation for pretreatment of UST waste are discussed

  16. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian;

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration of s...... soft magnetic elements in the chip leads to a slightly higher capturing efficiency and a more uniform distribution of captured beads over the separation chamber than the system without soft magnetic elements.......We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration of...

  17. RING-SHAPED MAGNETIC POTENTIAL BARRIERS FOR SEPARATION OF WEAKLY MAGNETIC PARTICLES

    Gerhold, J.; Schmidt, Julien

    1984-01-01

    Weakly magnetic materials may be separated within Open Gradient Magnetic Separators using dry or wet processes. Axial-symmetric arrangments are of special interest when utilizing centrifugal forces in addition to magnetic forces. Thereby gradient fields are needed which generate mainly radially inwards directed forces. Such forces form a kind of magnetic potential barrier which cannot be transversed by magnetic particles. The necessary field distributions can be attained by means of properly ...

  18. Microstripes for transport and separation of magnetic particles

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled...... selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics.......We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...

  19. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian; Wolff, Anders; Hansen, Mikkel Fougt

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration of soft magnetic elements in the chip leads to a slightly higher capturing efficiency and a more uniform distribution of captured beads over the separation chamber than the system without soft magnetic el...

  20. Electron spin separation without magnetic field

    A nanodevice capable of separating spins of two electrons confined in a quantum dot formed in a gated semiconductor nanowire is proposed. Two electrons confined initially in a single quantum dot in the singlet state are transformed into the system of two electrons confined in two spatially separated quantum dots with opposite spins. In order to separate the electrons' spins we exploit transitions between the singlet and the triplet state, which are induced by resonantly oscillating Rashba spin–orbit coupling strength. The proposed device is all electrically controlled and the electron spin separation can be realized within tens of picoseconds. The results are supported by solving numerically the quasi-one-dimensional time-dependent Schroedinger equation for two electrons, where the electron–electron correlations are taken into account in the exact manner. (paper)

  1. Selective separation of coal feedstocks for conversion by magnetic separation techniques

    Hise, E.C.; Holman, A.S.

    1981-01-01

    The Open-Gradient Magnetic Separation (OGMS) technique can separate particles on the basis of small differences in magnetic susceptibility. The highly reactive coal macerals are diamagnetic while the minerals and less reactive macerals range from slightly diamagnetic to paramagnetic with the pyritic minerals exhibiting the greatest positive magnetic susceptibility. OGMS can spread a falling stream of fine coal into a spectrum permitting the physical separation of these several maceral and mineral groups. Several eastern bituminous coals have been selectively separated into five to ten fractions. Petrographic examination of these separated fractions shows a concentration of the maceral and mineral groups in the appropriate fractions. It is proposed that the selective separation of the most reactive macerals, as well as of those minerals that exhibit a catalytic effect, can enhance the efficiency of coal conversion.

  2. High gradient magnetic field microstructures for magnetophoretic cell separation.

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K

    2016-08-01

    Microfluidics has advanced magnetic blood fractionation by making integrated miniature devices possible. A ferromagnetic microstructure array that is integrated with a microfluidic channel rearranges an applied magnetic field to create a high gradient magnetic field (HGMF). By leveraging the differential magnetic susceptibilities of cell types contained in a host medium, such as paramagnetic red blood cells (RBCs) and diamagnetic white blood cells (WBCs), the resulting HGMF can be used to continuously separate them without attaching additional labels, such as magnetic beads, to them. We describe the effect of these ferromagnetic microstructure geometries have on the blood separation efficacy by numerically simulating the influence of microstructure height and pitch on the HGMF characteristics and resulting RBC separation. Visualizations of RBC trajectories provide insight into how arrays can be optimized to best separate these cells from a host fluid. Periodic microstructures are shown to moderate the applied field due to magnetic interference between the adjacent teeth of an array. Since continuous microstructures do not similarly weaken the resultant HGMF, they facilitate significantly higher RBC separation. Nevertheless, periodic arrays are more appropriate for relatively deep microchannels since, unlike continuous microstructures, their separation effectiveness is independent of depth. The results are relevant to the design of microfluidic devices that leverage HGMFs to fractionate blood by separating RBCs and WBCs. PMID:27294532

  3. Microwave Pretreatment of Coal Prior to Magnetic Separation

    Butcher, D. A.; Rowson, N. A.

    1995-01-01

    New methods to reduce the total sulphur content of coals are being developed since the introduction of legislation requiring cuts in sulphur emissions to the atmosphere. It is known that weakly paramagnetic pyrite (FeS2) particles are difficult to remove from clean coal by standard magnetic separation techniques. Data is presented here comparing standard magnetic separation tests to results achieved when the coal is subjected to a caustic microwave leach pretreatment, prior to conventional dr...

  4. "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator"

    Smistrup, Kristian; Kjeldsen, B.; Reimers, R.L.;

    2005-01-01

    separator with arrays of soft magnetic elements. The soft magnetic elements placed on both sides of the channel are magnetized by a relatively weak applied external magnetic field ( 21 mT) and provide magnetic field gradients attracting magnetic beads. Flows with two differently functionalized magnetic...... beads and a separating barrier flow are introduced simultaneously at the two channel sides and the centre of the microfluidic channel, respectively. On-chip experiments with fluorescence labeled beads demonstrate that the two types of beads are captured at each of the channel sidewalls. On...

  5. MAGNETITE RECOVERY IN COAL WASHING BY HIGH GRADIENT MAGNETIC SEPARATION

    The report describes a demonstration of the successful recovery of magnetite from mixtures of magnetite and coal, like those found in a coal-washing circuit, by High Gradient Magnetic Separation. The demonstration was part of a research program at Francis Bitter National Magnet L...

  6. Separation and acceleration of magnetic monopole analogs in semiconductor microcavities

    Flayac, H.; Solnyshkov, D.; Malpuech, G.

    2012-01-01

    Half-integer topological defects in polariton condensates can be regarded as magnetic charges, with respect to built-in effective magnetic fields present in microcavities. We show how an integer topological defect can be separated into a pair of half-integer ones, paving the way towards flows of magnetic charges: spin currents or magnetricity. We discuss the corresponding experimental implementation within microwires (with half-solitons) and planar microcavities (with half-vortices).

  7. Wet High Intensity Magnetic Separation of Iron Minerals

    Shao, Y.; Veasey, T. J.; Rowson, N. A.

    1996-01-01

    Four different iron minerals were selected for study, and five size fractions of each mineral were prepared. The magnetic properties of these minerals were measured. The effect of particle size and magnetic susceptibility on wet high intensity magnetic separation was studied simultaneously. It was found that hematite—1 was a strongly paramagnetic mineral, and the effect of particle size in WHIMS was not significant. Goethite and limonite were weakly paramagnetic minerals, and could not be eff...

  8. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M [Niigata University, 8050 Ikarashi-Nino-cho, Nishi-ku, Niigata 950-2181 (Japan); Yamaguchi, M [Japanese Super-conductivity Organization CO., LTD., 2-1-6 Etchujima, Koto, Tokyo, 135-8533 Japan (Japan); Yokoyama, K [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi, 326-8558 Japan (Japan); Noto, K [Professor Emeritus Iwate University, 3-19-27 Chomeigaoka, Izumi-ku Sendai, 981-3212 Japan (Japan)], E-mail: okat@eng.niigata-u.ac.jp

    2009-03-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  9. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  10. Use of high gradient magnetic separation for actinide application

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ∼0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  11. Magnetic source separation in Earth's outer core.

    Hoffman, Kenneth A; Singer, Brad S

    2008-09-26

    We present evidence that the source of Earth's axial dipole field is largely independent from the sources responsible for the rest of the geomagnetic field, the so-called nonaxial dipole (NAD) field. Support for this claim comes from correlations between the structure of the historic field and the behavior of the paleomagnetic field recorded in precisely dated lavas at those times when the axial dipole was especially weak or nearly absent. It is argued that a "stratification" of magnetic sources exists in the fluid core such that the axial dipole is the only observed field component that is nearly immune from the influence exerted by the lowermost mantle. It follows that subsequent work on spherical harmonic-based field descriptions may now incorporate an understanding of a dichotomy of spatial-temporal dynamo processes. PMID:18818352

  12. Study on industrial wastewater treatment using superconducting magnetic separation

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  13. Low field orientation magnetic separation methods for magnetotactic bacteria

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  14. Bench-scale magnetic separation of Department of Energy wastes

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and 11 materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in an open-gradient mode with dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both open- and high-gradient modes and could be an important application of the technology

  15. Initial investigation of open-gradient magnetic separation

    Holman, A.S.; Hise, E.C.; Jones, J.E.

    1982-04-01

    This report presents an overview of initial investigations in the area of open-gradient magnetic separation (OGMS) for coal cleaning. The work with OGMS techniques was originally in support of high-gradient magnetic separation technology, but later efforts have been aimed explicitly at OGMS because of the simplicity and flexibility of this separation technique. The information contained in this report was obtained over a two-year period from tests conducted in two devices, each in different configurations, with a limited range of coal feed samples. Testing to date shows that OGMS is a viable method of separating materials based on differences in magnetic susceptibilities on a laboratory scale as well as with pilot-scale equipment. Test results with -600 + 150-..mu.. coal samples have produced results approaching those obtained with laboratory float-sink methods with respect to both quality and quantity. The parallel analytical effort indicates that better magnets can be designed to yield 2 to 3 times the separating force available with our current test magnets.

  16. Waste remediation using in situ magnetically assisted chemical separation

    The magnetically assisted chemical separation process (MACS) combines the selective and efficient separation afforded by chemical sorption with the magnetic recovery of ferromagnetic particles. This process is being developed for treating the underground storage tanks at Hanford. These waste streams contain cesium, strontium, and transuranics (TRU) that must be removed before this waste can be disposed of as grout. The separation process uses magnetic particles coated with either (1) a selective ion exchange material or an organic extractant containing solvent (for cesium and strontium removal) or (2) solvents for selective separation of TRU elements (e.g., TRUEX process). These coatings, by their chemical nature, selectively separate the contaminants onto the particles, which can then be recovered from the tank using a magnet. Once the particles are removed, the contaminants can either be left on the loaded particles and added to the glass feed slurry or stripped into a small volume of solution so that the extracting particles can be reused. The status of chemistry and separation process is discussed in this paper

  17. Open-gradient magnetic separation for physical coal cleaning

    Doctor, R.D.; Livengood, C.D.

    1990-01-01

    Open-Gradient Magnetic Separation (OGMS) using superconducting quadrupole magnets offers a novel beneficiation technology for removing pyritic sulfur from pulverized dry coal. It is estimated to have a power demand 75% lower than techniques using conventional electromagnets, while achieving higher separation forces. Additionally, the system operates in a continuous mode and uses no chemicals. Because OGMS is specifically applicable to finely ground coal (120--325 mesh), its development could encourage the commercialization of other unconventional coal technologies, such as coal-water slurries, fluidized-bed combustion, and synfuels. 3 figs., 1 tab.

  18. Magnetic Separation of Calcite Using Selective Magnetite Coating

    Prakash, S; Das, B.; R. Venugopal

    1999-01-01

    Magnetic separation of naturally occurring calcite (98.2% CaCO3) using selective coating of synthetic colloidal magnetite with sodium oleate has been investigated as a function of pH, concentration of colloidal magnetite, magnetic intensity and particle size. Colloidal magnetite treated with sodium oleate (oleate magnetite) is found to be a better coating agent than the natural magnetite. The mechanism of oleate magnetite coating has been investigated through adsorption and electrokinetics me...

  19. Passive magnetic separator integrated with microfluidic mixer: Demonstration of enhanced capture efficiency

    Lund-Olesen, Torsten; Bruus, Henrik; Hansen, Mikkel Fougt

    2006-01-01

    In this paper, we present two results: (1) a new method for quantifying the efficiency of magnetic bead separators by magnetic measurements, and (2) a new idea for designing efficient magnetic bead separators. For microfluidic magnetic separators, a limiting factor for the capture of magnetic beads...... is the steep decrease of the magnetic force on the beads as a function of their distance to the magnetic structures. Our idea is to integrate the magnetic separator with a microfluidic mixer to ensure that all beads are brought close to the magnetic structures. We have fabricated a magnetic separator...

  20. Ultrasound imaging for quantitative evaluation of magnetic density separation

    Sanaee, S.A.

    2013-01-01

    This thesis is dedicated to an investigation of the potential and technological possibilities of an inline ultrasound system as a quality control system for wet recycling of solid waste. The main targeted recycling technology is magnetic density separation (MDS), a novel technique that was investigated and technologically matured in a project running in parallel to this work. In MDS, the easily magnetisable ferrofluid is used as the separation medium to sort different materials based on their...

  1. Magnetic driven separation techniques - DNA isolation from probiotic food samples

    Trachtová, S.; Španová, A.; Prettl, Z.; Horák, Daniel; Rittich, B.

    Wroclaw : Institute of Immunology and Experimental Therapy Polish Academy of Science , 2013 - (Gamian, A.; Górska-Fraczek, S.). s. 27 ISBN 978-83-928488-3-7. [Polish-Czech Probiotics Conference /1./ - Microbiology and Immunology of Mucosa, Probiotics Conference 2013. 28.05.2013-31.05.2013, Kudowa Zdrój] R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : magnetic * DNA * separation Subject RIV: CB - Analytical Chemistry, Separation

  2. An experimental investigation of the effect of preliminary magnetization in magnetic separation

    The effects of preliminary magnetization on the high-gradient magnetic separation of hematite and uranium-gold leach residues were studied. It is shown that the pre-magnetization of anti-ferromagnetic hematite can enhance the recovery of iron and the grade of the magnetic product. The effect of pre-magnetization was found to increase with decreasing particle size, the recovery from the fraction -12 μm increasing by 11% and the grade of the magnetic concentrate by 30%. The pre-magnetization of paramagnetic uranium-gold leach residues, however, reduced the recovery of uranium. It is suggested that the behaviour of a mineral with an ordered magnetic structure is related to magnetic viscosity. The capital and operating costs of the magnet required for pre-magnetization are assessed. (orig.)

  3. Separation of actinide-made transurania by a gas-filled magnetic separator

    The performance of the gas-filled magnetic separator HECK at the UNI-LAC at GSI Darmstadt is described. The system consists of a 30 -dipole magnet and a quadrupole doublet of wide aperture. The separator is operated with helium at pressures between (0.1-1) hPa. It is used to investigate heavy ion induced fusion products in-flight. The recoils emerging from a thin target are separated with high efficiency of (10-50)%. The suppression factor of primary beam particles and transfer products is (1015) and (103), respectively. In this application of a gas-filled separator to synthesize transuranium elements using 238U-targets, isotopes of the elements fermium and nobelium were identified in irradiations with 16O- and 20Ne-beams. (orig.)

  4. The study on optimization issues for magnetic separation by magnetic chromatography

    The magnetic chromatography is a very useful system for an ion and/or fine magnetic particle separation because it has strong magnetic field gradients even in a very narrow flow channel. We have not only developed the magnetic chromatography system to separate the fine particles and ions, but also the numerical analysis code based on the fluid dynamics and electromagnetism to investigate the separating characteristics and to optimize design of magnetic column. In this study, the simple experiments using a superconducting magnet with a large room-temperature-bore and a micro-scale magnetic column consisting of ferromagnetic wires were carried out to understand the ions separation. The cobalt chloride (CoCl2) and the nickel sulfate (NiSO4) were used as ions, and the magnetic field and length of magnetic column were used as a parameter in an experiment and an analysis. It can be expected that the ion mobility of a single and complex are quite different, and the ability of the separation will be improved by increasing the column length without external magnetic field.

  5. Matched filtering method for separating magnetic anomaly using fractal model

    Chen, Guoxiong; Cheng, Qiuming; Zhang, Henglei

    2016-05-01

    Fractal/scaling distribution of magnetization in the crust has found with growing body of evidences from spectral analysis of borehole susceptibility logs and magnetic field data, and fractal properties of magnetic sources have already been considered in processing magnetic data such as the Spector and Grant method for depth determination. In this study, the fractal-based matched filtering method is presented for separating magnetic anomalies caused by fractal sources. We argue the benefits of considering fractal natures of source distribution for data processing in magnetic exploration: the first is that the depth determination can be improved by using multiscaling model to interpret the magnetic data power spectrum; the second is that the matched filtering can be reconstructed by employing the difference in scaling exponent together with the corrected depth and amplitude estimates. In the application of synthetic data obtained from fractal modeling and real aeromagnetic data from the Qikou district of China, the proposed fractal-based matched filtering method obtains more reliable depth estimations as well as improved separation between local anomalies (caused by volcanic rocks) and regional field (crystalline basement) in comparison with the conventional matched filtering method.

  6. On Poor Separation in Magnetically Driven Shock Tube

    Chang, C.T.

    1973-01-01

    Observations made at steady-state running conditions in a magnetically driven shock tube, with parallel-plate electrodes, showed that for a given discharge voltage, sufficient separation between the shock and the current-sheet occurred only at relatively high discharge pressures. As a comparison......, poor separations were also noted in conventional diaphragm-type shock tubes running at low initial pressures. It is demonstrated that the observed poor separation can be explained by a mass leakage, instead of through the wall boundary layer, but through the current-sheet itself....

  7. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. PMID:26890496

  8. Ultrasound imaging for quantitative evaluation of magnetic density separation

    Sanaee, S.A.

    2013-01-01

    This thesis is dedicated to an investigation of the potential and technological possibilities of an inline ultrasound system as a quality control system for wet recycling of solid waste. The main targeted recycling technology is magnetic density separation (MDS), a novel technique that was investiga

  9. Metals separation using solvent extractants on magnetic microparticles

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has simulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed

  10. TREATMENT OF COMBINED SEWER OVERFLOWS BY HIGH GRADIENT MAGNETIC SEPARATION

    Seeded water treatment by high gradient magnetic separation techniques was carried out on combined storm overflows and raw sewage influents. Both bench-type and continuous pilot plant tests were performed to evaluate the effectiveness of the process in purifying waste waters. Cri...

  11. Separation of the Magnetic Field into External and Internal Parts

    Olsen, Nils; Glassmeier, K.-H.; Jia, X.

    2010-01-01

    The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal...... source contributions, and their application to selected planets and one of Jupiter’s moons, Ganymede....

  12. Magnetic separation as a plutonium residue enrichment process

    Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

    1989-01-01

    We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

  13. Magnetic separation using high-T sub c superconductors

    Bolt, L

    2001-01-01

    sensitivity of the high-T sub c material to magnetic fields. Finite elements modelling of the system has provided the framework for the quantitative analysis of the magnetic field distributions on the coil windings and the optimisation of the system configuration. The performance of the separator has been tested at 77 K with liquid nitrogen at atmospheric pressure, and at a temperature approx = 67 K by pumping liquid nitrogen at a pressure around 100 Torr. The highest field obtained in the air gap at 67 K was of 340 mT. Magnetic separators with an iron circuit have been in operation for many years in mineral industry, and there appear to be an opportunity of building machines with high-T sub c coils or retrofitting existing machines with high-T sub c coils to run them closer to saturation in a cheap and effective way. Superconductivity has found in magnetic separation one of its major industrial applications second only to magnetic resonance imaging. Low-T sub c superconducting coils have been employed in Hig...

  14. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable

  15. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  16. Investigation of open-gradient magnetic separation for Illinois coal

    Doctor, R.D.; Livengood, C.D.; Genens, L.E.; Swietlik, C.E.; Foote, K.

    1987-01-01

    Open-gradient magnetic separation (OGMS) using superconducting quadrupole magnets is a novel coal-beneficiation technology offering high pyritic-sulfur removal from pulverized dry coal. The system operates in a continuous mode, uses no chemicals, and has an estimated power demand 75% lower than techniques using conventional electromagnets, while achieving magnetic separation forces up to 267% higher. Specifically applicable to finely ground coal (120 to 325 mesh), OGMS could encourage the commercialization of other developing coal technologies, such as coal-water slurries, fludized-bed combustion, and coal synfuels. Both the experimental program conducted by Argonne National Laboratory and the results of modeling in support of the experimental program are described. 11 refs., 9 figs.

  17. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation

    Research highlights: → Red mud residues (RM) were disposed in alumina production. → Utilization of Red mud residues was affected by its iron content. → Superconducting magnetic separation (HGSMS) was used in iron separation from RM. → RM with high and low iron contents were separated in HGSMS. - Abstract: The disposal of bayer red mud tailings now seriously threats the environment safety. Reduction and recycling of red mud is now an urgent work in aluminum industry. High gradient superconducting magnetic separation (HGSMS) system was applied to separate the extreme fine RM particles (<100 μm) into high iron content part and low iron content part. Two sorts of RM were fed in the HGSMS. The iron oxide contents in concentrates were about 65% and 45% when RM 1 and RM 2 were fed respectively. Meanwhile, the residues contained 52.0% or 14.1% iron oxide in residues after eight separation stages when RM 1 and RM 2 were fed respectively. The mass recovery of iron concentrates was about 10% after once separation process regardless of RM 1 or RM 2 was fed. Extreme fine particles (<10 μm) could be captured in the HGSMS. Intergrowth of Fe and other elements is disadvantages for iron mineral separation from RM by HGSMS. Some improvement should be studied to enhance the efficiency of iron separation. It is possible for HGSMS to separate RM into high iron content part and low iron content part, the former part could be used in iron-making furnace and the later part could be recycling to sintering process for alumina production or used as construction material.

  18. Magnetic separation as a plutonium residue enrichment process

    Several plutonium contaminated residues have been subjected to Open Gradient Magnetic Separation (OGMS) on an experimental scale. OGMS experiments on graphite and bomb reduction residues resulted in a plutonium rich fraction and a plutonium lean fraction. Values for the bulk quantity rejected to the lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the lean fraction plutonium content was too high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. 6 refs., 1 fig., 9 tabs

  19. The rate of separation of magnetic lines of force in a random magnetic field.

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  20. Upgrading mixed polyolefin waste with magnetic density separation.

    Bakker, E J; Rem, P C; Fraunholcz, N

    2009-05-01

    Polyolefin fractions are often end fractions resulting from the recycling of end-of-life consumer products. Polypropylene (PP) and polyethylene (PE) are present in such fractions as a mixture. For instance, the ratio of PP and PE in car scrap is 70:30 on average. However, the grade of the PP and PE should typically be better than 97% to be reused again as a high quality product. Density separation of the different polyolefins can be a solution. A promising separation technique is the inverse magnetic density separator (IMDS). This paper discusses the potential of shredder residue, one of the possible polyolefin's waste stream sources for the IMDS, in detail. Experiments with the separation of polyolefins with an IMDS prototype show both high grade and high recovery. The paper concludes with the economic opportunities of the IMDS in the recycling of polyolefins. PMID:19128952

  1. Magnetic separation of iron-based nanosorbents from watery solutions

    Medvedeva, Irina; Bakhteeva, Iuliia; Zhakov, Sergey; Baerner, Klaus

    2016-04-01

    Iron and iron oxide magnetic nanoparticles (MNP) both naked and with chemically modified surface are promising agents for different environmental applications, in particular for water purification and for analytical control of water and soil pollution. The MNP can be used as sorbents with selective abilities due to designed surface functionalization. While a lot of research has been devoted to the impurity sorption processes, the second part, that is the efficient removal of the MNP sorbents from the watery solution, has not been sufficiently studied so far. For that particles with magnetic cores are especially attractive due to the possibility of their subsequent magnetic separation from water without using coagulants, i.e. without a secondary water pollution, just by applying external magnetic fields B. In order to remove magnetic sorbent nanoparticles ( 10-100 nm) effectively from the water solution gradient magnetic fields are required. Depending on the MNP size, the magnetic moment, the chemical properties of the solution, the water purification conditions , either the low gradient magnetic separation (LGMS) with dB/dz 100 T/m is used. The gradient magnetic field is provided by permanent magnets or electromagnets of different configuration. In this work the sedimentation dynamics of naked Fe3O4 and Fe3O4@SiO2 nanoparticles (10-30 nm) in water was studied in a vertical gradient magnetic field (B1 ≤ 0.3T, dB/dz ≤ 0.13 T/cm). By this LGMS , the sedimentation time of the naked Fe3O4 NP is reduced down from several days to several minutes. The sedimentation time for Fe3O4@SiO2 decreases from several weeks to several hours and to several minutes when salts Na2SO4, CaCl2, NaH2PO4 are added to the solution. The results are interpreted in terms of MNP aggregate formation caused by electrostatic, steric and magnetic inter-particle interactions in the watery solution. ACKNOWLEDGMENTS The work was supported in part by the Ural Branch, Russian Academy of Sciences

  2. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil

  3. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  4. Design of Power Magnetic Chute Separator and Minimization of its External Magnetic Field

    Karban, P.; Ulrych, B.; Doležel, Ivo

    St. Petersburg: St. Petersburg Polytechnical University, 2005, s. 1-4. ISBN 5-93208-034-0. [International Conference on 2005 IEEE St. Petersburg PowerTech [0046062]. St. Petersburg (RU), 27.06.2005-30.06.2005] Institutional research plan: CEZ:AV0Z20570509 Keywords : magnetic separator * magnetic field * numerical analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Capture of metallic copper by high gradient magnetic separation system.

    Wu, Wan-I; Wu, Chung-Hsin; Hong, P K Andy; Lin, Cheng-Fang

    2011-10-01

    Valence copper was recovered from wastewater by chemical reduction and use of a high gradient magnetic separation (HGMS) system. Ammonia (NH3) and sodium dithionate (Na2S2O4) at a molar ratio of [Cu]:[NH3]:[Na2S2O4] = 1:4:3 at pH = 9.5 were used first to chemically reduce copper ion to metallic copper; the resultant metal solids were captured in an upflowing reactor space equipped with a permalloy matrix net under a high gradient magnetic field. The captured solids were predominantly 6-20 microm in diameter, with Cu2O and CuO present among the solids. Four treatment configurations with and without the use of magnetic field and metal alloy as the matrix net were tested and their effects evaluated: (1) no magnetic field or matrix, (2) no magnetic field but with matrix, (3) with magnetic field but no matrix, (4) with both magnetic field and matrix. At flow rates of 40, 60, 80 and 100 cm3/min, capture efficiencies for metallic copper in the absence of magnetic field were 87%, 86%, 63%, and 39%, respectively, and in the presence of magnetic field were 99%, 98%, 95%, and 93%, respectively. The HGMS was critical for a high capture efficiency, whereas a matrix net only marginally enhanced it. Additional tests with a larger reactor confirmed similarly high efficiencies of > 85%. The use of an alloy matrix appeared to be important when high flow rates are most likely to be employed in practical applications. PMID:22329132

  6. Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

    Hunter B. Rogers; Tareq Anani; Young Suk Choi; Beyers, Ronald J.; David, Allan E.

    2015-01-01

    Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, sub...

  7. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation

    Li, Yiran; Wang, Jun; Wang, Xiaojun; Wang, Baoqiang; Luan, Zhaokun

    2011-02-01

    The disposal of bayer red mud tailings now seriously threats the environment safety. Reduction and recycling of red mud is now an urgent work in aluminum industry. High gradient superconducting magnetic separation (HGSMS) system was applied to separate the extreme fine RM particles (iron content part and low iron content part. Two sorts of RM were fed in the HGSMS. The iron oxide contents in concentrates were about 65% and 45% when RM 1# and RM 2# were fed respectively. Meanwhile, the residues contained 52.0% or 14.1% iron oxide in residues after eight separation stages when RM 1# and RM 2# were fed respectively. The mass recovery of iron concentrates was about 10% after once separation process regardless of RM 1# or RM 2# was fed. Extreme fine particles (iron mineral separation from RM by HGSMS. Some improvement should be studied to enhance the efficiency of iron separation. It is possible for HGSMS to separate RM into high iron content part and low iron content part, the former part could be used in iron-making furnace and the later part could be recycling to sintering process for alumina production or used as construction material.

  8. Separation of core and crustal magnetic field sources

    Shure, L.; Parker, R. L.; Langel, R. A.

    1985-01-01

    Fluid motions in the electrically conducting core and magnetized crustal rocks are the two major sources of the magnetic field observed on or slightly above the Earth's surface. The exact separation of these two contributions is not possible without imposing a priori assumptions about the internal source distribution. Nonetheless models like these were developed for hundreds of years Gauss' method, least squares analysis with a truncated spherical harmonic expansion was the method of choice for more than 100 years although he did not address separation of core and crustal sources, but rather internal versus external ones. Using some arbitrary criterion for appropriate truncation level, we now extrapolate downward core field models through the (approximately) insulating mantle. Unfortunately our view can change dramatically depending on the degree of truncation for describing core sources.

  9. Magnetic Separation for Nuclear Material Detection and Surveillance

    A high performance superconducting magnet is being developed for particle retrieval from field collected samples. Results show that maximum separation effectiveness is obtained when the matrix fiber diameter approaches the diameter of the particles to be captured. Experimentally, the authors obtained a single particle capture limit with 0.8microm PuO2 particles with dodecane as a carrier fluid. The development of new matrix materials is being pursued through the controlled corrosion of stainless steel wool, or the deposition of nickel dendrites on the existing stainless steel matrix material. They have also derived a model from a continuity equation that uses empirically determined capture cross section values. This enables the prediction of high gradient magnetic separator performance for a variety of materials and applications. The model can be used to optimize the capture cross section and thus increase the capture efficiency

  10. The Barrier Magnetic Separator for the Treatment of Weakly Magnetic Ores: Laboratoryscale Investigations and Industrial Tests

    Turkenich, A. M.; Baranov, U. D.; Ruditsky, A. V.

    2002-01-01

    The principle of action of the barrier separator for beneficiation of coarse weakly magnetic ores is described. New data of laboratory-scale investigations of beneficiation of manganese ore and mineral sands are introduced. The results of tests in the Volnogorsk State Mining and Metallurgical Plant (VSMMP) show high technological effectiveness and reliability of the experimental separator.

  11. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 μm with 4 wt.% over 100 μm and content metallic iron of 93 wt%. (author)

  12. Theoretical Assessment of Technological Potential of Magnetic and Electrical Separation

    Karmazin, V. V.

    1997-01-01

    Magnetic, electrical an combined methods of mineral beneficiation are widely used in various branches of mining industry. These processes have significant economic and ecological advantages in those areas where they can be applied technologically. It is thus necessary to analyse technological possibilities and areas of potential applications. Different designs of the separators must also be considered. Such an attempt is being done in this article based on the assessment of the level of diffe...

  13. Study on Removal of Bilirubin with Magnetic Affinity Separation Technique

    张凤宝; 王淑兰; 徐辉; 张国亮

    2003-01-01

    An affinity adsorbent, Cibacron Blue 3GA immobilized magnetic polyvinyl alcohol (PVA) microspheres was used for bilirubin removal taking the advantage of easy separation of magnetic sorbent from the biosystem.Fe3 O4 superparamagnetic particles was synthesized with hydrothermal reaction of ferrous chloride (FeC12) and ferric chloride (FeCl3). Such magnetic particles are then encapsulated in biocompatible PVA to form magnetic polymer microspheres sized from 2 to 15 nm with hydroxyl groups on its surface. Cibacron Blue 3GA, a dye-ligand, was covalently coupled with the polyvinyl alcohol through the nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of PVA molecules under alkaline condition. The affinity adsorbent carried 21.1μmol Cibacron Blue 3GA per gram magnetic polymer microspheres was used to remove unconjugated and conjugated bilirubin from the solution which was composed of bilirubin or bilirubin and protein. After the adsorption, the adsorbent loaded with bilirubin was removed easily in the magnetic field.

  14. Radiation Resistant Magnets for the RIA Fragment Separator

    Zeller, Al; Gupta, Ramesh C; Ronningen, Reginald; Sherrill, Bradley

    2005-01-01

    The high radiation fields around the production target and the beam dump in the fragment separator at the Rare Isotope Accelerator requires that radiation resistant magnets be used. Because large apertures and high gradients are required for the quadrupoles and similar demanding requirements for the dipole and sextupoles, resistive coils are difficult to justify. The radiation heating of any materials at liquid helium temperatures also requires that superconducting versions of the magnets have low cold-masses. The final optical design has taken the practical magnets limits into account and sizes and fields adjusted to what is believed to be achievable with technology that is possible with sufficient R&D. Designs with higher obtainable current densities and having good radiation tolerances that use superconducting coils are presented, as well as the radiation transport calculations that drive the material parameters.

  15. Rapid cycling synchrotron magnet with separate ac and dc circuit

    In present rapid cycling synchrotron magnets ac and dc currents flow in the same coil to give the desired field. The circuit reactance is made zero at dc and the operating frequency by running the magnet in series with an external parallel resonant LC current. We propose to return the ac flux in a gap next to the synchrotron. The dc coil encloses the ac magnetic circuit and thus links no ac flux. A shorted turn between the dc coil and ac flux enhances the separation of the two circuits. Several interesting developments are possible. The dc coil could be a stable superconductor to save power. The ac flux return gap could be identical with the synchrotron gap and contain a second synchrotron. This would double the output of the system. If the return flux gap were used for a booster, the ac coil power could be greatly reduced or radiation hardening of the ac coil could be simplified

  16. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 μm) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity 60Co γ-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO3 solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles

  17. Possibility of the superconducting magnet systems application at dry magnetic separation of coal

    Pitel, J.; Chovanec, F. (Slovenska Akademia Vied, Bratislava (CS). Inst. of Electrical Engineering); Hencl, V. (Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Geologie a Geotechniky)

    1990-09-01

    The results of the laboratory scale dry separation of two samples of Czecho-Slovak brown coal using a superconducting open-gradient magnetic separator (OGMS) and a high-gradient magnetic separator (HGMS) are reported. To perform the OGMS experiments, we developed a superconducting magnet system capable of reaching a value f{sub r} = 110 T{sup 2}/m for the radial magnetic force density component at the separation zone in a 90 mm diameter warm bore. As for HGMS, using a matrix of ferromagnetic stainless steel rods located in the 140 mm diameter warm bore of a simple superconducting solenoid, we showed that it was sufficient to work with magnetic induction up to 2.5 T. More encouraging results were obtained with the HGMS method than with the OGMS method. The difference in recovery of total sulfur in the magnetic fraction for the two samples was 40% and 13% higher. Recovery of ash was 23% and 8% higher in favour of HGMS. The experiments were performed in partly optimized conditions requiring the loss of combustibles to be less than 10%. However, the lower efficiency of the OGMS method is compensated for by the simple construction and method of working of the separator. (author).

  18. Development of magnetic separator for deironing of paint industrial stock

    Bohm, J.; Csoke, B.; Antal, G. [Univ. of Miskolc (Hungary). Dept. of Process Engineering

    1995-12-31

    From the waste material of the production of aluminum foil aluminum pigment is produced for the paint industry by grinding it in white spirit. During grinding 1--2% iron impurity gets into the product, weakening its quality, from the war of the mill armor and the grinding bodies and from the contamination of the raw material. For deironing the product, a stage-operated electrically induced magnetic filter separator was developed and put into operation. The separator was sited in an explosive environment and therefore required a special design and safety system. The paper describes the results of the development work, the device that was developed, the safety system as well as the results of and experiences with the operation of the separator.

  19. On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator.

    Smistrup, K; Kjeldsen, B G; Reimers, J L; Dufva, M; Petersen, J; Hansen, M F

    2005-11-01

    Implementing DNA and protein microarrays into lab-on-a-chip systems can be problematic since these are sensitive to heat and strong chemicals. Here, we describe the functionalization of a microchannel with two types of magnetic beads using hydrodynamic focusing combined with a passive magnetic separator with arrays of soft magnetic elements. The soft magnetic elements placed on both sides of the channel are magnetized by a relatively weak applied external magnetic field (21 mT) and provide magnetic field gradients attracting magnetic beads. Flows with two differently functionalized magnetic beads and a separating barrier flow are introduced simultaneously at the two channel sides and the centre of the microfluidic channel, respectively. On-chip experiments with fluorescence labeled beads demonstrate that the two types of beads are captured at each of the channel sidewalls. On-chip hybridization experiments show that the microfluidic systems can be functionalized with two sets of beads carrying different probes that selectively recognize a single base pair mismatch in target DNA. By switching the places of the two types of beads it is shown that the microsystem can be cleaned and functionalized repeatedly with different beads with no cross-talk between experiments. PMID:16234958

  20. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO2) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO2 was coagulated with magnetite particles using FeCl3·6 H2O at a fixed pH value. Magnetic separation of coagulated TiO2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO2 powder. The magnetic separation of TiO2–magnetite coagulate from solution proved to be efficient around pH:8

  1. Magnetically separable titania-coated nickel ferrite photocatalyst

    Chung, Yun Seup; Park, Seung Bin; Kang, Duk-Won

    2004-08-15

    A magnetically separable photocatalyst was prepared by a continuous multi-step spray pyrolysis process. In the first step, nickel ferrite core particles were prepared by an ultrasonic spray pyrolysis. In the second step, tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) were sequentially injected and coated on the surface of the core particles. The sequentially coated layers were decomposed to form silica and titania layers in a final furnace reactor. The titania-silica layered particles displayed higher photoactivity than particles coated only with titania and titania-silica mixture-coated particles. The photoactivity of the titania-silica layered particles remained unchanged after magnetic separation and washing. This confirms that the adhesion between the core particles and the coated layer is strong enough to withstand vigorous mixing. It also implies that the formation of free particles of silica or titania is negligible in the second reactor. The strong adhesion between the coated layer and the nickel ferrite core is attributed to the features of the multi-step process, wherein the core particles are exposed to high temperate in the second reactor for only a few seconds and transformation of the core particles into non-magnetic particles is prohibited.

  2. Magnetic separation in microfluidic systems using microfabricated electromagnets - Experiments and simulations

    Smistrup, Kristian; Hansen, Ole; Bruus, Henrik;

    2005-01-01

    We present experiments and simulations of magnetic separation of magnetic beads in a microfluidic channel. The separation is obtained by microfabricated electromagnets. The results of our simulations using FEMLAB and Mathematica are compared with experimental results obtained using our own...

  3. Plasma separation process: Magnet move to Oak Ridge National Laboratory

    This is the final report on the series of operations which culminated with the delivery of the Plasma Separation Process prototype magnet system (PMS) to Building K1432 at Oak Ridge National Laboratory (ORNL). This procedure included real time monitoring of the cold mass support strut strain gauges and an in-cab rider to monitor the instrumentation and direct the driver. The primary technical consideration for these precautions was the possibility of low frequency resonant vibration of the cold mass when excited by symmetrical rough road conditions at specific speeds causing excess stress levels in the support struts and consequent strut failure. A secondary consideration was the possibility of high acceleration loads due to sudden stops, severe road conditions, of impacts. The procedure for moving and transportation to ORNL included requirements for real time continuous monitoring of the eight strut stain gauges and three external accelerometers. Because the strain gauges had not been used since the original magnet cooldown, it was planned to verify their integrity during magnet warmup. The measurements made from the strut strain gauges resulted in stress values that were physically impossible. It was concluded that further evaluation was necessary to verify the usefulness of these gauges and whether they might be faulty. This was accomplished during the removal of the magnet from the building. 6 figs., 1 tab

  4. Magnetic microgels, a promising candidate for enhanced magnetic adsorbent particles in bioseparation: synthesis, physicochemical characterization, and separation performance.

    Turcu, Rodica; Socoliuc, Vlad; Craciunescu, Izabell; Petran, Anca; Paulus, Anja; Franzreb, Matthias; Vasile, Eugeniu; Vekas, Ladislau

    2015-02-01

    For specific applications in the field of high gradient magnetic separation of biomaterials, magnetic nanoparticle clusters of controlled size and high magnetic moment in an external magnetic field are of particular interest. We report the synthesis and characterization of magnetic microgels designed for magnetic separation purposes, as well as the separation efficiency of the obtained microgel particles. High magnetization magnetic microgels with superparamagnetic behaviour were obtained in a two-step synthesis procedure by a miniemulsion technique using highly stable ferrofluid on a volatile nonpolar carrier. Spherical clusters of closely packed hydrophobic oleic acid-coated magnetite nanoparticles were coated with cross linked polymer shells of polyacrylic acid, poly-N-isopropylacrylamide, and poly-3-acrylamidopropyl trimethylammonium chloride. The morphology, size distribution, chemical surface composition, and magnetic properties of the magnetic microgels were determined using transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. Magnetically induced phase condensation in aqueous suspensions of magnetic microgels was investigated by optical microscopy and static light scattering. The condensed phase consists of elongated oblong structures oriented in the direction of the external magnetic field and may grow up to several microns in thickness and tens or even hundreds of microns in length. The dependence of phase condensation magnetic supersaturation on the magnetic field intensity was determined. The experiments using high gradient magnetic separation show high values of separation efficiency (99.9-99.97%) for the magnetic microgels. PMID:25519891

  5. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  6. Primary beneficiation of tantalite using magnetic separation and acid leaching

    M Nete; F Koko; T Theron; W Purcell; JT Nel

    2014-01-01

    Primary beneficiation was successfully performed prior to dissolution of manganotantalite (sample A) and ferrotantalite (sample C) samples obtained from two different mines in the Naquissupa area, Mozambique. Magnetic separation removed the majority of iron and tita-nium, whereas H2SO4 leaching removed a large portion of thorium and uranium in these samples. Analytical results indicated that 64.14wt%and 72.04wt%of the total Fe and Ti, respectively, and~2wt%each of Nb2O5 and Ta2O5 were removed from sample C (ferrotantalite) using the magnetic separation method, whereas only 9.64wt%and 8.66wt%of total Fe2O3 and TiO2, respectively, and~2wt%each of Nb2O5 and Ta2O5 were removed from sample A (manganotantalite). A temperature of 50°C and a leaching time of 3 h in the presence of concentrated H2SO4 were observed to be the most appropriate leaching conditions for removal of radioactive elements from the tantalite ores. The results obtained for sample A under these conditions indicated that 64.14wt%U3O8 and 60.77wt%ThO2 were leached into the acidic solution, along with 4.45wt%and 0.99wt%of Nb2O5 and Ta2O5, respectively.

  7. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  8. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom

    The Landau–Lifshitz–Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times. (paper)

  9. Development of a mobile-type magnetic separator using high-Tc bulk superconductors

    The authors have devised an advanced, mobile-type water treatment system consisting of a membrane separator and a magnetic separator, which uses long high-Tc bulk superconductors (SCs), to quickly remove phytoplankton multiplying in highly eutrophic lakes and dams. The prototype magnetic separator system was designed and fabricated. The fabricated system consists of three components; a pre-process unit, a rotating membrane separator and a magnetic separator. The capacity of the magnetic separator is 100 t/day. The water cleaning test using kaolin was conducted, displaying water cleaning power of 90% or higher. Further, most chlorophyll A and phosphorus were successfully removed in another test

  10. Thorium-uranium processing with gravity, magnetic and electrical separation in zarigan ore deposit

    Because of low grade of thorium and uranium in the Zarigan mineral deposit, the pre-concentration operation prior to leaching is necessary. From X-ray diffraction analysis results, it was clear that this ore has large amount of other minerals such as Feldespat, Quartz, Hematite, Titanomagnetite, and rare earths. In this paper the thorium enhancement grade in Zarigan deposit by using gravity, magnetic and electrical separations methods is reported. The output of a Jaw crusher was ground to 85 micron by using ball mill. Then about 95% of SiO2 was separated by using shaking table separation. The heavy concentrate of shaking table was processed by a high intensity magnetic separator and then the magnetic concentrate separated by a low intensity magnetic separator. Finally, the non magnetic concentrate of low magnetic separator was processed with the electrical separation. The grades of thorium and uranium in the non magnetic concentrate of low magnetic separator were increased to 4000 and 5000 ppm, respectively where only 15% of the initial feed (ore) was transferred to this concentrate. Therefore, this resulted in a decrease of acid consumption in the leaching processes and the efficiency enhancement of the process. The pre-treatment circuit of this ore was designed as Jaw crusher/ball mill/shaking table/high-magnetic separator/low-magnetic separator/electrical separator, respectively.

  11. Study on a mobile-type magnetic separator applying high-Tc bulk superconductors

    We have developed a new water-treatment system that consists of a membrane separator and a magnetic separator that uses long high-Tc bulk superconductors (SCs) as permanent magnets. Basic tests were performed using a new prototype water-treatment system to verify the separator's ability to remove water bloom. Based on the test results, we design the mobile-type magnetic separator system. The designed magnetic separator system consists of three components; a pre-process unit, a rotating membrane separator and a magnetic separator. The capacity of the magnetic separator is 100 ton/day. Removal rate is 90% or more. It is thought that the system is compact and high efficiency

  12. Magnetic Separation Research: A Survey of Some Activities in The Netherlands

    Kerkdijk, C. B. W.; van Kleef, R. P. A. R.; Roeterdink, J. A.

    1984-01-01

    A survey of magnetic separation research at FDO Engineering consultants, the University of Nijmegen, and the Energy Research Foundation (ECN) will be given.FDO efforts were primarily on coal cleaning using the high gradient magnetic separation (HGMS) technique. The Institute for Materials of the University of Nijmegen performs fundamental studies on magnetic flocculation. A continuous flow magnetic separator is briefly described. The Energy Research Foundation has built and operates an HGMS–s...

  13. Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales

    Smistrup, Kristian; Bu, Minqiang; Wolff, Anders;

    2008-01-01

    We present a theoretical analysis of a new design for microfluidic magnetic bead separation. It combines an external array of mm-sized permanent magnets with magnetization directions alternating between up and down with mu m-sized soft magnetic structures integrated in the bottom of the separation...... channel. The concept is studied analytically for simple representative geometries and by numerical simulation of an experimentally realistic system geometry. The array of permanent magnets provides long-range magnetic forces that attract the beads to the channel bottom, while the soft magnetic elements...

  14. Magnetic separation - Advanced nanotechnology for future nuclear fuel recycle

    The unique properties of magnetic nanoparticles (MNPs), such as their extremely small size and high surface area to volume ratio, provide better kinetics for the adsorption of metal ions from aqueous solutions. In this work, we demonstrated the separation of minor actinides using complex conjugates of MNPs with diethylenetriamine-pentaacetic acid (DTPA) chelator. The sorption results show the strong affinity of DTPA towards Am (III) and Pu (IV) by extracting 97% and 80% of actinides, respectively. It is shown that the extraction process is highly dependent on the pH of the solution. If these long-term heat generating actinides can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. (authors)

  15. STUDY ON THE SEPARATION AND UTILIZATION TECHNOLOGY OF MAGNETIC BEAD IN FLY ASH

    边炳鑫; 李哲; 吕一波; 石宪奎; 韦鲁滨

    2000-01-01

    On the basis of study on physical and chemical properties of magnetic bead (MB) in fly ash (FA), the paper gives out the separation methods of MB and results of three separating process. The result of comparative test in size, density, stability, magnetic material content, specific magnetic susceptibility (SMS), medium recovery oxidation resistance and wear resistance between MB and magnetic fines currently used in dense medium separation leads to that using MB recovered from fly ash is used as medium solids in coal cleaning in stead of magnetic fines not only have no influence upon taryests of separation, but can bring good economic and social benefits.

  16. Tracing magnetic separators and their dependence on IMF clock angle in global magnetospheric simulations

    Komar, C M; Dorelli, J C; Glocer, A; Kuznetsova, M M

    2013-01-01

    A new, efficient, and highly accurate method for tracing magnetic separators in global magnetospheric simulations with arbitrary clock angle is presented. The technique is to begin at a magnetic null and iteratively march along the separator by finding where four magnetic topologies meet on a spherical surface. The technique is verified using exact solutions for separators resulting from an analytic magnetic field model that superposes dipolar and uniform magnetic fields. Global resistive magnetohydrodynamic simulations are performed using the three-dimensional BATS-R-US code with a uniform resistivity, in eight distinct simulations with interplanetary magnetic field (IMF) clock angles ranging from 0 (parallel) to 180 degrees (anti-parallel). Magnetic nulls and separators are found in the simulations, and it is shown that separators traced here are accurate for any clock angle, unlike the last closed field line on the Sun-Earth line that fails for southward IMF. Trends in magnetic null locations and the struc...

  17. Digital microfluidic magnetic separation for particle-based immunoassays.

    Ng, Alphonsus H C; Choi, Kihwan; Luoma, Robert P; Robinson, John M; Wheeler, Aaron R

    2012-10-16

    We introduce a new format for particle-based immunoassays relying on digital microfluidics (DMF) and magnetic forces to separate and resuspend antibody-coated paramagnetic particles. In DMF, fluids are electrostatically controlled as discrete droplets (picoliters to microliters) on an array of insulated electrodes. By applying appropriate sequences of potentials to these electrodes, multiple droplets can be manipulated simultaneously and various droplet operations can be achieved using the same device design. This flexibility makes DMF well-suited for applications that require complex, multistep protocols such as immunoassays. Here, we report the first particle-based immunoassay on DMF without the aid of oil carrier fluid to enable droplet movement (i.e., droplets are surrounded by air instead of oil). This new format allowed the realization of a novel on-chip particle separation and resuspension method capable of removing greater than 90% of unbound reagents in one step. Using this technique, we developed methods for noncompetitive and competitive immunoassays, using thyroid stimulating hormone (TSH) and 17β-estradiol (E2) as model analytes, respectively. We show that, compared to conventional methods, the new DMF approach reported here reduced reagent volumes and analysis time by 100-fold and 10-fold, respectively, while retaining a level of analytical performance required for clinical screening. Thus, we propose that the new technique has great potential for eventual use in a fast, low-waste, and inexpensive instrument for the quantitative analysis of proteins and small molecules in low sample volumes. PMID:23013543

  18. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Okamoto, T.; Tachibana, S.; Miura, O.; Takeuchi, M.

    2011-11-01

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  19. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  20. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison

    Hubbuch, Jürgen; Matthiesen, D.B.; Hobley, Timothy John; Thomas, Owen R. T.

    -porous superparamagnetic supports followed by rapid separation of the `loaded' adsorbents from the feedstock using high gradient magnetic separation technology. For the recovery of Savinase(R) from a cell-free Bacillus clausii fermentation liquor using bacitracin-linked adsorbents, the integrated magnetic separation...

  1. Magnetic separation studies on ferruginous chromite fine to enhance Cr:Fe ratio

    Sunil Kumar Tripathy; PK Banerjee; Nikkam Suresh

    2015-01-01

    The Cr:Fe ratio (chromium-to-iron mass ratio) of chromite affects the production of chrome-based ferroalloys. Although the lit-erature contains numerous reports related to the magnetic separation of different minerals, limited work concerning the application of mag-netic separation to fine chromite from the Sukinda region of India to enhance its Cr:Fe ratio has been reported. In the present investigation, magnetic separation and mineralogical characterization studies of chromite fines were conducted to enhance the Cr:Fe ratio. Characterization studies included particle size and chemical analyses, X-ray diffraction analysis, automated mineral analysis, sink-and-float studies, and mag-netic susceptibility measurements, whereas magnetic separation was investigated using a rare earth drum magnetic separator, a rare earth roll magnetic separator, an induced roll magnetic separator, and a wet high-intensity magnetic separator. The fine chromite was observed to be upgraded to a Cr:Fe ratio of 2.2 with a yield of 55.7%through the use of an induced roll magnetic separator and a feed material with a Cr:Fe ratio of 1.6.

  2. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  3. Magnetic separation studies for a low grade siliceous iron ore sample

    Dwari Ranjan Kumar; Rao Danda Srinivas; Reddy Palli Sita Ram

    2013-01-01

    Investigations were carried out,on a low grade siliceous iron ore sample by magnetic separation,to establish its amenability for physical beneficiation.Mineralogical studies revealed that the sample consists of magnetite,hematite and goethite as major opaque oxide minerals where as silicates as well as carbonates form the gangue minerals in the sample.Processes involving combination of classification,dry magnetic separation and wet magnetic separation were carried out to upgrade the low grade siliceous iron ore sample to make it suitable as a marketable product.The sample was first ground and each closed size sieve fractions were subjected to dry magnetic separation and it was observed that limited upgradation is possible.The ground sample was subjected to different finer sizes and separated by wet low intensity magnetic separator.It was possible to obtain a magnetic concentrate of 67% Fe by recovering 90% of iron values at below 200 μm size.

  4. The study on the magnetic filter using the rotation of permanent magnets for separation of radioactive corrosion products

    Most of the insoluble radioactive corrosion products have the characteristic of showing strong ferrimagnetism. Along with the new development and production of permanent magnets which generate much stronger magnetic field than conventional permanent magnets, new type of magnetic filter that can separate radioactive corrosion products efficiently and eventually reduce the radiation exposure of the personnel at a nuclear power plant is suggested. This new type of separator with novel geometry consists of an inner and an outer magnet assembly, a coolant channel and a container surrounding the outer magnet assembly. The particulates are separated from the coolant by the alternating magnetic fields that are generated by shift arrangement of permanent magnets. This study describes of experimental results performed with the different flow rates, rotation velocities of magnet assemblies, particle size and various materials. The efficiency of magnetic filter tends to increase as the flow rate is lower, and particle size is bigger. The rotating velocity of magnet assembly has also some influences on the separation efficiency. This new magnetic filter shows good performance results in filtering magnetite, cobalt ferrite and nickel ferrite except hematite, which is a kind of anti-ferromagnetic material, from aqueous coolant simulation. At the above 5 μm of particle size, the separation efficiencies are over than 90%. (author)

  5. The Effect of Pretreatment on Magnetic Separation of Ferruginous Minerals in Bauxite

    Rao, R. Bhima; Besra, L.; Reddy, B. R.; Banerjee, G. N.

    1997-01-01

    Bauxite sample of Jamnagar, India, is suitable for refractory applications after separation of iron minerals. Different magnetic separators and intensities are studied on different treated samples. The results of these investigations indicate that removal of ferruginous minerals from crude sample requires a magnetic intensity of 14 000 Gauss. The calcined sample at 800℃ requires magnetic intensity of about 7000 Gauss, whereas the reduced bauxite needs less than 2000 Gauss for separation of ir...

  6. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    Safarik, Ivo; Horska, Katerina; Martinez, Lluis M.; Safarikova, Mirka

    2010-12-01

    A simple procedure for large scale isolation of Solanum tuberosum tuber lectin from potato starch industry waste water has been developed. The procedure employed magnetic chitosan microparticles as an affinity adsorbent. Magnetic separation was performed in a flow-through magnetic separation system. The adsorbed lectin was eluted with glycine/HCl buffer, pH 2.2. The specific activity of separated lectin increased approximately 27 times during the isolation process.

  7. SUPERCONDUCTING MAGNET FOR 60 TONNE/HOUR MINERAL SEPARATOR WITH CLOSED CYCLE 4 KELVIN REFRIGERATION

    Good, J.; White, K.

    1984-01-01

    Cryogenic Consultants Limited has constructed a superconducting magnet system for magnetic separation, with a three metre long dipole magnet cooled by a closed-cycle refrigerator. This paper considers the design and construction of the magnet system in relation to a theoretical expression for processing capacity.

  8. Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets

    The separation of particles and cells is critical in many chemical and biological applications. This work presents a simple idea for utilizing a pair of permanent magnets to continuously separate diamagnetic particles and cells in ferrofluid flow through a straight microchannel. The first magnet is placed close to the microchannel for focusing the particle mixture to a single stream without the use of a sheath flow. The second magnet, which is offset from the first magnet and placed farther from the channel, is to displace the aligned particles to dissimilar flow paths for a continuous sorting. This idea is first demonstrated through the separation of 3 μm- and 10 μm-diameter polystyrene particles, where the effects of flow speed and magnet distance are both examined. The experimental data are found to fit well with the predictions of an analytical model. Furthermore, a continuous separation of live yeast cells from 10 μm polystyrene particles is implemented in the same device. - Highlights: • We develop a simple diamagnetic particle and cell separation technique in ferrofluids. • Two offset magnets are used to achieve a sheath-free continuous separation in a straight microchannel. • The technique is demonstrated through the magnetic separation of polystyrene particles and yeast cells. • The effects of ferrofluid speed and magnet-channel distance are examined on particle separation. • The predictions from an analytical model agree with the experimental data quantitatively

  9. Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets

    Zeng, Jian; Deng, Yanxiang [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States); Vedantam, Pallavi; Tzeng, Tzuen-Rong [Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314 (United States); Xuan, Xiangchun, E-mail: xcxuan@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States)

    2013-11-15

    The separation of particles and cells is critical in many chemical and biological applications. This work presents a simple idea for utilizing a pair of permanent magnets to continuously separate diamagnetic particles and cells in ferrofluid flow through a straight microchannel. The first magnet is placed close to the microchannel for focusing the particle mixture to a single stream without the use of a sheath flow. The second magnet, which is offset from the first magnet and placed farther from the channel, is to displace the aligned particles to dissimilar flow paths for a continuous sorting. This idea is first demonstrated through the separation of 3 μm- and 10 μm-diameter polystyrene particles, where the effects of flow speed and magnet distance are both examined. The experimental data are found to fit well with the predictions of an analytical model. Furthermore, a continuous separation of live yeast cells from 10 μm polystyrene particles is implemented in the same device. - Highlights: • We develop a simple diamagnetic particle and cell separation technique in ferrofluids. • Two offset magnets are used to achieve a sheath-free continuous separation in a straight microchannel. • The technique is demonstrated through the magnetic separation of polystyrene particles and yeast cells. • The effects of ferrofluid speed and magnet-channel distance are examined on particle separation. • The predictions from an analytical model agree with the experimental data quantitatively.

  10. SUPERCONDUCTING OPEN-GRADIENT MAGNETIC SEPARATION FOR THE PRETREATMENT OF RADIOACTIVE OR MIXED WASTE VITRIFICATION FEEDS

    Scientists need to gain a better understanding of the magnetic separation processes that can be used to separate deleterious constituents (crystalline, amorphous, and colloidal) in vitrification feed streams for borosilicate glass production without adding chemicals or generating...

  11. Rapid Characterization of Magnetic Separator Feed Stocks in Titanium Minerals Processing

    Cavanough, G.; Holtham, P. N.

    2004-01-01

    Magnetic separation is widely used in the processing of titanium minerals. The expected mineral recoveries are assessed by performing laboratory magnetic separations of representative samples to determine the distribution of magnetic components. This is an inherently slow process performed on relatively small samples. This paper describes the development of an inductance based device to rapidly determine the mass distribution of the magnetic properties of a titanium mineral sample. The system...

  12. Development of high-gradient and open-gradient magnetic separation

    Hise, E C

    1981-01-01

    This paper was prepared: to review the accomplishments in both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS) by the Oak Ridge National Laboratory (ORNL) group during the past three years; to show, through the medium of motion pictures, the operation of the various separation methods and devices used and developed; to show qualitative results of the separation performed; and to make available, to those interested, detailed reports of the experimental procedures and the resulting data. The qualitative separation of pyritic sulfur and ash forming minerals from fine coal by high gradient magnetic separation has been demonstrated at feed rates up to one ton per hour, and in a machine that is commercially produced in sizes for feed rates up to several hundred tons per hour. The quantitative separation of pyritic sulfur and ash forming minerals from fine coal by free fall open gradient magnetic separation has been demonstrated at a laboratory scale and at 300 kg per hour in a solenoidal magnet configuration. A magnet modeling analysis has shown that an optimum magnet can be designed with practical physical constraints which can generate separating forces two to three times those of the existing solenoidal configuration and with a large processing capacity. The analytical predictions of the behavior of particles traversing these separating forces have been experimentally confirmed within 15% in existing magnets.

  13. Continuous sheath-free magnetic separation of particles in a U-shaped microchannel

    Liang, Litao; Xuan, Xiangchun

    2012-01-01

    Particle separation is important to many chemical and biomedical applications. Magnetic field-induced particle separation is simple, cheap, and free of fluid heating issues that accompany electric, acoustic, and optical methods. We develop herein a novel microfluidic approach to continuous sheath-free magnetic separation of particles. This approach exploits the negative or positive magnetophoretic deflection to focus and separate particles in the two branches of a U-shaped microchannel, respe...

  14. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  15. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  16. Coupled particle–fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality

    A study is presented of coupled particle–fluid transport and field-directed particle capture in microfluidic systems with passive magnetic functionality. These systems consist of a microfluidic flow cell on a substrate that contains embedded magnetic elements. Two systems are considered that utilize soft- and hard-magnetic elements, respectively. In the former, an external field is applied to magnetize the elements, and in the latter, they are permanently magnetized. The field produced by the magnetized elements permeates into the flow cell giving rise to an attractive force on magnetic particles that flow through it. The systems are studied using a novel numerical/closed-form modelling approach that combines numerical transport analysis with closed-form field analysis. Particle–fluid transport is computed using computational fluid dynamics (CFD), while the magnetic force that governs particle capture is obtained in closed form. The CFD analysis takes into account dominant particle forces and two-way momentum transfer between the particles and the fluid. The two-way particle–fluid coupling capability is an important feature of the model that distinguishes it from more commonly used and simplified one-way coupling analysis. The model is used to quantify the impact of two-way particle–fluid coupling on both the capture efficiency and the flow pattern in the systems considered. Many effects such as particle-induced flow-enhanced capture efficiency and flow circulation are studied that cannot be predicted using one-way coupling analysis. In addition, dilute particle dispersions are shown to exhibit significant localized particle–fluid coupling near the capture regions, which contradicts the commonly held view that two-way coupling can be ignored when analysing high-gradient magnetic separation involving such particle systems. Overall, the model demonstrates that two-way coupling needs to be taken into account for rigorous predictions of capture efficiency

  17. The electromagnetic design of a permanent magnet based separator

    Nedelcu, S

    2002-01-01

    The aim of this work was to design a permanent magnet based device that can selectively transport paramagnetic particles. Using specialised electromagnetic design software various arrangements of permanent magnets have been investigated. Each test geometry had to be constructively simple and able to produce highly non-uniform magnetic fields before being considered further in any more detail. The main parameter to indicate that the test geometry might be a suitable device has been ascribed to the ratio eta between the highest (ON) and lowest (OFF) magnetic fields that were measured. A linear arrangement of permanent magnets has been considered first. This device produced a ratio eta approx 2. Further, the cylindrical and the tubular arrangements may be considered as substantial improvements over the first geometry. The OFF magnetic fields have been substantially reduced by the method of magnetic shielding. Intensive research and modelling has been spent on addressing the problem of finding the optimal geometr...

  18. An overview of separation by magnetically stabilized beds: State-of-the-art and potential applications

    Jordan Hristov; Ludmil Fachikov

    2007-01-01

    This article deals with problems relevant to implementation of magnetically stabilized beds (MSB) as separation devices. The main issues discussed are: bed mechanics, bed structure, possibilities to create controllable filter media, etc. As examples several separation techniques are discussed: dust filtration-magnetic and non-magnetic, ion-exchange, copper cementation, yeast filtration from biological liquids, particle separation by density and magnetic properties, dangerous wastes removal. Only key publications will be quoted that provide a basis for further reading and study and relevant information.

  19. Development and Applications of a Drum Medium–Intensity Permanent Magnetic Separator

    Liang, Cao Zhi

    1996-01-01

    This paper describes the development and testing of a drum medium—intensity permanent magnetic separator. The magnetic field strength on the drum surface can be increased to 0.8 T using a new magnet technology. Uniform distribution of a feed can be achieved with a two—stage feed system. Industrial tests were carried out using a manganese mineral from DouLan manganese mine. The results obtained show that good separation results can be obtained using the separator, with upper limit of the separ...

  20. Application of coal petrography to the evaluation of magnetically separated dry crushed coals

    Harris, L.A.; Hise, E.C.

    1981-01-01

    In the present study the open gradient magnetic separation method has been used to beneficiate the -30 + 100 mesh fraction of two high volatile bituminous coals. The evaluation of the effectiveness of the magnetic separation for cleaning these coals is the subject of this paper. Coal petrography in combination with scanning electron microscopy and x-ray diffractometry were used to characterize the magnetically separated coal fractions. These analyses revealed that the majority of the pyrite and non-pyrite minerals were concentrated in the positive magnetic susceptibility fractions. The bulk of the starting samples (approx. 80 weight percent) were located in the negative magnetic susceptibility fractions and showed significant reductions in pyrite and non-pyritic minerals. The magnetic separation appears to effectively split the samples into relatively clean coal and refuse.

  1. Development and Commercial Test of Slon–2000 Vertical Ring and Pulsating High–Gradient Magnetic Separator

    Da–He, Xiong

    1997-01-01

    Slon–2000 vertical ring and pulsating high–gradient magnetic separator is an efficient industrial equipment for processing weakly magnetic minerals. It has been recently developed at the Ganzhou Non–Ferrous Metallurgy Research Institute. A six–month commercial testwork to process low–grade hematite ore was completed in Chong Changeling Mineral Processing Plant in 1995. compared with WHIMS–2000 wet high–intensity magnetic separator, the grade of the concentrate is by 7.21% higher the grade of ...

  2. HIGH-GRADIENT MAGNETIC SEPARATION FOR REMOVAL OF SULFUR FROM COAL

    The report gives results of a thorough physical, chemical, and magnetic characterization of a Pennsylvania coal from the Upper Freeport seam. The powdered coal was then subjected to high-gradient magnetic separations, as a function of magnetic field and fluid velocity, in both a ...

  3. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra [National Chemical Laboratory, Council of Scientific and Industrial Research, Pune 411008 (India); Kale, Sonia; Shastry, Padma [National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Pasricha, Renu [National Physical Laboratory, Council of Scientific and Industrial Research, New Delhi 110012 (India); Lefez, Benoit; Hannoyer, Beatrice, E-mail: padma@nccs.res.in, E-mail: satishogale@gmail.com [Universite de Rouen, GPM UMR 6634 CNRS-BP 12, 76801 Etienne du Rouvray Cedex (France)

    2011-06-03

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  4. Theoretical Principles, Present Status and Prospects for Development of Material Separation in Magnetic Fluids

    Gubarevich, V. N.; Vidsota, S. V.

    1994-01-01

    This paper reviews theoretical principles of material separation in magnetic fluids according to their density. The main formulae and expressions are summarised and possible prospects for development of this relatively young branch of separation are indicated. Specifications are given for separators of this type, as designed over the last several years by the Lugansk Institute "Gipromashugleobogaschchenie". Practical experience obtained in the Institute is outlined.

  5. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    Huang, Xu-Guang; Liao, Jinfeng

    2015-01-01

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  6. Proposal for implanting a magnetic stable isotope separator

    The implantation of an electromagnetic isotope separator able to separate elements of mass from 20 to 250 a.m.u., with an enrichment factor from 10 to 200 times the initial concentration, depending on the elements, is proposed. The most suitable separator type for Brazilian CNEN, considering building installations and minimum conditions for the equipment facilities, the retinue chronogram, the infrastructure, and the personnel training for operation is defined. (M.C.K.)

  7. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China)

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078

  8. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    Collins, Liam; Belianinov, Alex; Proksch, Roger; Zuo, Tingting; Zhang, Yong; Liaw, Peter K.; Kalinin, Sergei V.; Jesse, Stephen

    2016-05-01

    In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.

  9. Purification of condenser water in thermal power station by superconducting magnetic separation

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  10. Purification of condenser water in thermal power station by superconducting magnetic separation

    Ha, D.W., E-mail: dwha@keri.re.kr [Korea Electrotechnology Research Institute, Changwon 642-120 (Korea, Republic of); Kwon, J.M.; Baik, S.K.; Lee, Y.J. [Korea Electrotechnology Research Institute, Changwon 642-120 (Korea, Republic of); Han, K.S. [Korea South-East Power Co., Goseong 638-932 (Korea, Republic of); Ko, R.K.; Sohn, M.H.; Seong, K.C. [Korea Electrotechnology Research Institute, Changwon 642-120 (Korea, Republic of)

    2011-11-15

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly {alpha}-Fe{sub 2}O{sub 3} (hematite) and {gamma}-Fe{sub 2}O{sub 3} (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  11. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  12. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  13. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-01-01

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3, 5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognitio...

  14. Cleaning of liquid radioactive waste by the methods of ozonization and magnetic separation

    The possibility for purification of liquid radioactive wastes (LRW) from organic compounds by the methods of ozonization and magnetic separation is studied. It is shown that addition of a finely divided ferromagnetic substance into LRW and subsequent filtration through a magnetic filter is an effective method for removal of emulsified organic compounds. The dissolved organic compounds are destroyed by ozonization. Some characteristics of the ozonization and magnetic separation processes are determined. The composition of the products of reactions between ozone and organic compounds is defined. The behavior of 137Cs in the process of magnetic separation is investigated. A feasibility of very good cleaning of LRW from emulsified organic compounds by means of successive application of the methods of magnetic separation and ozonization is confirmed

  15. Application of magnetic separation technology for the recovery of colemanite from plant tailings.

    Alp, Ibrahim

    2008-10-01

    In this study, colemanite was recovered from tailings produced by the Kestelek (Turkey) Processing Plant by magnetic separation. Magnetic susceptibility measurements revealed that colemanite is diamagnetic in character whereas gangue minerals are weakly paramagnetic, apparently due to the presence of the iron-bearing silicates such as smectite and, to a less extent, illite. Three-stage magnetic separation tests were performed on the size fractions coarser than 75 microm produced from the tailings (31.52% B(2)O(3)) using a high-intensity permanent magnetic separator. Under the test conditions a colemanite concentrate with a B(2)O(3) content of 43.74% at 95.06% recovery was shown to be produced from the tailings. The mineralogical composition of the tailings appears to allow the removal of gangue minerals by magnetic separation and hence the production of a concentrate of commercial grade. PMID:18927062

  16. Integrated acoustic and magnetic separation in microfluidic channels

    Adams, Jonathan; Thevoz, Patrick; Bruus, Henrik;

    2009-01-01

    With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column-......(8) particles/hr. (C) 2009 American Institute of Physics. [doi:10.1063/1.3275577]...

  17. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis

    Florescu, Octavian; Wang, Kevan; Au, Patrick; Tang, Jimmy; Harris, Eva; Beatty, P. Robert; Boser, Bernhard E.

    2010-01-01

    We have demonstrated a postprocessed complementary metal oxide semiconductor (CMOS) integrated circuit (IC) capable of on-chip magnetic separation, i.e., removing via magnetic forces the nonspecifically bound magnetic beads from the detection area on the surface of the chip. Initially, 4.5 μm wide superparamagnetic beads sedimenting out of solution due to gravity were attracted to the detection area by a magnetic concentration force generated by flowing current through a conductor embedded in...

  18. Fluctuations of the Solitary Bubble at the Separation from the Air Cavity, Compressed by the Magnetic Field in Magnetic Liquid

    M.L. Boev; Polunin, V.M.; O.V. Lobova; Shabanova, I.A.; L.M. Chervjakov; A.N. Ryapolov

    2013-01-01

    In the article, on the basis of the concept of "display" of geometry of a free surface of the "low-magnetic" environment by the topography of isolines of the module of intensity of a magnetic field, it is studied a form of a free surface of magnetic fluid in a static condition at the initial stage of rapprochement of a ring magnet with a surface of a column of magnetic fluid in a tube and at a stage of pressing of a cavity to a bottom. It is shown that the separation of bubbles from an air ca...

  19. Separation of spin and orbital magnetizations in a samarium film

    The L/S ratio of samarium has been determined by X-ray magnetic scattering from a thick epitaxial film, via the azimuthal dependence of the scattered intensity. This new method allows a direct determination of L/S in antiferromagnetic systems where charge scattering is not negligible at the position of the magnetic signal. The Russell-Saunders predictions fall within the accuracy of our results

  20. Separation of spin and orbital magnetizations in a samarium film

    Stunault, A.; Soriano, S.; Gourieux, T.; Detlefs, C.; Dufour, C.; Dumesnil, K.

    2004-05-01

    The L/ S ratio of samarium has been determined by X-ray magnetic scattering from a thick epitaxial film, via the azimuthal dependence of the scattered intensity. This new method allows a direct determination of L/ S in antiferromagnetic systems where charge scattering is not negligible at the position of the magnetic signal. The Russell-Saunders predictions fall within the accuracy of our results.

  1. Treatment of Red Mud From Alumina Production by High–Intensity Magnetic Separation

    Fofana, Mohamad; Kmet, Stanislav; Jakabský, Štefan; Hredzák, Slavomír; Kunhalmi, Gabriel

    1995-01-01

    The paper gives attention to the possibilities of magnetic separation of red mud. The red mud can be characterised as an insoluble residue originated during the bayer method application in bauxite processing. Sample of red mud was obtained by leaching of bauxite from the Fria deposit (Guinea). The wet method of high–intensity magnetic separation was applied to the treatment. The magnetic product with the Fe content of 47% and recovery of 85% was obtained under magnetic field induction of 0.06...

  2. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    Šafařík, Ivo; Horská, Kateřina; Martinez, L. M.; Šafaříková, Miroslava

    Melville : American institute of physics, 2010 - (Häfeli, U.; Schütt, W.; Zborowski, M.), s. 146-151 ISBN 978-0-7354-0866-1. ISSN 0094-243X. - (AIP Conference Proceedings. 1311). [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /8./. Rostock (DE), 25.05.2010-29.05.2010] Institutional research plan: CEZ:AV0Z60870520 Keywords : drug delivery * magnetic microspheres and ferrofluids * magnetic nanospheres * molecular biology * stem cell separation * starch production * potato waste water * magnetic separation * chitosan * lectin * Solanum tuberosum Subject RIV: EH - Ecology, Behaviour

  3. Some concepts of the advanced mass spectrometry at the COMBAS magnetic separator of nuclear reaction products

    Proposed is an in-flight measurement method of recoil nuclei masses with the help of a Penning trap located behind the COMBAS magnetic separator for nuclear reaction products. The method is based on the following operations: (i) Accepting the recoil nuclear reaction products by the magnetic separator and decreasing their kinetic energy by degraders. (ii) In-flight transportation of the retarded nuclei into the magnetic field of the Penning trap's solenoid and transforming their remaining longitudinal momentum into orbital rotation by the fringing magnetic field of the solenoid. (iii) Cooling the orbital rotation of the ions by the high-frequency azimuthal electric field of the Penning trap's electric hyperboloid. (orig.)

  4. The use of magnetic isotope effect for the separation of uranium isotopes

    The influence of the magnetic isotope effect on the reaction of radical pairs containing radical-ion UO22+, is investigated. This can be further used in the new method of uranium isotope separation in chemical reaction

  5. Synthesis of TBP-coated magnetic Pst-DVB particles for uranium separation

    Magnetically assisted chemical separation process is an efficient method used widely in separating radionuclides and heavy metals in environmental samples. It is simple, compact and cost-effective, with less secondary waste streams. Tributyl phosphate (TBP)-coated magnetic poly (styrene-divinylbenzene) (Pst-DVB) nano-particles were synthesized and characterized by transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetry and Fourier transform infrared spectrometry. The application of TBP-coated magnetic Pst-DVB particles in separating low concentration of uranium from aqueous media was evaluated, and the equilibrium adsorption isotherm was investigated. Our results indicate that the TBP-coated magnetic Pst-DVB particles may be of potential application for uranium separation. (authors)

  6. Recovering limonite from Australia iron ores by flocculation-high intensity magnetic separation

    LUO Li-qun; ZHANG Jing-sheng; YU Yong-fu

    2005-01-01

    Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron fines. The separation results of the three iron samples are as follows: iron grade 66.77%-67.98% and the recovery of iron 69.26%-70.70% by the FIMS process with flocculants. The comparative results show that under the same separation conditions the FIMS process can effectively increase the recovery of iron by 10.97%-15.73%. The flowsheet results confirm the reliability of the process in a SHP high intensity magnetic separator. The concentrate product can be used as raw materials for direct reduction iron-smelting. The hydrolyzed and causticized flocculants can selectively flocculate fine feebly-magnetic iron mineral particles to increase their apparent separation sizes. The larger the separation size, the stronger the magnetic force. By comparing the separation results of the three samples it is found that among the three samples the higher the limonite content, the better the separation result. This means that the separation result relates closely to the flocculation process and the adding pattern of the flocculant.

  7. Application of Permanent Dry High Intensity Magnetic Separation for the Processing of Spent FCC Catalyst

    Leaper, M. C.; Kingman, S. W.; Seville, J. P. K.

    2002-01-01

    This paper discusses the application of permanent dry high intensity magnetic separation to improve the efficiency of Fluidised Catalytic Cracking (FCC) systems used in oil refining, causing preferential removal of deactivated (spent) catalyst from the process. It was shown that this technique can provide efficient separation of spent catalyst from fresh, despite some loss of fine particles. The effects of particle segregation were also investigated, with both magnetic and nonmagnetic particl...

  8. Special solutions for magnetic separation problems using force and energy conditions for ferro-particles capture

    Sandulyak, Anna; Sandulyak, Alexander; Belgacem, Fethi B. M.; Kiselev, Dmitriy

    2016-03-01

    While trying to solve the equation for the ferro-particle movement in the zone of magnetic separation, it is necessary to provisionally perform a comparative evaluation of forces influencing the ferro-particle in order to define the dominating ones, and specify the task at hand. Here, we consider various solutions of the problem and definitions of magnetic separation parameters based on the traditionally used forces and/or energy conditions of ferro-particle capture.

  9. Quantitative characterization of magnetic separators: Comparison of systems with and without integrated microfluidic mixers

    Lund-Olesen, Torsten; Bruus, Henrik; Hansen, Mikkel Fougt

    2006-01-01

    We present two new types of microfluidic passive magnetic bead separator systems as well as methods for performing quantitative characterizations of them. Both systems consist of a microfluidic channel with long rectangular magnetic elements of permalloy that are placed by the sides of the channel...... and magnetized by an external magnetic field. In one of the systems, a staggered herringbone microfluidic mixer is integrated in the channel. The characterization of the systems includes magnetic measurements of the capture-and-release efficiencies, estimates of distributions of captured beads in a...

  10. Closed-loop magnetic separation of nanoparticles on a packed bed of spheres

    Magnet, Cécilia; Akouala, Mesferdon; Kuzhir, Pavel; Bossis, Georges; Zubarev, A; Wereley, Norman

    2015-01-01

    International audience In this work, we consider magnetic separation of iron oxide nanoparticles when a nanoparticle suspension (diluted ferrofluid) passes through a closed-loop filter composed of a packed bed of micro-beads magnetized by an externally applied magnetic field. We show that the capture of nanoparticles of a size as small as 60 nm is easily achieved at low-to-moderate magnetic fields (15 kA/m) thanks to relatively strong magnetic interactions between them. The key parameter g...

  11. Immunomagnetic separation of Salmonella cells using newly designed magnetic carrriers

    Rittich, B.; Španová, A.; Sučiková, J.; Štrumcová, S.; Lenfeld, Jiří; Horák, Daniel

    Frankfurt am Main : Dechema e. V. Society for Chemical Engineering and Biotechnology, 2002. s. P28. [International Symposium on the Separation of Proteins, Peptides and Polynucleotides /22./. 10.11.2002-13.11.2002, Heidelberg] R&D Projects: GA AV ČR KSK4055109 Keywords : Salmonella cells Subject RIV: CC - Organic Chemistry

  12. High-gradient magnetic affinity separation of trypsin from porcine pancreatin

    Hubbuch, Jürgen; Thomas, Owen R. T.

    2002-01-01

    We introduce a robust and scale-flexible approach to macromolecule purification employing tailor-made magnetic adsorbents and high-gradient magnetic separation technology adapted from the mineral processing industries. Detailed procedures for the synthesis of large quantities of low-cost defined ...

  13. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison

    Hubbuch, Jürgen; Matthiesen, D.B.; Hobley, Timothy John;

    2001-01-01

    system exhibited substantially enhanced productivity over expanded bed adsorption when operated at processing velocities greater than 48 m h(-1). Use of the bacitracin- linked magnetic supports for a single cycle of batch adsorption and subsequent capture by high gradient magnetic separation at a...

  14. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Zhang, Yulong; Egeland, Eirik B.; Gu, Dan D.; Calabrese, Paolo; Kapiris, Matteo J.; Karlsen, Frank; Minh, Nhut T.; Wang, K.; Jakobsen, Henrik

    2010-11-01

    A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays has been developed and demonstrated, which can merely employ one independent lab-on-chip to realize cell isolation. The simulation, design, microfabrication and test for the new electromagnetic micro separator were executed. The simulation results of the electromagnetic field in the separator show that special soft magnetic micro-pillar arrays can amplify and redistribute the electromagnetic field generated by the micro-coils. The separator can be equipped with a strong magnetic field to isolate the target cells with a considerably low input current. The micro separator was fabricated by micro-processing technology. An electroplating bath was hired to deposit NiCo/NiFe to fabricate the micro-pillar arrays. An experimental system was set up to verify the function of the micro separator by isolating the lymphocytes, in which the human whole blood mixed with Dynabeads® FlowComp Flexi and monoclonal antibody MHCD2704 was used as the sample. The results show that the electromagnetic micro separator with an extremely low input current can recognize and capture the target lymphocytes with a high efficiency, the separation ratio reaching more than 90% at a lower flow rate. For the electromagnetic micro separator, there is no external magnetizing field required, and there is no extra cooling system because there is less Joule heat generated due to the lower current. The magnetic separator is totally reusable, and it can be used to separate cells or proteins with common antigens.

  15. Magnetic mineral separation: a timeless challenge for an experimental rock magnetist

    Lagroix, France; Guyodo, Yohan; Till, Jessica L.; Nova Naess, Live

    2014-05-01

    One timeless challenge in rock magnetic studies, inclusive of paleomagnetism and environmental magnetism, is decomposing a sample's bulk magnetic behaviour into its individual magnetic mineral components. One approach consists of physically separating the bulk into its components prior to magnetic characterization. Both dry magnetic based or wet magnetic or gravity based techniques are routinely used. A second approach consists of chemical separation where certain components may be preferentially dissolved. Component characterization is achieved by comparing before and after magnetic data. Both physical and chemical approaches have shortcomings biasing the separation towards a physical behavior which may encompass more than one mineral species. A third approach calls for numerical unmixing of magnetic data such as hysteresis loops and remanence (e.g. ARM, IRM) acquisition of demagnetization curves. Here the main drawback is that a priori knowledge of the expected behavior of each mineral component is required. When considering how dependent the magnetic behavior of a mineral is on, for example, grain size, stoichiometry, concentration (i.e. magnetic interactions); the a priori bases functions required become a significant limitation of numerical unmixing techniques. We present a method permitting to decompose the magnetic behavior of a bulk sample experimentally and at low temperature avoiding any ambiguities in data interpretation due to heating induced alteration. A single instrument is used to measure the temperature dependence of the remanent magnetization and to apply different steps of AF demagnetizations and thermal demagnetization. The experimental method is validated on synthetic mixtures of magnetite, hematite, goethite as well as on natural loess samples where the contributions of magnetite, goethite, hematite and maghemite are successfully isolated. The experimental protocol can be adapted to target other iron bearing minerals relevant to the rock or

  16. A Model of Multiple Magnetic Separation in the Continuous Process

    Brożek, M.

    1999-01-01

    In continuous enrichment processes, in industrial conditions and due to the generally required high efficiency of machines, a relatively high concentration of feed is applied. Since it is necessary to liberate the useful minerals, the feed has to be ground thoroughly and this fact results in the percentage growth of the fraction of particles measuring a few tens or several micrometers. When the particles are so fine and the feed is so much concentrated, the magnetic particles interactions pla...

  17. ELISA-like Analysis of Cisplatinated DNA Using Magnetic Separation

    Kristyna Smerkova; Marcela Vlcnovska; Simona Dostalova; Vedran Milosavljevic; Pavel Kopel; Tomas Vaculovic; Sona Krizkova; Marketa Vaculovicova; Vojtech Adam; Rene Kizek

    2015-01-01

    Cisplatin belongs to the most widely used cytostatic drugs. The determination of the presence of the DNA-cisplatin adducts may not only signal the guanine-rich regions but also monitor the interaction reaction between DNA and the drug in terms of speed of interaction. In this work, the combined advantages of magnetic particles-based isolation/purification with fluorescent properties of quantum dots (QDs) and antibodies targeted on specific recognition of DNA-cisplatin adducts are demonstra...

  18. Fluctuations of the Solitary Bubble at the Separation from the Air Cavity, Compressed by the Magnetic Field in Magnetic Liquid

    M.L. Boev

    2013-12-01

    Full Text Available In the article, on the basis of the concept of "display" of geometry of a free surface of the "low-magnetic" environment by the topography of isolines of the module of intensity of a magnetic field, it is studied a form of a free surface of magnetic fluid in a static condition at the initial stage of rapprochement of a ring magnet with a surface of a column of magnetic fluid in a tube and at a stage of pressing of a cavity to a bottom. It is shown that the separation of bubbles from an air cavity occurs in close proximity to the plane of symmetry of a ring magnet on its axis. It is described the method and experimental installation for studying the possibility of electromagnetic indication of sizes of the air bubbles, being in magnetic fluid. It is discussed the results of experimental research on process of a separation of solitary air bubble from a cavity, contained in magnetic fluid and squeezed by ponderomotive forces of a magnetic field which are of interest for creation of essentially new technique of the dosed supply of small amount of gas in the reactor.

  19. Fully integrated micro-separator with soft-magnetic micro-pillar arrays for filtrating lymphocytes.

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Karlsen, Frank; Jakobsen, Henrik; Egeland, Eirik Bentzen; Hjelseth, Snorre

    2010-01-01

    A fully integrated micro-separator with soft-magnetic micro-pillar arrays has been developed, which merely employs one independent Lab-On-Chip to realize the lymphocytes isolation from the human whole blood. The simulation, fabrication and experiment are executed to realize this novel microseparator. The simulation results show that, the soft-magnetic micro-pillars array can amplify and redistribute the electromagnetic field generated by the microcoils. The tests certify desirable separation efficiency can be realized using this new separator at low current. No extra cooling system is required for such a micro-separator. This micro-separator can also be used to separate other target cells or particles with the same principle. PMID:21096497

  20. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  1. Isotope separation in the reflected ion beam in a with a cusp magnetic field

    The isotope separation in a reflected ion beam injected into a cusp magnetic field has been considered. The magnetic field configuration was formed by two rings with oppositely directed currents. The motion of the particles entering the system and reflected by the increasing magnetic field of the second ring is numerically calculated. A possibility for reflected particles to be separated in the radial direction is shown. This effect allows an annular ion source to be used, which leads to an increase in the total current and the performance of the system

  2. A study on the rare earth ore containing scandium by high gradient magnetic separation

    高利坤; 陈云

    2010-01-01

    Scandium (Sc) concentration from the rare earth ore by high gradient magnetic separation (HGMS) was determined on the basis of Sc content, geophysical parameter determination and the magnetic analyses of the ore. Based on the condition experiments, expanding experiments were carried out. The results showed that the ore had a Sc grade of 48.90 g/t, and after removing iron by low-intensity magnetic separation, a Sc concentrate of 314.89 g/t grade and with 77.53% recovery was obtained by one-stage roughing-one...

  3. Improvement of the Magnetic System of Annular Magnetic Separator%磁选环柱磁系的改进

    陈广振; 王培信; 金镇; 贾西寅

    2013-01-01

    Aiming at the problems of Fe grade in tailings of rough low intensity magnetic separation with annular magnetic separator higher than that of the on-site drum magnetic separator in dressing plant of Dagushan,the modification measures by adding an always-on magnet exciting coil to the annular magnetic separation and installing magnetic yoke rings to all the magnetic exciting coils have conducted.The key parameters of the improved annular magnetic separator were investigated and the beneficiation effects of the annular magnetic separator before and after improvement were contrasted.The result showed that under the same parameters and testing conditions,the improved annular magnetic separation not only guarantees the quality of concentrate,but also the percentage of Fe grade reduces 2.2,and the percentage of Fe recovery increased 2.95,the ideal modification effect was achieved.%针对大孤山选矿厂磁选环柱弱磁粗选尾矿铁品位高于现场筒式磁选机的问题,对原磁选环柱进行了增设1个常通电励磁线圈和在所有励磁线圈上增设聚磁环轭的改造,研究了改进后磁选环柱的重要工作参数,并对改进前后的磁选环柱进行了选矿效果对比.结果表明,在设备工作参数和试验条件相同的情况下,改进后的磁选环柱既保证了精矿质量,又降低了尾矿铁品位2.2个百分点,提高了精矿铁回收率2.95个百分点,达到了理想的改造效果.

  4. The Removal of Iron From Hard Pulverised Kaolin by Dry High–Gradient Magnetic Separation

    Chun, Yu Kang

    1995-01-01

    Deposits of hard kaolin are abundant in China, with kaolin content in the ore exceeding 95%. It is, however, rather difficult to remove iron from the ore. It was demonstrated that wet high–gradient magnetic separation is very efficient in removing the iron compounds from kaolin. For hard kaolin, however, dry high–gradient magnetic separation (HGMS) may be more suitable. To this end, we have developed a new type of dry HGMS device for laboratory use. The separation performance of the device wa...

  5. Kaolin Beneficiation in a High–Gradient Magnetic Separator With a Ball Matrix

    Sultanovich, E. A.; Karmazin, V. I.

    1993-01-01

    Results are given of investigations into the determination of the main structural and technological parameters of a high–gradient magnetic separator with a ball matrix. The design has been developed and a possibility has been outlined of effective beneficiation of kaolin at the magnetic induction 1.0 to 1.2 T. Comparative tests of separators with a ball matrix and a steel wool matrix (SALA–HGMS) have shown that the parameters of separation are the same. In the former case, however, a consider...

  6. Separation of hematite from banded hematite jasper (BHJ) by magnetic coating

    Subhashree Singh; H.Sahoo; S.S.Rath; B.B.Palei; B.Das

    2015-01-01

    The separation of iron oxide from banded hematite jasper (BHJ) assaying 47.8% Fe, 25.6% SiO2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that besides hematite and goethite, jasper, a microcrystalline form of quartzite, is the major impurity associated with this ore. Beneficiation by conventional magnetic separation technique could yield a magnetic concentrate containing 60.8% Fe with 51% Fe recovery. In order to enhance the recovery of the iron oxide minerals, fine magnetite, colloidal magnetite and oleate colloidal magnetite were used as the coating material. When subjected to magnetic separation, the coated ore produces an iron concentrate containing 60.2% Fe with an enhanced recovery of 56%. The AFM studies indicate that the coagulation of hematite particles with the oleate colloidal magnetite facilitates the higher recovery of iron particles from the low grade BHJ iron ore under appropriate conditions.

  7. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  8. Removal of freshwater microalgae by a magnetic separation method

    Vergini, Sofia S.; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2013-04-01

    Some species of microalgae, with high growth rate and high lipid content, appear to be attractive alternatives as a feedstock for biodiesel production. The high-energy input for harvesting biomass and removing the water from the algae makes current commercial microalgal biodiesel production cost expensive. The major techniques currently employed in microalgae harvesting and recovery include centrifugation, coagulation-flocculation, bio-flocculation, filtration and screening, gravity sedimentation, and flotation. The purpose of this study was to investigate the harvesting of microalgae cells by coagulation using magnetic activated carbon, magnetite (FeO4) nanoparticles, and common chemical coagulants. Scenedesmus rubescens was selected and cultivated in 10 L flasks under continuous artificial light. Samples were taken at different operation intervals. Jar tests were conducted to investigate the effect of adsorption of microalgae on the magnetic material. The removal efficiency of microalgae was affected by the coagulants dose, stirring time and speed, and the initial microalgae concentration. The recovery of microalgae was greater in cultures with high initial microalgae concentration compared to cultures with low microalgae concentrations.

  9. Probing magnetic phase separation in manganites by nonlinear susceptibility

    At low frequencies ν≤300Hz, nonlinear magnetic susceptibility of polycrystalline La0.7Pb0.3Mn0.8(Co, Ni)0.2O3 samples near the ferromagnetic (FM)–paramagnetic (PM) phase transition reinforces the earlier observation, based on linear ac susceptibility, that these systems behave as a three-dimensional isotropic dipolar ferromagnet in the asymptotic critical regime and exhibit an isotropic dipolar to isotropic Heisenberg crossover. In addition, the nonlinear susceptibility results reveal the phase segregation of the conducting and insulating FM phases (clusters) within the conducting FM regime and existence of conducting FM clusters in the insulating PM matrix at high frequencies

  10. Preparation of Immuno-magnetic Beads and Their Separation & Detection to Ovary Cancer Cells

    2001-01-01

    The organic monomer-molecule with nanometer magnetic powder by means of reforming the surface of nanometer magnetic powder have been synthesized.Magnetic beads in diameter of 2μm or so are obtained by controlling conditions.Ovary cancer cells of ascites are separated and ovary cancer cells of blood are detected by using immuno-magnetic beads linked with ovary cancer cell mono-antibodies.Results show that the specificity is 85%,sensitivity is 87%,accuracy is 84%,cells acquiring purity is 90%,cells activity is 92% and detection sensitivity is 25×10-7.

  11. Thickness dependence of the magnetic anisotropy of Fe layers separated by Al

    Magnetic multilayers of 57Fe with nominal thickness, Tnom, between 0.4 and 1.0 nm separated by 3.0 nm Al spacer layers were prepared by alternate deposition of the constituents in high vacuum. The samples were investigated at 4.2 K in external magnetic field. A fraction of Fe atoms corresponding to about 0.3 nm equivalent Fe-thickness was found to mix into the Al spacer. The extremely strong magnetic anisotropy observed for Tnom nom = 0.8 nm, but full saturation was not achieved even for Tnom = 1 nm and 3 T magnetic field applied perpendicularly to the sample plane.

  12. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting

    Chen, Shuang-yin; Chu, Man-sheng

    2014-03-01

    To achieve high efficiency utilization of Panzhihua vanadium titano-magnetite, a new process of metalizing reduction and magnetic separation based on hot briquetting is proposed, and factors that affect the cold strength of the hot-briquetting products and the efficiency of reduction and magnetic separation are successively investigated through laboratory experiments. The relevant mechanisms are elucidated on the basis of microstructural observations. Experimental results show that the optimal process parameters for hot briquetting include a hot briquetting temperature of 475°C, a carbon ratio of 1.2, ore and coal particle sizes of less than 74 μm. Additionally, with respect to metalizing reduction and magnetic separation, the rational parameters include a magnetic field intensity of 50 mT, a reduction temperature of 1350°C, a reduction time of 60 min, and a carbon ratio of 1.2. Under these above conditions, the crushing strength of the hot-briquetting agglomerates is 1480 N, and the recovery ratios of iron, vanadium, and titanium are as high as 91.19%, 61.82%, and 85.31%, respectively. The new process of metalizing reduction and magnetic separation based on hot briquetting demonstrates the evident technological advantages of high efficiency separation of iron from other valuable elements in the vanadium titano-magnetite.

  13. Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions

    Dorelli, John C.; Bhattacharjee, Amitava; Raeder, Joachim

    2007-02-01

    We investigate the global properties of magnetic reconnection at the dayside terrestrial magnetopause under generic northward interplanetary magnetic field (IMF) conditions. In particular, we consider a zero dipole tilt case where the y and z components of the IMF (in GSM coordinates) are equal in magnitude, using three-dimensional resistive magnetohydrodynamics (MHD) simulations to address the following questions: (1) What is the geometry of the dayside X line? (2) How is current density distributed over the magnetopause surface? Using a technique described by Geene (1992) to track the magnetic nulls in the system, we identify the dayside X line as a magnetic separator line, a segment of a magnetic field line which extends across the dayside magnetopause, terminating in the cusps. We demonstrate that the separator line is the intersection of two separatrix surfaces which define volumes containing topologically distinct field lines. Parallel current density, proportional to the parallel electric field in our resistive MHD simulations, is distributed in a broad, thin sheet which extends across the separator line and terminates in the cusps. Thus separator reconnection at the dayside magnetopause displays features of both antiparallel (near the cusp nulls) and component (near the subsolar separator line) reconnection. We discuss some implications of our results for spacecraft observations of reconnection signatures.

  14. Ferronickel enrichment by fine particle reduction and magnetic separation from nickel laterite ore

    Xiao-hui Tang; Run-zao Liu; Li Yao; Zhi-jun Ji; Yan-ting Zhang; Shi-qi Li

    2014-01-01

    Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different temperatures (700-1000°C). Magnetic separa-tion of the reduced products was conducted using a SLon-100 cycle pulsating magnetic separator (1.2 T). Composition analysis indicates that the nickel laterite ore contains a total iron content of 22.50wt%and a total nickel content of 1.91wt%. Its mineral composition mainly con-sists of serpentine, hortonolite, and goethite. During the reduction process, the grade of nickel and iron in the products increases with in-creasing reduction temperature. Although a higher temperature is more favorable for reduction, the temperature exceeding 1000°C results in sintering of the products, preventing magnetic separation. After magnetic separation, the maximum total nickel and iron concentrations are 5.43wt%and 56.86wt%, and the corresponding recovery rates are 84.38%and 53.76%, respectively.

  15. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting

    Shuang-yin Chen; Man-sheng Chu

    2014-01-01

    To achieve high efficiency utilization of Panzhihua vanadium titano-magnetite, a new process of metalizing reduction and mag-netic separation based on hot briquetting is proposed, and factors that affect the cold strength of the hot-briquetting products and the effi-ciency of reduction and magnetic separation are successively investigated through laboratory experiments. The relevant mechanisms are elu-cidated on the basis of microstructural observations. Experimental results show that the optimal process parameters for hot briquetting in-clude a hot briquetting temperature of 475°C, a carbon ratio of 1.2, ore and coal particle sizes of less than 74 µm. Additionally, with respect to metalizing reduction and magnetic separation, the rational parameters include a magnetic field intensity of 50 mT, a reduction temperature of 1350°C, a reduction time of 60 min, and a carbon ratio of 1.2. Under these above conditions, the crushing strength of the hot-briquetting agglomerates is 1480 N, and the recovery ratios of iron, vanadium, and titanium are as high as 91.19%, 61.82%, and 85.31%, respectively. The new process of metalizing reduction and magnetic separation based on hot briquetting demonstrates the evident technological advan-tages of high efficiency separation of iron from other valuable elements in the vanadium titano-magnetite.

  16. Research on red mud treatment by a circulating superconducting magnetic separator.

    Li, Yiran; Chen, Haoshu; Wang, Jun; Xu, Fengyu; Zhang, Weimin

    2014-01-01

    Red mud (RM) accumulated over the years and caused a serious environmental problem. Iron-rich fraction separation is a cost-effective way to reduce the amount of disposal RM. A circulating high-gradient superconducting magnetic separator was produced in this work. Steel wool was filled in the circulating boxes. The boxes were connected by two chains, which moved in and out the magnetic field by a drive motor. The efficiency of iron-rich RM separation by the superconducting magnetic separator was investigated. An amount of 25% (w/w) iron-rich RM fractions with a grade of 65% were separated from the 56% iron content raw RM. The parameters of the steel wool matrix were important in controlling the iron-rich RM magnetic separation. Finer steel wool increased the iron recovery ratio, but decreased the grade of the iron-rich RM concentrates. Microscopic photographs of the RM particles showed that opaque mineral particles were enriched in the collected RM. The particle size distributions of raw, concentrate and residue RM were measured. The increased particle size of concentrate RM implied that large particles were entrapped in the steel wool matrix. PMID:24701921

  17. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration

  18. Effect of desliming on the magnetic separation of low-grade ferruginous manganese ore

    Tripathy, Sunil Kumar; Banerjee, P. K.; Suresh, Nikkam

    2015-07-01

    In the present investigation, magnetic separation studies using an induced roll magnetic separator were conducted to beneficiate low-grade ferruginous manganese ore. The feed ore was assayed to contain 22.4% Mn and 35.9% SiO2, with a manganese-to-iron mass ratio (Mn:Fe ratio) of 1.6. This ore was characterized in detail using different techniques, including quantitative evaluation of minerals by scanning electron microscopy, which revealed that the ore is extremely siliceous in nature and that the associated gangue minerals are more or less evenly distributed in almost all of the size fractions in major proportion. Magnetic separation studies were conducted on both the as-received ore fines and the classified fines to enrich their manganese content and Mn:Fe ratio. The results indicated that the efficiency of separation for deslimed fines was better than that for the treated unclassified bulk sample. On the basis of these results, we proposed a process flow sheet for the beneficiation of low-grade manganese ore fines using a Floatex density separator as a pre-concentrator followed by two-stage magnetic separation. The overall recovery of manganese in the final product from the proposed flow sheet is 44.7% with an assay value of 45.8% and the Mn:Fe ratio of 3.1.

  19. 永磁强磁选机磁系磁场仿真分析%Simulation analysis on magnet system magnetic field of high intensity permanent magnetic separator

    简辉华; 王卿

    2013-01-01

    After the structure and operation principle of the high intensity permanent magnetic separators being analyzed, finite element analysis software ANSYS was used to simulate the magnet system magnetic field of the separator, and distribution laws of magnetic flux density and magnetic line of force in separation space were obtained. The simulation results showed that the distribution of magnetic field was reasonable and simulated magnetic field intensity was coincident with measured one. The simulation results offered theoretical guide for the study on the same high intensity permanent magnetic separators.%分析了永磁强磁选机的结构与工作原理,并利用ANSYS软件的磁场分析功能,对该机磁系的磁场分布进行了有限元仿真分析,得到了分选空间内磁感应强度和磁力线分布规律.仿真分析结果表明:磁场分布合理,与实际测量磁场强度相符,可为同类永磁强磁选机磁场分布的研究提供参考.

  20. Particle Capture Efficiency in a Multi-Wire Model for High Gradient Magnetic Separation

    Eisenträger, Almut; Griffiths, Ian M

    2014-01-01

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles, removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle's entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separa...

  1. Ion separation due to magnetic field penetration into a multispecies plasma.

    Weingarten, A; Arad, R; Maron, Y; Fruchtman, A

    2001-09-10

    The magnetic field, the electron density, and the ion velocities in a multispecies plasma conducting a high fast-rising current are determined using simultaneous spectroscopic measurements. It is found that ion separation occurs in which a light-ion plasma is pushed ahead while a heavy-ion plasma lags behind the magnetic piston. We show that most of the momentum imparted by the magnetic field pressure is taken by the reflected light ions, and most of the dissipated magnetic field energy is converted into kinetic energy of these ions, even though their mass is only a small part of the total plasma mass. Such species separation with implications to the momenta and energy partitioning is shown to be of a general nature. PMID:11531532

  2. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  3. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.

    Del Giudice, Francesco; Madadi, Hojjat; Villone, Massimiliano M; D'Avino, Gaetano; Cusano, Angela M; Vecchione, Raffaele; Ventre, Maurizio; Maffettone, Pier Luca; Netti, Paolo A

    2015-04-21

    The deflection of magnetic beads in a microfluidic channel through magnetophoresis can be improved if the particles are somehow focused along the same streamline in the device. We design and fabricate a microfluidic device made of two modules, each one performing a unit operation. A suspension of magnetic beads in a viscoelastic medium is fed to the first module, which is a straight rectangular-shaped channel. Here, the magnetic particles are focused by exploiting fluid viscoelasticity. Such a channel is one inlet of the second module, which is a H-shaped channel, where a buffer stream is injected in the second inlet. A permanent magnet is used to displace the magnetic beads from the original to the buffer stream. Experiments with a Newtonian suspending fluid, where no focusing occurs, are carried out for comparison. When viscoelastic focusing and magnetophoresis are combined, magnetic particles can be deterministically separated from the original streamflow to the buffer, thus leading to a high deflection efficiency (up to ~96%) in a wide range of flow rates. The effect of the focusing length on the deflection of particles is also investigated. Finally, the proposed modular device is tested to separate magnetic and non-magnetic beads. PMID:25732596

  4. Physical coal cleaning of Midwestern coals by open-gradient magnetic separation

    Doctor, R.D.; Livengood, C.D.

    1990-01-01

    Open-Gradient Magnetic Separation (OGMS) using superconducting quadrupole magnets offers a novel beneficiation technology for removing pyritic sulfur from pulverized dry coal. It is estimated to have a power demand 75% lower than techniques using conventional electromagnets, while achieving higher separation forces. Additionally, the system operates in a continuous mode and uses no chemicals. Because OGMS is specifically applicable to finely ground coal (120-325 mesh), its development could encourage the commercialization of other unconventional coal technologies, such as coal-water slurries, fluidized-bed combustion, and synfuels. 3 figs., 1 tab.

  5. A Mathematical Model for The Separation of Viscous Liquid Flow by Magnetic Field

    Hassanov, Hikmet

    2003-01-01

    Inverse problem of the two - phase liquid flow separation on components under magnetic field action is firstly resolved at given law of the moving boundary alteration. Automodel solution is established, which may be approximated till various areas of dimensionless variable O. It is found the relationship between the phase radius r o and magnetic properties of the liquid involved. The dependence of velocity function on rheological parameters of the liquid is estimated. The changes of the liqui...

  6. Electronic and Magnetic Nano Phase Separation in Cobaltates La₂₋ₓSrₓCoO₄

    Li, Z W; Drees, Y.; Ricci, A.; Lamago, D.; Piovano, A.; M. Rotter; Schmidt, W.; Sobolev, O.; Rütt, U.; Gutowski, O.; Sprung, M.; Castellan, J. P.; Tjeng, L. H.; Komarek, A. C.

    2016-01-01

    The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the...

  7. MULTILEVEL (3D) MICROFLUIDIC TECHNOLOGY FOR AN INNOVATIVE MAGNETIC CELL SEPARATION PLATFORM

    Fouet, Marc; Cargou, Sébastien; Courson, Rémi; Blatché, Charline; Montrose, A.; Reybier, K; Gué, Anne-Marie

    2014-01-01

    We demonstrate a new concept of devices, which by combining 3D fluid engineering and localized mag-netic actuation enables the full integration of a cell tagging and magnetic separation device. We used a low cost, commercially available dry film (EMS Inc, Ohio, USA) that fits microfluidic requirements and gives the possibility to build easily 3D microfluidic structures. The labelling of blood monocytes with su-perparamagnetic particles was performed "up stream" with the aim of a microparticle...

  8. Theoretical and Experimental Study of the Magnetic Separation of Pollutants from Wastewater

    Mariani, Giacomo

    2010-01-01

    This Thesys reports the study of a HGMS (High GradientMagnetic Separation) process for the treatment of industrialwastewaters that considers an assisted chemical-physical pre-treatment for the removal of heavy metals through the bound by adsorption with added iron-oxide particulate matter (hematite). The considered filter, constituted by ferromagnetic stainless steel wool and permanent magnets, is studied with a new approach based on a statistical analysis that requires the study of the traje...

  9. Comprehensive Utilization of Ludwigite Ore Based on Metallizing Reduction and Magnetic Separation

    Xiao-jiao FU; Jia-qi ZHAO; Shuang-yin CHEN; Zheng-gen LIU; Tong-lai GUO; Man-sheng CHU

    2015-01-01

    With the aim of high-efifciency utilization of Dandong ludwigite ore, a new process of metallizing reduction and mag-netic separation was proposed, and the effects of reduction temperature, reduction time, carbon ratio, ore size and coal size on the efifciency of the process were investigated in details, and relevant mechanisms were elucidated by SEM and EDS. The optimum technological parameters for metallizing reduction and magnetic separation on ludwigite ore were obtained as reduction tempera-ture of 1 250 °C, reduction time of 60 min, carbon ratio of 1.4, ore size of 0.500−2.000 mm, and coal size of 0.50−1.50 mm. After adopting the optimum parameters, the iron content and recovery ratio of iron in magnetic substance are 87.78% and 88.02%, re-spectively, while the recovery ratios of boron, magnesium and silicon in non-magnetic substance are 88.86%, 94.60% and 98.66%, respectively. After metallizing reduction and magnetic separation, valuable elements of ludwigite ore could be separated and uti-lized in subsequent steelmaking process and hydrometallurgy process.

  10. Separation of Variables in the Classical Integrable SL(3) Magnetic Chain

    Sklyanin, E. K.

    1992-01-01

    There are two fundamental problems studied by the theory of hamiltonian integrable systems: integration of equations of motion, and construction of action-angle variables. The third problem, however, should be added to the list: separation of variables. Though much simpler than two others, it has important relations to the quantum integrability. Separation of variables is constructed for the $SL(3)$ magnetic chain --- an example of integrable model associated to a nonhyperelliptic algebraic c...

  11. Thinking out of the box for magnetic mineral separation using low temperature magnetism

    Lagroix, F.; Guyodo, Y. J. B.; Till, J. L.; Taylor, S. N.

    2014-12-01

    One timeless challenge in rock magnetic studies, inclusive of paleomagnetism and environmental magnetism, is decomposing a sample's bulk magnetic behaviour into its individual magnetic mineral components. We present a method permitting to decompose the magnetic behavior of a bulk sample experimentally and at low temperature avoiding any ambiguities in data interpretation due to heating induced alteration. A single instrument is used to measure the temperature dependence of the remanent magnetization and to apply different steps of AF demagnetizations and thermal demagnetization. The experimental method is validated on synthetic mixtures of magnetite, hematite, goethite as well as on natural loess samples where the contributions of magnetite, goethite, hematite and maghemite are successfully isolated. The experimental protocol can be adapted to target other iron bearing minerals relevant to the rock or sediment under study. One limitation rests on the fact that the method is based on remanent magnetization. Consequently, a quantitative decomposition of absolute concentration of individual components remains unachievable without assumptions. Nonetheless, semi-quantitative magnetic mineral concentrations were determined on synthetic and natural loess/paleosol samples in order to validate and test the method as a semi-quantitative tool in environmental magnetism studies.

  12. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation

    Highlights: ► Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ► The recovery of iron was highly depended on the water-leaching process after reduction roasting. ► The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  13. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation

    Zhang, Yali; Li, Huaimei [College of Chemical Engineering, Shandong University of Technology, 255081, Zibo, Shandong (China); Yu, Xianjin, E-mail: xjy@sdut.edu.cn [College of Chemical Engineering, Shandong University of Technology, 255081, Zibo, Shandong (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Using reduction roasting-water leaching-magnetic separation method, the recovery of iron from cyanide tailings was optimized. Black-Right-Pointing-Pointer The recovery of iron was highly depended on the water-leaching process after reduction roasting. Black-Right-Pointing-Pointer The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 Degree-Sign C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 Degree-Sign C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  14. Quantification of Non-Specific Binding of Magnetic Micro and Nano particles using Cell Tracking Velocimetry: Implication for magnetic cell separation and detection

    Chalmers, J. J.; Xiong, Y; X. Jin; Shao, M.; Tong, X; Farag, S.; Zborowski, M.

    2010-01-01

    The maturation of magnetic cell separation technology places increasing demands on magnetic cell separation performance. While a number of factors can cause suboptimal performance, one of the major challenges can be non-specific binding of magnetic nano or micro particles to non-targeted cells. Depending on the type of separation, this non-specific binding can have a negative effect on the final purity, the recovery of the targeted cells, or both. In this work, we quantitatively demonstrate t...

  15. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    Xu-Guang Huang

    2016-01-01

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud alon...

  16. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed

  17. Magnetic Separation-Assistant Fluorescence Resonance Energy Transfer Inhibition for Highly Sensitive Probing of Nucleolin.

    Li, Yan-Ran; Liu, Qian; Hong, Zhangyong; Wang, He-Fang

    2015-12-15

    For the widely used "off-on" fluorescence (or phosphorescence) resonance energy transfer (FRET or PRET) system, the separation of donors and acceptors species was vital for enhancing the sensitivity. To date, separation of free donors from FRET/PRET inhibition systems was somewhat not convenient, whereas separation of the target-induced far-between acceptors has hardly been reported yet. We presented here a novel magnetic separation-assistant fluorescence resonance energy transfer (MS-FRET) inhibition strategy for highly sensitive detection of nucleolin using Cy5.5-AS1411 as the donor and Fe3O4-polypyrrole core-shell (Fe3O4@PPY) nanoparticles as the NIR quenching acceptor. Due to hydrophobic interaction and π-π stacking of AS1411 and PPY, Cy5.5-AS1411 was bound onto the surface of Fe3O4@PPY, resulting in 90% of fluorescence quenching of Cy5.5-AS1411. Owing to the much stronger specific interaction of AS1411 and nucleolin, the presence of nucleolin could take Cy5.5-AS1411 apart from Fe3O4@PPY and restore the fluorescence of Cy5.5-AS1411. The superparamagnetism of Fe3O4@PPY enabled all separations and fluorescence measurements complete in the same quartz cell, and thus allowed the convenient but accurate comparison of the sensitivity and fluorescence recovery in the cases of separation or nonseparation. Compared to nonseparation FRET inhibition, the separation of free Cy5.5-AS1411 from Cy5.5-AS1411-Fe3O4@PPY solution (the first magnetic separation, MS-1) had as high as 25-fold enhancement of the sensitivity, whereas further separation of the nucleolin-inducing far-between Fe3O4@PPY from the FRET inhibition solution (the second magnetic separation, MS-2) could further enhance the sensitivity to 35-fold. Finally, the MS-FRET inhibition assay displayed the linear range of 0.625-27.5 μg L(-1) (8.1-359 pM) and detection limit of 0.04 μg L(-1) (0.05 pM) of nucleolin. The fluorescence intensity recovery (the percentage ratio of the final restoring fluorescence intensity

  18. Purification of condenser water in thermal power station by superconducting magnetic separation

    Ha, D. W.; Kwon, J. M.; Baik, S. K.; Lee, Y. J.; Han, K. S.; Ko, R. K.; Sohn, M. H.; Seong, K. C.

    2011-11-01

    Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2O 3 (hematite) and γ-Fe 2O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  19. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  20. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    Kondo, K., E-mail: kondokay@gmail.co [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Jin, T.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan)

    2010-11-01

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N{sub 2} reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  1. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    Kondo, K.; Jin, T.; Miura, O.

    2010-11-01

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N 2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  2. Separation of flow from chiral magnetic effect in U+U collisions using spectator asymmetry

    Chatterjee, Sandeep

    2014-01-01

    We demonstrate that the prolate shape of the Uranium nucleus generates anti-correlation between spectator asymmetry and initial state ellipticity of the collision zone, providing a way to constrain the initial event shape in U+U collisions. As an application, we show that this can be used to separate the background contribution due to flow from the signals of chiral magnetic effect.

  3. Nuclear charge and isobar separation in a gas-filled enge split-pole magnetic spectrograph

    The sepration technique is based on the fact that charge-changing processes of an ion in a gas, if they occur frequently enough in a magnetic field region, lead to trajectories determined by the average charge state of the ion in the gas. The technique has been used to separate isobaric 58Ni and 58Fe ions. 7 refs., 4 figs., 1 tab

  4. APPLICATION OF HIGH-GRADIENT MAGNETIC SEPARATION TO FINE PARTICLE CONTROL

    The report gives results of an assessment of the potential use of high-gradient magnetic separation (HGMS) as a means of collecting gas stream particulates. The assessment included both experiments and analyses of theoretical models. Phase I included evaluations of theoretical ex...

  5. Analysis of phase separation by thermal aging in duplex stainless steels by magnetic methods

    The phase separation in ferrite phase of duplex stainless steel is the primary cause of thermal aging embrittlement of the LWR primary pressure boundary components. In this study the phase separation of simulated duplex stainless steel was detected by Mossbauer spectroscopy and magnetic property analysis by VSM (Vibrating Specimen Magnetometer). The simulated duplex stainless steels, Fe-Cr binary, Fe-Cr-Ni Temary, and Fe-Cr-Ni-Si quaternary alloys, were aged at 370 and 400 deg C up to 5,340 hours. It was observed from Mossbauer spectra analysis that internal magnetic field increases with aging time and from VSM that the specific saturation magnetization and Curie temperature increase with aging time. These results are indicative that phase separation into Fe-rich region and Cr-rich region is caused by thermal aging in the temperature range of 370 - 400 deg C. In cases specimens containing Ni, the increase of specific saturation magnetization is much higher. This implies that Ni seems to promote Fe-Cr interdiffusion, which accelerates the phase separation into Fe-rich α phase and Cr-rich α' phase. (author)

  6. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation

    Gcina Mamba

    2016-06-01

    Full Text Available Organic and inorganic compounds utilised at different stages of various industrial processes are lost into effluent water and eventually find their way into fresh water sources where they cause devastating effects on the ecosystem due to their stability, toxicity, and non-biodegradable nature. Semiconductor photocatalysis has been highlighted as a promising technology for the treatment of water laden with organic, inorganic, and microbial pollutants. However, these semiconductor photocatalysts are applied in powdered form, which makes separation and recycling after treatment extremely difficult. This not only leads to loss of the photocatalyst but also to secondary pollution by the photocatalyst particles. The introduction of various magnetic nanoparticles such as magnetite, maghemite, ferrites, etc. into the photocatalyst matrix has recently become an area of intense research because it allows for the easy separation of the photocatalyst from the treated water using an external magnetic field. Herein, we discuss the recent developments in terms of synthesis and photocatalytic properties of magnetically separable nanocomposites towards water treatment. The influence of the magnetic nanoparticles in the optical properties, charge transfer mechanism, and overall photocatalytic activity is deliberated based on selected results. We conclude the review by providing summary remarks on the successes of magnetic photocatalysts and present some of the future challenges regarding the exploitation of these materials in water treatment.

  7. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  8. Magnetic separation of Dy(III) ions from homogeneous aqueous solutions

    The possibility to enrich paramagnetic dysprosium(III) ions in a magnetic field gradient is proved by means of interferometry, which may open the route for a magnetic separation of rare earth ions from aqueous solutions. The separation dynamics are studied for three different concentrations of DyCl3 and compared with those found recently in a sulphate solution of the 3d ion Mn(II). In view of the similar-sized hydration spheres for Dy(III) and Mn(II), the slower separation dynamics in DyCl3 is attributed to both a higher densification coefficient and the strong impact of Brownian motion due to the absence of ion-pair clusters

  9. About the Equations of Motion of a Magnetic Particle in a Magnetic Separator

    Mostika, Yu. S.; Karmazin, V. I.; Shutov, V. Yu.; Grebenyuk, L. Z.

    1999-01-01

    Equations of motion of magnetic particles in the flow medium near a cylindrical ferromagnetic collector have been developed. A vector equation, expressing the balance of the inertia force and the vector sum of three forces: the magnetic, the gravitational and the hydrodynamic drag force of a particle was taken as the initial equation. Reduced equations obtained from the initial one by rejection of terms corresponding to the inertia or the gravitational force were also considered. Examples of ...

  10. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1998 annual progress report

    'The objective is to reduce the volume and cost of high-level waste glass produced during US DOE remediation activities by demonstrating that magnetic separation can separate crystalline, amorphous, and colloidal constituents in vitrification feed streams known to be deleterious to the production of borosilicate glass. Magnetic separation will add neither chemicals nor generate secondary waste streams. The project includes the systematic study of magnetic interactions of waste constituents under controlled physical and chemical conditions (e.g., hydration, oxidation, temperature) to identify mechanisms that control the magnetic properties. Partitioning of radionuclides to determine their sorption mechanisms is also being studied. The identification of fundamental magnetic properties within the microscopic chemical environment in combination with hydrodynamic and electrodynamic models provides insights into the design of a system for optimal separation. Following this, experimental studies using superconducting open-gradient magnetic separation (OGMS) will be conducted to validate its effectiveness as a pretreatment technique.'

  11. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1998 annual progress report

    Doctor, R.D.; Nunez, L. [Argonne National Lab., IL (US); Crawford, C. [Westinghouse Savannah River Co., Aiken, SC (US); Ritter, J. [Univ. of South Carolina, Columbia, SC (US); Landsberger, S. [Univ. of Texas, Austin, TX (US)

    1998-06-01

    'The objective is to reduce the volume and cost of high-level waste glass produced during US DOE remediation activities by demonstrating that magnetic separation can separate crystalline, amorphous, and colloidal constituents in vitrification feed streams known to be deleterious to the production of borosilicate glass. Magnetic separation will add neither chemicals nor generate secondary waste streams. The project includes the systematic study of magnetic interactions of waste constituents under controlled physical and chemical conditions (e.g., hydration, oxidation, temperature) to identify mechanisms that control the magnetic properties. Partitioning of radionuclides to determine their sorption mechanisms is also being studied. The identification of fundamental magnetic properties within the microscopic chemical environment in combination with hydrodynamic and electrodynamic models provides insights into the design of a system for optimal separation. Following this, experimental studies using superconducting open-gradient magnetic separation (OGMS) will be conducted to validate its effectiveness as a pretreatment technique.'

  12. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study.

    Brandão, Delfina; Liébana, Susana; Campoy, Susana; Alegret, Salvador; Isabel Pividori, María

    2015-10-01

    This paper addresses a comparative study of immunomagnetic separation of Salmonella using micro and nano-sized magnetic carriers. In this approach, nano (300 nm) and micro (2.8 μm) sized magnetic particles were modified with anti-Salmonella antibody to pre-concentrate the bacteria from the samples throughout an immunological reaction. The performance of the immunomagnetic separation on the different magnetic carriers was evaluated using classical culturing, confocal and scanning electron microscopy to study the binding pattern, as well as a magneto-actuated immunosensor with electrochemical read-out for the rapid detection of the bacteria in spiked milk samples. In this approach, a second polyclonal antibody labeled with peroxidase as electrochemical reporter was used. The magneto-actuated electrochemical immunosensor was able to clearly distinguish between food pathogenic bacteria such as Salmonella enterica and Escherichia coli, showing a limit of detection (LOD) as low as 538 CFU mL(-1) and 291 CFU mL(-1) for magnetic micro and nanocarriers, respectively, in whole milk, although magnetic nanoparticles showed a noticeable higher matrix effect and higher agglomeration effect. These LODs were achieved in a total assay time of 1h without any previous culturing pre-enrichment step. If the samples were pre-enriched for 8 h, the magneto immunosensor based on the magnetic nanoparticles was able to detect as low as 1 CFU in 25 mL of milk (0.04 CFU mL(-1)). PMID:26078149

  13. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    Eisenträger, Almut

    2014-07-21

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle\\'s entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separation cycles may increase efficiency. © 2014 AIP Publishing LLC.

  14. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    Complete text of publication follows. In a previous work on the (U1-xNdx)Co2Ge2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: TN(x=0.4) = 130 K, and TN(x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  15. Model Magnet Development of D1 Beam Separation Dipole for the HL-LHC Upgrade

    Nakamoto, T; Kawamata, H; Enomoto, S; Higashi, N; Idesaki, A; Iio, M; Ikemoto, Y; Iwasaki, R; Kimura, N; Ogitsu, T; Okada, N; Sasaki, K I; Yoshida, M; Todesco, E

    2015-01-01

    KEK has been conducting the design study of the beam separation dipole magnet, D1, for the High Luminosity LHC (HL-LHC) upgrade within a framework of the CERN-KEK collaboration. The D1 magnet has a coil aperture of 150 mm using Nb-Ti superconducting cable and the nominal dipole field of 5.6 T can be generated at 12 kA and 1.9 K. A field integral of 35 T·m is required. The development of the 2-m-long model magnet has been started since May 2013. This paper describes the development status of the short model magnet as well as advancement of the fundamental design studies.

  16. Separating Effect of a Novel Combined Magnetic Field on Inclusions in Molten Aluminum Alloy

    He, Yanjie; Li, Qiulin; Liu, Wei

    2012-10-01

    The feasibility and effectiveness of a novel combined magnetic field (CMF) on the removal of inclusions with a density smaller than the surrounding melt were investigated. The experiment of the separating effect of CMF was conducted on a laboratory-scale apparatus by the simultaneous application of a rotating magnetic field (RMF) and a downward traveling magnetic field (TMF). Primary silicon particles precipitating from the solidification process of Al-Si-Cu alloy were regarded as the inclusions in a molten aluminum alloy. It was found that a CMF consisting of both a RMF and a downward TMF was able to separate silicon particles from the molten Al-Si-Cu alloy by making these particles migrate vertically toward the upper part of the samples. Compared with downward TMF or RMF, CMF improved the separating effectiveness substantially. It was proposed that this type of CMF was approved to be highly effective at eliminating the inclusions with a density smaller than the surrounding molten alloy. A tentative mechanism for the high separating effect of CMF was discussed.

  17. Challenge to the volume reduction of contaminated soil based on magnetic separation

    A great amount of radioactive substances were released in the neighborhood of Fukushima Daiichi Nuclear Power Station following the accident of this plant. In particular, damage from radioactive cesium (134 or 137) has become the main case of trouble, incurring the necessity of decontamination of soil in the contaminated territory. In addition, a large amount of contaminated soil was generated due to the decontamination work, and its volume reduction has become a large challenge for the management and storage. This paper takes up magnetic separation technology as one of the technologies of volume reduction, and introduces its development condition. In this method, soil is firstly classified by size, and clay (or silt) with small particles, which adsorbs about 80% of radioactive cesium in soil, is separated from sand gravel. Furthermore, this clay portion is separated based on magnetic separation to 1:1 type and 1:2 type clay minerals with different magnetic susceptibilities, for the purpose of volume reduction. This paper describes the principle of the above method, as well as the development history to date. (A.O.)

  18. On-chip micro-electromagnets for magnetic-based bio-molecules separation

    Ramadan, Qasem E-mail: qasem@pmail.ntu.edu.sg; Samper, Victor; Poenar, Daniel; Yu Chen

    2004-10-01

    This paper reports a comprehensive theoretical, finite element and measurement analysis of different designs of planar micro-electromagnets for bio-molecular manipulation. The magnetic field due to current flowing in complex shapes of current-carrying conductors have been calculated analytically, simulated using finite-element analysis (FEA), and measured using the superconducting quantum interference device technique (SQUID). A comparison of the theoretical and measured magnetic field strength and patterns is presented. The planar electromagnets have been fabricated using patterned Al 2 {mu}m thick. The aim of the study is to explore and optimize the geometrical and structural parameters of planar electromagnets that give rise to the highest magnetic fields and forces for magnetic micro-beads manipulation. Magnetic beads are often used in biochemical assays for separation of bio-molecules. Typical beads are 0.2-10 {mu}m in diameter and have superparamagnetic properties. Increasing the intensity of the magnetic field generated by a coil by injection a larger current is not the most suitable solution as the maximum current is limited by Joule heating. Consequently, in order to maximize the field for a given current, one should optimize the geometry of the coil, as this is an extremely significant factor in determining the magnetic field intensity in 2D planar designs. The theoretical and measured results of this work show that the meander micro-electromagnet with mesh-shaped winding profile produces the strongest magnetic field (about 2.7 {mu}T for a current intensity of 6 mA) compared with other meander designs, such as the serpentine and rosette-shaped ones. The magnetic fields of these three types of meander-shaped micro-electromagnets were compared theoretically with that produced by a spiral micro-electromagnet whose technological realization is more complicated and costly due to the fact that it requires an additional insulation layer with a contact window and

  19. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law. PMID:24943952

  20. Removal of malaria-infected red blood cells using magnetic cell separators: A computational study.

    Kim, Jeongho; Massoudi, Mehrdad; Antaki, James F; Gandini, Alberto

    2012-02-15

    High gradient magnetic field separators have been widely used in a variety of biological applications. Recently, the use of magnetic separators to remove malaria-infected red blood cells (pRBCs) from blood circulation in patients with severe malaria has been proposed in a dialysis-like treatment. The capture efficiency of this process depends on many interrelated design variables and constraints such as magnetic pole array pitch, chamber height, and flow rate. In this paper, we model the malaria-infected RBCs (pRBCs) as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the infected cells are numerically calculated inside a micro-channel exposed to a periodic magnetic field gradient. First-order stiff ordinary differential equations (ODEs) governing the trajectory of particles under periodic magnetic fields due to an array of wires are solved numerically using the 1(st) -5(th) order adaptive step Runge-Kutta solver. The numerical experiments show that in order to achieve a capture efficiency of 99% for the pRBCs it is required to have a longer length than 80 mm; this implies that in principle, using optimization techniques the length could be adjusted, i.e., shortened to achieve 99% capture efficiency of the pRBCs. PMID:22345827

  1. High-gradient magnetic separation for the treatment of high-level radioactive wastes

    Argonne National Laboratory is developing an open-gradient magnetic separation (OGMS) system to fractionate and remove nonglass-forming species from high-level radioactive wastes (HLW); however, to avoid clogging, OGMS may require high-gradient magnetic separation (HGMS) as a pretreatment to remove the most magnetic species from the HLW. In this study, the feasibility of using HGMS in the pretreatment of HLW was demonstrated. A HLW simulant of hanford's C-103 tank waste, which contained precipitate hydroxides and oxides of Fe, Al, Si, and Ca, was used. Preliminary fractionation results from a 0.3-T bench-scale HGMS unit showed that a significant amount of Fe could be removed from the HLW simulant. Between 1 and 2% of the total Fe in the sludge was removed during each stage, with over 18.5% removed in the 13 stages that were carried out. Also, in each stage, the magnetically retained fraction contained about 20% more Fe than the untreated HLW; however, it also contained a significant amount of SiO2 in relatively large particles. This indicated that SiO2 was acting possibly as a nucleation agent for Fe (i.e., an Fe adsorbent) and that the fractionation was based more on size than on magnetic susceptibility

  2. High-gradient magnetic separation for the treatment of high-level radioactive wastes

    Ebner, A.D.; Ritter, J.A. [Univ. of South Carolina, Columbia, SC (United States); Nunez, L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1999-04-01

    Argonne National Laboratory is developing an open-gradient magnetic separation (OGMS) system to fractionate and remove nonglass-forming species from high-level radioactive wastes (HLW); however, to avoid clogging, OGMS may require high-gradient magnetic separation (HGMS) as a pretreatment to remove the most magnetic species from the HLW. In this study, the feasibility of using HGMS in the pretreatment of HLW was demonstrated. A HLW simulant of hanford`s C-103 tank waste, which contained precipitate hydroxides and oxides of Fe, Al, Si, and Ca, was used. Preliminary fractionation results from a 0.3-T bench-scale HGMS unit showed that a significant amount of Fe could be removed from the HLW simulant. Between 1 and 2% of the total Fe in the sludge was removed during each stage, with over 18.5% removed in the 13 stages that were carried out. Also, in each stage, the magnetically retained fraction contained about 20% more Fe than the untreated HLW; however, it also contained a significant amount of SiO{sub 2} in relatively large particles. This indicated that SiO{sub 2} was acting possibly as a nucleation agent for Fe (i.e., an Fe adsorbent) and that the fractionation was based more on size than on magnetic susceptibility.

  3. Development and creation of the electromagnetic separator for isotope separation in the system of opposing axisymmetric magnetic fields with two fields reversed

    The paper reports the results of work on creation of a setup for isotope separation in the system of opposing axisymmetric magnetic fields with two field reverses. Consideration is given to a real possibility of improving the efficiency of the electromagnetic separator and its resolving power in the double-reverse magnetic field system. It is demonstrated that the use of the opposing axisymmetric field system may substantially reduce the energy consumption during the process of isotope separation. The estimated magnetic field of the facility attests to a possibility of molybdenum isotope separation and isolation of high-purity 98Mo and 100Mo isotopes required for production of the 99Mo/99Tc generator, most widely used in modern medicine.

  4. A water-fat separation imaging method for the brain on low field magnetic resonance imaging

    2009-01-01

    Water-fat separation is a particularly important problem for magnetic resonance imaging.Although many methods have been proposed,the reliability is still challenging.In this work,we have presented a method based on the combination of the branch-cut method and multigrid algorithm to get a more robust performance of water-fat separation.First,the branch-cut method is applied to identify residues,which violates the requirement that the interacting phase gradient around a closed path be zero.Residues and branch...

  5. Magnetic antibody immunoassay (MAIA) - a new improved separation technique in radioimmunoassay

    Following a short description of the principle of radioimmunoassay and immunoradiometric assay, the special difficulties connected with the separation steps are discussed. Centrifugation is subject to inaccuracies and both time-consuming and technically complicated. Moreover it involves the risk of microbial or radioactive contamination. A new solid-phase procedure is presented using magnetizable particles as solid phase which are for instance bonded with the antibody. Separation is effected by collection of the magnetizable particles and the attached antibodies using a permanent magnet and subsequent decanting of the supernatant. The method is explained using two examples (cortisol, digoxin). (ZDE)

  6. 浅析聚磁介质在磁选机中的应用%Analysis on the Assembled Magnetic Media Application in the Magnetic Separator

    赵礼兵; 张玉栋; 李富平

    2012-01-01

    高梯度磁选机是在其他强磁选机的基础上发展起来的一种新型强磁选机.通过整个高梯度磁选机工作体积的磁化场是均匀的,即工作体积中的任何一个颗粒受到的力相同,且磁化场中的磁介质被均匀磁化,同直径的磁介质在磁化空间的任何位置,其梯度的数量级是相同的,与一般磁选机相比较,磁场梯度大大提高,从而为磁性颗粒的选别提供强大的磁力克服流体阻力和重力,使微细粒弱磁性颗粒可以得到有效的回收.高梯度磁选是在能产生高梯度的聚磁介质上进行的,而高梯度的产生与聚磁介质的材质、形状、放置方式、相对尺寸及充填率等参数有密切关系,对磁选机的磁选指标有较大的影响.%High gradient magnetic separator is a new type high-intensity magnetic separator which was developed on the basis of other strong magnetic separator. The magnetic field in the working volume of the high gradient magnetic separator is uniform, which means that any particles was subjected to equal force in the working volume, and the magnetic medium was uniform magnetization in uniform magnetic field. The magnetic medium with the same diameter in any postion of the magnetic space has the same gradient magnitude, ompared with general magnetic separator, the magnetic field gradient was greatly increased t which could provide a powerful magnetic force to overcome the fluid resistance and gravity for sorting of magnetic particles,so that the micro-fine weak-intensity magnetic particles can be effectively recycled. The high gradient magnetic separation is conducted in the magnetic matrices which can produce high gradient,and the generation of the high gradient has a close relation with the material,shape,the way of placement,relative size,filling rate and other parameters of the magnetic matrices,which have a significant influence on the magnetic separation index of the magnetic separator.

  7. Developments in magnet modeling and beam optics for the ARIS separator at FRIB

    Portillo, M.; Hausmann, M.; Chouhan, S.

    2016-06-01

    A description is given on the methods used for field analysis of magnets and the extracted parameters used for accurate beam simulations of the fragment separator. For the strong focusing magnets, Fourier decomposition is used in order to extract induced fields associated with higher order multipoles. For dipoles, a 2D field map model is used instead in order to emulate complex field distributions. The theory of the models and the techniques chosen are described, along with results from Monte Carlo beam simulations up to 5th order. The n = 6 multipole induced by the quadrupole is the most significant component. The effects on separator performance with and without this component in the model are demonstrated.

  8. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  9. Separated Eutectic Structure of Al-11 wt pct Si Alloy under Direct Magnetic Field

    Yan WANG; Jiang JIANG; Zhonghua ZHANG; Xiufang BIAN

    2001-01-01

    An investigation has been made on the effect of a direct magnetic field on the structure of eutectic Al-11 wt pct Si alloy. At the superheated temperature of 750℃, a separated eutectic structure in the alloy occurs under the condition of the magnetic induction intensity up to 0.24 T. A great number of primary Si particles in the Al-11 wt pct Si alloy are segregated to the surface layer of the specimens. The microstructure of the alloy consists of primary Si particles in the surface layer and Al matrix in the inner part of the specimen. Moreover, the higher the superheated temperature, the more remarkable the segregation trend. The mechanism of the formation of separated eutectic has been discussed.

  10. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films

    Kandpal, Lalit M.; Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Gupta, Anurag; Awana, V. P. S.; Singh, H. K.

    2016-06-01

    The present study reports the impact of magnetic anisotropy (MA) on magnetotransport properties such as the magnetic transitions, magnetic liquid behavior, glass transition and anisotropic magnetoresistance (AMR) in epitaxial film (thickness 42 nm) of strongly phase separated manganite La5/8-yPryCa3/8MnO3 (y≈0.4). Angle dependent magnetization measurement confirms the out-of-plane magnetic anisotropy with the magnetic easy axes aligned in the plane of the film and the magnetic hard axis along the normal to the film plane. The more prominent divergence between the zero filed cooled (ZFC) and field cooled warming (FCW) and the stronger hysteresis between the field cooled cooling (FCC) and FCW magnetization for H ∥ shows the weakening of the magnetic liquid along the magnetic hard axis. The peak at Tp≈42 K in FCW magnetization, which characterizes the onset of spin freezing shifts down to Tp≈18 K as the field direction is switched from the easy axes (H ∥) to the hard axis (H ⊥). The glass transition, which appears at Tg≈28 K for H ∥ disappears for H ⊥. The easy axis magnetization (M∣∣) appears to saturate around H~20 kOe, but the hard axis counterpart (M⊥) does not show such tendency even up to H=50 kOe. MA appears well above the ferromagnetic (FM) transition at T≈170 K, which is nearly the same as the Neel temperature (TN) of M⊥ - T . The temperature dependent resistivity measured at H=10 kOe applied along the easy axis (ρ|| - T) and the hard axis (ρ⊥ - T) shows insulator metal transition (IMT) at ≈106 K and ≈99 K in the cooling cycle, respectively. The large difference between ρ⊥ - T and ρ|| - T during the cooling cycle and in the vicinity of IMT results in huge AMR of ≈-142% and -115%. The observed properties have been explained in terms of the MA induced variation in the relative fraction of the coexisting magnetic phases.

  11. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation; Caracterizacao da granalha de aco recuperada do residuo de rochas ornamentais por separacao magnetica

    Junca, E.; Telles, V.B.; Rodrigues, G.F.; Oliveira, J.R. de; Tenorio, J.A.S., E-mail: eduardojunca@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2010-07-01

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 {mu}m with 4 wt.% over 100 {mu}m and content metallic iron of 93 wt%. (author)

  12. Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis

    Raed Abu-Reziq; Howard Alper

    2012-01-01

    The synthesis of magnetically separable quasi-homogeneous base catalyst and heterogeneous base catalyst is described. The quasi-homogeneous catalyst is achieved by supporting silane monomers functionalized with different amine groups directly on the surface of magnetite nanoparticles. The heterogeneous catalyst is prepared via a sol-gel process in which silane monomers containing different amine groups are copolymerized with tetraethoxysilane in the presence of magnetite nanoparticles functio...

  13. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    Cerff, M.; Scholz, A.; Käppler, T.;

    2013-01-01

    In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS) constit...... production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. Biotechnol. Bioeng. 2013; 110: 2161–2172. © 2013 Wiley Periodicals, Inc....

  14. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. PMID:25689073

  15. Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

    An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found

  16. Separation of ferromagnetic components by analyzing the hysteresis loops of remanent magnetization

    Kosareva, L. R.; Utemov, E. V.; Nurgaliev, D. K.; Shcherbakov, V. P.; Kosarev, V. E.; Yasonov, P. G.

    2015-09-01

    The new method is suggested for separating ferromagnetic components in sediments through analyzing the coercivity spectra of the samples by the continuous wavelet transform with the Gaussian-based wavelet (MHAT). A total of 1056 samples of Lake Khuvsgul's sediments (Mongolia) are studied. At least four groups of magnetic components are identified based on the analysis of their magnetization and remagnetization curves. Almost all samples are found to contain two components of bacterial origin which are represented by the assemblages of the interacting single-domain grains and differ by the grain compositions (magnetite and greigite). The applicability of the magnetic data for diagnosing magnetotactic bacteria in sediments and building paleoecological and paleoclimatic reconstructions is demonstrated.

  17. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles

    Ashtari, Parviz, E-mail: pashtari@aeoi.org.ir [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of); Wang Kemin; Yang Xiaohai [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ahmadi, Seyed Javad [NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2009-07-30

    Magnetically-assisted chemical separation/preconcentration method for the analysis of beryllium from aqueous solutions was developed. According to this method several extractants were coated on certain magnetic microparticles to assist the extraction of beryllium from the aqueous solutions. The influence of different parameters (type and amount of extractant, pH, equilibrium time and ionic strength) was investigated. Also, the interfering effect of various cationic and anionic species on the percent recovery of beryllium was studied. The applied spectrophotometric method showed good linearity and precision at a given wavelength (605.0 nm). Among the extractants used, quinalizarine resulted in almost a full recovery of beryllium at pH 7.4, which was the optimum extraction pH. The equilibrium time of the extraction was 10.0 min. The quantitative re-extraction was carried out by 0.5 M nitric acid. Also, the stability of the extractant-coated magnetic microparticles was 4 cycles (extraction and re-extraction) and the used magnetic microparticles showed good selectivity for beryllium against other cations and anions. Finally, the developed method was applicable for the preconcentration and separation of beryllium from spring water, tap water and certified reference waters. The obtained detection limit was 30 ng L{sup -1}.

  18. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation

    Yang Huifen, E-mail: yanghf@ustb.edu.cn [Key Laboratory for High-Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083 (China); Jing Lili [Key Laboratory for High-Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083 (China); Zhang Baogang [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2011-01-30

    A technique with coal-based direct reduction followed by magnetic separation is presented in this study for recovering and reusing iron otherwise wasted in vanadium tailings. Process parameters such as usage of additives, tailings/reductant/additives ratio, reduction temperature and time, as well as particle size were experimentally determined. The optimum process parameters were proposed as follows: using lime as the additive, lignite as the reductant, weight ratios of vanadium tailings/lignite/lime at 100:30:10, reduction roasting at 1200 deg. C for 60 min, and particle size of 98% less than 30 {mu}m in the final roasted product feeding to magnetic separation. Under these conditions, a magnetic concentrate containing 90.31% total iron and 89.76% metallization iron with a total iron recovery rate of 83.88% was obtained. In addition, mineralography of vanadium tailings, coal-based reduction product and magnetic concentrate were studied by X-ray powder diffraction technique (XRD). The microstructures of above products were analyzed by scanning electron microscope (SEM) to help understand the mechanism.

  19. The gas-filled magnet: An isobar separator for accelerator mass spectrometry

    The most difficult problem for accelerator mass spectrometry is the rejection of stable atomic isobars. The intensity of isobaric interference is expected to become a problem for 36Cl measurements with the use of new high-intensity ion sources. Although better chemical separation may be possible through improved sample preparation, the device expected to help most with this problem is the gas-filled magnet. We tested a gas-filled Enge split-pole spectrograph combined with a multi-plate gas ionization detector for the separation of 36S from 36Cl and obtained an isobar separation of about two orders of magnitude better than that possible with the detector alone. 10 refs., 3 figs., 1 tab

  20. A ferrofluid guided system for the rapid separation of the non-magnetic particles in a microfluidic device.

    Asmatulu, R; Zhang, B; Nuraje, N

    2010-10-01

    A microfluidic device was fabricated via UV lithography technique to separate non-magnetic fluoresbrite carboxy microspheres (approximately 4.5 microm) in the pH 7 ferrofluids made of magnetite nanoparticles (approximately 10 nm). A mixture of microspheres and ferrofluid was injected to a lithographically developed Y shape microfluidic device, and then by applying the external magnet fields (0.45 T), the microspheres were clearly separated into different channels because of the magnetic force acting on those non-magnetic particles. During this study, various pumping speeds and particle concentrations associated with the various distances between the magnet and the microfluidic device were investigated for an efficient separation. This study may be useful for the separation of biological particles, which are very sensitive to pH value of the solutions. PMID:21137734

  1. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  2. Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes

    Magnetic fractions (MFs) in fly ashes from eight coal-burning power plants were extracted by magnetic separation procedure. Their mineralogy and potential leachability of heavy metals were analyzed using rock magnetism, X-ray diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDX) and leaching procedures (toxicity characteristics leaching procedure by the United States Environmental Protection Agency, TCLP, and gastric juice simulation test, GJST). Results show that the MFs in the fly ashes range between 2.2 and 16.3 wt%, and are generally composed of magnetite, hematite, quartz and mullite. Thermomagnetic analysis and SEM/EDX indicate that the main magnetic carrier magnetite is substituted with small amounts of impure ions, and its structures are featured by rough, dendritic and granular iron spherules. The MFs are found to be rich in Fe, Mn, Cr, Cu, Cd and Pb. Compared with the non-magnetic fractions (NMFs), the MFs have about 5 times higher iron, and 1.6 times higher Mn, Cr, Cu and Cd concentrations. The TCLP test shows that the TCLP-extractable Cr, Cu, and Pb concentrations in the MFs are higher than those in the NMFs, while the TCLP-extractable Cd concentration in the MFs and NMFs is below the detection limit ( Cr > Pb > Cd. The heavy metals of fly ashes have a great potential to be released into the environment under acid environment.

  3. Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes.

    Lu, S G; Chen, Y Y; Shan, H D; Bai, S Q

    2009-09-30

    Magnetic fractions (MFs) in fly ashes from eight coal-burning power plants were extracted by magnetic separation procedure. Their mineralogy and potential leachability of heavy metals were analyzed using rock magnetism, X-ray diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDX) and leaching procedures (toxicity characteristics leaching procedure by the United States Environmental Protection Agency, TCLP, and gastric juice simulation test, GJST). Results show that the MFs in the fly ashes range between 2.2 and 16.3wt%, and are generally composed of magnetite, hematite, quartz and mullite. Thermomagnetic analysis and SEM/EDX indicate that the main magnetic carrier magnetite is substituted with small amounts of impure ions, and its structures are featured by rough, dendritic and granular iron spherules. The MFs are found to be rich in Fe, Mn, Cr, Cu, Cd and Pb. Compared with the non-magnetic fractions (NMFs), the MFs have about 5 times higher iron, and 1.6 times higher Mn, Cr, Cu and Cd concentrations. The TCLP test shows that the TCLP-extractable Cr, Cu, and Pb concentrations in the MFs are higher than those in the NMFs, while the TCLP-extractable Cd concentration in the MFs and NMFs is below the detection limit (Cr>Pb>Cd. The heavy metals of fly ashes have a great potential to be released into the environment under acid environment. PMID:19380201

  4. Magnetic design and field optimization of a superferric dipole for the RISP fragment separator

    Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.

    2015-10-01

    The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.

  5. Isotope production 98Mo and 100Mo electromagnetic separators on system axisymmetric magnetic fields with two reverse fields

    The paper demonstrates the possibility of separating 98Mo and 100Mo isotopes by means of the electromagnetic separator in the system of axially symmetric magnetic fields with two field reversals. The advantage of the method lies in the separation of the 100M o isotope in its pure form, without being contaminated with other isotopes. Of apparent interest is the proposed here method of increasing the productive capacity of the electromagnetic technique of isotope separation.

  6. Study of excess Fe metal in the lunar fines by magnetic separation, Moessbauer spectroscopy, and microscopic examination.

    Housley, R. M.; Grant, R. W.; Abdel-Gawad, M.

    1972-01-01

    A simple and convenient method of making quantitative magnetic separations has been applied to the lunar fines. The fractions obtained form groups containing distinctively different particle types; thus, it appears that magnetic separation in itself many be a useful way of characterizing lunar fines. Moessbauer studies of fines 10084 show that the metal cannot contain more than about 1.5% Ni, implying that by far the bulk of the metal results from reduction rather than from direct meteoritic addition. Microscopic examination of magnetic separates from 15101 fines suggests that reduction of Fe accompanies every major impact event on the moon.

  7. 磁选柱的分选特性分析与实践应用%Characteristic Analysis and Application of the Separation of Magnetic Separation Column

    赵通林; 陈中航; 陈广振

    2013-01-01

    The Magnetic field characteristics,the separation process,and the industrial application of magnetic separation column are analyzed in this paper.The reason why the separation precision is so high is discussed.The practice showed when the magnetic separation column was used,the grade of the iron concentrate is 2% ~ 5% higher than that of the Drum magnetic separator.Also,some improvements are pointed for the further research.%本文分析了磁选柱的磁场特性、分选过程和工业生产情况,讨论了磁选柱分选精度高的原因.实践表明,磁选柱用于精选作业,分选磁铁矿低品位粗精矿最终精矿铁品位优于筒式磁选机精矿2%~5%.同时指出了需改进之处,为进一步的开发研究工作提供了方向.

  8. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation

    Ito, D; Nishimura, K; Miura, O [Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397 (Japan)], E-mail: dai@eei.metro-u.ac.jp

    2009-03-01

    Zirconium ferrite particles are good adsorbent for phosphate ions. Magnetic separation characteristics for removal of phosphate from treated water of sewage plants with the adsorbent have been studied to prevent eutrophication of semi-enclosed bay, e.g. the bay of Tokyo. Based on the adsorption for the phosphate ions and ferromagnetic properties of the zirconium ferrite adsorbent, high gradient magnetic separation characteristics with using superconducting magnet was discussed. Very rapid magnetic filtration velocity, i.e. 1m/s, and regeneration properties of the adsorbent indicate that the zirconium ferrite is the excellent adsorbent for phosphorus removal and recycle from treated water of large scale sewage plants.

  9. Magnetic particle separation technique: a reliable and simple tool for RIA/IRMA and quantitative PCR assay

    Five types of magnetic particles without or with aldehyde, amino and carboxyl functional groups, respectively were used to immobilize first or second antibody by three models, i. e. physical adsorption, chemical coupling and immuno-affinity, forming four types of magnetic particle antibodies. The second antibody immobilized on polyacrolein magnetic particles through aldehyde functional groups and the first antibodies immobilized on carboxylic polystyrene magnetic particles through carboxyl functional groups were recommended to apply to RIAs and/or IRMAs. Streptavidin immobilized on commercial magnetic particles through amino functional groups was successfully applied to separating specific PCR product for quantification of human cytomegalovirus. In the paper typical data on reliability of these magnetic particle ligands were reported and simplicity of the magnetic particle separation technique was discussed. The results showed that the technique was a reliable and simple tool for RIA/IRMA and quantitative PCR assay. (author)

  10. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui; Srinivasakannan, C.; Chen, Guo; Peng, Jinhui

    2014-05-01

    The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite.

  11. Upgrading of Low-Grade Manganese Ore by Selective Reduction of Iron Oxide and Magnetic Separation

    Gao, Yubo; Olivas-Martinez, M.; Sohn, H. Y.; Kim, Hang Goo; Kim, Chan Wook

    2012-12-01

    The utilization of low-grade manganese ores has become necessary due to the intensive mining of high-grade ores for a long time. In this study, calcined ferruginous low-grade manganese ore was selectively reduced by CO, which converted hematite to magnetite, while manganese oxide was reduced to MnO. The iron-rich component was then separated by magnetic separation. The effects of the various reduction parameters such as particle size, reduction time, temperature, and CO content on the efficiency of magnetic separation were studied by single-factor experiments and by a comprehensive full factorial experiment. Under the best experimental conditions tested, the manganese content in the ore increased from around 36 wt pct to more than 44 wt pct, and almost 50 wt pct of iron was removed at a Mn loss of around 5 pct. The results of the full factorial experiments allowed the identification of the significant effects and yielded regression equations for pct Fe removed, Mn/Fe, and pct Mn loss that characterize the efficiency of the upgrading process.

  12. Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water

    Cheng Liu

    2015-01-01

    Full Text Available Removal performance of arsenic in water by a novel magnetic chitosan nanoparticle (MCNP with a diameter of about 10 nm, including adsorption kinetics, adsorption isotherm, main influencing factors, and regeneration effects, was investigated. In addition, the effective separation way for MCNP particles and the new application mode were developed to prompt the application of MCNP. The results showed that MCNP exhibited excellent ability to remove As(V and As(III from water in a wide range of initial concentrations, MCNP removed arsenic rapidly with more than 95% of arsenic adsorbed in initial 15 min, and the whole process fitted well to the pseudo-second-order model. The Langmuir model fits the equilibrium data better than the Freundlich isotherm model and the maximum adsorption capacities of As(V and As(III were 65.5 mg/g and 60.2 mg/g, respectively. The saturated MCNP could be easily regenerated and kept more than 95% of initial adsorption capacity stable after 10 regeneration cycles. A new magnetic material separation method was established to separate MCNP effectively. The continuous-operation instrument developed based on the MCNP could operate stably and guarantee that the concentration of arsenic meets the guideline limit of arsenic in drinking water regulated by the WHO.

  13. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (kb = 0.18) is higher in comparison with double coating layer (kb = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f2) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f2).

  14. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  15. Desulphurization of lignites by slow, fast, and flash pyrolysis and high intensity dry magnetic separation

    Koca, H.; Kockar, O.M.; Koca, S. [Anadolu University, Eskisehir (Turkey). Porsuk Technical College

    2007-07-01

    Slow, fast and flash pyrolysis followed by high intensity dry magnetic (HIDM) separation experiments were conducted to obtain improved solid fuels. Pyrolysis experiments were performed in three different apparatus, and important parameters of processes, temperature, particle size, residence time and heating rate were studied to determine the optimum conditions. Desulphurization of lignites by flash pyrolysis is more successful than slow and fast pyrolysis. At optimum conditions of pyrolysis, up to 58.15, 60.24, and 62.31% sulphur reductions were obtained in slow, fast and flash pyrolysis, respectively. Char, obtained from the pyrolysis experiments, was further cleaned by a Permroll HIDM separator. Sulphur reduction enhanced up to 82.68, 84.40, and 86.55% in the char of slow, fast and flash pyrolysis, respectively.

  16. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  17. Separation of Selenite from Inorganic Selenium Ions using TiO2 Magnetic Nanoparticles

    A simple and quick separation technique for selenite in natural water was developed using TiO2 SiO2/Fe3O4 nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the TiO2 shell. The synthesized nanoparticles were used to separate selenite (Se4+) in the presence of Se6+ or selenium anions for the photocatalytic reduction to Se0 atom on the TiO2 shell, followed by magnetic separation using Fe3O4 nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis

  18. Optimization of a dual capture element magnetic separator for the purification of high velocity water flow

    Belounis, Abdallah; Mehasni, Rabia; Ouili, Mehdi; Feliachi, Mouloud; El-Hadi Latreche, Mohamed

    2016-02-01

    In this paper a magnetic separator based on the use of a cascade arrangement of two identical capture elements has been optimized and verified. Such a separator is intended for the separation of fine particles of iron from flowing water at high velocity. The optimization has concerned the search for the excitation current and the distance between the capture elements that permit the extraction of the particles from a water flow in a circular channel at an average velocity ufav = 1.05 m/s. For such optimization we have minimized the objective function that is the distance between the capture position of a particle initially situated at a specific position and the central point of the last capture element of the arrangement. To perform the minimization, we have applied the Tabu search method. To validate the obtained results experimental verification based on the control of the evolution of the captured particle buildup and the quantifying of the separated volume of particles was achieved. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  19. Heterostructured magnetite-titanate nanosheets for prompt charge selective binding and magnetic separation of mixed proteins.

    Zhou, Qinhua; Lu, Zhufeng; Cao, Xuebo

    2014-02-01

    We reported the prompt charge selective binding and magnetic separation of mixed proteins by utilizing heterostructured Fe3O4-Na2Ti3O7 nanosheets. Fe3O4-Na2Ti3O7 nanosheets are found to combine a variety of structure and property merits, such as the increased interlayer galleries, exposed exchange sites, flexible framework, and magnetic manipulability. Probing the dissociation dynamics of Na(+) inside the nanosheets reveals that they possess remarkably enhanced Na(+) dissociation capability and the dissociation rate of Na(+) reaches 7.9×10(-)(6)mol g(-)(1)s(-)(1), much superior to titanate nanotubes. In model protein separation experiments, we utilize mixed proteins containing albumin and hemoglobin to assess Fe3O4-Na2Ti3O7 nanosheets. It is found that, by controlling the pH of the sample at 6, positively charged hemoglobin and negatively charged albumin are immediately separated (∼5s) by the nanosheets and the saturated loading capacity of hemoglobin on the nanosheets reaches 4.7±0.61g g(-)(1). Furthermore, hemoglobin bound to the nanosheets can be readily released after buffer wash and is not damaged, while the nanosheets are recyclable and maintain their high efficiency. The outstanding performance of Fe3O4-Na2Ti3O7 nanosheets in separating mixed proteins is attributed to the ultrafast Na(+) dissociation rate, flexible titanate framework, open geometry, and aqueous-like environment to stabilize proteins. These merits, together with the recyclability and cost effectiveness, should make Fe3O4-Na2Ti3O7 nanosheets ideal candidates for biological recognition, isolation, and purification under technologically useful conditions. PMID:24267329

  20. TREATMENT OF COMBINED SEWER OVERFLOWS BY HIGH GRADIENT MAGNETIC SEPARATION. ON-SITE TESTING WITH MOBILE PILOT PLANT TRAILER

    Seeded water treatment using a SALA high gradient magnetic separator pilot plant system was conducted on combined sewer overflows and raw sewage at SALA Magnetics in Cambridge, MA and at on-site locations in the Boston area. Special emphasis was placed on specific design and oper...

  1. Continuous Separation of Inclusions from Aluminum Melt Flowing in a Circular Pipe using a High Frequency Magnetic Field

    2003-01-01

    The continuous separation of inclusions from aluminum melt flowing in a circular pipe using a high frequency magneticfield was investigated both theoretically and experimentally. The separation efficiency was calculated based on thetrajectory method and compared with experimental results. lt is found that the separation efficiency is a function ofnondimensional parameters ti @ d2B2/μfμea2 and a /δ The effective way to improve the separation efficiency is to increasethe effective magnetic flux density and decrease the pipe radius, and the value of a/δ should be kept about 2 in orderto obtain the optimum separation efficiency.

  2. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    Magnetic particles (MAG*SEPSM) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEPSM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEPSM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEPSM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  3. Identification of the au coverage and structure of the Au/Si(111)-(5 × 2) surface.

    Kwon, Se Gab; Kang, Myung Ho

    2014-08-22

    We identify the atomic structure of the Au/Si(111)-(5 × 2) surface by using density functional theory calculations. With seven Au atoms per unit cell, our model forms a bona fide (5 × 2) atomic structure, which is energetically favored over the leading model of Erwin et al. [Phys. Rev. B 80, 155409 (2009)], and well reproduces the Y-shaped and V-shaped (5 × 2) STM images. This surface is metallic with a prominent half filled band of surface states, mostly localized around the Au-chain area. The correct identification of the atomic and band structure of the clean surface further clarifies the adsorption structure of Si adatoms and the physical origin of the intriguing metal-to-insulator transition driven by Si adatoms. PMID:25192108

  4. Non-magnetic insulator state in Na1CoO2 and phase separation of Na vacancies

    de Vaulx, C.; Julien, M. -H.; Berthier, C.; Horvatic, M.; Bordet, P.; Simonet, V.; Chen, D. P.; Lin, C. T.

    2005-01-01

    Crystallographic, magnetic and NMR properties of a NaxCoO2 single crystal with x~1 are presented. We identify the stoichiometric Na1CoO2 phase, which is shown to be a non-magnetic insulator, as expected for homogeneous planes of Co3+ ions with S=0. In addition, we present evidence that, because of slight average Na deficiency, chemical and electronic phase separation leads to a segregation of Na vacancies into the well-defined, magnetic, Na0.8CoO2 phase. The importance of phase separation is ...

  5. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-11-01

    A reclaimable Fe3O4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (qm) of the Fe3O4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π-π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe3O4/GO hybrid. Therefore, the Fe3O4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  6. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag. PMID:26994349

  7. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite

  8. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Chen, Guo, E-mail: guochen@kmust.edu.cn [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Peng, Jinhui, E-mail: jhpeng@kmust.edu.cn [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chemical Engineering Program, The Petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates)

    2014-05-01

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite.

  9. The selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    The proper choice of a suitable matrix for high-intensity magnetic separation is of the utmost importance, since the geometry and size of the matrix play decisive roles in the achievement of optimum separation conditions. In relatively simple filtration applications, the matrix must offer a high efficiency of collision with suspended particles, a high probability of retention of intercepted particles, and high loading capacity. Also, it must be easily cleaned. The results obtained by the use of theoretical models of magnetic separation fail to agree with the experimental results for basic parameters like the ratio of particle size to matrix size, the length of the matrix, and the magnetic properties of the matrix material. Preconceived ideas about the matrix often lead to the erroneous choice of a matrix, and hence to its unsatisfactory performance during magnetic separation. The potential value of high-intensity magnetic separation as applied to the recovery of uranium and gold from leach residues and in association with the development of a large-scale magnetic separator to be used for the same purpose led to the present investigation in which a wide spectrum of matrix shapes and sizes were tested. It was found that the optimum recovery and selectivity of separation are obtained at a ratio of particle size to matrix-element size ranging from 200 to 300. The use of these matrices also results in a low degree of mechanical entrapment, particularly of coarser particles, for which straining plays a significant role for fine matrices. It was also found that the magnetization of a matrix plays a minor role, contrary to the theoretical predictions. Furthermore, the effects of matrix height, matrix loading, and scalping of the pulp by paramagnetic matrices were evaluated for various types of matrices

  10. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994]. Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in

  11. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    Nunez' , L.; Kaminsky' , M.D.,; Crawford, C.; Ritter, J.A.

    1999-12-31

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994] Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal

  12. Pade-Froissart exact signal-noise separation in nuclear magnetic resonance spectroscopy

    Belkic, Dzevad; Belkic, Karen, E-mail: Dzevad.Belkic@ki.se [Karolinska Institute, PO Box 260, S-171 76 Stockholm (Sweden)

    2011-06-28

    Nuclear magnetic resonance spectroscopy is one of the key methods for studying the structure of matter on different levels (sub-nuclear, nuclear, atomic, molecular, cellular, etc). Its overall success critically depends upon reliable mathematical analysis and interpretation of the studied data. This is especially aided by parametric signal processing with the ensuing data quantification, which can yield the abundance or concentrations of the constituents in the examined matter. The sought reliability of signal processing rests upon the possibility of an accurate solution of the quantification problem alongside the unambiguous separation of true from false information in the spectrally analysed data. We presently demonstrate that the fast Pade transform (FPT), as the unique ratio of two polynomials for a given Maclaurin series, can yield exact signal-noise separation for a synthesized free induction decay curve built from 25 molecules. This is achieved by using the concept of Froissart doublets or pole-zero cancellations. Unphysical/spurious (noise or noise-like) resonances have coincident or near-coincident poles and zeros. They possess either zero- or near-zero-valued amplitudes. Such spectral structures never converge due to their instability against even the smallest perturbations. By contrast, upon convergence of the FPT, physical/genuine resonances are identified by their persistent stability against external perturbations, such as signal truncation or addition of random noise, etc. In practice, the computation is carried out by gradually and systematically increasing the common degree of the Pade numerator and denominator polynomials in the diagonal FPT. As this degree changes, the reconstructed parameters and spectra fluctuate until stabilization occurs. The polynomial degree at which this full stabilization is achieved represents the sought exact number of resonances. An illustrative set of results is reported in this work to show the exact separation of

  13. Recovering metals from red mud by thermal treatment and magnetic separation

    Plescia, Paolo; Maccari, Dante

    1996-01-01

    This paper deals with an alternative treatment for recovering metals from goethite red mud (RM), which occurs as a by-product at zinc leaching plants. It is derived from the hydrometallurgical treatment of sphalerite, which involves roasting followed by acid attack and subsequent recovery of the zinc by electrodeposition. The leaching mud contains various oxides and hydroxides of iron plus lesser amounts of sulfates of Pb, Zn, Ca, Cd, Ag, In, Se, and other metals. In recent years, numerous attempts have been made to recover the RM or render it inert, particularly by such processes as vitrification or lithification for the production of glass ceramics. The work reported here proposes a treatment involving reduction and magnetic separation to permit the extraction of pure zinc, a high percentage of a pure magnetite, and a harmless slag containing mixed silicates of zinc and lead as well as oxides of minor elements.

  14. High-gradient magnetic affinity separation of trypsin from porcine pancreatin

    Hubbuch, Jürgen; Thomas, Owen R. T.

    2002-01-01

    systematic optimization with respect to activation chemistry, spacer length and ligand density, conditions for preparation of effective high capacity (Q(max) = 120 mg g(-1)) strongly interacting (K-d <0.3 mum) trypsin-binding adsorbents based on immobilized benzamidine were established. In small......-scale studies approximate to95% of the endogenous trypsin present in a crude porcine pancreatin feedstock was recovered with a purification factor of approximate to4.1 at the expense of only a 4% loss in a-amylase activity. Efficient recovery of trypsin from the same feedstock was demonstrated at a vastly...... increased scale using a high-gradient magnetic separation system to capture loaded benzamidine-linked adsorbents following batch adsorption. With the aid of a simple recycle loop over 80% of the initially adsorbed trypsin was recovered in-line with an overall purification factor of approximate to3.5....

  15. Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity.

    Ji, Zhenyuan; Shen, Xiaoping; Yue, Xiaoyang; Zhou, Hu; Yang, Juan; Wang, Yuqin; Ma, Lianbo; Chen, Kangmin

    2015-12-01

    In this study, the combination of magnetite (Fe3O4) with reduced graphene oxide (RGO) generates a new hybrid substrate for the dispersion of noble metal nanoparticles. Well-dispersed silver (Ag) nanoparticles loaded on the surface of Fe3O4 modified RGO are achieved by an efficient two-step approach. Through reducing Ag(+) ions, highly dispersed Ag nanoparticles are in-situ formed on the RGO/Fe3O4 substrate. It is found that the existence of Fe3O4 nanocrystals can significantly improve the dispersity and decrease the particle size of the in-situ formed Ag nanoparticles. Magnetic study reveals that the as-prepared RGO/Fe3O4/Ag ternary nanocomposites display room-temperature superparamagnetic behavior. The catalytic properties of the RGO/Fe3O4/Ag ternary nanocomposites were evaluated with the reduction of 4-nitrophenol into 4-aminophenol as a model reaction. The as-synthesized RGO/Fe3O4/Ag ternary catalysts exhibit excellent catalytic stability and much higher catalytic activity than the corresponding RGO/Ag catalyst. Moreover, the RGO/Fe3O4/Ag catalysts can be easily magnetically separated for reuse. This study further demonstrates that nanoparticles modified graphene can act as an effective hybrid substrate for the synthesis of multi-component and multifunctional graphene-based composites. PMID:26263498

  16. Preconcentration and separation of ultra-trace palladium ion using pyridine-functionalized magnetic nanoparticles

    We present a study on the application of magnetic nanoparticles (MNPs) prepared from Fe3O4 and functionalized with pyridine as an adsorbent for the solid-phase extraction of trace quantities of Pd(II) ion. The pyridine group was immobilized on the surface of the MNPs by covalent bonding of isonicotinamide. The modified MNPs can be readily separated from an aqueous solution by applying an external magnetic field. Effects of pH, the amount of functionalized MNPs, extraction time, type and quantity of eluent, desorption time, break-through volume and interfering ions on the extraction efficiency were optimized. The amount of Pd(II) was then determined using FAAS. Under the optimized conditions, the detection limit and preconcentration factor are 0.15 μg L-1 and 196, respectively, and the relative standard deviation (at 20 μgL-1; for n=10) is 3.7 %. The method had a linear analytical range from 1 to 80 μg L-1 and was applied to determine Pd(II) in spiked tape water and soil. (author)

  17. Removal of phosphate from municipal sewage by high gradient magnetic separation

    黄自力; 胡岳华; 徐竞; 郑春华

    2004-01-01

    The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate,Fe3O4, magnetic field intensity, pH value and flow-rate of sewage on phosphorus removal rate were investigated.200 kA/m, pH value of 4.5 - 7.0 and flow-rate of 6.15 cm/s are both efficient and economic technical parameters for removal of phosphate. The pH value has a tremendous effect on the removal of phosphate. In the pH range of 4.5- 7.0, more than 95% phosphate can be removed. Theoretical analysis indicates that the solubility of AlPO4 is minimum at pH 4.0 - 7.0 and the electrostatic attractive force between AlPO4 and Fe3O4 is maximum at pH 4.5 -6.5.

  18. Residual Separation of Magnetic Fields Using a Cellular Neural Network Approach

    Albora, A. M.; Özmen, A.; Uçan, O. N.

    - In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.

  19. 辊式磁选机典型磁系结构磁场特性分析%Analysis on the Magnetic Field Characteristic of Roll Magnetic Separators with Different Magnetic System Structure

    张义顺; 史长亮; 马娇; 王飞跃

    2013-01-01

    辊式磁选机对中强磁性矿物分选多为经验式分选,不同磁系磁场特性与对应磁选矿物基本物性(密度、比磁化率)间的相互关系并无探讨.基于MagNet软件模拟辊式磁选机单环磁系、四级拼接磁系(无轭铁)、八级拼接磁系(有/无轭铁)的磁力线及磁感应强度分布情况,得出各磁系磁场沿辊表周向变化趋势及磁感应强度随分选行程变化函数关系;考察了单元磁性颗粒在力平衡条件下其密度同比磁化率的比值与各磁系磁感应强度函数关系,综合分析得出不同磁系类型下矿物的分选标准.对辊式磁选机常用磁系磁场特性分析,为选择合适的辊式磁选机进行中强磁性矿物的高效分选提供基础理论指导.%Roll magnetic separators are blandly used to separate moderate and strong susceptibility minerals,but the correlation between the magnetic field characteristic of different magnetic system and the characteristics (density and per magnetic susceptibility) of minerals is rarely discussed.The paper simulated the magnetic field lines distribution and magnetic induction intensity of different magnetic system,including:single ring prototype,four-magnetic splicing poles prototype without yoke,eight-magnetic splicing poles prototype with and without yoke.The function between the magnetic induction intensity and separation distance was given.The function between ratios of the density and magnetic susceptibility of single magnetic particle,and the magnetic field strength of different magnetic system was studied.By comprehensive analysis,the minerals separation standard corresponding to magnetic system prototype was obtained.The magnetic field characteristics of roll magnetic separators with different magnetic system were analyzed,the results could provide basic theoretical guidance for the selection of a suitable roll magnetic separator to efficiently separate moderate and strong magnetic minerals.

  20. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA

    A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe2O3)/silica (SiO2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe3O4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe3O4 to γ-Fe2O3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 deg. C feature spherical shape and uniform particle size (dparticle=1.72 μm), high saturation magnetization (Ms=17.22 emu/g), superparamagnetism (Mr/Ms=0.023), high surface area (SBET=240 m2/g), and mesoporosity (dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO2 nanoparticles, in which cubic γ-Fe2O3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 deg. C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.

  1. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells

    Chimma Pattamawan

    2010-02-01

    Full Text Available Abstract Background Highly purified infected red blood cells (irbc, or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported using polymer coated columns, while HGMS depletion has not been described yet. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary. Methods A dipole magnet generating a strong homogenous field was custom assembled. Polypropylene syringes were fitted with one-way stopcocks and filled with stainless steel wool. Rbc from Plasmodium falciparum cultures were resuspended in density and viscosity optimized HGMS buffers and HGMS processed. Purification and depletion results were analysed by flow cytometer and light microscopy. Viability was evaluated by calculating the infection rate after re-culturing of isolates. Results In HGMS concentration, purity of irbc isolates from asynchronous cultures consistently ranged from 94.8% to 98.4% (mean 95.7%. With further optimization, over 90% of isolated irbc contained segmented schizonts. Processing time was less than 45 min. Reinfection rates ranged from 21.0% to 56.4%. In HGMS depletion, results were comparable to treatment with sorbitol, as demonstrated by essentially identical development of cultures. Conclusion The novel HGMS concentration procedure achieves high purities of segmented stage irbc from standard asynchronous cultures, and is the first HGMS depletion alternative to sorbitol lysis. It represents a simple and highly efficient alternative to conventional irbc concentration and synchronization methods.

  2. Actinide separation of high-level waste using solvent extractants on magnetic microparticles

    Polymeric-coated ferromagnetic particles with an absorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted by tributyl phosphate (TBP) are being evaluated for application in the separation and the recovery of low concentrations of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can be recovered from the waste solution using a magnet. The effectiveness of the extractant-absorbed particles at removing transuranics (TRU) from simulated solutions and various nitric acid solutions was measured by gamma and liquid scintillation counting of plutonium and americium. The HNO3 concentration range was 0.01 M to 6M. The partition coefficients (Kd) for various actinides at 2M HNO3 were determined to be between 3,000 and 30,000. These values are larger than those projected for TRU recovery by traditional liquid/liquid extraction. Results from transmission electron microscopy indicated a large dependence of Kd on relative magnetite location within the polymer and the polymer surface area. Energy disperse spectroscopy demonstrated homogeneous metal complexation on the polymer surface with no metal clustering. The radiolytic stability of the particles was determined by using 60Co gamma irradiation under various conditions. The results showed that Kd more strongly depends on the nitric acid dissolution rate of the magnetite than the gamma irradiation dose. Results of actinide separation from simulated high-level waste representative of that at various DOE sites are also discussed

  3. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    Shahid, Muhammad

    2013-05-01

    A magnetically separable single-phase MgFe2O4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe2O4 was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe2O4 was studied by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm-2 illumination. © 2013 Elsevier B.V. All rights reserved.

  4. Effect of surface potential of small particles suspended in solution on separation characteristics in a HGMS (High Gradient Magnetic Separator)

    The effect of surface potential of particles on removal characteristics in the HGMS were studied by using three kinds of small particles with individually different magnetic susceptibility: molybdenum, chrominum and hematite. It was shown that the effect of surface potential of particles such as molybdenum with low magnetic susceptibility value less than 1.7 x 104 appeared at a low linear velocity of liquid less than 150 m/h, and the removal performance increased by controlling the pH range in which the product of ζ-potential of the particle and matrix was negative. The relation between the particles volume captured with matrix and the rest potential of the matrix was determined. (author)

  5. Novel Monoclonal Antibody and Peptide Binders for Mycobacterium avium subsp. paratuberculosis and Their Application for Magnetic Separation

    Lorna M O'Brien; Stewart, Linda D.; Strain, Sam A. J.; Grant, Irene R

    2016-01-01

    The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extrac...

  6. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme ...

  7. Functional-integral approach to the investigation of the spin-spiral magnetic order and phase separation

    Arzhnikov, Anatoly; Groshev, Andrey

    2011-01-01

    We investigate a two-dimensional single-band Hubbard model with a nearest-neighbor hopping. We treat a commensurate collinear order as well as incommensurate spiral magnetic phases at a finite temperature using a Hubbard-Stratonovich transformation with a two-field representation and solve this problem in a static approximation. We argue that temperature dramatically influence the collinear and spiral magnetic phases, phase separation in the vicinity of half-filling. The results imply a possi...

  8. Electronic and magnetic nano phase separation in cobaltates La$_{2-x}$Sr$_{x}$CoO$_4$

    Li, Z W; Drees, Y.; Ricci, A.; Lamago, D.; Piovano, A.; M. Rotter; Schmidt, W.; Sobolev, O.; Rütt, U.; Gutowski, O.; Sprung, M.; Castellan, J. P.; Tjeng, L. H.; Komarek, A. C.

    2016-01-01

    The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the...

  9. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates. PMID:25976126

  10. Frequency-Domain Approach To Determine Magnetic Address-Sensor Separation Distance Using the Harmonic Ratio Method.

    Young, Colin C; Blackley, Benjamin W; Porter, Marc D; Granger, Michael C

    2016-02-16

    In this work, we describe an approach to determine the distance separating a magnetic address from a scanning magnetoresistive sensor, a critical adjustable parameter for certain bioassay analyses where magnetic nanoparticles are used as labels. Our approach is leveraged from the harmonic ratio method (HRM), a method used in the hard drive industry to control the distance separating a magnetoresistive read head from its data platter with nanometer resolution. At the heart of the HRM is an amplitude comparison of a signal's fundamental frequency to that of its harmonics. When the signal is derived from the magnetic field pattern of a periodic array of magnetic addresses, the harmonic ratio contains the information necessary to determine the separation between the address array and the read head. The elegance of the HRM is that there is no need of additional components to the detection platform to determine a separation distance; the streaming "bit signal" contains all the information needed. In this work, we demonstrate that the tenets governing HRM used in the hard drive industry can be applied to the bioanalytical arena where submicrometer to 100 μm separations are required. PMID:26879366

  11. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-06-01

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m

  12. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds?

    Herrmann, I K; Schlegel, A A; Graf, R.; Stark, W J; Beck-Schimmer, Beatrice

    2015-01-01

    Recent studies report promising results regarding extracorporeal magnetic separation-based blood purification for the rapid and selective removal of disease-causing compounds from whole blood. High molecular weight compounds, bacteria and cells can be eliminated from blood within minutes, hence offering novel treatment strategies for the management of intoxications and blood stream infections. However, risks associated with incomplete particle separation and the biological consequences of par...

  13. Separation of the contributions to the magnetization of Tm1 - x Yb x B12 solid solutions in steady and pulsed magnetic fields

    Bogach, A. V.; Sluchanko, N. E.; Glushkov, V. V.; Demishev, S. V.; Azarevich, A. N.; Filippov, V. B.; Shitsevalova, N. Yu.; Levchenko, A. V.; Vanacken, J.; Moshchalkov, V. V.; Gabani, S.; Flachbart, K.

    2013-05-01

    The magnetization of substitutional Tm1 - x Yb x B12 solid solutions is studied in the composition range 0 B12 compounds to be separated. These contributions include a Pauli component, which corresponds to the response of the heavy-fermion manybody states that appears in the energy gap in the vicinity of the Fermi level (density of states (3-4) × 1021 cm-3 meV-1), and a contribution with saturation in high magnetic fields attributed to the localized magnetic moments ((0.8-3.7)μB per unit cell) of the nanoclusters formed by rare-earth ions with an antiferromagnetic interaction.

  14. Experiment of Roasting-Low Intensity Magnetic Separation-High Intensity Magnetic Separation Technology of a Manganese-Bearing Hematite Ore%某含锰赤铁矿石焙烧-弱磁选-强磁选试验

    唐雪峰; 李家林

    2012-01-01

    针对某赤铁矿石中褐锰矿含量较高的特点,通过磁化焙烧将赤铁矿还原为磁铁矿,然后采用弱磁选将铁与锰及脉石分离,并对弱磁选尾矿进行强磁选富集回收锰矿物,取得了铁精矿产率为71.32%、铁品位为64.18%、铁回收率为94.79%,锰精矿产率为13.78%、锰品位为27.98%,锰回收率为79.45%的试验指标,使铁和锰得到了较好的综合回收.%According to the characteristics of a hematite with high content braunite,first reduced the hematite to artificial magnetite by magnetizing roasting,then separated the iron with manganese and gangue by low intensity magnetic separation,recovered the manganese minerals from low intensity magnetic separation tailings by high intensity magnetic separation. The experiment results got the iron concentrate with yield 71. 32% ,iron grade 64. 18% ,iron recovery 94. 79% ,manganese concentrate with yield 13. 78% ,manganese grade 27. 98% ,manganese recovery 79. 45%. Iron and manganese are comprehensively recovered.

  15. Separation of charge-order and magnetic QCPs in heavy fermions and high Tc cuprates

    Harrison, Neil

    2010-03-01

    The Fermi surface topology of high temperature superconductors inferred from magnetic quantum oscillation measurements provides clues for the origin of unconventional pairing thus previously not accessed by other spectroscopy techniques. While the overdoped regime of the high Tc phase diagram has a large Fermi surface consistent with bandstructure calculations, the underdoped regime of YBa2Cu2O6+x is found to be composed of small pockets. There is considerable debate as to whether the small observed ``pocket'' is hole-like or electron-like- whether the Fermi surface is best described by a t-J model or a conventional band folding picture- whether or not a Fermi liquid description applies- or- whether bilayer coupling splits the degeneracy of the observed pockets. We (myself and collaborators) have now collected an extensive body of experimental data that brings this debate to rest, but raises new questions about the nature of itinerant magnetism in underdoped high Tc cuprates. Quantum oscillation measurements are performed on multiple samples in magnetic fields extending to 85 T, temperatures between 30 mK (dilution fridge in dc fields to 45 T) and 18 K, over a range of hole dopings and with samples rotated in-situ about multiple axes with respect to the magnetic field. We perform a topographical map of the Fermi surface, enabling the in-plane shape of one of the pockets to be determined- imposing stringent constraints on the origin of the Fermi surface. While quantum oscillations measurements are consistent with a topological Fermi surface change associated with magnetism near optimal doping, they also point to a secondary instability deep within the underdoped regime beneath a high Tc superconducting sub-dome. An steep upturn in the quasiparticle effective mass is observed on underdoping, suggestive of a quantum critical point near x= 0.46 separating the metallic regime (composed of small pockets) from a more underdoped insulating charge-ordered regime (earlier

  16. Ferrimagnetism and magnetic phase separation in Nd1−xYxMnO3 studied by magnetization and high frequency electron paramagnetic resonance

    Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1−xYxMnO3, for x=0.1–0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below TNMn≈80K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x<0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1−xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation

  17. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    Shaibu, B. S.; Reddy, M. L. P.; Bhattacharyya, A.; Manchanda, V. K.

    2006-06-01

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 μm) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated.

  18. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen

    2015-12-01

    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  19. Development of SSS Type High Gradient Magnetic Separator%SSS新型高梯度磁选机的改进

    赵明; 黄雪平; 王丰雨

    2011-01-01

    High gradient magnetic separator because of its high magnetic field strength and magnetic field strength changes in range and other factors, has been development and utilization in mineral resources widely, however, the problem of media jam, low recovery rate and power consumption increased the election cost. SSS new high gradient magnetic separator taking high gradient magnetic separator in multi - graded media, air and water combined unloading ore and energy efficient technologies such as high frequency inverter power supply, effectively solute the media jam, and low recovery problems, more water - saving and electricity - saving than ever before.%高梯度磁选机因为其磁场力高且磁场力变化范围大等因素,已经在矿产资源的开发利用中得到广泛应用,但同时存在介质堵塞,回收率低,电能消耗大等问题,增加了选别成本.SSS新型高梯度磁选机中采用多梯度介质、气水联合卸矿和高效节能高频逆变型电源等技术,有效地解决了介质堵塞、回收率低等问题,而且比以往的设备更节水省电.

  20. Development of a magnetic separation method to capture sepsis associated bacteria in blood.

    Lopes, Ana Luisa Kalb; Cardoso, Josiane; Dos Santos, Fernanda Roberta Correa Cleto; Silva, Ana Claudia Graziani; Stets, Maria Isabel; Zanchin, Nilson Ivo Tonin; Soares, Maurilio José; Krieger, Marco Aurélio

    2016-09-01

    Bloodstream infections are important public health problems, associated with high mortality due to the inability to detect the pathogen quickly in the early stages of infection. Such inability has led to a growing interest in the development of a rapid, sensitive, and specific assay to detect these pathogens. In an effort to improve diagnostic efficiency, we present here a magnetic separation method for bacteria that is based on mutated lysozyme (LysE35A) to capture S. aureus from whole blood. LysE35A-coated beads were able to bind different MSSA and MRSA isolates in the blood and also other six Gram-positive and two Gram-negative species in whole blood. This system was capable to bind bacteria at low concentrations (10CFU/ml) in spiked blood. Samples captured with the mutated lysozyme showed more responsive amplification of the 16S gene than whole blood at concentrations of 10(3)-10(5)CFU. These data demonstrate detection of S. aureus directly in blood samples, without in vitro cultivation. Our results show that capture with LysE35A-coated beads can be useful to develop a point of care diagnostic system for rapid and sensitive detection of pathogens in clinical settings. PMID:27432342

  1. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-01

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally. PMID:22304328

  2. Separation of species of a binary fluid mixture confined in a channel in presence of a strong transverse magnetic field

    Sharma Bishwaram

    2012-01-01

    Full Text Available Effects of a transverse magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids confined between two stationary parallel plates are examined. Both the plates are maintained at constant temperatures. It is assumed that one of the components, which is rarer and lighter, is present in the mixture in a very small quantity. The equations governing the motion, temperature and concentration in Cartesian coordinate are solved analytically. The solution obtained for concentration distribution is plotted against the width of the channel for various values of non-dimensional parameters. It is found that the effect of transverse magnetic field is to separate the species of rarer and lighter component by contributing its effect directly to the temperature gradient and the pressure gradient. The effects of increase in the values of Hartmann number, magnetic Reynolds number, barodiffusion number, thermal diffusion number, electric field parameter and the product of Prandtl number and Eckert number are to collect the rarer and lighter component near the upper plate and throw away the heavier component towards the lower plate. The problem discussed here derives its application in the basic fluid dynamics separation processes to separate the rare component of the different isotopes of heavier molecules where electromagnetic method of separation does not work.

  3. A Novel Magnetic Separation Oxygen-enriched Method and the Influence of Temperature and Magnetic Field on Enrichment

    Li WANG; Jun CAI; Ping WU; Lige TONG; Shufeng SUN

    2007-01-01

    A novel oxygen-enriched method is presented. Using two opposite magnetic poles of two magnets with certain distance forms a magnetic space having a field intensity gradient near its borders. When air injected into the magnetic space outflows from the magnetic space via its borders, oxygen molecules in air will experience the interception effect of the gradient magnetic field, but nitrogen molecules will outflow without hindrance. Thereby the continuous oxygen enrichment is realized. The results show that the maximum increment of oxygen concentration reaches 0.49% at 298 K when the maximum product of magnetic flux density and field intensity gradient is 563T2/m. The enrichment level is significantly influenced by the gas temperature and the magnetic field. The maximum increment of oxygen concentration drops to 0.16% when the gas temperature rises to 343 K, and drops to 0.09% when the maximum product of magnetic flux density and gradient is reduced to 101 T2/m from 563T2/m.

  4. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized

  5. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  6. Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood.

    Liu, Wenting; Nie, Liju; Li, Fulai; Aguilar, Zoraida P; Xu, Hong; Xiong, Yonghua; Fu, Fen; Xu, Hengyi

    2016-01-01

    Because of the lack of early screening strategies, ovarian cancer is the most deadly cause of gynecologic malignancies. This paper describes an effective method for the separation and detection of ovarian cancer cells from female whole blood, using folic acid (FA) conjugated magnetic iron oxide nanoparticles (IO-FA nanoparticles). The IO nanoparticles were synthesized by thermal decomposition and then covalently conjugated with FA. The IO-FA nanoparticles were stably attached to the surface of ovarian cancer cells by coupling to the over-expressed folate receptor (FR), thereby making the cells magnetic. These "magnetic cells" were separated from the complex blood matrix without destruction under a magnetic field. The separation efficiency was as high as 61.3% when the abundance of spiked ovarian cancer SKOV3 cells was as low as 5 × 10(-5)%. We also successfully detected five (5) out of ten (10) metastatic ovarian cancer patients' whole blood. This study suggested the feasibility of early detecting of metastatic ovarian cancer cells, which may potentially improve the ovarian cancers patients' overall survival rate for clinical applications. PMID:26478922

  7. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe3O4 and FeCrO4, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  8. Experimental observation of magnetically induced phase separation and thermodynamic assessment in the Co–V binary system

    The phase equilibria of Co–V binary system were experimentally investigated, and the magnetically induced phase separation in the fcc phase was observed in a Co/V diffusion couple. Based on previous research and present work, a thermodynamic reassessment in the Co–V binary system was carried out by means of the CALPHAD method. The calculated results are consistent with the experimental data. The metastable miscibility gap of the hcp phase in the Co–V binary system was thermodynamically calculated. According to the calculation, the Co–V thin films with three concentrations were designed and deposited by magnetron sputtering. The transmission electron microscope (TEM) results prove that the metastable phase separation in the hcp phase exists in the Co–V system. The determined magnetic properties of the thin films reveal that the values of coercivity and remanence ratio are function of V content. - Highlights: • The magnetically induced phase separation of (αfCo) + (αpCo) was determined. • A thermodynamic reassessment of the Co–V binary system has been carried out. • The phase separation in the (εfCo) was observed in the Co85V15 thin film. • The coercivity and remanence ratio of the thin films are function of V content

  9. Experimental observation of magnetically induced phase separation and thermodynamic assessment in the Co–V binary system

    Wang, Cuiping [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Zhao, Cancan [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Lu, Yong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Li, Tian; Peng, Dongliang [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Shi, Ji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152–8552 (Japan); Liu, Xingjun, E-mail: lxj@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)

    2015-07-15

    The phase equilibria of Co–V binary system were experimentally investigated, and the magnetically induced phase separation in the fcc phase was observed in a Co/V diffusion couple. Based on previous research and present work, a thermodynamic reassessment in the Co–V binary system was carried out by means of the CALPHAD method. The calculated results are consistent with the experimental data. The metastable miscibility gap of the hcp phase in the Co–V binary system was thermodynamically calculated. According to the calculation, the Co–V thin films with three concentrations were designed and deposited by magnetron sputtering. The transmission electron microscope (TEM) results prove that the metastable phase separation in the hcp phase exists in the Co–V system. The determined magnetic properties of the thin films reveal that the values of coercivity and remanence ratio are function of V content. - Highlights: • The magnetically induced phase separation of (α{sub f}Co) + (α{sub p}Co) was determined. • A thermodynamic reassessment of the Co–V binary system has been carried out. • The phase separation in the (ε{sub f}Co) was observed in the Co{sub 85}V{sub 15} thin film. • The coercivity and remanence ratio of the thin films are function of V content.

  10. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    Doctor, R.; Nunez, L. [Argonne National Lab., IL (US); Cicero-Herman, C.A. [Westinghouse Savannah River Co., Aiken, SC (US). Savannah River Technology Center; Ritter, J.A. [Univ. of South Carolina, Columbia, SC (US). Chemical Engineering Dept.; Landsberger, S. [Univ. of Texas, Austin, TX (US). Nuclear Engineering Dept.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe{sub 3}O{sub 4} and FeCrO{sub 4}, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  11. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol.

    Yang, Kang; Hu, Yongjun; Dong, Ning

    2016-06-15

    The accurate and sensitive detection of chloramphenicol (CAP) is particularly imperative to public health and safety. Here, we present a novel sensor for residual CAP detection based on competitive surface-enhanced Raman scattering (SERS) immunoassay and magnetic separation. In this nanosensor, functionalized Au nanoparticles (AuNPs) were labeled with the Raman reporter molecule (e.g. 4,4'-dipyridyl). With the addition of free CAP, a competitive immune reaction was initiated between free CAP and above AuNPs for conjugating with CAP antibody-modified magnetic nanoparticles (MNPs). Instead of the solid substrate, the antibody conjugated-magnetic beads were used as supporting materials and separation tools in the present sensor. With the aid of a magnet, the mixture was removed from the supernatant for concentration effects. This caused obvious change of SERS signal intensity obtained from supernatant. The SERS signals were collected from the supernatant directly, which made the SERS measurements more stable, repeatable and reliable. The proposed SERS-based magnetic immunosensor allows us to detect CAP in a fast, selective and sensitive (1.0 pg/mL) manner over a wide concentration range ( 1-1 × 10(4)pg/mL). In addition, these results demonstrate that this immunosensor holds great potential for the detection of antibiotics in real aquatic environment, which is crucial to our life. PMID:26866562

  12. Separation of radioimmunoassay in magnetic phase with particles prepared at the IPEN and its comparison with conventional methodologies

    In the present work two main objectives were chosen. The first was the preparation for the execution of the magnetic phase separation technique, useful for the radioimmunoassay as well as for the most modern and most efficient immunoradiometric assay. The second objective, of a theoretical-practical kind and directly linked to the first, was the realization of a study about the precision of the technique with synthesized products compared with imported products and with two liquid phase separation techniques: the second antibody and polyethyleneglycol (PEG). This analysis was performed with the help of precision profiles built according to R.P.Ekins' recommendations. (author)

  13. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Zhong, Suting; Jiang, Wei; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-01

    A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe3O4) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron-hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  14. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  15. Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient

    Andreu, J. S.; Camacho, J.; Faraudo, J.; Benelmekki, M.; Rebollo, C.; Martínez, Ll. M.

    2011-08-01

    Magnetophoresis—the motion of magnetic particles under applied magnetic gradient—is a process of great interest in novel applications of magnetic nanoparticles and colloids. In general, there are two main different types of magnetophoresis processes: cooperative magnetophoresis (a fast process enhanced by particle-particle interactions) and noncooperative magnetophoresis (driven by the motion of individual particles in magnetic fields). In the case of noncooperative magnetophoresis, we have obtained a simple analytical solution which allows the prediction of the magnetophoresis kinetics from particle characterization data (size and magnetization). Our comparison with new experimental results shows good quantitative agreement. In addition, we show the existence of a universal curve onto which all experimental results should collapse after proper rescaling. The range of applicability of the analytical solution is discussed in light of the predictions of a magnetic aggregation model [Soft MatterJAPIAU1744-683X10.1039/c0sm01424a 7, 2336 (2011)].

  16. Beyond "turn-on" readout: from zero background to signal amplification by combination of magnetic separation and plasmon enhanced fluorescence.

    Gong, Suqin; Xia, Yunsheng

    2016-08-11

    By magnetic separation and subsequent plasmon enhanced fluorescence, an assay platform with a signal output from completely "zero" background to fluorescence amplification is achieved, using quantum dots as reporters. So, it well breaks through the conventional "turn-on" strategy in both lower and upper limits. The sensitivity for hyaluronidase sensing is enhanced 10(4)-10(6) times as compared with previous fluorescence methods. PMID:27398675

  17. Upgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process

    Xianlin Zhou; Deqing Zhu; Jian Pan; Yanhong Luo; Xinqi Liu

    2016-01-01

    The huge consumption of iron ores in China has attracted much attention to utilizing low grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory resource and difficult to upgrade by traditional physical concentration processes due to the superfine size and close dissemination of iron minerals with gangue minerals. An innovative technology for a high temperature reduction-magnetic separation process was studied to upgrade a high-aluminum iron ore assayi...

  18. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  19. The Application of High–Gradient Magnetic Separation to Water Treatment by Means of Chemically Precipitated Magnetite

    Hencl, V.; Mucha, P.

    1994-01-01

    Conditions of high–gradient magnetic separation (HGMS) of chemically precipitated magnetite, prepared from a waste material of the titanium white production were studied. The magnetite was used as a sorption material for the treatment of water from the Vltava River. Detailed experimental research resulted in a proposal for a technology of water treatment, schematic description of which is presented. The results of HGMS of chemically precipitated magnetite together with those of water treatmen...

  20. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania.

    Cao, Muhan; Wang, Peifang; Ao, Yanhui; Wang, Chao; Hou, Jun; Qian, Jin

    2016-04-01

    In this study, magnetic graphene oxide-loaded Ce-doped titania (MGO-Ce-TiO2) hybridized composite was prepared by a facile method. The as-prepared samples exhibited good adsorption capacity, high visible-light photoactive and magnetic separability as a novel photocatalyst in the degradation of tetracyclines (TC). The intermediate products and photocatalytic route of TC were proposed based on the analysis results of LC-MS. Moreover, the repeatability of the photoactivity with the use of MGO-Ce-TiO2 was investigated in the multi-round experiments with the assistance of an applied magnetic field. Therefore, the prepared composite photocatalysts were considered as a kind of promising photocatalyst in a suspension reaction system, in which they can offer effectively recovery ability. The effect of MGO content on the photocatalytic performance was also studied, and an optimum content was obtained. PMID:26799623

  1. Magnetically separable mesoporous Fe3O4/silica catalysts with very low Fe3O4 content

    Grau-Atienza, A.; Serrano, E.; Linares, N.; Svedlindh, P.; Seisenbaeva, G.; García-Martínez, J.

    2016-05-01

    Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3‧,5,5‧-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.

  2. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure

    Xu, Shihong; Shangguan, Wenfeng; Yuan, Jian; Chen, Mingxia; Shi, Jianwei; Jiang, Zhi

    2008-03-01

    A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO2 shell for photocatalysis. The SiO2 layer between the NiFe2O4 core and the TiO2 shell effectively prevents the injection of charges from TiO2 particles to NiFe2O4, which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity.

  3. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure

    Xu Shihong; Shangguan Wenfeng; Yuan Jian; Chen Mingxia; Shi Jianwei; Jiang Zhi [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: shangguan@sjtu.edu.cn

    2008-03-05

    A magnetically separable photocatalyst TiO{sub 2}/SiO{sub 2}/NiFe{sub 2}O{sub 4} (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO{sub 2} shell for photocatalysis. The SiO{sub 2} layer between the NiFe{sub 2}O{sub 4} core and the TiO{sub 2} shell effectively prevents the injection of charges from TiO{sub 2} particles to NiFe{sub 2}O{sub 4}, which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity.

  4. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr0.67Ca0.33MnO3 (PCMO) and ferromagnetic La0.67Sr0.33MnO3 (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects. - Highlights: • The resistance value in Pr0.67Ca0.33MnO3 nanoparticles is found to increase owing to the magnetic field cycling. • No anomaly in resistance was found in Pr0.67Ca0.33MnO3–La0.67Sr0.33MnO3 nanocomposite. • Magnetic measurements indicate the training effect in nanostructure compounds

  5. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    Das, Kalipada, E-mail: kalipada.das@saha.ac.in; Das, I.

    2015-12-01

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} (PCMO) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects. - Highlights: • The resistance value in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} nanoparticles is found to increase owing to the magnetic field cycling. • No anomaly in resistance was found in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3}–La{sub 0.67}Sr{sub 0.33}MnO{sub 3} nanocomposite. • Magnetic measurements indicate the training effect in nanostructure compounds.

  6. Optimization of Human Corneal Endothelial Cells for Culture: The Removal of Corneal Stromal Fibroblast Contamination Using Magnetic Cell Separation

    Gary S. L. Peh

    2012-01-01

    Full Text Available The culture of human corneal endothelial cells (CECs is critical for the development of suitable graft alternative on biodegradable material, specifically for endothelial keratoplasty, which can potentially alleviate the global shortage of transplant-grade donor corneas available. However, the propagation of slow proliferative CECs in vitro can be hindered by rapid growing stromal corneal fibroblasts (CSFs that may be coisolated in some cases. The purpose of this study was to evaluate a strategy using magnetic cell separation (MACS technique to deplete the contaminating CSFs from CEC cultures using antifibroblast magnetic microbeads. Separated “labeled” and “flow-through” cell fractions were collected separately, cultured, and morphologically assessed. Cells from the “flow-through” fraction displayed compact polygonal morphology and expressed Na+/K+ATPase indicative of corneal endothelial cells, whilst cells from the “labeled” fraction were mostly elongated and fibroblastic. A separation efficacy of 96.88% was observed. Hence, MACS technique can be useful in the depletion of contaminating CSFs from within a culture of CECs.

  7. The effect of particle size and colloid stability on the wet high-intensity magnetic separation of uranium from cyanidation residues

    This report describes an experimental investigation on the magnetic separation of U3O8 from various size fractions of uranium-gold tailings. High recoveries were obtained at high grades, even from the finest fraction (smaller than 25μm), and an increase in magnetic field did not improve the efficiency of separation. The use of theoretical models did not lead to the correct prediction of the limiting particle size recoverable by magnetic separation. It was shown that the presence of coarse fractions enhances the recovery of uranium from a very fine fraction, and that 'piggy-back' magnetic separation plays an important role in the capture of slimes. The results also showed that the use of a dispersant considerably improves the selectivity of the separation

  8. Magnetic properties and loss separation in Fe76−xAgxNb2Si13B9 amorphous alloys

    Highlights: • Soft magnetic properties can be optimized by applying a suitable heat treatment. • Low field magnetic permeability of the optimized samples increases about 10 times. • Total magnetic loss of the optimized samples decreases at least 10 times. • Plasticity is much higher than that reported for similar nanocrystalline alloys. • Observed effects are attributed to formation of the relaxed amorphous phase. - Abstract: Some selected properties (magnetic, plastic, elastic) in amorphous Fe76−xAgxNb2Si13B9 (x = 0.5, 0.75, 1.0) alloys, obtained by melt spinning technique, are presented and discussed in detail. It was shown that a suitable heat treatment of the as quenched samples (i.e. the optimization annealing) leads to a significant improvement of soft magnetic properties (permeability increases at least 10 times). The observed effect is attributed to formation of the so-called relaxed amorphous phase free of iron nanograins. Special attention is paid for loss separation into different components: hysteresis loss, eddy-current loss and residual loss. The latter effect can be attributed to diffusion of free volume and practically disappear after the optimization annealing

  9. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Chung, T.-H.; Chang, J.-Y. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China); Lee, W.-C. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China)], E-mail: chmwcl@ccu.edu.tw

    2009-05-15

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1{sup +} cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1{sup +} cells corresponding to a 17-fold enrichment was achieved.

  10. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1+ cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1+ cells corresponding to a 17-fold enrichment was achieved.

  11. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Chung, Ting-Hao; Chang, Jing-Yi; Lee, Wen-Chien

    2009-05-01

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1 + cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1 + cells corresponding to a 17-fold enrichment was achieved.

  12. The Effect of Magnetic Field on the Performance of a Dense Medium Separator

    Vatta, L. L.; Kekana, R.; Radebe, B.; Myburgh, I.; Svoboda, J.

    2003-01-01

    The application of a vertically oriented magnetic field external to a dense medium cyclone can be used to manipulate the density differential within the cyclone by influencing the cyclone's internal ferrosilicon distribution. Tests were conducted on a well-defined dense medium system using a pilot-plant cyclone equipped with a solenoid magnet. The objective was to determine the yield to the dense medium cyclone underflow of a sample consisting predominantly of quartzite material, as a functio...

  13. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-08-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe2O4 (MnZn ferrite), which was prepared by sol-gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite.

  14. Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at TMI and TC. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  15. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  16. Design study of a superconducting 120 inch-diameter magnetic matrix separator

    This paper reports that matrix separators with forced flow helium cooling can be built simpler and smaller. Thus eddy current losses otherwise occurring in a liquid helium bath container can be avoided

  17. Fingerprints of intrinsic phase separation: magnetically doped two-dimensional electron gas

    Terletska, Hanna; Dobrosavljević, Vladimir

    2010-01-01

    In addition to Anderson and Mott localization, intrinsic phase separation has long been advocated as the third fundamental mechanism controlling the doping-driven metal-insulator transitions. In electronic system, where charge neutrality precludes global phase separation, it may lead to various inhomogeneous states and dramaticahttp://arxiv.org/submit/215787/metadata arXiv Submission metadatally affect transport. Here we theoretically predict the precise experimental signatures of such phase-...

  18. Design of a single magnet separator with mass resolving power m/Δm ≈/20,000

    Breitenfeldt, Martin; Augustin, Mathieu; Catherall, Richard; Giles, Tim; Schoerling, Daniel; Tveten, Gry M.

    2016-06-01

    ISOLDE at CERN is a leading radioactive ion beam facility. With its upgrade, the HIE-ISOLDE project, an increase in primary beam intensity and energy is envisaged and the aim is a significant increase in intensity of the exotic beams. The high resolution separator (HRS) after the upgrade is required to suppress contaminations almost completely when the masses differ to the beam of interest by Δm / m > 1 / 20, 000 . Here a 120° magnet with a bending radius of 1.25 m has been chosen. The magnetic rigidity is 0.625 Tm (B-field of 0.5 T) to allow for separation of molecules of up to a mass of 300 u. The magnet comprises a yoke in wedged H-type configuration for stability and precision and pole face conductors for focusing and compensation of aberrations. The concept was derived analytically, refined with the OPERA 2D software and tested with the ray-tracing module of OPERA 3D.

  19. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Graphical abstract: - Highlights: • The composites were synthesized via a facile and effective process. • Plenty of Fe3O4 and Ag@AgCl nanoparticles are deposited on the reduced graphene oxide nanosheets. • The catalyst exhibited an enhanced photocatalytic performance and magnetic property. • The catalyst is stable under the visible light irradiation. - Abstract: A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe3O4) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron–hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts

  20. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples.

    Chen, Ligang; Liu, Jun; Zeng, Qinglei; Wang, Hui; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-05-01

    Magnetic molecularly imprinted polymers were prepared using hydrophobic Fe(3)O(4) magnetite as the magnetically susceptible component, oxytetracycline as template molecule, methacrylic acid as functional monomer, and styrene and divinylbenzene as polymeric matrix components. The polymers were applied to the separation of tetracycline antibiotics from egg and tissue samples. The extraction and clean-up procedures were carried out in a single step by blending and stirring the sample, extraction solvent and polymers. The analytes can be transferred from the sample matrix to the polymers directly or through the extraction solvent as medium. When the extraction was complete, the polymers adsorbing the analytes were easily separated from the sample matrix by an adscititious magnet. The analytes eluted from the polymers were determined by liquid chromatography-tandem mass spectrometry. The recoveries ranging from 72.8% to 96.5% were obtained with relative standard deviations in the range of 2.9-12.3%. The limit of detection was less than 0.2 ng g(-1). The feasibility of this method was validated by analysis of incurred egg and tissue samples, and the results were compared with those obtained by the classical method in which solvent extraction, centrifugation, and subsequent clean-up and concentration by solid-phase extraction were applied. The proposed method reduced the complicacy of classical method and improved the reliability of method. PMID:19268956

  1. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Zhong, Suting; Jiang, Wei, E-mail: superfine_jw@126.com; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-30

    Graphical abstract: - Highlights: • The composites were synthesized via a facile and effective process. • Plenty of Fe{sub 3}O{sub 4} and Ag@AgCl nanoparticles are deposited on the reduced graphene oxide nanosheets. • The catalyst exhibited an enhanced photocatalytic performance and magnetic property. • The catalyst is stable under the visible light irradiation. - Abstract: A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe{sub 3}O{sub 4}) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron–hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  2. Upgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process

    Xianlin Zhou

    2016-03-01

    Full Text Available The huge consumption of iron ores in China has attracted much attention to utilizing low grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory resource and difficult to upgrade by traditional physical concentration processes due to the superfine size and close dissemination of iron minerals with gangue minerals. An innovative technology for a high temperature reduction-magnetic separation process was studied to upgrade a high-aluminum iron ore assaying 41.92% Fetotal, 13.74% Al2O3 and 13.96% SiO2. The optimized results show that the final metal iron powder, assaying 90.46% Fetotal, was manufactured at an overall iron recovery of 90.25% under conditions as follows: balling the high aluminum iron ore with 15% coal blended and at 0.3 basicity, reducing the dried pellets at 1350 °C for 25 min with a total C/Fe mass ratio of 1.0, grinding the reduced pellets up to 95%, passing at 0.074 mm and magnetically separating the ground product in a Davis Tube at a 0.10-T magnetic field intensity. The metal iron powder can be used as the burden for an electric arc furnace (EAF. Meanwhile, the nonmagnetic tailing is suitable to produce ceramic, which mainly consists of anorthite and corundum. An efficient way has been found to utilize high-aluminum iron resources.

  3. A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water.

    Liu, Wanpeng; Ma, Jianqing; Shen, Chensi; Wen, Yuezhong; Liu, Weiping

    2016-03-01

    In order to control the antibiotic-related crisis and reduce the negative impacts on the environment and human health, it is urgent to develop effective technologies to eliminate residual antibiotics in water. Herein, we successfully fabricated a novel, pH-responsive and magnetically separable dynamic system for micropollutant adsorption and oxidation degradation in graphene oxide (GO)/nanoscale zero-valent iron (nZVI) composite with macroscopic structure. The pH-responsive self-assembly behavior of GO/nZVI composite was explored. The macroscopic structure of GO/nZVI composite serves as an excellent adsorbent for antibiotic removal in water. The adsorption process is fast and highly efficient even in high salty and humic acid containing water under acid to neutral conditions. After removal antibiotics, GO/nZVI composite is conveniently separated by magnetic system and put into alkaline solution (pH > 9) for adsorbent regeneration. Interestingly, it is found that at pH > 9, GO/nZVI composite disassembles partly upon increasing pH values, leading to the elution of antibiotics for efficient antibiotics degradation by ozonization. More importantly, this pH-responsive GO/nZVI system exhibits high removal efficiency, high stability, reusability and easily separation, making it a promising method for treatment of water with micropollutants. PMID:26724436

  4. Model experiments for immunomagnetic elimination of leukemic cells from human bone marrow. Presentation of a novel magnetic separation system.

    Gruhn, B; Häfer, R; Müller, A; Andrä, W; Danan, H; Zintl, F

    1991-11-01

    Optimal conditions for removing leukemic cells from human bone marrow with monoclonal antibodies (mAb) and magnetic immunobeads were investigated. Monodisperse 3 microns polystyrene microspheres containing magnetite were coated with affinity-purified rabbit antimouse IgG at 4 degrees C, pH 9.6 for 18 h. SKW-3 cells (T-CLL cell line) were marked with the supravital DNA stain Hoechst 33342, seeded into normal human bone marrow, and then incubated with the mAb CD1, CD6, and CD8 at 4 degrees C for 30 min. In preliminary experiments REH cells (cALL cells) and mouse anti-REH cell antibodies were used to find the most favorable conditions for the binding of magnetic beads to tumor cells. Optimal formation of cell-bead rosettes was achieved by rotating beads and tumor cells together at room temperature at a concentration of 1 x 10(7) cells/ml, a bead: tumor cell ratio of 100:1 and an incubation time of one hour. The novel magnetic separation apparatus consists of three polystyrene chambers connected by silicone rubber tubing. The chambers contain four steel inserts each equipped with 32 nickel wires, which are magnetized by permanent magnets in such a way that the inhomogeneous high gradient magnetic field could be established within the cell suspension containing the cells to be depleted. The fluid flow was established by a peristaltic pump. At a flow rate of 1.5 ml/min and a field strength of 160 kA/m, no beads could be detected in the purged marrow. A cocktail of the three mAb was more effective than any single antibody in forming bead-cell rosettes. Two sequential purging cycles were superior to one. The marrow recovered was highly viable as assessed by trypan blue dye exclusion and by growth of CFU-GM. PMID:1786986

  5. Application of Graphene Oxide-MnFe2O4 Magnetic Nanohybrids as Magnetically Separable Adsorbent for Highly Efficient Removal of Arsenic from Water

    Huong, Pham Thi Lan; Huy, Le Thanh; Phan, Vu Ngoc; Huy, Tran Quang; Nam, Man Hoai; Lam, Vu Dinh; Le, Anh-Tuan

    2016-05-01

    In this work, a functional magnetic nanohybrid consisting of manganese ferrite magnetic nanoparticles (MnFe2O4) deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. The as-prepared GO-MnFe2O4 magnetic nanohybrids were characterized using x-ray diffraction, transmission electron microscopy, Fourier transformed infrared spectroscopy, and vibrating sample magnetometer measurements. Adsorption experiments were performed to evaluate the adsorption capacities and efficient removal of arsenic of the nanohybrid and compared with bare MnFe2O4 nanoparticles and GO nanosheets. Our obtained results reveal that the adsorption process of the nanohybrids was well fitted with a pseudo-second-order kinetic equation and a Freundlich isotherm model; the maximum adsorption capacity and removal efficiency of the nanohybrids obtained ~240.385 mg/g and 99.9% with a fast response of equilibrium adsorption time ~20 min. The larger adsorption capacity and shorter equilibrium time of the GO-MnFe2O4 nanohybrids showed better performance than that of bare MnFe2O4 nanoparticles and GO nanosheets. The advantages of reusability, magnetic separation, high removal efficiency, and quick kinetics make these nanohybrids very promising as low-cost adsorbents for fast and effective removal of arsenic from water.

  6. Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1-T2 magnetic resonance imaging performance.

    Guldris, Noelia; Argibay, Bárbara; Kolen'ko, Yury V; Carbó-Argibay, Enrique; Sobrino, Tomás; Campos, Francisco; Salonen, Laura M; Bañobre-López, Manuel; Castillo, José; Rivas, José

    2016-06-15

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) coated with polyacrylic acid (PAA) were synthesized by a hydrothermal method in gram-scale quantity and extensively characterized. Only the nanoparticles subjected to an additional centrifugation step showed narrow size distribution, high polymeric coverage, and ideal superparamagnetism. In addition to improved physico-chemical properties, these nanoparticles feature high stability in vitro as well as dual T1-T2 performance as contrast agents (CAs) for magnetic resonance imaging (MRI), highlighting the importance of the additional separation step in obtaining material with the desired properties. PMID:27038785

  7. Magnetic separation technology in water treatment%磁分离技术在水处理中的运用

    李莎莉

    2015-01-01

    Magnetic separation technology has higher separate speed and efficiency. It is widely used in the food waste water treatment,oily wastewater treatment,the urban sewage treatment,printing and dyeing wastewater treatment of industrial waste water treatment.Along with the development of society,this technology is widening its fields in application, such as solid waste slag and fly ash.%磁分离技术具有分离速度快、效率高等特点,它已经应用于食品废水处理、含油废水处理、城市污水处理、印染废水处理等工业废水的处理,随着发展进步,该技术不断拓宽应用领域,如固体废弃物矿渣、粉煤灰。

  8. Investigation of Performances of Wet and Dry High-Intensity Magnetic Separators for concentration of Çatalca region quartzite

    ESKİBALCI, Mehmet Faruk; UZUN, Nihal; ŞAHKULUBEY, Lale

    2013-01-01

    In this study, the effect of wet and dry high intensity magnetic separators on removal of iron minerals from quartzite ore obtained from a private company in the region of Akalan, Çatalca Istanbul was investigated in order to produce a product which can be used in glass industry. The chemical analysis of the sample showed that the sample is composed of 97,35% SiO2, 1,66% Al2O3, 0,16% Fe2O3, 0,13% TiO2, 0,07% MgO. Additionally, the mineralogical analysis of the sample indicated that the sample...

  9. γ-Fe2O3:A magnetic separable catalyst for synthesis of 5-substituted 1H-tetrazoles from nitriles and sodium azide

    Gang Qi; Yong Dai

    2010-01-01

    An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported using γ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized conditions,the moderate to good yields(71-95%)can be obtained.The catalyst can be easily separated by a magnet and reused for several circles.

  10. Characteristics and Application of Vertical Ring High Gradient Magnetic Separator%LHGC-F型立环高梯度磁选机的特性及其应用

    王兆连; 刘风亮; 贾洪利; 魏黎明; 曾亮亮; 王宝春; 田凌佳; 张金庆

    2013-01-01

    On the basis of LHGC-vertical ring high gradient magnetic separator which has been developed and used successfully, LHGC-F oil-water compound-coolimg vertical ring high gradient magnetic separator is also developed by Shandong Huate Magnet Technology Co., Ltd., and it was appraised at the provincial and ministerial level on July 2012. The coil of the magnetic separator is cooled by transform oil, and the oil is cooled by water, so the coil can reach fine cooling effect. Meantime, the two ends of coil are fitted with armour, it can avoid magnetic leakage, improve the utilization ratio of magnetic energy, the background field of the magnetic separator reachs 1.3T, and the magnetic separator has yet some other advantages, now the magnetic separator has been applied in the separations of nonmetallic minerals effectively.%在成功研制和应用强制油冷立环高梯度磁选机的基础上,华特又研制出第四代油水复合冷却立环高梯度磁选机,并于2012年7月初通过省部级鉴定.该磁选机线圈用油冷却,油又用水冷却,线圈达到良好的降温效果,同时在线圈两端加装铁铠,防止漏磁,提高磁能利用率,背景场强达到1.3T,因诸多优点而在非金属矿选矿成功应用.

  11. Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation

    Přikryl, P.; Horák, Daniel; Tichá, M.; Kučerová, Z.

    2006-01-01

    Roč. 29, č. 16 (2006), s. 2541-2549. ISSN 1615-9306 R&D Projects: GA ČR GA203/05/0241 Institutional research plan: CEZ:AV0Z40500505 Keywords : human IgG * hydrophilic magnetic microspheres * iminodiacetic acid Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.535, year: 2006

  12. Magnetic ovalbumin and egg white aggregates as affinity adsorbents for lectins separation

    Maděrová, Zdeňka; Šafaříková, Miroslava; Šafařík, Ivo

    2008-01-01

    Roč. 40, - (2008), s. 542-545. ISSN 1369-703X R&D Projects: GA MŠk OC 157; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : egg white * lectins * magnetic protein aggregates Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.889, year: 2008

  13. Current development status and trends of domestic magnetic separators%国内磁选机的发展现状和趋势

    吕波; 骆振福

    2011-01-01

    磁选是矿物分选中不可或缺的一部分,而磁选机性能的好坏更是磁选流程中的关键性因素.介绍了近几年国内磁选设备的结构和生产实况,阐述了磁选机的实际现状以及发展趋势.伴随着磁性材料的不断更新和磁选工艺的日益发展,磁选机开始向永磁化和大型化的方向发展,同时为解决低品位、粒度细、磁性弱的矿物的选别开辟了新的道路.%Magnetic separation is the indispensable part of mineral separation, and the performance of mag netic separators is the key factor affecting the separating process. With the unceasing renewal of magnetic ma terials and the development of magnetic separation technology, magnetic separators have developed toward the direction of everlasting magnetization and large scale, which provides a new road for sperarating minerals with low grade, small grains and weak magnetism.

  14. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 Å channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 × 1020 Mx, 2.0 × 1020 Mx, and 21.0 × 1020 Mx, respectively, resulting in free energy drops of 3.89 × 1030 erg, 2.62 × 1030 erg, and 1.68 × 1032 erg.

  15. Calculating Separate Magnetic Free Energy Estimates for Active Regions Producing Multiple Flares: NOAA AR11158

    Tarr, Lucas A; Millhouse, Margaret

    2013-01-01

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The \\emph{Helioseismic and Magnetic Imager} (HMI) onboard the \\emph{Solar Dynamics Observatory} (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C--class, 2 M--class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on February 12th, 2011. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600\\AA\\ chann...

  16. Design of Countercurrent Separation of Ginkgo biloba Terpene Lactones by Nuclear Magnetic Resonance

    Qiu, Feng; Friesen, Brent J.; McAlpine, James B.; Pauli, Guido F.

    2012-01-01

    Terpene lactones such as bilobalide, ginkgolides A, B, C, and J are major bioactive compounds of Ginkgo biloba L. Purification of these compounds is tedious due to their similar chemical properties. For the purpose of developing an effective and efficient method for both analytical and preparative separation of terpene lactones in G. biloba, an innovative orthogonality-enhanced high-speed countercurrent chromatography (HSCCC) method was established. Taking advantage of quantitative 1H NMR (qH...

  17. Phase separation instabilities and magnetism in two dimensional square and honeycomb Hubbard model

    The variational cluster approximation is applied to rigorously calculate intrinsic local electron correlations in bipartite square and honeycomb Hubbard lattices. The Mott–Hubbard gap at half filling is manifested by a smooth metal–insulator transition in both lattices in agreement with the generic two-dimensional phase diagram. However, a density variation with the chemical potential shows the distinct structural differences away from half filling. The square lattice exhibits electron density discontinuity accompanied with spontaneous transition from antiferromagnetic Mott–Hubbard insulator into nonmagnetic metal. The spectral density anomaly and spin susceptibility peaks also are signaling on coexistence of hole rich metallic and hole poor insulating regions. In contrast, honeycomb lattice does not show density anomaly but displays a smooth transition with continuous evolution of a homogenous metallic state. These calculations provide strong evidence for spontaneous phase separation instability found in our quantum cluster calculations at moderate U - Highlights: • Variational cluster approximation (VCA) captures phase separation in various lattices under doping. • The conditions are formulated for continuous and discontinuous transitions. • Discontinuous phase separation is found in square lattices under doping and pressure. • Honeycomb lattice displays continuous evolution of a homogenous metallic state. • Spectral function anomaly in square geometry displays the folding of the first Brillouin zone

  18. LHGC - vertical Ring High Gradient Magnetic Separator and Its Use in Feldstar Mineral Separation%LHGC型立环高梯度磁选机及其在陶瓷原料长石矿分选中的应用

    刘梅; 刘风亮; 王建波

    2012-01-01

    LHGC-vertical ring high gradient magnetic separator is developed and made by Shandong Huate Magnetism Technology magnetic separator. The magnetic separation equipment was expertized by 9 experts in SOU ,fhe experts unanimously thought:this is a initiating magnetic separation equipment at home and abroad,its technical performance has achieved the word leading level. The mag-netic separator can be extensively used to process metalic mineral and nonmetalic mineral, especially is suitable to ihe separation of class taws as quarz and feldspar,and has got fine technical index and notable economic benefit.%我公司开发生产的LHGC型高梯度磁选机是一种节能、环保、有强制油冷却、有脉动作用的新型立环高梯度磁选机.该磁选设备已于2011年由9位专家做了技术鉴定.专家一致认为,这是一种国内外首创的磁选设备,其技术性能达到了国际领先水平,该磁选设备可以广泛地应用于金属矿物和非金属矿物的分选,尤其适用于陶瓷原料长石矿物的除铁提纯,长石经除铁提纯后其技术指标达到优良,经济效益十分显著.

  19. A study on the purification of primary coolant in a nuclear power plant using a magnetic filter - electrodeionization hybrid separation system

    A study on the purification of primary coolant system in a nuclear power plant is carried out using magnetic filter - electrodeionization hybrid separation process. Magnetic filter system with 3000 Gauss permanent manget is used for the removal of CRUD (Chalk River Unidentified Deposit) and electrodeionization for ionic nuclide species. The removal and transport mechanism of nickel ion in an electrodeionization system is explained. The developed magnetic filter - electrodeionization hybrid separation process showed high removal rate over 98 %. The results suggested the applicable possibility for the purification of primary coolant system in a nuclear power plant

  20. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.

    Samouhos, Michail; Taxiarchou, Maria; Tsakiridis, Petros E; Potiriadis, Konstantinos

    2013-06-15

    The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.%Cfix), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe₂O₃ → Fe₃O₄ → FeO → Fe sequence. The dielectric constants [real (ε') and imaginary (ε″) permittivities] of red mud-lignite mixture were determined at 2.45 GHz, in the temperature range of 25-1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained. PMID:23611801

  1. Mass magnetophoretic experiment applied to the separation of biocompatible magnetic nanoparticles with potential for magnetohyperthermia

    A mass magnetophoretic experiment was developed to segregate nanoparticles according to their diameter and size dispersion. The samples were synthesized by the coprecipitation method and characterized using x-ray diffraction, high-resolution transmission electron microscopy and vibrating sample magnetometry. The mean diameter (standard deviation) showed a decrease of nanoparticle size (size dispersion) in the surface of the magnetic fluid sample submitted to the magnetophoretic experiment. Those effects were monitored by time-dependent apparent mass variation data, which could be important for scale-up applications. Magnetohyperthemia experiments were also performed, confirming our findings. (paper)

  2. The Utilization of the Tailings From Wet Magnetic Separation at the Krivoy Rog Gok

    Khvatov, U. A.; Armashova, Z. P.; Maly, V. M.; Gardash, N. K.; Kolos, V. P.; Knyazhitsky, Yu. A.; Kaptilaya, L. V.; Sheludko, V. P.

    1995-01-01

    A new technique of beneficiation of tailings from the Krivoy Rog magnetite ore is described. By employing a high–intensity separator, the iron–rich and iron–poor products are obtained. These products can be used in building industry: the iron-rich fraction can be used as a correction component of a raw material in the production of the portland cement clinker, as a replacement for the pyrite cinder. The iron–poor product can be used for the manufacture of bricks and other building materials....

  3. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. PMID:26212997

  4. Magnetizing Roasting and Magnetic Separation of Specularite Ore%某镜铁矿石焙烧磁选试验研究

    李萌; 白丽梅; 王学涛; 张晓亮; 刘淑贤

    2014-01-01

    新疆某镜铁矿石含TFe 35%,P 0.021%,S 0.012%,矿石中部分镜铁矿以细粒和微细粒的状态与隐晶质细粒的碳酸盐混杂构成细粒隐晶质结构,属难选矿石。对其进行了实验室磁化焙烧弱磁选试验。结果表明,将-2 mm原矿与煤粉按100砄12质量比(煤配比100砄12)混合,在焙烧温度800℃,焙烧时间为75 min的条件下焙烧,焙烧后细磨至-0.074 mm占90%,在磁场强度均为120 kA/m条件下进行两段弱磁选,可获得铁精矿品位65.95%、回收率77.70%的技术指标。该工艺技术为我国镜铁矿的开发利用提供了参考。%The iron content in a Xinjiang specularite was 35%, and the impurities of phosphorus and sulfur were 0.024%and 0.011%respectively.Part of the specularite occurred as fine and mi-cro-fine, and formed fine cryptocrystalline structure with the cryptocrystalline fine carbonate .La-boratory tests of magnetic roasting -low intensity magnetic separation were carried out with the run-of-mine.The sample(-2mm) was mixed with coal powder with a mass ratio of 100:12 and roasted at temperature of 800 ℃for 75 min.The as-roasted product was ground to -0.074 mm 90%, and then separated twice by low intensity magnetic separator at 120 kA/m.A concentrate with iron grade of 65 .95%and recovery of 77 .70%was obtained .

  5. EVIDENCE FOR TWO SEPARATE BUT INTERLACED COMPONENTS OF THE CHROMOSPHERIC MAGNETIC FIELD

    Chromospheric fibrils are generally thought to trace out low-lying, mainly horizontal magnetic fields that fan out from flux concentrations in the photosphere. A high-resolution (∼0.''1 pixel–1) image, taken in the core of the Ca II 854.2 nm line and covering an unusually large area, shows the dark fibrils within an active region remnant as fine, looplike features that are aligned parallel to each other and have lengths comparable to a supergranular diameter. Comparison with simultaneous line-of-sight magnetograms confirms that the fibrils are centered above intranetwork areas (supergranular cell interiors), with one end rooted just inside the neighboring plage or strong unipolar network but the other endpoint less clearly defined. Focusing on a particular arcade-like structure lying entirely on one side of a filament channel (large-scale polarity inversion), we find that the total amount of positive-polarity flux underlying this 'fibril arcade' is ∼50 times greater than the total amount of negative-polarity flux. Thus, if the fibrils represent closed loops, they must consist of very weak fields (in terms of total magnetic flux), which are interpenetrated by a more vertical field that contains most of the flux. This surprising result suggests that the fibrils in unipolar regions connect the network to the nearby intranetwork flux, while the bulk of the network flux links to remote regions of the opposite polarity, forming a second, higher canopy above the fibril canopy. The chromospheric field near the edge of the network thus has an interlaced structure resembling that in sunspot penumbrae.

  6. Cryo magnetic separation adaptation to environment technologies: application to industrial effluents; Adaptation de la separation cryomagnetique aux technologies de l`environnement: application a l`epuration d`effluents liquides industriels

    Bureau, V.

    1993-12-20

    Cryomagnetic separation adaptation to environment technologies application to industrial liquid effluents. The performance, obtained by superconducting high filed - high gradient magnetic separation, permitted to foresee the magnetic treatment of heavy metals in rinse waters, derived from the surface finishing industry. The paramagnetic ions, precipitated in basic media as hydroxides, present a very hydrated amorphous structure, which masks their subjacent magnetic properties. Coprecipitation of a `magnetic carrier`, jointly with the heavy metals, has been studied: ferric chloride forms in basic media, an hydrated iron oxide. Its structure is of the goethite type, and it stabilizes as hematite. The magnetic susceptibility of the obtained product is still weak and its crystalline structure is not enough affirmative to utilize magnetic filtration with efficiency. Mixture of ferrous sulphate and ferric chloride forms, in a basic media, an hydrated magnetite. Initial ideal ratio between divalent iron and trivalent iron, varies between 0,5 and 1,2. This mixture, coprecipitated with the heavy metals, permits to optimize the magnetic cleaning of the fluids in a high field - high gradient filter. (author)

  7. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  8. Process of Self-magnetization, Hydrophobic Flocculation and Magnetic Separation of Fine Weak-magnetic Iron Minerals%细粒弱磁性铁矿物自磁化-疏水絮凝-磁选研究

    伍喜庆; 戴川; 戴亮

    2015-01-01

    利用菱铁矿在碱性溶液中的溶解特性,无需添加任何铁离子,通过控制矿浆pH值、反应温度、搅拌速度和时间等因素实现菱铁矿自磁化及其对赤铁矿的协同磁化作用,使弱磁性铁矿物能被选择性磁选回收。为加强细粒的回收,考察了六偏磷酸钠用量、非极性油(煤油)用量、油酸钠用量、煤油用量与油酸钠用量比、搅拌速度等因素对疏水絮凝⁃磁选的影响,结果表明,通过自磁化和疏水絮凝的联合作用,含Fe 42.35%的细粒(-0.038 mm)人工混合矿经0.35 T高梯度磁选机一次磁选可获得Fe品位61.30%、铁回收率90.92%的铁精矿。与其它磁选方法相比,自磁化⁃疏水絮凝⁃磁选流程处理含菱铁矿的细粒弱磁性混合铁矿石,分选效果较好。%Utilizing the solubility characteristics of siderite in alkaline solution, surface self⁃magnetization of fine siderite and its synergic magnetization on hematite can be actualized by adjusting parameters such as pulp pH, reaction temperature, reaction time and stirring speed without adding any iron ions, resulting in a selective recovery of these weak⁃magnetic iron minerals. To promote the recovery of fine minerals, hydrophobic flocculation⁃magnetic separation in combination with self⁃magnetization was investigated in terms of some variables such as dosages of sodium hexametaphosphate, kerosene and sodium oleate, the ratio of kerosene to sodium oleate as well as the stirring speed. Results showed an iron concentrate with iron grade and recovery of 61. 30% and 90. 92%, respectively, was obtained from the artificial ore with fineness of -0. 038 mm and iron grade of 42. 35% by a one⁃stage separation using a high gradient magnetic separator with the magnetic induction intensity of 0.35 T. In comparison with other magnetic separation techniques, the flowsheet of self⁃magnetization, hydrophobic flocculation, magnetic separation

  9. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator.

    Wang, Chengquan; Qian, Jing; Wang, Kun; Yang, Xingwang; Liu, Qian; Hao, Nan; Wang, Chengke; Dong, Xiaoya; Huang, Xingyi

    2016-03-15

    Gold nanoparticles (Au NPs) doped Fe3O4 (Au@Fe3O4) NPs have been synthesized by a facile one-step solvothermal method. The peroxidase-like activity of Au@Fe3O4 NPs was effectively enhanced due to the synergistic effect between the Fe3O4 NPs and Au NPs. On this basis, an efficient colorimetric aptasensor has been developed using the intrinsic dual functionality of the Au@Fe3O4 NPs as signal indicator and magnetic separator. Initially, the amino-modified aptamer specific for a typical mycotoxin, ochratoxin A (OTA), was surface confined on the amino-terminated glass beads surafce using glutaraldehyde as a linker. Subsequently, the amino-modified capture DNA (cDNA) was labeled with the amino-functionalized Au@Fe3O4 NPs and the aptasensor was thus fabricated through the hybridization reaction between cDNA and the aptamers. While upon OTA addition, aptamers preferred to form the OTA-aptamer complex and the Au@Fe3O4 NPs linked on the cDNA were released into the bulk solution. Through a simple magnetic separation, the collected Au@Fe3O4 NPs can produce a blue colored solution in the presence of 3,3',5,5'-tetramethylbenzidine and H2O2. When the reaction was terminated by addition of H(+) ions, the blue product could be changed into a yellow one with higher absorption intensity. This colorimetric aptasensor can detect as low as 30 pgmL(-1) OTA with high specificity. To the best of our knowledge, the present colorimetric aptasensor is the first attempt to use the peroxidase-like activity of nanomaterial for OTA detection, which may provide an acttractive path toward routine quality control of food safety. PMID:26583358

  10. GRM crustal magnetic anomalies: Separating the Lord Howe Rise and Norfolk Ridge submarine structures

    Frey, H.

    1985-01-01

    Multiple source bodies often lie within the resolution element of the MAGSAT and POGO data. Small weak sources lying near larger stronger sources will tend to be missed, although they do contribute to the total observed anomaly. Lower elevation magnetic anomaly surveys such as GRM alleviate this problem through the combined effects of significantly greater resolution and stronger signal amplitude. This permits the detection of smaller source bodies, and analysis of their structure and nature. The improvement a GRM will provide is demonstrated in the Lord Howe Rise/Norfolk Ridge area east of Australia, between the Tasman Sea and south Fiji Basin. The submarine features origin have important plate tectonic implications. The Lord Howe Rise (LHR) is a continental fragment broken off from Australia by the opening of the Tasman Sea. It is a wide, shallow structure lying between 160 and 165 deg longitude at 23 to 37 deg S latitude. Seismic refraction data show the LHR crust extending to depths in excess of 20 km.

  11. Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation

    Sun, Yong-sheng; Han, Yue-xin; Gao, Peng; Wang, Ze-hong; Ren, Duo-zhen

    2013-05-01

    Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reduction temperature, reduction time, C/O mole ratio, and CaO content on the metallization degree and iron recovery were investigated in detail. Experimental results show that reduced products with the metallization degree of 95.82% could be produced under the optimal conditions (i.e., reduction temperature, 1250°C; reduction time, 50 min; C/O mole ratio, 2.0; and CaO content, 10wt%). The magnetic concentrate containing 89.63wt% Fe with the iron recovery of 96.21% was obtained. According to the mineralogical and morphologic analysis, the iron minerals had been reduced and iron was mainly enriched into the metallic iron phase embedded in the slag matrix in the form of spherical particles. Apatite was also reduced to phosphorus, which partially migrated into the metallic iron phase.

  12. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. PMID:27209393

  13. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens.

    Ondera, Thomas J; Hamme, Ashton T

    2015-12-01

    A rapid, sensitive and quantitative immunoassay for the targeted detection and decontamination of E. coli based on Fe3O4 magnetic nanoparticles (MNPs) and plasmonic popcorn-shaped gold nanostructure attached single-walled carbon nanotubes (AuNP@SWCNT) is presented. The MNPs were synthesized as the support for a monoclonal antibody (mAb@MNP). E. coli (49979) was captured and rapidly preconcentrated from the sample with the mAb@MNP, followed by binding with Raman-tagged concanavalin A-AuNP@SWCNTs (Con A-AuNP@SWCNTs) as detector nanoprobes. A Raman tag 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) generated a Raman signal upon 670 nm laser excitation enabling the detection and quantification of E. coli concentration with a limit of detection of 10(2) CFU mL(-1) and a linear logarithmic response range of 1.0 × 10(2) to 1.0 × 10(7) CFU mL(-1). The mAb@MNP could remove more than 98% of E. coli (initial concentration of 1.3 × 10(4) CFU mL(-1)) from water. The potential of the immunoassay to detect E. coli bacteria in real water samples was investigated and the results were compared with the experimental results from the classical count method. There was no statistically significant difference between the two methods (p > 0.05). Furthermore, the MNP/AuNP@SWCNT hybrid system exhibits an enhanced photothermal killing effect. The sandwich-like immunoassay possesses potential for rapid bioanalysis and the simultaneous biosensing of multiple pathogenic agents. PMID:26469636

  14. Separating spatial and temporal variations in auroral electric and magnetic fields by Cluster multipoint measurements

    T. Karlsson

    2004-07-01

    Full Text Available Cluster multipoint measurements of the electric and magnetic fields from a crossing of auroral field lines at an altitude of 4RE are used to show that it is possible to resolve the ambiguity of temporal versus spatial variations in the fields. We show that the largest electric fields (of the order of 300mV/m when mapped down to the ionosphere are of a quasi-static nature, unipolar, associated with upward electron beams, stable on a time scale of at least half a minute, and located in two regions of downward current. We conclude that they are the high-altitude analogues of the intense return current/black auroral electric field structures observed at lower altitudes by Freja and FAST. In between these structures there are temporal fluctuations, which are shown to likely be downward travelling Alfvén waves. The periods of these waves are 20-40s, which is not consistent with periods associated with either the Alfvénic ionospheric resonator, typical field line resonances or substorm onset related Pi2 oscillations. The multipoint measurements enable us to estimate a lower limit to the perpendicular wavelength of the Alfvén waves to be of the order of 120km, which suggests that the perpendicular wavelength is similar to the dimension of the region between the two quasi-static structures. This might indicate that the Alfvén waves are ducted within a wave guide, where the quasi-static structures are associated with the gradients making up this waveguide.

  15. Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field

    Jie, J. C.; Zou, Q. C.; Wang, H. W.; Sun, J. L.; Lu, Y. P.; Wang, T. M.; Li, T. J.

    2014-08-01

    A low-cost and high-efficiency method to purify Si directly from cheap MG-Si at low temperature was proposed and demonstrated in this paper, which used power frequency rotating magnetic field (RMF) to separate the primary Si from a hypereutectic Al-Si alloy and was followed by the acid peeling. The separation mechanism was based on the flow characteristic of melt under RMF and the cooling condition of the liquid metal. A Si-rich layer with Si content of 65-59 wt% was formed in the periphery of alloy, while the inner microstructure of the alloy was mainly the Al-Si eutectic structure. The refined silicon was collected after aqua regia leaching, and had much fewer typical impurities (Fe, Ti, Ca, B, P) than those in MG-Si, and the metallic impurities besides Al had removal fraction higher than 98%, which is mainly ascribed to the segregation effect of Al-30Si alloy during solidification under RMF.

  16. Magnetic source separation in the outer core. Introducing the SCOR-field

    Complete text of publication follows. We present evidence that the primary source of Earth's axial dipole (AD) is physically distinct from sources responsible for the rest of the geomagnetic field. Support for this claim comes from correlations between the structure of the historic non-axial dipole (NAD) field and transitional paleomagnetic behavior recorded in lavas during the early Brunhes Chron. 40Ar/39Ar age determinations of lavas from West Eifel, Germany, indicate the recording of five excursions spanning ∼200 kyr, including the Big Lost Event (∼580 ka). Transitional lavas from Tahiti also record the Big Lost as well as the Matuyama-Brunhes reversal. Virtual geomagnetic poles (VGPs) recorded at West Eifel are spread across Eurasia, while those recorded on Tahiti during the two events are associated with the same tightly clustered location west of Australia - the site of the most intense NAD flux feature since direct field measurements started some 400 years ago. The differing locations and amounts of spread of transitional VGPs match - at both sites - virtual poles determined for the historic NAD-field. We contend that (1) the field generated by deep convective columns near the tangent cylinder is the primary source for the AD; and (2) the field arising from flux concentrations held and controlled by lower mantle conditions is the primary source for the NAD. Since there most certainly is a small contribution to the AD term (g10) associated with mantle-held sources, we define this field as the Shallow-Core-Generated (SCOR) field. Paleomagnetic data from Tahiti and Australia strongly suggest that the Australasian flux feature is long-lived, regionally dominating the field when the strength of the main AD had significantly weakened or vanished. We argue that recurrence of transitional VGPs observed over geologic time indicates that (1) the entire field does not reverse as a single unit, and (2) field sources exist in the core that are sufficiently separated

  17. Coupling Underwater Superoleophobic Membranes with Magnetic Pickering Emulsions for Fouling-Free Separation of Crude Oil/Water Mixtures: An Experimental and Theoretical Study.

    Dudchenko, Alexander V; Rolf, Julianne; Shi, Lucy; Olivas, Liana; Duan, Wenyan; Jassby, David

    2015-10-27

    Oil/water separations have become an area of great interest, as growing oil extraction activities are increasing the generation of oily wastewaters as well as increasing the risk of oil spills. Here, we demonstrate a membrane-based and fouling-free oil/water separation method that couples carbon nanotube-poly(vinyl alcohol) underwater superoleophobic ultrafiltration membranes with magnetic Pickering emulsions. We demonstrate that this process is insensitive to low water temperatures, high ionic strength, or crude oil loading, while allowing operation at high permeate fluxes and producing high quality permeate. Furthermore, we develop a theoretical framework that analyzes the stability of Pickering emulsions under filtration mechanics, relating membrane surface properties and hydrodynamic conditions in the Pickering emulsion cake layer to membrane performance. Finally, we demonstrate the recovery and recyclability of the nanomagnetite used to form the Pickering emulsions through a magnetic separation step, resulting in an environmentally friendly, continuous process for oil/water separation. PMID:26422748

  18. Theory and Performance of a Slurry Flow in Form of a Film in the 6ERM–35/315 Separator With a High—Gradient Magnetic Field

    Turkenich, A. M.

    1996-01-01

    The physical foundations and theoretical determination of conditions for formation of a slurry flow in form of a film along ferromagnetic plates of a rotary high—gradient magnetic separator are described. It is shown that this new hydrodynamics allows to increase not only the reliability of the separator thanks to the increase of the width of gaps between the plates, but also to improve its metallurgical efficiency.

  19. Bernoulli Equation in Rotating Magnetic Fluid Separation%旋转磁流体分选法中的伯努利方程研究

    张应强; 魏镜弢; 张明; 张晶

    2014-01-01

    立足于旋转磁流体的非磁性矿物分选法,从磁流体微元体模型受力状态出发,对旋转磁流体运动状态进行了分析,以流体力学、铁磁流体力学、离心力学等理论基础为手段,建立旋转磁流体伯努利方程,为旋转磁流体分选法的理论完善和工业应用提供支持。%Starting from non-magnetic mineral separation using rotating magnetic fluid,and focusing on the forces in representative elemental volume of magnetic fluid,the state of dynamics in magnetic fluid is analysed. Based on hydromechanics,ferrohydromechanics(FHD),centrifugal mechanics,etc,the Bernoulli eguation in rotating magnetic fluid separation is established. All of these tasks would help to improve the theories and industrial application of rotating magnetic fluid separation.

  20. Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis

    Amir Khojastehnezhad; Mohammad Rahimizadeh; Hossein Eshghi; Farid Moeinpour; Mehdi Bakavoli

    2014-01-01

    A new magnetically separable catalyst consisting of ferric hydrogen sulfate supported on sili-ca-coated nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized using vibrating sample magnetometry, X-ray diffraction, transmission electron microscopy, scan-ning electron microscopy, and Fourier transform infrared spectroscopy. This new magnetic catalyst was shown to be an efficient heterogeneous catalyst for the synthesis of 1,8- dioxodecahydroacri-dines under solvent-free conditions. The catalyst is readily recovered by simple magnetic decanta-tion and can be recycled several times with no significant loss of catalytic activity.

  1. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples.

    Liu, Min; Li, Xiao-Yan; Li, Jun-Jie; Su, Xiao-Meng; Wu, Zong-Yuan; Li, Peng-Fei; Lei, Fu-Hou; Tan, Xue-Cai; Shi, Zhan-Wang

    2015-05-01

    In this study, novel magnetic molecularly imprinted polymers (MMIPs) were developed as a sorbent for solid-phase extraction (SPE) and used for the selective separation of metronidazole (MNZ) in cosmetics; MNZ was detected by high-performance liquid chromatography (HPLC). First, magnetic Fe3O4 nanoparticles (NPs) were prepared by the co-precipitation of Fe(2+)and Fe(3+) ions in an ammonia solution; then oleic acid (OA) was modified onto the surface of Fe3O4NPs. Finally, the MMIP was prepared by aqueous suspension polymerization, involving the copolymerization of Fe3O4NPs@OA with MNZ as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol maleic rosinate acrylate (EGMRA) as the cross-linking agent, and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The MMIP materials showed high selective adsorption capacity and fast binding kinetics for MNZ; the maximum adsorption amount of the MMIP to MNZ was 46.7 mg/g. The assay showed a linear range from 0.1 to 20.0 μg/mL for MNZ with the correlation coefficient 0.999. The relative standard deviations (RSD) of intra- and inter-day ranging from 0.71 to 2.45% and from 1.06 to 5.20% were obtained. The MMIP can be applied to the enrichment and determination of MNZ in cosmetic products with the recoveries of spiked toner, powder, and cream cosmetic samples ranging from 90.6 to 104.2, 84.1 to 91.4, and 90.3 to 100.4%, respectively, and the RSD was <3.54%. PMID:25749799

  2. 弱磁性矿石高效强磁选关键技术及装备研究%Key Technologies and Equipments of High Intensity Magnetic Separation for Weakly Magnetic Minerals

    饶宇欢; 熊大和

    2015-01-01

    The mineral processing equipment of weak magnetic ores has some key technological difficulties, such as low magnetic field, easily jammed magnetic media, low recovery rate and difficult maintenance. This paper discusses a series of theoretical problems in designing magnetic separator, including dynamic function of fine-grain sized ore particle in the multi-force field and relation function affecting mineral processing indexes. Magnetic field intensity (>1.0T) is obtained by unique armor furnishing and inner cooling magnetic system to reduce magnet leakage. Easy jamming problem of magnetic separator is solved by bar-shaped magnetic media with optimized structure. The former hydraulic magnetic separator can only process small particle size crude ores (<1 mm). However, the newly-invented magnetic separator has the capacity to separate crude ores with large particle size (2~5 mm).The invention of dry vibrating high gradient magnetic separator expands the magnetic separation from hydraulic to dried technologies. The daily processing capacity of a single SLon magnetic separator reaches 10,000t. The industrial application of SLon magnetic separators, with more than 30 models, has been practiced.%针对我国弱磁性矿石选矿效率低,强磁选设备存在磁场强度低、磁介质易堵塞、回收率低、维修难度大等重大技术难题。研究提出了微细粒弱磁性矿粒在综合力场中的动力学方程和影响弱磁性矿物选矿指标的关系方程式等一系列磁选机设计方面的理论问题;在装备设计中通过独特的铠装、水内冷磁系,减少漏磁,获得了1.0 T以上磁场强度,实现了强磁选机节能;研发了棒状磁介质及其优化排列结构,解决了强磁选机易堵塞问题;发明了分选大颗粒物料(2~5 mm)的强磁选机,解决了湿式强磁选机仅能处理小于1 mm物料的难题;发明了干式振动高梯度磁选机,使强磁选从湿式

  3. Recovery and separation of erythromycin from industrial wastewater by imprinted magnetic nanoparticles that exploit β-cyclodextrin as the functional monomer.

    Zhang, Yuxin; Li, Jinyang; Wang, FeiFei; Wu, Gang; Qv, Xue; Hong, Hua; Liu, Changsheng

    2016-01-01

    A type of surface imprinting over magnetic Fe3 O4 nanoparticles utilizing erythromycin-A as a template for use in the separation and recovery of erythromycin was developed and investigated. As the intermolecular forces play a key role in the performance of imprinted materials, differential scanning calorimetry, and (1) H NMR spectroscopy was employed to evaluate the interactions between erythromycin and the functional monomer β-cyclodextrin. To synthesize the surface imprinted polymers, magnetic Fe3 O4 nanoparticles, the core materials, were modified with a free radical initiator to initialize polymerization in a "grafting from" manner. Then using acryloyl-modified β-cyclodextrin as the functional monomer and ethyleneglycol dimethacrylate as the cross-linker, thin erythromycin-imprinted films were fabricated by the radical-induced graft copolymerization of monomers on the surface of the Fe3 O4 nanoparticles. Selectivity experiments showed that the erythromycin-A-imprinted materials had recognition ability toward erythromycin derivatives. Finally, these magnetic molecularly imprinted particles were successfully used for the separation and enrichment of erythromycin from the mother liquor. The recovery, detected by high-performance liquid chromatography and differential pulse voltammetry, approached 97%. The combination of the specific selectivity of the imprinted material and the magnetic separation provided a powerful tool that is simple, flexible, and selective for the separation and recovery of erythromycin. PMID:26805958

  4. MAGNETIC DRUM SEPARATOR PERFORMANCE SCALPING SHREDDED TROMMEL OVERFLOW AT NOMINAL DESIGN CONDITIONS. TEST NO. 4.03, RECOVERY 1, NEW ORLEANS

    This report describes the first test of the shredded trommel overs magnetic drum separator at the New Orleans, Louisiana, resource recovery facility. Shredded trommel overs refers to waste which reports to the oversize discharge from the trommel and is subsequently shredded. For ...

  5. 莱矿磁选工艺技术改造措施%Technical Transformtion Measures of Magnetic Separation Process in Laiwu Mining Industry

    鲍加庆

    2014-01-01

    莱矿选矿厂为提高铁金属回收率,降低尾矿品位,减少铁金属的流失,不断对磁选进行技术改造,实施磨前湿选工艺,应用大筒径磁选机,使用中磁机及污水磁选机,对尾矿进行扫选改造,更新磁选设备等,取得了良好的效果,最终铁金属综合回收率达到93%以上,尾矿品位降到7%以下。%In order to increase the recovery rate, reduce the tailing grade and reduce the loss of iron metal, the technical transformations of magnetic separation have continuous been carried out in concentrator of Laiwu Mining Industry Co., Ltd., such as implementing wet-grinding pre-selection process, using big tube diameter magnetic separator, using the medium magnetic separation machine and the magnetic separator machine with disposing waste water, transforming sweep choose for tailing, updating the equipment of mineral concentration and so on, achieved good results. At last the recovery rate of the iron metal was above 93%, the tailing grade was down to 7%or less.

  6. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.

    Ma, Yingxin; Huang, Sheng; Wang, Leyu

    2013-11-15

    Rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) in aqueous solution differentiating from other nitroaromatics and independent of complicated instruments is in high demand for public safety and environmental monitoring. Despite of many methods for TNT detection, it is hard to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their highly similar structures and properties. In this work, via a simple and versatile method, LaF3ːCe(3+)-Tb(3+)and Fe3O4 nanoparticle-codoped multifunctional nanospheres were prepared through self-assembly of the building blocks. The luminescence of these nanocomposites was dramatically quenched via adding nitroaromatics into the aqueous solution. After the magnetic separation, however, the interference of other nitroaromatics including 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) was effectively overcome due to the removal of these coexisting nitroaromatics from the surface of nanocomposites. Due to the formation of TNT(-)-RCONH3(+), the TNT was attached to the surface of the nanocomposites and was quantitatively detected by the postexposure luminescence quenching. Meanwhile, the luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-5.0 μg/mL with the 3σ limit of detection (LOD) of 10.2 ng/mL. Therefore, the as-developed method provides a novel strategy for rapid and selective detection of TNT in the mixture solution of nitroaromatics by postexposure luminescence quenching. PMID:24148441

  7. Preparation of magnetically separable Fe3O4/BiOI nanocomposites and its visible photocatalytic activity

    Novel magnetic Fe3O4/BiOI nanocomposites with visible light response were successfully fabricated through a facile and economical method at low temperature and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), respectively. The Fe3O4/BiOI nanocomposites were further employed in photodegrading rhodamine B (RhB). After 40 min, RhB removal rate reached to 90.1%, which was superior to the pure BiOI (50.3%). The enhanced photocatalytic performance of Fe3O4/BiOI nanocomposites may be attributed to the separation efficiency of the carriers. After five recycles for the photodegradation of RhB, the Fe3O4/BiOI nanocomposites did not exhibit any significant loss of activity, confirming the photocatalyst was essentially stable. Moreover, direct hole transfers and ·O2− are proved to be the dominant reactive species in the photodegradation of RhB over Fe3O4/BiOI nanocomposites.

  8. Effect of traveling magnetic field on separation and purification of Si from Al-Si melt during solidification

    Zou, Q. C.; Jie, J. C.; Liu, S. C.; Wang, T. M.; Yin, G. M.; Li, T. J.

    2015-11-01

    Separation and purification of the Si crystal during solidification process of hypereutectic Al-30Si melt under traveling magnetic field (TMF) were investigated in the present study. The results showed that under a proper condition the Si-rich layer can be formed in the periphery of the ingot while the inner microstructure is mainly the Al-Si eutectic structure. The intense melt flow carries the bulk liquid with higher Si content to promote the growth of the primary Si phase which is first precipitated close to the inner wall of the crucible with a relatively lower temperature, which resulting in the remarkable segregation of the primary Si phase. The impurity contents of the refined Si can be reduced to a very low level. The typical metallic impurities have removal fraction higher than 99.5%. In addition, there is a significant difference in the P contents between the primary and eutectic Si phases, which might be ascribed to the formation of AlP phase that acts as the heterogeneous nucleation sites. Furthermore, a considerable amount of Fe-containing particles with a size about 100-300 nm is found inside the eutectic Si phase, indicating an unintended entrapment of Fe in Si.

  9. 铁钛平行分选对微细粒钛铁矿强磁选的影响%Effect of Parallel Separation of Fe and Ti on High-Intensity Magnetic Separation of Micro-fine Ilmenite

    郭小飞; 袁致涛; 申帅平; 李丽匣

    2016-01-01

    The separation test of -3.2 mm V-Ti magnetite ore ultra-finely crushed by HPGR was carried out with the process of parallel separation of Fe and Ti.The effect of high-intensity magnetic separation on ilmenite was investigated.When the crushed ores with grind fineness of-74 μm accounted for 80%,the liberation degree of the product crushed by HPGR increased by 0.58% and the number of iron oxide in the ores with fineness of -19 μm +1 1 μm decreased by 1.38%,compared with that by Jaw crusher.The TiO2 recovery could increase by 5.1 1 % and the content of the product with -19 μm could reduce by 2.62% in high-intensity magnetic concentrate,compared with the product crushed by Jaw crusher and separated by the process of stage-grinding and stage-separating.The force analysis on ilmenite with different sizes in the separation space show that,as the particle size decreases gradually,the specific resistance on ilmenite increases sharply and the specific magnetic force reduces,so ilmenite particle is more difficult to be captured by magnetic field.The process of parallel separation of Fe and Ti can reduce the amount of newly formed micro-fine ilmenite in the separation, improving the performance of high-intensity magnetic separation of ilmenite.%采用“铁钛平行分选”工艺对高压辊磨超细碎的-3.2 mm 钒钛磁铁矿进行选别实验,研究了强磁选对钛铁矿的分选效果.当磨矿细度为-74μm粒级占80%时,辊压产品选钛给矿的单体解离度较颚破产品高0.58%,辊压产品-19μm +11μm 粒级中铁氧化物的单体含量较颚破产品低1.38%.与颚破产品采用“阶段磨矿-阶段分选”工艺相比,“铁钛平行分选”得到的强磁精矿中 TiO2的回收率提高5.11%,-19μm粒级的含量降低2.62%.不同粒级钛铁矿在分选空间中的受力分析表明,当粒度降低时,钛铁矿所受的比阻力急剧增加,而比磁力却有所降低,这增加了钛铁矿颗粒被磁场捕获的难度.“

  10. Ferrimagnetism and magnetic phase separation in Nd{sub 1−x}Y{sub x}MnO{sub 3} studied by magnetization and high frequency electron paramagnetic resonance

    Nair, Harikrishnan S., E-mail: krishnair1@gmail.com [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Yadav, Ruchika [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Adiga, Shilpa [Jülich Center for Neutron Sciences 2/Peter Grünberg Institute 4, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Rao, S.S. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Tol, Johan van [National High Magnetic Field Laboratory, Centre for Interdisciplinary Magnetic Resonance, Florida State University,1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Elizabeth, Suja [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-01-01

    Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd{sub 1−x}Y{sub x}MnO{sub 3}, for x=0.1–0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO{sub 3}. Magnetization studies reveal a phase transition of the Mn-sublattice below T{sub N}{sup Mn}≈80K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x<0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd{sub 1−x}Y{sub x}MnO{sub 3} can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation.

  11. Separation of species of a binary fluid mixture confined between two concentric rotating circular cylinders in presence of a strong radial magnetic field

    Sharma, B.R. [Dibrugarh University, Department of Mathematics, Dibrugarh, Assam (India); Singh, R.N. [Marwari Hindi High School, Dibrugarh (India)

    2010-08-15

    The effect of a radial magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids confined between two concentric rotating circular cylinders with different angular velocity is examined. The equations governing the motion, temperature and concentration in cylindrical polar coordinate are solved analytically. The solution obtained in closed form for concentration distribution is plotted against the radial distances from the surface of the inner circular cylinder for various values of non-dimensional parameters. It is found that the non-dimensional parameters viz. the Hartmann number, thermal diffusion number, baro diffusion number, rotational Reynolds number, the product of Prandtl number and Eckert number, magnetic Prandtl number and the ratio of the angular velocities of inner and outer cylinders affects the species separation of rarer and lighter component significantly. The problem discussed here derives its application in the basic fluid dynamics separation processes to separate the rarer component of the different isotopes of heavier molecules where electromagnetic method of separation does not work. (orig.)

  12. THE RESEARCH AND APPLICATION OF CYCLONE MAGNETIC SEPARATOR%旋流磁力分选机的研究及应用

    史佩伟; 王晓明; 梁殿印

    2012-01-01

    为了进一步提高选矿工艺流程中磁性矿物的分选效率,有必要探索磁铁矿分选机理,研究新型选矿装备,适应选矿高效化的要求.本文介绍了一种新型的旋流磁力分选机,其特点是利用多种分选力场,实现贫矿提纯或者高效回收的目的.%To further improve the separation efficiency of magnetic minerals in beneficiation process, it' s necessary to explore the mechanism of magnetite separation and develop new type of separating equipment to meet the requirements of high efficient separation. This article describes a new type of cyclone magnetic separator, which is characterized by using of a variety of sorting force fields to achieve the purposes of lean ore purification or high efficient recycling.

  13. Membrane Separation Process of Oxytetracycline Fermentation Broth with Magnetization%磁场强化膜分离土霉素发酵液工艺研究

    王亚卿

    2012-01-01

    The oxytetracycline filtered broth by plate and framefilter was purified and concentrated with membrane separation techniques in magnetic field.Experiment results indicate that ultrafiltration membrane PES20 and nanofiltration membrane NF270 separation properties is better effect in 0.4 T,and the production quality of oxytetracycline increased compared with no magnetization treatment process or the original technology.%引入磁场强化膜分离技术对板框过滤后的土霉素发酵液进行提纯和浓缩,研究结果表明,经0.4T磁段磁场强化后,PES20超滤膜及NF270纳滤分离性能均表现出较佳的正效应,土霉素产品质量较无磁场作用及原工艺有所提高。

  14. Isolation of prostate cancer cell subpopulations of functional interest by use of an on-chip magnetic bead-based cell separator

    This work presents the design, fabrication and characterization of a modular magnetic bead-based cell separation device developed for the sequential sorting of a heterogeneous prostate cancer (CaP) cell population. The chief aim is cell sorting carried out on the basis of surface marker expression, serially selecting cellular subpopulations for capture by the use of antibody-coated magnetic beads. The markers of interest, prostate specific membrane antigen (PSMA) and CD10 were selected for their relevance to ongoing CaP development research. The separation device was fabricated out of plastic, by the use of cyclic olefin copolymer (COC) injection molding, nickel–iron electroplating and thermoplastic fusion bonding. Effective depletion and enrichment of cell subsets based on multiple surface markers was achieved. Various flow rates and incubation times were tested for optimizing the sorting procedure

  15. Development and Application of Three New Type High Efficiency Magnetic Separators%3种新型高效磁选机的研制与应用

    赵瑞敏

    2011-01-01

    The structures characteristics and application results of BK, CTB - 1245, BKB special multi-pole magnetic separator are introduced chiefly.It shows that these new type high efficiency drum magnetic separators play an important role in improving mineral processing efficiency and economic benefit.%对BK系列专用磁选机研发思路、应用情况及CTB-1245型超大型筒式磁选机、BKB多磁极磁选机结构特点和使用情况作了介绍.工业应用和试验表明,这些新型高效磁选设备对于提高选厂的选矿效率,增加企业经济效益起了重要作用.

  16. 斜环永磁高梯度磁选机的原理及应用%High-gradient permanent magnetic separator with inclined cylinder and its application

    伍喜庆; 米夏夏; 杨斌

    2011-01-01

    介绍新型斜环永磁高梯度磁选机的基本结构,分析磁性矿粒在复合力场中的受力和捕获机理,测试该设备对某铁矿尾矿的磁选效果.该磁选机为永磁磁系,分选环为倾斜配置且分选环倾斜角度和转速可调;分选时,磁介质在底部磁场区捕收磁性矿粒,旋转到顶部非磁场区冲洗卸矿.研究结果表明:调节分选环的倾斜角度可改变磁性矿粒所受各作用力的大小,从而调节磁选粒度的下限和磁选作业的回收率;当原矿铁品位为17.81%时,经一次磁选可获得回收率为65.05%、全铁品位为29.53%的磁选精矿.该磁选机设计合理、节能,可实现连续给矿、分选和排矿.%The structure of a high-gradient permanent magnetic separator with inclined cylinder (HGPMSIC) was described, the load conditions and capture mechanism of mineral particles in a compound force field were analyzed, and magnetic separation effect of tailings containing iron by the HGPMSIC was tested. The inclination angle and rotational speed of separation cylinder, which was attached to the HGPMSIC, were adjustable. Magnetic particles were attracted by magnetic media in the inner bottom of the cylinder due to the presence of magnetic field and then washed down by pressured water after rotation into the inner top wall with nearly non-magnetic field. The mechanics analysis of mineral particles in the compound force field indicates that the lower limit of particle size (i.e. finest particle) recoverable by the HGPMSIC is controllable by adjusting the inclination of the separation cylinder. The test results of reclaiming iron minerals from a tailings containing iron by the HGPMSIC show that for a tailings with a content of 17.81% iron as feed, a magnetic concentrate with TFe grade of 29.53% and recovery of 65.05% are obtained after one time magnetic separation. The design of the magnetic separator is reasonable, and it operates well continuously through feeding

  17. Magnetic phase separation in double layer ruthenates Ca3(Ru1−x Ti x )2O7

    Jin Peng; Liu, J. Y.; J. Hu; Mao, Z. Q.; F. M. Zhang; Wu, X S

    2016-01-01

    A phase transition from metallic AFM-b antiferromagnetic state to Mott insulating G-type antiferromagnetic (G-AFM) state was found in Ca3(Ru1−x Ti x )2O7 at about x = 0.03 in our previous work. In the present, we focused on the study of the magnetic transition near the critical composition through detailed magnetization measurements. There is no intermediate magnetic phases between the AFM-b and G-AFM states, which is in contrasted to manganites where a similar magnetic phase transition takes...

  18. 用于清除胆红素的磁性亲和分离方法%Study on Removal of Bilirubin with Magnetic Affinity Separation Technique

    徐辉; 张国亮; 张凤宝; 王淑兰

    2003-01-01

    An affinity adsorbent, Cibacron Blue 3GA immobilized magnetic polyvinyl alcohol (PVA) microsphereswas used for bilirubin removal taking the advantage of easy separation of magnetic sorbent from the biosystem.Fe3 O4 superparamagnetic particles was synthesized with hydrothermal reaction of ferrous chloride (FeCl2) and ferricchloride (FeCl3). Such magnetic particles are then encapsulated in biocompatible PVA to form magnetic polymermicrospheres sized from 2 to 15 nm with hydroxyl groups on its surface. Cibacron Blue 3GA, a dye-ligand, wascovalently coupled with the polyvinyl alcohol through the nucleophilic reaction between the chloride of its triazinering and the hydroxyl groups of PVA molecules under alkaline condition. The affinity adsorbent carried 21.1 μmolCibacron Blue 3GA per gram magnetic polymer microspheres was used to remove unconjugated and conjugatedbilirubin from the solution which was composed of bilirubin or bilirubin and protein. After the adsorption, theadsorbent loaded with bilirubin was removed easily in the magnetic field.

  19. Novel Phase Separation and Magnetic Volume Tuning in Underdoped NaFe1-xCoxAs (x ˜0.01)

    Ma, Long; Dai, J.; Lu, X. R.; Tan, Guotai; Song, Yu; Dai, Pengcheng; Zhang, C. L.; Normand, B.; Yu, Weiqiang

    2013-03-01

    NaFeAs is a quasi-2D pnictide parent compound with a weak magnetic moment and separate structural and antiferromagnetic transitions. Because Co doping leads to a superconductor with Tc ~= 20 K at a very low optimal doping of x = 0 . 02 , NaFe1-xCoxAs is uniquely suited to sensitive studies of the cohabitation and competition between magnetism and superconductivity. Using NMR as a local probe of both antiferromagnetic order and superconductivity, we have compared Knight shifts and relaxation rates on the Na, As, and Co nuclei. Above Tc, we find weak doping inhomogeneity, in the form of residual paramagnetic regions with differing TN values, and a strongly field-controlled magnetic volume. Below Tc, we observe a strong competition between antiferromagnetism and superconductivity, in which the temperature is the dominant control parameter, suppressing the magnetic volume fraction very significantly in favor of the superconducting one, while the external field suppresses Tc. Our results suggest both a microscale phase separation in real space and in reciprocal space a competition between two order parameters requiring the same electrons on the quasi-2D Fermi surface.

  20. Experimental Research on Magnetic Separation of Ilmenite Placer of Yun Nan%云南钛铁矿砂矿磁选试验研究

    徐明; 张渊; 傅文章; 洪秉信

    2011-01-01

    The main useful components of ilmenite placers of Yun Nan are ilmenite and titanium magnetite and the ores are extremely sliming. Experimental research on magnetic separation for this ore was adopted. When the technology of selective scrubbing dissociation was carried on, +0.030mm products of 35. 31%TiO2 with the yield of 78.25% and -0.030mm products of 8.46% TiO2 with the yield of 21.75% were obtained respectively. Directed at + 0.030mm products,low -intensity magnetic separation was adopted to remove iron,the tailings of which was carried on titanium beneficiation by adopting the technology of grading-high - intensity magnetic separation and the concentrate was carried on separating iron and titanium by using low - intensity magnetic separation-high - intensity magnetic separation. Directed at the -0.030mm products,fine particle titanium separation was carried on by using the technology of desliming-magnetic separation. Finally, titanium concentrate of 48. 83%TiO2 with recovery of 85.51% and iron concentrate of 56.62% Tfe with recovery of 25.17% were obtained. This technology is rational and feasible and the separation index is satisfactory.%云南钛铁矿石中主要有用矿物为钛铁矿、钛磁铁矿,矿石泥化较严重,针对该矿石进行了磁选试验研究.对原矿采用选择性擦洗解离,可以得到TiO2品位35.31%,产率78.25%的+0.030mm产品及TiO2品位8.46%,产率21.75%的-0.030mm产品.+0.030mm粒级采用弱磁除铁,弱磁尾矿采用分级-强磁选工艺进行选钛试验,对弱磁精矿再磨后采用弱磁-强磁工艺进行钛、铁分离;-0.030mm粒级采用脱泥-磁选工艺进行细粒选钛试验.最终可得到TiO2品位48.83%的钛精矿,回收率85.51%,TFe晶位56.62%的铁精矿,回收率25.17%.该工艺合理可行,选矿指标较为理想.

  1. HRS Separator

    2016-01-01

    Footage of the 90 and 60 degree ISOLDE HRS separator magnets in the HRS separator zone. In the two vacuum sectors HRS20 and HRS30 equipment such as the HRS slits SL240, the HRS faraday cup FC300 and wiregrid WG210 can be spotted. Vacuum valves, turbo pumps, beamlines, quadrupoles, water and compressed air connections, DC and signal cabling can be seen throughout the video. The HRS main and user beamgate in the beamline between MAG90 and MAG60 and its switchboxes as well as all vacuum bellows and flanges are shown. Instrumentation such as the HRS scanner unit 482 / 483, the HRS WG470 wiregrid and slits piston can be seen. The different quadrupoles and supports are shown as well as the RILIS guidance tubes and installation at the magnets and the different radiation monitors.

  2. Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules

    Gómez, Angela Viviana; Rodríguez, Ferney Javier; Quiroga, Luis; García-Ripoll, Juan José

    2016-06-01

    Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix.

  3. Synthesis of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenol from aqueous solutions.

    Tai, Yulei; Wang, Li; Gao, Jingmin; Amer, Wael A; Ding, Wenbing; Yu, Haojie

    2011-08-15

    A simple strategy to fabricate magnetic porous microspheres of Fe(3)O(4)@poly(methylmethacrylate-co-divinylbenzene) was demonstrated. The magnetic microspheres, consisting of polymer-coated iron oxide nanoparticles, were synthesized by the modified suspension polymerization of methacrylate and divinylbenzene in the presence of a magnetic fluid. The morphology and the properties of the magnetic porous microspheres were examined by scanning electron microscopy, transmission electron microscopy, superconducting quantum interference device, Fourier transform infrared spectroscopy, thermogravimetry, and X-ray powder diffraction. The pore size distribution and the specific surface area of the microspheres were measured by nitrogen sorption and mercury porosimetry technique. As predicted from the previous knowledge, the magnetic porous microspheres possessed a high specific surface area using n-hexane as a porogen. It was further found that the amounts of divinylbenzene and methacrylate, the ratio of porogens, and the dosage of ferrofluids affect the specific surface area of the microspheres. Furthermore, the microspheres were applied to remove phenol from aqueous solutions. The results showed that the microspheres had a high adsorption capacity for phenol and a high separation efficiency due to their porous structure, polar groups, and superparamagnetic characteristic. PMID:21601864

  4. Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method. I. Background and concept

    A wide variety of iron oxides has been used for the removal of radioactive and toxic metals from aqueous solutions. Natural magnetite and iron ferrite (FeO x Fe2O3) in a batch mode to remove actinides (Pu and Am) from wastewater have been utilized. Compared to the batch process, enhanced capacity for actinide removal was observed using supported magnetite in a column surrounded by an external magnetic field (0.3 tesla). The enhanced magnetite capacity in the column is primarily due to magnetic filtration of colloidal and submicron actinide particles along with some actinide complex and ion exchange sorption mechanisms. The removal of the magnetic field from around the column and use of a regenerating solution will easily remove the actinides loaded on the magnetite. The magnetic field-enhanced column process is under development for a variety of applications. Previous work on using ferrites for water treatment is reviewed and the potential for using the magnetic field-enhanced column process as a pre-analysis separation and concentration method for actinides in groundwater is discussed. (author)

  5. Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments

    Udby, Linda; Andersen, Niels Hessel; Chou, F.C.;

    2009-01-01

    We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting...... ordering temperature T-c=40 K. The incommensurability value is consistent with a hole doping of n(h)approximate to 1>8 but in contrast to nonsuperoxygenated La2-xSrxCuO4 with hole doping close to n(h)approximate to 18 the magnetic-order parameter is not field dependent. We attribute this to the magnetic...

  6. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process

    Highlights: • Microwave reduction of a red mud. •Measurement of real and imaginary permittivity of red mud–lignite mixture. •Red mud was subjected to reductive roasting and magnetic separation processes. •The optimum concentrate contains 31.6% iron with a 69.3% metallization degree. •226Ra, 228Ra, 238U, 228Th, 232Th, 40K were detected in the magnetic concentrate. -- Abstract: The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.% Cfix), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe2O3 → Fe3O4 → FeO → Fe sequence. The dielectric constants [real (ε′) and imaginary (ε″) permittivities] of red mud–lignite mixture were determined at 2.45 GHz, in the temperature range of 25–1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained

  7. Experimental Research on Mineral Separation of a Magnetic-flotation Tailings Mixture%磁浮混合铁尾矿选矿试验研究

    韩京增; 朱申红; 荀志远; 赵贵军

    2012-01-01

    将某选厂的磁选尾矿和反浮选尾矿按实际生产的产率比例混合后,进行铁矿物的回收试验。利用不同矿物间的相互载体作用进行反浮选,采用Slon-100周期式脉动高梯度磁选机进行抛尾,极大地提高了分选指标。采用两段磨矿,两段强磁选,两段弱磁选,反浮选工艺,试验最终得到产率7.54%,品位65.35%,回收率25.57%的铁精矿,以及产率8.69%,铁品位29.30%,回收率13.43%的中矿,最终尾矿品位为13.68%,与实际生产相比,精矿产率提高2.74%,回收率提高6.50%。%Experiment on iron recovery from a mixture of magnetic separation tailings mixed with reverse flotation tailings in their actual yields was made for an ore-dressing plant.Reverse flotation was used to mixture by the inter-carrier effect of different minerals,Slon-100 cyclic pulsating high gradient magnetic separator was used to discard tailings,and the separation indexes was improved greatly.By two-stage grinding,two-stage high-intensity magnetic separation,two-stage low-intensity magnetic separation and reverse flotation,an iron concentrate was obtained,with yield of 7.54%,iron grade of 65.35% and recovery of 25.57%.And a middling product was obtained also,with yield of 8.69%,iron grade of 29.30% and recovery of 13.43%.The iron grade of final tailings was 13.68%.Compared with the actual production indexes,the yield of iron concentrate was increased by 2.74%,the iron recovery was increased 6.50%.

  8. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.

    Fan, Zhen; Senapati, Dulal; Khan, Sadia Afrin; Singh, Anant Kumar; Hamme, Ashton; Yust, Brian; Sardar, Dhiraj; Ray, Paresh Chandra

    2013-02-18

    Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug-resistant bacteria (MDRB), by using current market-existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn-shaped iron magnetic core-gold plasmonic shell nanotechnology-driven approach for targeted magnetic separation and enrichment, label-free surface-enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the "lightning-rod effect", the core-shell popcorn-shaped gold-nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody-conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal-lysis experiment, by using 670 nm light at 1.5 W cm(-2) for 10 min, results in selective and irreparable cellular-damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label-free SERS imaging, and photothermal destruction of MDRB by using the popcorn-shaped magnetic/plasmonic nanotechnology. PMID:23296491

  9. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2015-10-01

    In this work, we successfully prepared a series of novel magnetically separable ZnO/Ag3VO4/Fe3O4 nanocomposites by a facile refluxing method using Fe3O4, zinc nitrate, silver nitrate, ammonium metavanadate, and sodium hydroxide as starting materials without using any post preparation treatments. The microstructure, purity, morphology, spectroscopic, and magnetic properties of the prepared samples were studied using XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques. The ZnO/Ag3VO4/Fe3O4 nanocomposite with 8:1 weight ratio of ZnO/Ag3VO4 to Fe3O4 has the superior activity in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite is about 11.5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The results showed that the preparation time and calcination temperature significantly affect on the photocatalytic activity. The trapping experiments revealed that superoxide ions and holes have major influence on the degradation reaction. Furthermore, the enhanced activity of the nanocomposite for degradation of two more dye pollutants was confirmed. Finally, the nanocomposite was magnetically separated from the treated solution after four successive cycles.

  10. Effective approach towards Si-bilayer-IDA modified CoFe2O4 magnetic nanoparticles for high efficient protein separation.

    Li, Jianhao; Chen, Mengjun; Gao, Zhuo; Du, Jie; Yang, Wantai; Yin, Meizhen

    2016-10-01

    Ultrafine cobalt ferrite (CoFe2O4) nanoparticles with narrow size distributions and regular morphologies were prepared through an improved procedure based on the high-temperature diol reduction method. By replacing the original reducing agent like expensive dihydric alcohol, oleylamine was applied as both stabilizer and reducing agent, which benefit for large scale synthesis of magnetic CoFe2O4 nanoparticles. To produce protein-separation agent with both high specific surface area and magnet content, inverse microemulsion system and substitution reaction were employed to render the produced CoFe2O4 nanoparticles with dense silica bilayer and iminodiacetic acid (IDA)-like structure modification. After the chelation with Cu(2+), the metal-immobilized CoFe2O4 nanoparticles can specifically absorb bovine hemoglobin (BHb) with maximum adsorption capacity as qm=1812.3mg/g. Compared with the reported Cu(2+)-immobilized magnetic nanoparticles, the as-prepared CoFe2O4@Si-IDA-Cu(2+) nanoparticles exhibited excellent adsorption capacity and were applied as high efficient protein separation agent in a real complex biological fluid like bovine blood. PMID:27400241

  11. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution.

    Liang, Xuanqi; Gondal, Mohammed A; Chang, Xiaofeng; Yamani, Zain H; Li, Nianwu; Lu, Hongling; Ji, Guangbin

    2011-01-01

    The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well. PMID:21961696

  12. A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV–vis light

    Graphical abstract: A novel magnetically separable composite photocatalyst TiO2/CoFe2O4 nanofiber was prepared by sol–gel method and electrospinning technique, which can be reclaimed with a magnet, and the decolorizing efficiency of MB solution reached 95.87%. Highlights: ► The composite TiO2/CoFe2O4 nanofibers with diameter of 110 ± 28 nm have been successfully synthesized by the combination of sol–gel method and electrospinning technique. ► The presence of Co2+ or/and Fe3+ ions may occupy some of the lattice sites of TiO2 to form an iron–titanium solid solution and narrow the band gap, which broadens the response region of visible light. ► The resultant nanofibers not only have high decomposition efficiency with methylene blue (MB) under the UV irradiation, which is close to that of Degussa P25, but also can be separated with a magnet and avoid the secondary pollution of the treated water. -- Abstract: A novel magnetically separable heterogeneous photocatalyst TiO2/CoFe2O4 nanofiber was prepared by sol–gel method and electrospinning technology, followed by heat treatment at 550 °C for 2 h. The phase structure, morphology and magnetic property of the composite nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope and vibrating sample magnetometer analysis. The photocatalytic studies of TiO2/CoFe2O4 fibers suggested that the presence of CoFe2O4 not only enhanced the absorbance of UV light, but also broadened the response region to visible light. The decolorizing efficiency of methylene blue (MB) solution reaches 95.87% over TiO2/CoFe2O4 nanofibers under 300 W Hg lamp after 5 h, which is close to that of Degussa P25. Furthermore, these fibers can be collected with a magnet for reuse and effectively avoid the secondary pollution of the treated water.

  13. A novel magnetically separable TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber with high photocatalytic activity under UV-vis light

    Li, Cong-Ju, E-mail: congjuli@gmail.com [Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Wang, Jiao-Na; Wang, Bin [Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Gong, Jian Ru, E-mail: gongjr@nanoctr.cn [National Center for Nanoscience and Technology, China, 11 Zhongguancun Beiyitiao, Beijing 100190 (China); Lin, Zhang [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002 (China)

    2012-02-15

    Graphical abstract: A novel magnetically separable composite photocatalyst TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber was prepared by sol-gel method and electrospinning technique, which can be reclaimed with a magnet, and the decolorizing efficiency of MB solution reached 95.87%. Highlights: Black-Right-Pointing-Pointer The composite TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofibers with diameter of 110 {+-} 28 nm have been successfully synthesized by the combination of sol-gel method and electrospinning technique. Black-Right-Pointing-Pointer The presence of Co{sup 2+} or/and Fe{sup 3+} ions may occupy some of the lattice sites of TiO{sub 2} to form an iron-titanium solid solution and narrow the band gap, which broadens the response region of visible light. Black-Right-Pointing-Pointer The resultant nanofibers not only have high decomposition efficiency with methylene blue (MB) under the UV irradiation, which is close to that of Degussa P25, but also can be separated with a magnet and avoid the secondary pollution of the treated water. -- Abstract: A novel magnetically separable heterogeneous photocatalyst TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber was prepared by sol-gel method and electrospinning technology, followed by heat treatment at 550 Degree-Sign C for 2 h. The phase structure, morphology and magnetic property of the composite nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope and vibrating sample magnetometer analysis. The photocatalytic studies of TiO{sub 2}/CoFe{sub 2}O{sub 4} fibers suggested that the presence of CoFe{sub 2}O{sub 4} not only enhanced the absorbance of UV light, but also broadened the response region to visible light. The decolorizing efficiency of methylene blue (MB) solution reaches 95.87% over TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofibers under 300 W Hg lamp after 5 h, which is close to that of Degussa P25. Furthermore, these fibers can be collected with a magnet for reuse and

  14. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    Hassnain Jaffari, G.; Aftab, M.; Anjum, D. H.; Cha, Dongkyu; Poirier, Gerald; Ismat Shah, S.

    2015-12-01

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/ Fe atom and a bulk like negligible value of coercivity over the temperature range of 5-300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  15. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    Hassnain Jaffari, G.

    2015-12-16

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  16. Reduction of magnetic interaction in CoB/Pd multilayer perpendicular media using a phase-separated Pd-SiO underlayer

    To realize CoB15/Pd multilayer perpendicular media with weak intergranular exchange coupling, we utilize PdSi18 (at. %) alloy, which contains elements that have large difference of affinity for oxygen, as the underlayer. It is clarified that introducing oxygen into Ar atmosphere during deposition of the underlayer substantially reduces the intergranular exchange coupling of the multilayer. Microstructural analysis reveals that the introduction of oxygen has separated the PdSi18 underlayer into two phases and enhances the formation of grain boundaries of the multilayer. It is suggested that the two-phase-separated Pd-SiO underlayer becomes a template for the growth of the multilayer and promotes the formation of grain boundaries in the multilayer, which reduces the exchange coupling through isolation of grains of the multilayer. In addition, independent of the oxygen pressure, coercivity and anisotropy energy maintain values of around 3.5 kOe and 2.3x106 erg/cm3, respectively. It is concluded that the two-phase-separated Pd-SiO underlayer, fabricated by introducing oxygen during sputtering of PdSi18 underlayer, is effective for reducing the magnetic exchange coupling without degrading the magnetic properties

  17. Iron concentration and sulfur reduction on sulphuric acid drag by magnetic roasting-magnetic separation%硫酸渣磁化焙烧—磁选提铁降硫

    张汉泉; 路漫漫; 胡定国

    2012-01-01

    The iron content (mass fraction) is 55. 08% and the sulfur is 1. 3% in sulfuric acid residue. This experiment aims at improving the iron grade and reducing the harmful elements such as sulfur in the drag. Direct magnetic separation was used, obtaining 60. 54% iron concentrate grade, only 54. 46% iron recoveries. Then process of magnetizing roasting-magnetic separation was put forward. Through analyzing the experimental condition of magnetizing roast temperature, magnetizing roast time and the proportion of reducer, the condition of 40 minutes of roast time, 750 °C of roasting temperature and 10% reducer is the best. When the roasted product is grinded to —0. 074 mm 97. 02%, a good index through simple mineral processing is got, the iron grade of concentrate reaches to 64. 57%% and the iron recovery rate reaches to 86. 99%. The mass fraction of sulfur in iron concentrate is reduced to 0. 13% after the roasting product is separated by one roughing and one cleaning magnetic separation process.%硫酸渣铁品位为55.08%,其中有害元素硫的含量为1.3%.为高效利用硫酸渣,必须提高铁含量、降低硫磷等有害元素.硫酸渣试样直接进行弱磁选,得到铁精矿品位60.54%,精矿回收率仅为54.46%,采用磁化焙烧-弱磁选的方法来进行选铁试验,通过对磁化焙烧时间、磁化焙烧温度、还原剂的质量配比等条件试验,确定了在焙烧时间40 min,焙烧温度750℃,还原剂10%的最佳焙烧条件.焙烧矿磨矿至-0.074 mm 97.02%,用弱磁选管进行磁选的最佳试验条件,在此焙烧条件下,进行一粗一精的磁选,获得了铁品位64.57%,精矿回收率86.99%,硫含量降低到0.13%.

  18. Magnetic composite of Fe3O4 and activated carbon as a adsorbent for separation of trace Sr(II) from radioactive wastewater

    Magnetic adsorbent of Fe3O4 and activated carbon (Fe3O4/AC) was prepared by chemical coprecipitation technique, and was characterized by SEM, TEM, BET, XRD, and VSM techniques in details. The adsorption results of Sr(II) on Fe3O4/AC revealed that Sr(II) adsorption on Fe3O4/AC surface was an spontaneous and endothermic process, and can be well described by the pseudo-second-order model. The adsorption of Sr(II) on Fe3O4/AC increased with increasing pH, and decreased with increasing ionic strength. Fe3O4/AC can be easily separated from aqueous solution with an external magnetic field after application. (author)

  19. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    Hesse, Michael; Birn, Joachim; Schindler, Karl

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.

  20. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water.

    Ren, Zhijun; Zhang, Lin; Shi, Yue; Leng, Xiaodong; Shao, Jingchao

    2016-07-15

    The patented technology of a High Gradient Magnetic Separation (HGMS)-Ultraviolet (UV) composite process was used to treat ballast water. Staphylococcus aureus (S. aureus) was selected as the reference bacteria. After treatment by the HGMS-UV process, the concentration of S. aureus on the log 10 scale was lower than 2 at different flow rates, S. aureus suffered the most serious damage, and K(+) leakage of the bacteria was 1.73mg/L higher than separate 60min UV irradiation (1.17mg/L) and HGMS (0.12mg/L) processes. These results demonstrated that the HGMS-UV composite process was an effective approach to treat ballast water. Further, the HGMS process had synergistic action on the subsequent UV irradiation process and accelerated cell membrane damage. Meanwhile, the results of superoxide dismutase (SOD) activities of bacteria and DNA band analyses indicated that the inactivation mechanisms were different for HGMS and UV irradiation. PMID:27126180

  1. Volume reduction on all particle size of the contaminated soil. Continuous processing technology of attrition, chemical wash under an ambient temperature and pressure condition and magnetic separation

    An examination was conducted in order to establish a practical purification system that could largely reduce the storage volume of radioactive waste in the Intermediate Storage Facility. The examination consists of a 3-step washing treatment of contaminated soil, which includes “Milling Washing” of removed contaminated soil, chemical extraction of fine soil fraction resulted from the “Milling Washing” under an ambient temperature and pressure condition, and magnetic separation of cesium from the extracted solution. As a result of the examination, we succeeded in development of a safe system with low initial cost and running cost. (author)

  2. A Research of YHXTG-4012 of Strong Magnetic Separation-Machine and Industrial Production%YHXTG-4012强磁选机的研制及工业生产实践

    黄诚

    2012-01-01

    YHXTG - 4012型永磁干式强磁选机是一种磁极作业面宽、具有高磁场和高梯度的新型磁系结构的磁选机系列.对该磁极单元和磁系结构做了较详细的介绍,分析了该新型永磁强磁选机磁系结构在选别粗粒级弱磁性矿物上的优势,列举了试验样机投入生产后的选矿技术经济指标.%YHXTG-4012 type of permanent magnet in dry strong magnetic separation-machine is a pole operation in high magnetic field, wide with the high gradient of new magnetic system structure of magnetic separation machine series. In this paper, the author tells of the magnetic poles unit of structure, including a more detailed presentation. He analyzes that the new permanent magnetism in strong magnetic separation-machine magnetic system structure are not in macrolevel magnetic advantage in weak level.

  3. Manipulating Migration Behavior of Magnetic Graphene Oxide via Magnetic Field Induced Casting and Phase Separation toward High-Performance Hybrid Ultrafiltration Membranes.

    Xu, Zhiwei; Wu, Tengfei; Shi, Jie; Wang, Wei; Teng, Kunyue; Qian, Xiaoming; Shan, Mingjing; Deng, Hui; Tian, Xu; Li, Cuiyu; Li, Fengyan

    2016-07-20

    Hybrid membranes blended with nanomaterials such as graphene oxide (GO) have great opportunities in water applications due to their multiple functionalities, but they suffer from low modification efficiency of nanomaterials due to the fact that plenty of the nanomaterials are embedded within the polymer matrix during the blending process. Herein, a novel Fe3O4/GO-poly(vinylidene fluoride) (Fe3O4/GO-PVDF) hybrid ultrafiltration membrane was developed via the combination of magnetic field induced casting and a phase inversion technique, during which the Fe3O4/GO nanocomposites could migrate toward the membrane top surface due to magnetic attraction and thereby render the surface highly hydrophilic with robust resistance to fouling. The blended Fe3O4/GO nanocomposites migrated to the membrane surface with the magnetic field induced casting, as verified by X-ray photoelectron spectroscopy, elemental analysis, and energy dispersive X-ray spectroscopy. As a result, the novel membranes exhibited significantly improved hydrophilicity (with a contact angle of 55.0°) and water flux (up to 595.39 L m(-2) h(-1)), which were improved by 26% and 206%, 12% and 49%, 25% and 154%, and 11% and 33% compared with those of pristine PVDF membranes and PVDF hybrid membranes blended with GO, Fe3O4, and Fe3O4/GO without the assistance of magnetic field during membrane casting, respectively. Besides, the novel membranes showed high rejection of bovine serum albumin (>92%) and high flux recovery ratio (up to 86.4%). Therefore, this study presents a novel strategy for developing high-performance hybrid membranes via manipulating the migration of nanomaterials to the membrane surface rather than embedding them in the membrane matrix. PMID:27355273

  4. GPS Separator

    2016-01-01

    Footage of the 70 degree ISOLDE GPS separator magnet MAG70 as well as the switchyard for the Central Mass and GLM (GPS Low Mass) and GHM (GPS High Mass) beamlines in the GPS separator zone. In the GPS20 vacuum sector equipment such as the long GPS scanner 482 / 483 unit, faraday cup FC 490, vacuum valves and wiregrid piston WG210 and WG475 and radiation monitors can also be seen. Also the RILIS laser guidance and trajectory can be seen, the GPS main beamgate switch box and the actual GLM, GHM and Central Beamline beamgates in the beamlines as well as the first electrostatic quadrupoles for the GPS lines. Close up of the GHM deflector plates motor and connections and the inspection glass at the GHM side of the switchyard.

  5. Magnetically separable photocatalytic composite gamma-Fe(2)O(3)@TiO(2) synthesized by heterogeneous precipitation

    Tyrpekl, Václav; Vejpravová, J.P.; Roca, A.G.; Murafa, Nataliya; Szatmáry, Lórant; Nižňanský, D.

    2011-01-01

    Roč. 257, č. 11 (2011), s. 4844-4848. ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LC06041; GA AV ČR KAN400100653 Institutional research plan: CEZ:AV0Z40320502 Keywords : nano composite * oxides * magnetic properties * transmission electron microscopy * X-ray powder diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.103, year: 2011

  6. Separation of inclusions from liquid metal contained in a triangle/square pipe by travelling magnetic field

    2000-01-01

    By using plug flow and trajectory model, the elimination efficiency of the inclusions from liquid metals purifiedby travelling magnetic field (TMF) in either a triangle or a square pipe was analyzed theoretically. The ways to improvethe elimination efficiency were suggested. The results using different kinds of pipes were reciprocally compared. It is de-termined that by means of TMF to eliminate inclusions the efficiency is affected by the diameter of the inclusions, inwhich the inclusions can be removed most efficiently, is optimized

  7. The use of magnetic poly(N-isopropylacrylamide) microspheres for separation of DNA from probiotic dairy products

    Macková, Hana; Horák, Daniel; Trachtová, Š.; Rittich, B.; Španová, A.

    2012-01-01

    Roč. 1, č. 2 (2012), s. 235-240. ISSN 2164-9634 R&D Projects: GA AV ČR(CZ) KAN401220801; GA MŠk 2B06053; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : magnetic particles * thermosensitive * poly(N-isopropylacrylamide) Subject RIV: EE - Microbiology, Virology

  8. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation

    The percolation leaching of the Cuban nickel tailings containing 0.34% Ni, 0.08% Co and 44.2% Fe was investigated by using tartaric and oxalic acids at different concentrations. About 70% Ni, 80% Co and 30% Fe were extracted after 5 days of leaching with the mixture of 0.15 mol/L tartaric acid and 0.05 mol/L oxalic acid at ambient temperature and normal pressure. Nickel and cobalt extraction of 80% as well as iron extraction of 50% were achieved from the pregnant solution by means of precipitation at 80 deg. C for 2 h. The precipitation at ambient temperature led to a similar result after 16 days. Cobalt, nickel and iron oxalates were found in the precipitate by using the X-ray diffraction method. The regeneration of acids during the precipitation step made possible the reuse of the raffinate at the leaching step. Heating of the precipitate at 200 deg. C increased the metal concentration to 1.22% Ni and 0.33% Co, which can be fed in the existing nickel plant in Moa, Cuba. The magnetic processing of the leaching residues led to a non-magnetic product containing less than 20% Fe and a magnetic product containing more than 50% Fe

  9. Magnetic Th(IV)-ion imprinted polymers with salophen schiff base for separation and recognition of Th(IV)

    A new complex of N,N'-bis(3-allyl salicylidene)o-phenylenediamine and thorium(IV) (Th(IV)) was synthesized and used as the functional monomer for a novel Th(IV) magnetic ion-imprinted polymer; this polymer was synthesized using a surface imprinting technique that included the modified magnetic Fe3O4 particle and used tetraethyl orthosilicate, 3-Aminopropyltriethoxysilane and maleic anhydride in the process. The magnetic polymer was characterized using FT-IR, and powder- and single crystal-XRD. The behavior of Th(IV) was investigated using batch experiments. At pH 4.5, the uptake capacity of this adsorbent and that of the non-imprinted polymer was 42.54 and 14.10 mg g-1, respectively, and the relative selectivity coefficient values of the synthesized adsorbent for Th(IV)/La(III), Th(IV)/Ce(III), Th(IV)/Nd(III), and Th(IV)/U(VI) were 82.2, 93.1, 21.0 and 62.4 times greater than that of the non-imprinted matrix, respectively. In addition, the Th(IV) adsorption process using Fe3O4aSiO2-IIP follows pseudo-second-order reaction kinetics and the Langmuir adsorption isotherm. The thermodynamic parameters also suggest that the adsorption of Th(IV) onto Fe3O4aSiO2-IIPs was a spontaneous and endothermic process. (author)

  10. Synthesis of Cu-Fe3O4@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    Highlights: • The Cu-Fe3O4@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe3O4@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe3O4@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe3O4@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe3O4 nanoparticles (Fe3O4 NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe3O4 NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe3O4@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability

  11. Thermodynamic calculations of phase equilibria of Co-Cr-Pt ternary system and magnetically induced phase separation in the FCC and HCP phases

    The calculations of phase equilibria of the Co-Cr-Pt ternary system have been carried out based on the thermodynamic assessments of Co-Cr, Co-Pt and Cr-Pt binary systems by the calculation of phase diagram technique. The Gibbs energies of the liquid, FCC, BCC and HCP solution phases were approximated by a sub-regular solution model, while those of σ and Cr3Pt phases were approximated by a compound energy model. Almost all the experimental information on each sub-system has been well described by the present set of thermodynamic parameters. A critical calculation of the magnetically induced miscibility gap between the ferromagnetic HCP and the paramagnetic HCP phase has been conducted, where the two-phase separation has been found at the Curie temperature. The Cr content in the ferromagnetic HCP phase increases and the width of the two-phase separation becomes narrower with increasing Pt content. The present calculations would be useful for the design and development of the perpendicular magnetic recording media

  12. Supported hydrophobic ionic liquid on magnetic nanoparticles as a new sorbent for separation and preconcentration of lead and cadmium in milk and water samples

    We have prepared a highly selective and efficient sorbent for the simultaneous separation and preconcentration of lead and cadmium ions from milk and water samples. An ionic liquid was deposited on the surface of magnetic nanoparticles (IL-MNPs) and used for solid phase extraction of these ions. The IL-MNPs carrying the target metals were then separated from the sample solution by applying an external magnetic field. Lead and cadmium were almost quantitatively retained by the IL-MNPs, and then eluted with nitric acid. The effect of different variables on solid phase extraction was investigated. The calibration curve is linear in the range from 0.3 to 20 ng mL-1 of Cd(II), and from 5 to 330 ng mL-1 of Pb(II) in the initial solution. Under optimum conditions, the detection limits are 1.61 and 0.122 μg L-1 for Pb(II) and Cd(II) respectively. Relative standard deviations (n=10) were 2.87 % and 1.45 % for 0.05 μg mL-1 and 0.2 μg mL-1 of Cd (II) and Pb (II) respectively. The preconcentration factor is 200 for both of ions. (author)

  13. Synthesis of Cu-Fe{sub 3}O{sub 4}@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    Xu, Ran [Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province 213164 (China); Bi, Huiping, E-mail: hpbi@njust.edu.cn [Key Laboratory of Ministry of Education for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094 (China); He, Guangyu [Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province 213164 (China); Zhu, Junwu [Key Laboratory of Ministry of Education for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen, Haiqun, E-mail: hqchenyf@hotmail.com [Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province 213164 (China)

    2014-09-15

    Highlights: • The Cu-Fe{sub 3}O{sub 4}@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe{sub 3}O{sub 4}@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe{sub 3}O{sub 4}@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe{sub 3}O{sub 4}@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe{sub 3}O{sub 4} NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe{sub 3}O{sub 4}@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability.

  14. 磁分离废压裂液处理技术现场试验%Field Test on Treatment of Waste Fracturing Fluid with Magnetic Separation

    韩国勇; 宋新萍

    2016-01-01

    According to the number of conventional hydraulic fracturing and large-scale fracturing wells has been increasing in recent years, waste liquid quantity is increasing year by year, large amounts of waste fracturing fluid to promptly solve the problem, using magnetic separation technology, a high efficiency and energy saving, cost saving, movable waste frac-turing fluid recovery skid mounted device is researched and applied. The device is mainly composed of three parts∶the dispensing tank, a reaction tank and a magnetic separation ma-chine etc., the magnetic separation technology to rapid flocculation and sedimentation, rapid separation.The oil content of the treated wastewater average in 12.27 mg/L,suspend-ed solid content average in 29.3 mg/L, the sludge thickener further concentrated sludge moisture rate 65.3%-70.6%,can meet standard requirements of oil production.%近年来常规压裂和大规模压裂井数日益增多,废液量逐年增加,大量的废压裂液得不到及时处理。利用磁分离技术,研制出一种高效节能、节约成本的废压裂液回收可移动式橇装处理装置,该装置主要由配药罐、反应罐和磁分离主机三部分组成。利用磁分离技术能够使废压裂液快速絮凝沉淀、分离。处理后的废液含油浓度平均为12.27 mg/L,悬浮固体浓度平均为29.3 mg/L,经污泥浓缩机进一步浓缩后污泥含水率为65.3%~70.6%。

  15. Magnetically separable Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    Cao, Chunhua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Cao, Qihua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2015-04-01

    Highlights: • A novel magnetically-separable Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} photocatalyst was in situ prepared. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs had rough and porous chitosan surface layer embedded with Fe{sub 3}O{sub 4} NPs. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed large surface areas and special dimodal pore structure. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed superparamagnetism and could be easily magnetic separated. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited good visible-light photocatalytic activity and stability. - Abstract: A novel magnetically-separable visible-light-induced photocatalyst, Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposite (Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NC), was prepared via a facile one-step precipitation–reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV–vis/DRS. The photocatalytic activity of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu{sub 2}O was wrapped in chitosan matrix embedded with Fe{sub 3}O{sub 4} nanoparticles. The tight combination of magnetic Fe{sub 3}O{sub 4} and semiconductor Cu{sub 2}O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B

  16. Separation of lanthanides and actinides using magnetic silica particles bearing covalently attached tetra-CMPO-calix[4]arenes.

    Böhmer, Volker; Dozol, Jean-François; Grüttner, Cordula; Liger, Karine; Matthews, Susan E; Rudershausen, Sandra; Saadioui, Mohamed; Wang, Pingshan

    2004-08-21

    Calix[4]arene tetraethers in the cone conformation bearing four -NH-CO-CH2-P(O)Ph2 (= CMPO) residues on their wide rim and one, two or four omega-amino alkyl residues of various lengths at the narrow rim were synthesized. Reaction with dichlorotriazinyl (DCT) functionalized magnetic particles led to complete coverage of the available surface by covalently linked CMPO-calix[4]arenes in all cases. Magnetically assisted removal of Eu(iii) and Am(iii) from acidic solutions was distinctly more efficient with these particles in comparison to analogous particles bearing the same amount of analogous single-chain CMPO-functions. The best result, an increase of the extraction efficiency by a factor of 140-160, was obtained for attachment via two propyl spacers. The selectivity Am/Eu was in the range of 1.9-2.8. No decrease of the extraction ability was observed, when the particles were repeatedly used, after simple back extraction with water. PMID:15305214

  17. Drive tube 60009 - A chemical study of magnetic separates of size fractions from five strata. [lunar soil analysis

    Blanchard, D. P.; Jacobs, J. W.; Brannon, J. C.; Brown, R. W.

    1976-01-01

    Each bulk soil and both the magnetic and nonmagnetic components of the 90-150 micron and below 20 micron fractions of five soils from drive tube 60009 were analyzed. Samples were analyzed for FeO, Na2O, Sc, Cr, Co, Ni, Hf, Ta, Th, La, Ce, Sm, Eu, Tb, Yb, and Lu by neutron activation analysis. Several samples were fused and analyzed for major elements by electron microprobe analysis. Compositional variations are not systematically related to depth. The compositions of the five soils studied are well explained by a two-component mixing model whose end members are a submature Apollo 16-type soil and an extremely immature anorthositic material similar to 60025. There is evidence that the anorthositic component had received a small amount of exposure before these soils were mixed. After mixing, the soils received little exposure suggesting mixing and deposition on a rapid time scale.

  18. Phase separation, orbital ordering and magnetism in (La0.375Ca0.625)MnO3

    Martinelli, A.; Ferretti, M.; Ritter, C.

    2016-07-01

    At 300 K (La0.375Ca0.625)MnO3 crystallizes in the orthorhombic Pnma space group; on cooling a Pnma → Pnma structural transition occurs due to charge-orbital ordering within the Mn sub-lattice, producing a superstructure consistent with a Wigner-crystal model with a tripling of the cell parameter a. The primary active mode yielding the observed ordered structure corresponds to the irreducible representation labelled Σ3, with wave vector (⅓,0,0). Nevertheless, the disordered polymorph stable at room temperature is retained at low temperature as a secondary phase, coexisting with the charge-orbital ordered structure. These two phases display different spin orderings; the antiferromagnetic structure associated to the charge-orbital ordered phase is characterized by a magnetic propagation wave vector k=(0,0,½), with a canted spin ordering in the ac plane, whereas a Cy-type arrangement develops within the disordered polymorph.

  19. MAGNET

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  20. Research on Magnetizing Roasting-Low Intensity Magnetic Separation of a Xuanlong-Type Oolitic Hematite Ore%宣龙式鲕状赤铁矿石磁化焙烧-弱磁选试验

    刘硕; 张亚辉; 张家; 张艳娇; 张红新; 李洪潮

    2015-01-01

    The iron grade of Xuanlong-type Oolitic hematite ore is up to 48. 65%. Main iron mineral is hematite,account-ing for 85. 84% of the total iron,followed by iron carbonate,representing 9. 50%. The content of magnetic iron is low,only 3. 12%. Gangue minerals are quartz with trace of harmful elements,phosphorus,aluminum,etc. . In order to explore efficient, low-consumption development and utilization of the resources,the process of magnetic roasting-low intensity magnetic separa-tion was selected. The results showed that the mass ratio of sample with 0. 2 ~ 0 mm bituminous coal and-0. 074 mm accoun-ted for 62% as 12%,roasted at 800 ℃ for 45 min,ground the roasted products to 89. 2% -0. 074 mm,and through the process of low intensity magnetic separation (magnetic field intensity 105. 6 kA/m),iron concentrate with iron grade of 62. 50% and recovery of 85. 50% was obtained. Therefore,the process of magnetic roasting-low intensity magnetic separation is the suitable process to deal with Xuanlong-type oolitic hematite.%宣龙式鲕状赤铁矿石铁品位较高,达48.65%,主要铁矿物为赤铁矿,占总铁的85.84%,其次是碳酸铁,占总铁的9.50%,磁性铁含量较低,仅占总铁的3.12%;脉石矿物主要为石英,磷、铝等有害元素含量均不高。为探索该资源的高效、低耗开发利用方案,采用磁化焙烧—弱磁选工艺进行了选矿试验研究。结果表明,0.2~0 mm的烟煤与-0.074 mm占62%的试样按质量比12%混合,在800℃下焙烧45 min,焙烧产物磨至-0.074 mm占89.2%的情况下进行弱磁选(磁场强度为105.6 kA/m ),可得到铁品位为62.50%、铁回收率为85.50%的铁精矿。因此,磁化焙烧—弱磁选工艺适合处理宣龙式鲕状赤铁矿石。