1 - Description of program or function: PARTISN (Parallel, Time-Dependent SN) is the evolutionary successor to CCC-0547/DANTSYS. User input and cross section formats are very similar to that of DANTSYS. The linear Boltzmann transport equation is solved for neutral particles using the deterministic (SN) method. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D (slab, two-angle slab, cylindrical, or spherical), 2-D (X-Y, R-Z, or R-T) and 3-D (X-Y-Z or R-Z-T) geometries. 2 - Methods:PARTISN numerically solves the multigroup form of the neutral-particle Boltzmann transport equation. The discrete-ordinates form of approximation is used for treating the angular variation of the particle distribution. For curvilinear geometries, diamond differencing is used for angular discretization. The spatial discretizations may be either low-order (diamond difference or Adaptive Weighted Diamond Difference (AWDD)) or higher-order (linear discontinuous or exponential discontinuous). Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm for the diamond case (DD/STZ). Time differencing is Crank-Nicholson (diamond), also with a set-to-zero fix-up scheme. Both inner and outer iterations can be accelerated using the diffusion synthetic acceleration method, or transport synthetic acceleration can be used to accelerate the inner iterations. The diffusion solver uses either the conjugate gradient or multigrid method. Chebyshev acceleration of the fission source is used. The angular source terms may be treated either via standard PN expansions or Galerkin scattering. An option is provided for strictly positive scattering sources
Tominaga, Nozomu; Blinnikov, Sergei I
2015-01-01
We develop a time-dependent multi-group multidimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) that evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with a ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed frame approach; the source function is evaluated in the comoving frame whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated with various test problems and comparisons with results of a relativistic Monte Carlo code. These validations confirm that the code ...
Hill, T.R.; Reed, W.H.
1976-01-01
TIMEX solves the time-dependent, one-dimensional multigroup transport equation with delayed neutrons in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. The time variable is differenced by an explicit technique that is unconditionally stable so that arbitrarily large time steps can be taken. Because no iteration is performed the method is exceptionally fast in terms of computing time per time step. Two acceleration methods, exponential extrapolation and rebalance, are utilized to improve the accuracy of the time differencing scheme. Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. The running time for TIMEX is highly problem-dependent, but varies almost linearly with the total number of unknowns and time steps. Provision is made for creation of standard interface output files for angular fluxes and angle-integrated fluxes. Five interface units (use of interface units is optional), five output units, and two system input/output units are required. A large bulk memory is desirable, but may be replaced by disk, drum, or tape storage. 13 tables, 9 figures. (auth)
TIMEX solves the time-dependent, one-dimensional multigroup transport equation with delayed neutrons in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. The time variable is differenced by an explicit technique that is unconditionally stable so that arbitrarily large time steps can be taken. Because no iteration is performed the method is exceptionally fast in terms of computing time per time step. Two acceleration methods, exponential extrapolation and rebalance, are utilized to improve the accuracy of the time differencing scheme. Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. The running time for TIMEX is highly problem-dependent, but varies almost linearly with the total number of unknowns and time steps. Provision is made for creation of standard interface output files for angular fluxes and angle-integrated fluxes. Five interface units (use of interface units is optional), five output units, and two system input/output units are required. A large bulk memory is desirable, but may be replaced by disk, drum, or tape storage. 13 tables, 9 figures
HCT, Time Dependent 1-D Gas Hydrodynamics, Chemical Kinetics, Chemical Transport
1 - Description of program or function: HCT is a general program for calculating time-dependent problems involving one-dimensional gas hydrodynamics, transport, and detailed chemical kinetics. It is capable of modeling in detail one-dimensional time-dependent combustion phenomena of gases. The physical processes modeled are chemical reactions, thermal conduction, species diffusion, and hydrodynamics. Problem initialization is by input deck; output available includes a complete set of general line printer edits. The basic difference equations allow one to efficiently calculate stiff kinetics systems and systems evolving slowly compared to sound transit times. Hydrodynamics calculation may be done in either a Lagrange or Eulerian framework. An option gives a variable spatial mesh with high resolution in areas of high-temperature gradients. 2 - Method of solution: For maximum robustness, the implicitly differenced hydrodynamics, transport, and kinetics equations are solved simultaneously using a generalized Newton iteration scheme. This method requires the inversion of a block tridiagonal matrix with block size proportional to the number of species. Optimized assembly language matrix-manipulation routines which take advantage of the CDC7600 pipeline architecture are included
APPLE, Plot of 1-D Multigroup Neutron Flux and Gamma Flux and Reaction Rates from ANISN
A - Description of problem or function: The APPLE-2 code has the following functions: (1) It plots multi-group energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT-3.5, and MORSE. (2) It gives an overview plot of multi-group neutron fluxes calculated by ANISN and DOT-3.5. The scalar neutron flux phi(r,E) is plotted with the spatial parameter r linear along the Y-axis, logE along the X-axis and log phi(r,E) in the Z direction. (3) It calculates the spatial distribution and region volume integrated values of reaction rates using the scalar flux calculated with ANISN and DOT-3.5. (4) Reaction rate distribution along the R or Z direction may be plotted. (5) An overview plot of reaction rates or scalar fluxes summed over specified groups may be plotted. R(ri,zi) or phi(ri,zi) is plotted with spatial parameters r and z along the X- and Y-axes in an orthogonal coordinate system. (6) Angular flux calculated by ANISN is rearranged and a shell source at any specified spatial mesh point may be punched out in FIDO format. The shell source obtained may be employed in solving deep penetration problems with ANISN, when the entire reactor system is divided into two or more parts and the neutron fluxes in two adjoining parts are connected by using the shell source. B - Method of solution: (a) The input data specification is made as simple as possible by making use of the input data required in the radiation transport code. For example, geometry related data in ANISN and DOT are transmitted to APPLE-2 along with scalar flux data so as to reduce duplicity and errors in reproducing these data. (b) Most the input data follow the free form FIDO format developed at Oak Ridge National Laboratory and used in the ANISN code. Furthermore, the mixture specifying method used in ANISN is also employed by APPLE-2. (c) Libraries for some standard response functions required in fusion reactor design have been prepared and are made available to users of the 42-group neutron
Guasti, M Fernandez [Depto de Fisica, CBI, Universidad A Metropolitana - Iztapalapa, 09340 Mexico, DF, Apdo Postal 55-534 (Mexico); Moya-Cessa, H [INAOE, Coordinacion de Optica, Apdo Postal 51 y 216, 72000 Puebla, Pue. (Mexico)
2003-02-28
An extension of the classical orthogonal functions invariant to the quantum domain is presented. This invariant is expressed in terms of the Hamiltonian. Unitary transformations which involve the auxiliary function of this quantum invariant are used to solve the time-dependent Schroedinger equation for a harmonic oscillator with time-dependent parameter. The solution thus obtained is in agreement with the results derived using other methods which invoke the Lewis invariant in their procedures.
1 - Nature of physical problem solved: TDA (Time-Dependent ANISN) solves the one-dimensional time- dependent Boltzmann transport equation for neutrons and/or gamma- rays in slab, sphere or cylindrical geometries. Delayed neutron and other time-dependent effects are not considered in the present version. A choice of two types of sources and one initial condition specification is given (A. Space and energy distributed source with a step function time distribution. B. Analytical first collision source). 2 - Method of solution: TDA is based on the steady-state SN code ANISN for reasons of stability and generality. The weighted difference equations are used. 3 - Restrictions on the complexity of the problem: Limited only by available main storage
Wilcox, T. P.
1973-09-20
The code ANISN-L solves the one-dimensional, multigroup, time-independent Boltzmann transport equation by the method of discrete ordinates. In problems involving a fissionable system, it can calculate the system multiplication or alpha. In such cases, it is also capable of determining isotopic concentrations, radii, zone widths, or buckling in order to achieve a given multiplication or alpha. The code may also calculate fluxes caused by a specified fixed source. Neutron, gamma, and coupled neutron--gamma problems may be solved in either the forward or adjoint (backward) modes. Cross sections describing upscatter, as well as the usual downscatter, may be employed. This report describes the use of ANISN-L; this is a revised version of ANISN which handles both large and small problems efficiently on CDC-7600 computers. (RWR)
Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico
2014-12-15
In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.
Axness, Carl L.; Keiter, Eric Richard; Kerr, Bert (New Mexico Tech, Socorro, NM)
2011-04-01
Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits in radiation environments. These codes are often employed to study the effect of many thousands of devices under transient current conditions. Device-scale simulation tools (e.g., MEDICI) are commonly used in the design of individual semiconductor components, but require computing resources that make their incorporation into a circuit code impossible for large-scale circuits. Analytic solutions to the ambipolar diffusion equation, an approximation to the carrier transport equations, may be used to characterize the transient currents at nodes within a circuit simulator. We present new transient 1D excess carrier density and photocurrent density solutions to the ambipolar diffusion equation for low-level radiation pulses that take into account a finite device geometry, ohmic fields outside the depleted region, and an arbitrary change in the carrier lifetime due to neutron irradiation or other effects. The solutions are specifically evaluated for the case of an abrupt change in the carrier lifetime during or after, a step, square, or piecewise linear radiation pulse. Noting slow convergence of the raw Fourier series for certain parameter sets, we use closed-form formulas for some of the infinite sums to produce 'partial closed-form' solutions for the above three cases. These 'partial closed-form' solutions converge with only a few tens of terms, which enables efficient large-scale circuit simulations.
Benchmark calculations in multigroup and multidimensional time-dependent transport
It is widely recognized that reliable benchmarks are essential in many technical fields in order to assess the response of any approximation to the physics of the problem to be treated and to verify the performance of the numerical methods used. The best possible benchmarks are analytical solutions to paradigmatic problems where no approximations are actually introduced and the only error encountered is connected to the limitations of computational algorithms. Another major advantage of analytical solutions is that they allow a deeper understanding of the physical features of the model, which is essential for the intelligent use of complicated codes. In neutron transport theory, the need for benchmarks is particularly great. In this paper, the authors propose to establish accurate numerical solutions to some problems concerning the migration of neutron pulses. Use will be made of the space asymptotic theory, coupled with a Laplace transformation inverted by a numerical technique directly evaluating the inversion integral
Selected neutron reaction nuclear data libraries and photon-atomic interaction cross section libraries for elements of interest to the IAEA's program on Fusion Evaluated Nuclear Data Library (FENDL) have been processed into MATXSR format using the NJOY system on the VAX4000 computer of the IAEA. This document lists the resulting multigroup data libraries. All the multigroup data generated are available cost-free upon request from the IAEA Nuclear Data Section. (author). 9 refs
A 3D coarse-mesh time dependent code for nuclear reactor kinetic calculations
A course-mesh code for time-dependent multigroup neutron diffusion calculation based on a direct integration scheme for the time dependence and a low order nodal flux expansion approximation for the space variables has been implemented as a fast tool for transient analysis. (Author)
Time Dependent Resonance Theory
Soffer, A.; Weinstein, M. I.
1998-01-01
An important class of resonance problems involves the study of perturbations of systems having embedded eigenvalues in their continuous spectrum. Problems with this mathematical structure arise in the study of many physical systems, e.g. the coupling of an atom or molecule to a photon-radiation field, and Auger states of the helium atom, as well as in spectral geometry and number theory. We present a dynamic (time-dependent) theory of such quantum resonances. The key hypotheses are (i) a reso...
MINARET: Towards a time-dependent neutron transport parallel solver
We present the newly developed time-dependent 3D multigroup discrete ordinates neutron transport solver that has recently been implemented in the MINARET code. The solver is the support for a study about computing acceleration techniques that involve parallel architectures. In this work, we will focus on the parallelization of two of the variables involved in our equation: the angular directions and the time. This last variable has been parallelized by a (time) domain decomposition method called the para-real in time algorithm. (authors)
Coupling of Nod1D and HOTCHANNEL: static case
In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)
Ioannidou, Theodora
2016-01-01
An extended version of the BPS Skyrme model that admits time-dependent solutions is discussed. Initially, by introducing a power law at the original potential term of the BPS Skyrme model the existence, stability and structure of the corresponding solutions is investigated. Then, the frequencies and half-lifes of the radial oscillations of the constructed time-dependent solutions are determined.
Coupling of Nod1D and HOTCHANNEL: static case; Acoplamiento de Nod1D y HOTCHANNEL: caso estatico
Gomez T, A.M. [IPN-ESFM, 07738 Mexico D.F. (Mexico); Ovando C, R. [IIE-Gcia. de Energia Nuclear, Cuernavaca, Morelos (Mexico)]. e-mail: rovando@iie.org.mx
2003-07-01
In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)
The spatial eigenfunction expansion method is used to solve the multigroup time-dependent diffusion equation when the absorption cross-section in the thermal group is a function of time. An expression for the multi region reactor transfer function is obtained. Some numerical results for two energy groups are also presented. (author)
Selfsimilar time dependent shock structures
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions
Time dependence of immersion freezing
A. Welti
2012-05-01
Full Text Available The time dependence of immersion freezing was studied for temperatures between 236 K and 243 K. Droplets with single immersed, size-selected 400 nm and 800 nm kaolinite particles were produced at 300 K, cooled down to supercooled temperatures typical for mixed-phase cloud conditions, and the fraction of frozen droplets with increasing residence time was detected. To simulate the conditions of immersion freezing in mixed-phase clouds we used the Zurich Ice Nucleation Chamber (ZINC and its vertical extension, the Immersion Mode Cooling chAmber (IMCA. We observed that the frozen fraction of droplets increased with increasing residence time in the chamber. This suggests that there is a time dependence of immersion freezing and supports the importance of a stochastic component in the ice nucleation process. The rate at which droplets freeze was observed to decrease towards higher temperatures and smaller particle sizes. Comparison of the laboratory data with four different ice nucleation models, three based on classical nucleation theory with different representations of the particle surface properties and one singular, suggest that the classical, stochastic approach combined with a distribution of contact angles is able to reproduce the ice nucleation observed in these experiments most accurately. Using the models to calculate the increase in frozen fraction at typical mixed-phase cloud temperatures over an extended period of time, yields an equivalent effect of −1 K temperature shift and an increase in time scale by a factor of ~10.
Network-timing-dependent plasticity
Vincent eDelattre
2015-06-01
Full Text Available Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP. In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD, with STDP-induced long-term potentiation and depression (LTP and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.
Multigroup representation of fusion product orbits in a plasma column
A method is derived for describing the time-depending behavior of α particles produced in a radially nonuniform slender plasma column as a distribution function among the possible orbits. A multigroup numerical approximation is introduced to analyze the development of the distribution function and its moments. Results are presented of calculations of the time-dependent α-particle energy spectrum and radial density, energy, and electron heating profiles in plasma columns with radii comparable to the α Larmor radius. This technique allows calculation of the α particle history at much more rapid rates than allowed by Monte Carlo technuques: The characteristic time scale is the α-electron slowing-down time rather than the cyclotron period
Procedure to Generate the MPACT Multigroup Library
The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.
Procedure to Generate the MPACT Multigroup Library
Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-12-17
The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.
Three-dimensional multigroup diffusion code ANDEX based on nodal method for cartesian geometry
An analytic polynomial nodal method using partial currents has been derived for the solution of multigroup neutron diffusion equations in three-dimensional (3-D) cartesian geometry. This method is characterized by expressing the source and leakage terms in an auxiliary 1-D diffusion equation by quadratic polynomials and solving it analytically. Based on this method, we have developed a 3-D multigroup diffusion code ANDEX, and applied to 2-D LWR and 3-D FBR models. The results of keff, power distributions and computing time have been compared with those of finite difference method calculations. (author)
Supersymmetric intersecting branes in time-dependent backgrounds
We construct a family of supersymmetric solutions in time-dependent backgrounds in supergravity theories. One class of the solutions are intersecting brane solutions and another class are brane solutions in pp-wave backgrounds, and their intersection rules are also given. The relation to existing literature is also discussed. An example of D1-D5 with linear null dilaton together with its possible dual theory is briefly discussed
Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method
The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used
Competing risks and time-dependent covariates
Cortese, Giuliana; Andersen, Per K
2010-01-01
classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates are to be......Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates, as...
Solution of the 1D kinetic diffusion equations using a reduced nodal cubic scheme
In this work it is described a novel method to solve the multi-group time-dependent diffusion equations based on a nodal cubic space interpolation in addition to the application of quadrature rules simplifying the stiffness and mass matrices arising in a finite element procedure. Numerical results for a well known benchmark problem are also provided. (authors)
Cosmology with a time dependent cosmological constant
In the context of the scalar-tensor theories we consider cosmological models with a time dependent cosmological constant. Several toy models are obtained among them there are solutions without singularity and accelerating. (Author)
Topic 5: Time-Dependent Behavior
This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section
Onsager equations and time dependent neutron transport
The diffusion of neutrons following an abrupt, localized temperature fluctuation can be conducted in the framework of Onsager-type transport equations. Considering Onsager equations as a generalized Fick's law, time-dependent particle and energy 'generalized diffusion equations' can be obtained. Aim of the present paper is to obtain the time-dependent diffusion Onsager-type equations for the diffusion of neutrons and to apply them to simple trial cases to gain a feeling for their behaviour. (author)
Time dependent modeling of non-LTE plasmas: Final report
During the period of performance of this contract Science Applications International Corporation (SAIC) has aided Lawrence Livermore National Laboratory (LLNL) in the development of an unclassified modeling tool for studying time evolution of high temperature ionizing and recombining plasmas. This report covers the numerical code developed, (D)ynamic (D)etailed (C)onfiguration (A)ccounting (DDCA), which was written to run on the National Magnetic Fusion Energy Computing Center (NMFECC) network as well as the classified Livermore Computer Center (OCTOPUS) network. DDCA is a One-Dimensional (1D) time dependent hydrodynamic model which makes use of the non-LTE detailed atomic physics ionization model DCA. 5 refs
Steps in the exact time-dependent potential energy surface
Abedi, Ali; Suzuki, Yasumitsu; Gross, E K U
2013-01-01
We study the exact Time-Dependent Potential Energy Surface (TDPES) in the presence of strong non-adiabatic coupling between the electronic and nuclear motion. The concept of the TDPES emerges from the exact factorization of the full electron-nuclear wave-function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. \\textbf{105}, 123002 (2010)]. Employing a 1D model-system, we show that the TDPES exhibits a dynamical step that bridges between piecewise adiabatic shapes. We analytically investigate the position of the steps and the nature of the switching between the adiabatic pieces of the TDPES.
A numerical model for multigroup radiation hydrodynamics
We present in this paper a multigroup model for radiation hydrodynamics to account for variations of the gas opacity as a function of frequency. The entropy closure model (M1) is applied to multigroup radiation transfer in a radiation hydrodynamics code. In difference from the previous grey model, we are able to reproduce the crucial effects of frequency-variable gas opacities, a situation omnipresent in physics and astrophysics. We also account for the energy exchange between neighbouring groups which is important in flows with strong velocity divergence. These terms were computed using a finite volume method in the frequency domain. The radiative transfer aspect of the method was first tested separately for global consistency (reversion to grey model) and against a well-established kinetic model through Marshak wave tests with frequency-dependent opacities. Very good agreement between the multigroup M1 and kinetic models was observed in all tests. The successful coupling of the multigroup radiative transfer to the hydrodynamics was then confirmed through a second series of tests. Finally, the model was linked to a database of opacities for a Xe gas in order to simulate realistic multigroup radiative shocks in Xe. The differences with the previous grey models are discussed.
Time-Dependent Transport in Nanoscale Devices
CHEN Zhi-Dong; ZHANG Jin-Yu; YU Zhi-Ping
2009-01-01
A method for simulating ballistic time-dependent device transport,which solves the time-dependent SchrSdinger equation using the finite difference time domain (FDTD) method together with Poisson's equation,is described in detail The effective mass SchrSdinger equation is solved. The continuous energy spectrum of the system is discretized using adaptive mesh,resulting in energy levels that sample the density-of-states.By calculating time evolution of wavefunctions at sampled energies,time-dependent transport characteristics such as current and charge density distributions are obtained.Simulation results in a uanowire and a coaxially gated carbon nanotube field-effect transistor (CNTFET) are presented.Transient effects,e.g.,finite rising time,are investigated in these devices.
Investigations of Low Temperature Time Dependent Cracking
Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J
2002-09-30
The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Stability for time-dependent inverse transport
Bal, Guillaume; Jollivet, Alexandre
2008-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from full knowledge of the albedo operator at the boundary of a bounded domain of interest. We present optimal stability results on the reconstruction of the absorption and scattering parameters for a given error in the measured albedo operator.
Time-dependent, finite, rotating universes
Three new classes of finite, homogeneous and nonsingular solutions of Einstein's equations which have time-dependent expansion, shear and rotation are presented. The t-constant sections are of Bianchi type IX. The source of these geometries is a fluid which has not been thermalized. (Author)
Constitutive model with time-dependent deformations
Krogsbøll, Anette
1998-01-01
common in time as well as size. This problem is adressed by means of a new constitutive model for soils. It is able to describe the behavior of soils at different deformation rates. The model defines time-dependent and stress-related deformations separately. They are related to each other and they occur...
Time-dependent transition density matrix
Research highlights: ► A time-dependent generalization of the transition density matrix (TDM) is proposed. ► The time-dependent TDM is approximately calculated using Kohn–Sham wave functions. ► Numerical examples on one-dimensional lattices illustrate how the TDM works. ► Rapid formation and spreading of electron-hole pairs is observed. ► Here, electron interaction effects are less important than quantum confinement. - Abstract: The transition density matrix (TDM) is a useful tool for analyzing and interpreting electronic excitation processes in molecular systems. For any transition between two eigenstates of a many-body system, the TDM provides a characteristic spatial map which indicates the distribution of the associated electron–hole pairs and allows one to identify their delocalization and coherence lengths. This is particularly useful for characterizing charge-transfer excitations in large molecular chains or light-harvesting molecules. We here extend these concepts into the real-time domain and define the time-dependent TDM and discuss it in the context of TDDFT. An approximation is proposed in terms of the Kohn–Sham Slater determinants. This provides a new tool for the real-time visualization of electronic excitation processes such as exciton formation, diffusion, recombination, or charge separation. We illustrate the time-dependent TDM for simple one-dimensional lattice systems with two spinless electrons which are either noninteracting of fully interacting.
BETA-S, Multi-Group Beta-Ray Spectra
1 - Description of program or function: BETA-S calculates beta-decay source terms and energy spectra in multigroup format for time-dependent radionuclide inventories of actinides, fission products, and activation products. Multigroup spectra may be calculated in any arbitrary energy-group structure. The code also calculates the total beta energy release rate from the sum of the average beta-ray energies as determined from the spectral distributions. BETA-S also provides users with an option to determine principal beta-decaying radionuclides contributing to each energy group. The CCC-545/SCALE 4.3 (or SCALE4.2) code system must be installed on the computer before installing BETA-S, which requires the SCALE subroutine library and nuclide-inventory generation from the ORIGEN-S code. 2 - Methods:Well-established models for beta-energy distributions are used to explicitly represent allowed, and 1., 2. - and 3. -forbidden transition types. Forbidden non-unique transitions are assumed to have a spectral shape of allowed transitions. The multigroup energy spectra are calculated by numerically integrating the energy distribution functions using an adaptive Simpson's Rule algorithm. Nuclide inventories are obtained from a binary interface produced by the ORIGEN-S code. BETA-S calculates the spectra for all isotopes on the binary interface that have associated beta-decay transition data in the ENSDF-95 library, developed for the BETA-S code. This library was generated from ENSDF data and contains 715 materials, representing approximately 8500 individual beta transition branches. 3 - Restrictions on the complexity of the problem: The algorithms do not treat positron decay transitions or internal conversion electrons. The neglect of positron transitions in inconsequential for most applications involving aggregate fission products, since most of the decay modes are via electrons. The neglect of internal conversion electrons may impact on the accuracy of the spectrum in the low
Time-dependent convection at high latitudes
D. W. Idenden
Full Text Available A fully time-dependent ionospheric convection model, in which electric potentials are derived by an analytic solution of Laplace's equation, is described. This model has been developed to replace the empirically derived average convection patterns currently used routinely in the Sheffield/SEL/UCL coupled thermosphere/ionosphere/plasmasphere model (CTIP for modelling disturbed periods. Illustrative studies of such periods indicate that, for the electric field pulsation periods imposed, long-term averages of parameters such as Joule heating and plasma density have significantly different values in a time-dependent model compared to those derived under the same mean conditions in a steady-state model. These differences are indicative of the highly non-linear nature of the processes involved.
Time-dependent warping, fluxes, and NCYM
We describe the supergravity solutions dual to D6-branes with both time-dependent and time-independent B-fields. These backgrounds generalize the Taub-NUT metric in two key ways: they have asymmetric warp factors and background fluxes. In the time-dependent case, the warping takes a novel form. Kaluza-Klein reduction in these backgrounds is unusual, and we explore some of the new features. In particular, we describe how a localized gauge-field emerges with an analogue of the open string metric and coupling. We also describe a gravitational analogue of the Seiberg-Witten map. This provides a framework in supergravity both for studying non-commutative gauge theories, and for constructing novel warped backgrounds. (author)
Time-dependent angularly averaged inverse transport
Bal, Guillaume; Jollivet, Alexandre
2009-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured al...
Time-dependent problems and difference methods
Gustafsson, Bertil; Oliger, Joseph
2013-01-01
Praise for the First Edition "". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations."" -SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-de
Time-Dependent Dilatonic Domain Walls
La, H S
1992-01-01
Time-dependent domain wall solutions with infinitesimal thickness are obtained in the theory of a scalar field coupled to gravity with the dilaton, i.e. the Jordan-Brans-Dicke gravity. The value of the dilaton is determined in terms of the Brans-Dicke parameter $\\omega$. In particular, the solutions exist for any $\\omega>0$ and as $\\omega\\to\\infty$ we obtain new solutions in general relativity. They have horizons whose sizes depend on $\\omega$.
Strings in a Time-Dependent Orbifold
Liu, Hong; Moore, Gregory; Seiberg, Nathan
2002-01-01
We consider string theory in a time dependent orbifold with a null singularity. The singularity separates a contracting universe from an expanding universe, thus constituting a big crunch followed by a big bang. We quantize the theory both in light-cone gauge and covariantly. We also compute some tree and one loop amplitudes which exhibit interesting behavior near the singularity. Our results are compatible with the possibility that strings can pass through the singularity from the contractin...
Time-Dependent Nanomechanics of Cartilage
Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine
2011-01-01
In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significant...
Time-dependent oral absorption models
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Time-dependent Dyson orbital theory.
Gritsenko, O V; Baerends, E J
2016-08-21
Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρ(N)(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT virtually unavoidable, adiabatic approximation, the second problem is the reliable evaluation of the probabilities P(n)(t) of multiple photoinduced ionization, while the third problem (which TDDFT shares with other approaches) is the reliable description of continuum states of the electrons ejected in the process of ionization. In this paper time-dependent Dyson orbital theory (TDDOT) is proposed. Exact TDDOT equations of motion (EOMs) for time-dependent Dyson orbitals are derived, which are linear differential equations with just static, feasible potentials of the electron-electron interaction. No adiabatic approximation is used, which formally resolves the first TDDFT problem. TDDOT offers formally exact expressions for the complete evolution in time of the wavefunction of the outgoing electron. This leads to the correlated probability of single ionization P(1)(t) as well as the probabilities of no ionization (P(0)(t)) and multiple ionization of n electrons, P(n)(t), which formally solves the second problem of TDDFT. For two-electron systems a proper description of the required continuum states appears to be rather straightforward, and both P(1)(t) and P(2)(t) can be calculated. Because of the exact formulation, TDDOT is expected to reproduce a notorious memory effect, the "knee structure" of the non-sequential double ionization of the He atom. PMID:26987972
Time-dependent angularly averaged inverse transport
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. Such measurement settings find applications in medical and geophysical imaging. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain
Time-dependent angularly averaged inverse transport
Bal, Guillaume
2009-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain.
Solar Magnetic Flux Tube Simulations with Time-Dependent Ionization
Fawzy, Diaa E; Rammacher, Wolfgang
2012-01-01
In the present work we expand the study of time-dependent ionization previously identified to be of pivotal importance for acoustic waves in solar magnetic flux tube simulations. We focus on longitudinal tube waves (LTW) known to be an important heating agent of solar magnetic regions. Our models also consider new results of wave energy generation as well as an updated determination of the mixing length of convection now identified as 1.8 scale heights in the upper solar convective layers. We present 1-D wave simulations for the solar chromosphere by studying tubes of different spreading as function of height aimed at representing tubes in environments of different magnetic filling factors. Multi-level radiative transfer has been applied to correctly represent the total chromospheric emission function. The effects of time-dependent ionization are significant in all models studied. They are most pronounced behind strong shocks and in low density regions, i.e., the middle and high chromosphere. Concerning our m...
Time-dependent studies of multiphoton processes
Interest in intense-field laser-atom interactions has undergone very rapid growth over the past decade due to a number of very surprising observations made during short-pulse (much-lt 1 ns) excitation of atoms and molecules. Extensive results have been reported for electron and photon emission from atoms subject to high-intensity lasers. This wealth of data has greatly increased our detailed knowledge of the effects of electromagnetic radiation on the electrons in these systems. The richness of these results has encouraged the development of new theoretical methods to provide an understanding of the observations. This paper reports that one of the major techniques being used to study the dynamics of excitation and ionization is the direct solution of the time-dependent Schrodinger equation for an atom or molecule in a pulse laser field. The time-dependent methods allow the exact calculation of above-threshold ionization (ATI) spectra for real (three-dimensional) hydrogenic systems and of photon emission from atoms excited by lasers. Recently the possibility of high-frequency, high-intensity suppression of ionization has also been addressed
Distinguished trajectories in time-dependent flows
Jiménez Madrid, José Antonio; Mancho, Ana Maria
2007-11-01
The theory of dynamical systems has provided recently a good framework to describe transport in time dependent aperiodic flows. It was first applied to Lagrangian transport in the context of 2D time-periodic flows and stationary 3D flows. Recently these techniques have been extended to describe aperiodic flows. Mathematical theory for aperiodic time dependent flows is far from being completely developed. In the context of stationary flows the idea of fixed point is a keystone to describe geometrically the solutions. It is extended to time periodic flows, as periodic orbits become fixed points on the Poincar'e map. Recent articles by Ide et al. and Ju et al. provide an important step-forwards to extend the concept of hyperbolic fixed point to aperiodic dynamical systems. Following these ideas, we propose a new formal definition of Distinguished trajectory (DT) in aperiodic flows. We numerically test this definition in forced Duffing type flows with known exact distinguished trajectories. The definition accurately locates these trajectories. We also check the defintion for examples of aperiodic flows in oceanographic contexts and we find that it overcomes some technical difficulties of former approaches.
Pseudospectral time-dependent density functional theory
Ko, Chaehyuk; Malick, David K.; Braden, Dale A.; Friesner, Richard A.; Martínez, Todd J.
2008-03-01
Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.
Time Dependence of Operational Intervention Levels
Main goal for nuclear emergency preparedness development is the reduction of nuclear accident consequences. Bases of such systems are countermeasures for public protection. Efficiency and timing are the most important factors of every undertaken countermeasure. To fulfill that task, decision-making system based on intervention levels for implementing countermeasures is developed. Intervention level is the level of avertable dose at which a specific countermeasure or remedial action is taken in an emergency exposure situation or a chronic exposure situation. Avertable doses can't be measured directly and because of that operational intervention levels are defined. Operational intervention levels are derived from interventional levels and set of additional assumptions. They are directly comparable with results of field measurements. In this article time dependence of predefined operation intervention level for iodine prophylaxis is analyzed. Simple analytic model is developed and implemented for that purpose. (author)
Cosmologies with a time dependent vacuum
The idea that the cosmological term Λ should be a time dependent quantity in cosmology is a most natural one. It is difficult to conceive an expanding universe with a strictly constant vacuum energy density, ρΛ = Λ/(8π G), namely one that has remained immutable since the origin of time. A smoothly evolving vacuum energy density ρΛ = ρΛ(ξ(t)) that inherits its time-dependence from cosmological functions ξ = ξ(t), such as the Hubble rate H(t) or the scale factor a(t), is not only a qualitatively more plausible and intuitive idea, but is also suggested by fundamental physics, in particular by quantum field theory (QFT) in curved space-time. To implement this notion, is not strictly necessary to resort to ad hoc scalar fields, as usually done in the literature (e.g. in quintessence formulations and the like). A 'running' Λ term can be expected on very similar grounds as one expects (and observes) the running of couplings and masses with a physical energy scale in QFT. Furthermore, the experimental evidence that the equation of state (EOS) of the dark energy (DE) could be evolving with time/redshift (including the possibility that it might currently behave phantom-like) suggests that a time-variable Λ = Λ(t) term (possibly accompanied by a variable Newton's gravitational coupling too, G = G(t)) could account in a natural way for all these features. Remarkably enough, a class of these models (the 'new cosmon') could even be the clue for solving the old cosmological constant problem, including the coincidence problem.
Establishment of multi-groups atomic parametric database
A method is given to establish multi-groups atomic parametric database for multi-groups radiation transport equation. The equation can be used in calculating the X-ray radiation from plasma. Several methods to check the calculation of the multi-groups database is also given. A 20 groups atomic parametric database of Au element with grid of 20 (plasma density) x 20 (electron temperature) x 20 (photon temperature) is given too
Time dependent friction in a free gas
Fanelli, Cristiano; Sisti, Francesco; Stagno, Gabriele V.
2016-03-01
We consider a body moving in a perfect gas, described by the mean-field approximation and interacting elastically with the body, we study the friction exerted by the gas on the body fixed at constant velocities. The time evolution of the body in this setting was studied in Caprino et al. [Math. Phys. 264, 167-189 (2006)], Caprino et al. [Math. Models Methods Appl. Sci. 17, 1369-1403 (2007)], and Cavallaro [Rend. Mat. Appl. 27, 123-145 (2007)] for object with simple shape; the first study where a simple kind of concavity was considered was in Sisti and Ricciuti [SIAM J. Math. Anal. 46, 3759-3611 (2014)], showing new features in the dynamic but not in the friction term. The case of more general shape of the body was left out for further difficulties, and we believe indeed that there are actually non-trivial issues to be faced for these more general cases. To show this and in the spirit of getting a more realistic perspective in the study of friction problems, in this paper, we focused our attention on the friction term itself, studying its behavior on a body with a more general kind of concavity and fixed at constant velocities. We derive the expression of the friction term for constant velocities, we show how it is time dependent, and we give its exact estimate in time. Finally, we use this result to show the absence of a constant velocity in the actual dynamic of such a body.
Time-dependent correlations in electricity markets
In the last years, many electricity markets were subjected to deregulated operation where prices are set by the action of market participants. In this form, producers and consumers rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. A basic feature of efficient market hypothesis is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices, so arbitrage is not possible. However, recent studies have suggested that this is not the case and correlations are present in the behavior of diverse electricity markets. In this paper, a temporal quantification of electricity market correlations is made by means of detrended fluctuation and Allan analyses. The approach is applied to two Canadian electricity markets, Ontario and Alberta. The results show the existence of correlations in both demand and prices, exhibiting complex time-dependent behavior with lower correlations in winter while higher in summer. Relatively steady annual cycles in demand but unstable cycles in prices are detected. On the other hand, the more significant nonlinear effects (measured in terms of a multifractality index) are found for winter months, while the converse behavior is displayed during the summer period. In terms of forecasting models, our results suggest that nonlinear recursive models (e.g., feedback NNs) should be used for accurate day-ahead price estimation. In contrast, linear models can suffice for demand forecasting purposes. (author)
Time-dependent nanomechanics of cartilage.
Han, Lin; Frank, Eliot H; Greene, Jacqueline J; Lee, Hsu-Yi; Hung, Han-Hwa K; Grodzinsky, Alan J; Ortiz, Christine
2011-04-01
In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation. PMID:21463599
Deformation aspects of time dependent fracture
For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses
System reliability time-dependent models
A probabilistic methodology for safety system technical specification evaluation was developed. The method for Surveillance Test Interval (S.T.I.) evaluation basically means an optimization of S.T.I. of most important system's periodically tested components. For Allowed Outage Time (A.O.T.) calculations, the method uses system reliability time-dependent models (A computer code called FRANTIC III). A new approximation, which was called Independent Minimal Cut Sets (A.C.I.), to compute system unavailability was also developed. This approximation is better than Rare Event Approximation (A.E.R.) and the extra computing cost is neglectible. A.C.I. was joined to FRANTIC III to replace A.E.R. on future applications. The case study evaluations verified that this methodology provides a useful probabilistic assessment of surveillance test intervals and allowed outage times for many plant components. The studied system is a typical configuration of nuclear power plant safety systems (two of three logic). Because of the good results, these procedures will be used by the Argentine nuclear regulatory authorities in evaluation of technical specification of Atucha I and Embalse nuclear power plant safety systems. (Author)
Time-dependent Effects in Photospheric-Phase Type II Supernova Spectra
Dessart, Luc
2007-01-01
Spectroscopic modeling of Type II supernovae (SNe) generally assumes steady-state. Following the recent suggestion of Utrobin & Chugai, but using the 1D non-LTE line-blanketed model atmosphere code CMFGEN, we investigate the effects of including time-dependent terms that appear in the statistical and radiative equilibrium equations. We base our discussion on the ejecta properties and the spectroscopic signatures obtained from time-dependent simulations, investigating different ejecta configurations, and covering their evolution from one day to six weeks after shock breakout. Compared to equivalent steady-state models, our time-dependent models produce SN ejecta that are systematically over-ionized, affecting helium at one week after explosion, but ultimately affecting all ions after a few weeks. While the continuum remains essentially unchanged, time-dependence effects on observed spectral lines are large. At the recombination epoch, HI lines and NaID are considerably stronger and broader than in equivale...
Studies of Spuriously Time-dependent Resonances in Time-dependent Density Functional Theory
Luo, Kai; Maitra, Neepa T
2016-01-01
Adiabatic approximations in time-dependent density functional theory (TDDFT) will in general yield unphysical time-dependent shifts in the resonance positions of a system driven far from its ground-state. This spurious time-dependence is rationalized in [J. I. Fuks, K. Luo, E. D. Sandoval and N. T. Maitra, Phys. Rev. Lett. {\\bf 114}, 183002 (2015)] in terms of the violation of an exact condition by the non-equilibrium exchange-correlation kernel of TDDFT. Here we give details on the derivation and discuss reformulations of the exact condition that apply in special cases. In its most general form, the condition states that when a system is left in an arbitrary state, in the absence of time-dependent external fields nor ionic motion, the TDDFT resonance position for a given transition is independent of the state. Special cases include the invariance of TDDFT resonances computed with respect to any reference interacting stationary state of a fixed potential, and with respect to any choice of appropriate stationa...
Time dependence of Hawking radiation entropy
If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msun)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msun)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msun)2
A Note on Multigroup Comparisons Using SAS PROC CALIS
Jones-Farmer, L. Allison; Pitts, Jennifer P.; Rainer, R. Kelly
2008-01-01
Although SAS PROC CALIS is not designed to perform multigroup comparisons, it is believed that SAS can be "tricked" into doing so for groups of equal size. At present, there are no comprehensive examples of the steps involved in performing a multigroup comparison in SAS. The purpose of this article is to illustrate these steps. We demonstrate…
Cross section probability tables in multi-group transport calculations
The use of cross section probability tables in multigroup transport calculations is presented. Emphasis is placed on how probability table parameters are generated in a multigroup cross section processor and how existing transport codes must be modifed to use them. In order to illustrate the accuracy obtained by using probability tables, results are presented for a variety of neutron and photon transport problems
In multigroup calculations of reactivity and sensitivity coefficients, methodical errors can appear if the interdependence of multigroup constants is not taken into account. For this effect to be taken into account, so-called implicit components of the aforementioned values are introduced. A simple technique for computing these values is proposed. It is based on the use of subgroup parameters.
Multigroup neutron dose calculations for proton therapy
We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations
Multigroup neutron dose calculations for proton therapy
Kelsey Iv, Charles T [Los Alamos National Laboratory; Prinja, Anil K [Los Alamos National Laboratory
2009-01-01
We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.
Time-dependent constrained Hamiltonian systems and Dirac brackets
In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)
Quasi coherent states for time dependent harmonic oscillators
Full text: (author)In this study, first it is discussed the duality between the time dependent hydrogen atom problem and time dependent harmonic oscillators. Second, it is generalized the holomorphic coordinates for the time dependent harmonic oscillators and reduce the solution of the Schrodinger equation into Riccati equation. It is found the solution of Riccati equation for time dependent harmonic oscillators in some special cases and discuss the uncertainties
Converged accelerated finite difference scheme for the multigroup neutron diffusion equation
Computer codes involving neutron transport theory for nuclear engineering applications always require verification to assess improvement. Generally, analytical and semi-analytical benchmarks are desirable, since they are capable of high precision solutions to provide accurate standards of comparison. However, these benchmarks often involve relatively simple problems, usually assuming a certain degree of abstract modeling. In the present work, we show how semi-analytical equivalent benchmarks can be numerically generated using convergence acceleration. Specifically, we investigate the error behavior of a 1D spatial finite difference scheme for the multigroup (MG) steady-state neutron diffusion equation in plane geometry. Since solutions depending on subsequent discretization can be envisioned as terms of an infinite sequence converging to the true solution, extrapolation methods can accelerate an iterative process to obtain the limit before numerical instability sets in. The obtained results have been compared to the analytical solution to the 1D multigroup diffusion equation when available, using FORTRAN as the computational language. Finally, a slowing down problem has been solved using a cascading source update, showing how a finite difference scheme performs for ultra-fine groups (104 groups) in a reasonable computational time using convergence acceleration. (authors)
A code called COMESH based on corner mesh finite difference scheme has been developed to solve multigroup diffusion theory equations. One can solve 1-D, 2-D or 3-D problems in Cartesian geometry and 1-D (r) or 2-D (r-z) problem in cylindrical geometry. On external boundary one can use either homogeneous Dirichlet (θ-specified) or Neumann (∇θ specified) type boundary conditions or a linear combination of the two. Internal boundaries for control absorber simulations are also tackled by COMESH. Many an acceleration schemes like successive line over-relaxation, two parameter Chebyschev acceleration for fission source, generalised coarse mesh rebalancing etc., render the code COMESH a very fast one for estimating eigenvalue and flux/power profiles in any type of reactor core configuration. 6 refs. (author)
Multigroup Free-atom Doppler-broadening Approximation. Theory
Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-06
Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.
Modelling and simulations of macroscopic multi-group pedestrian flow
Mahato, Naveen K; Tiwari, Sudarshan
2016-01-01
We consider a multi-group microscopic model for pedestrian flow describing the behaviour of large groups. It is based on an interacting particle system coupled to an eikonal equation. Hydrodynamic multi-group models are derived from the underlying particle system as well as scalar multi-group models. The eikonal equation is used to compute optimal paths for the pedestrians. Particle methods are used to solve the macroscopic equations. Numerical test cases are investigated and the models and, in particular, the resulting evacuation times are compared for a wide range of different parameters.
Multigroup fast fission factor treatment in a thermal reactor lattice
A multigroup procedure for the studies of the fast fission effects in the thermal reactor lattice and the calculation of the fast fission factor was developed. The Monte Carlo method and the multigroup procedure were combined to calculate the fast neutron interaction and backscattering effects in a reactor lattice. A set of probabilities calculated by the Monte Carlo method gives a multigroup spectrum of neutrons coming from the moderator and entering the fuel element. Thus, the assumptions adopted so far in defining and calculating the fast fission factor has been avoided, and a new definition including the backscattering and interaction effects in a reactor lattice have been given. (author)
Multigroup cross section library; WIMS library
The WIMS library has been extensively used in thermal reactor calculations. This multigroup constants library was originally developed from the UKNDL in the late 60's and has been updated in 1986. This library has been distributed with the WIMS-D code by NEA data bank. The references to WIMS library in literature are the 'old' which is the original as developed by the AEA Winfrith and the 'new' which is the current 1986 WIMS library. IAEA has organised a CRP where a new and fully updated WIMS library will soon be available. This paper gives an overview of the definitions of the group constants that go into any basic nuclear data library used for reactor calculations. This paper also outlines the contents of the WIMS library and some of its shortcomings
A multigroup treatment of radiation transport
A multi-group radiation package is outlined which will accurately handle radiation transfer problems in laser-produced plasmas. Bremsstrahlung, recombination and line radiation are included as well as fast electron Bremsstrahlung radiation. The entire radiation field is divided into a large number of groups (typically 20), which diffuse radiation energy in real space as well as in energy space, the latter occurring via electron-radiation interaction. Using this model a radiation transport code will be developed to be incorporated into MEDUSA. This modified version of MEDUSA will be used to study radiative preheat effects in laser-compression experiments at the Central Laser Facility, Rutherford Laboratory. The model is also relevant to heavy ion fusion studies. (author)
Multi-group neutron transport theory
Multi-group neutron transport theory. In the paper the general theory of the application of the K. M. Case method to N-group neutron transport theory in plane geometry is given. The eigenfunctions (distributions) for the system of Boltzmann equations have been derived and the completeness theorem has been proved. By means of general solution two examples important for reactor and shielding calculations are given: the solution of a critical and albedo problem for a slab. In both cases the system of singular integral equations for expansion coefficients into a full set of eigenfunction distributions has been reduced to the system of Fredholm-type integral equations. Some results can be applied also to some spherical problems. (author)
A code to calculate multigroup constants for fast neutron reactor
KQCS-2 code is a new improved version of KQCS code, which was designed to calculate multigroup constants for fast neutron reactor. The changes and improvements on KQCS are described in this paper. (author)
Verley, Jason C.; Axness, Carl L.; Hembree, Charles Edward; Keiter, Eric Richard; Kerr, Bert (New Mexico Institute of Mining and Technology, Socorro, NM)
2012-04-01
Photocurrent generated by ionizing radiation represents a threat to microelectronics in radiation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these threats, and typically rely on compact models for individual electrical components such as transistors and diodes. Compact models consist of a handful of differential and/or algebraic equations, and are derived by making simplifying assumptions to any of the many semiconductor transport equations. Historically, many photocurrent compact models have suffered from accuracy issues due to the use of qualitative approximation, rather than mathematically correct solutions to the ambipolar diffusion equation. A practical consequence of this inaccuracy is that a given model calibration is trustworthy over only a narrow range of operating conditions. This report describes work to produce improved compact models for photocurrent. Specifically, an analytic model is developed for epitaxial diode structures that have a highly doped subcollector. The analytic model is compared with both numerical TCAD calculations, as well as the compact model described in reference [2]. The new analytic model compares well against TCAD over a wide range of operating conditions, and is shown to be superior to the compact model from reference [2].
Time-dependent Displaced and Squeezed Number States
Kim, S P
2004-01-01
We generalize the wave functions of the displaced and squeezed number states, found by Nieto, to a time-dependent harmonic oscillator with variable mass and frequency. These time-dependent displaced and squeezed number states are obtained by first squeezing and then displacing the exact number states and are exact solutions of the Schr\\"{o}dinger equation. Further, these wave functions are the time-dependent squeezed harmonic-oscillator wave functions centered at classical trajectories.
Introduction to numerical methods for time dependent differential equations
Kreiss, Heinz-Otto
2014-01-01
Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the t
Random Time Dependent Resistance Analysis on Reinforced Concrete Structures
GUAN Chang-sheng; WU Ling
2002-01-01
The analysis method on random time dependence of reinforced concrete material is introduced,the effect mechanism on reinforced concrete are discussed, and the random time dependence resistance of reinforced concrete is studied. Furthermore, the corrosion of steel bar in reinforced concrete structures is analyzed. A practical statistical method of evaluating the random time dependent resistance, which includes material, structural size and calculation influence, is also established. In addition, an example of predicting random time dependent resistance of reinforced concrete structural element is given.
Finite difference solution of the time dependent neutron group diffusion equations
In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods
The multigroup neutronics model of NuStar's 3D core code EGRET
As a key component of NuStar's core analysis system for PWR application, EGRET is designed to perform steady-state coupled neutronic/hydraulic analysis of PWRs. This paper presents EGRET's unique 3D nodal diffusion model and 2D pin power reconstruction (PPR) model. Unlike the practice in most of today's production codes that iteratively solves the global 3D coarse-mesh problem and the local axially 1D fine-mesh problem to handle the axial heterogeneity within a node caused by fuel grid and partially-inserted control rod, EGRET resolves the issue by inventing a new nodal technology and introducing the adaptive meshing technique to follow the movement of control rod tip. The new nodal method employs fine-mesh heterogeneous calculation with coarse-mesh transverse coupling such that the axial heterogeneous nodes can be explicitly modeled in exact geometry and directly incorporated into the scheme of transversely coupled coarse-mesh nodal methods. Each axial channel can have its own fine-mesh division without the need of dividing the whole core into radially coupled fine-meshes. There is no need to do 1D fine-mesh and 3D coarse-mesh iteration either. While for the PPR model, EGRET adopts a group-decoupled direct fitting method, which avoids both the complication of constructing 2D analytic multigroup flux solution and any group-coupled iteration. Another unique feature of the PPR model is that it fully utilizes all the information available from 3D core calculation into the downstream PPR process. Particularly, for the first time, the 1D profiles of transversely-integrated fluxes are utilized as the additional conditions to reconstruct pin power. Numerical results of series of benchmark problems verify the good performance of EGRET's unique multi-group neutronics model. (author)
Harmonic oscillator with time - dependent mass and frequency
A general treatment of the quantal harmonic oscillator with time-dependent mass and frequency is presented. The treatment is based on the use of some time-dependent transformations in the method of invariants of Lewis and Riesenfeld. Exact coherent states for such a system are also constructed. (A.C.A.S.)
Perishable Inventory Model with Time Dependent Demand and Partial Backlogging
Kapil Mehrotra
2014-07-01
Full Text Available An Inventory Model For Decaying Items Under Inflation Has Been Developed. Demand Rate Is Taken As Linear Time Dependent. Holding Cost Is Also Taken As Time Dependent. We Have Developed The Two Cases: In The First Case Shortages Are Not Allowed And In The Second Case Partially Backlogged Shortages Are Allowed. Cost Minimization Technique Is Used In This Study.
Nonlinear RR Lyrae models with time dependent convection
Results of convective, nonlinear RR Lyrae models are presented. The standard mixing length theory has been used with time dependence being introduced through the convective velocity phase lag technique. Turbulent pressure and turbulent viscosity are also included. Results are compared with those of other time dependent convection theories. 9 refs., 2 figs
Holography and string dynamics in time-dependent backgrounds
We study the dynamics of D-branes in a smooth time-dependent background. The theory on the branes is a time-dependent noncommutative field theory. We find the metric and fluxes that determine the dual holographic closed string theory. This provides a concrete example of holography in a cosmological setting
Time-dependent harmonic oscillators and squeezed states
Utilizing time-dependent operators whose associated states are squeezed states, it is shown that the general time-dependent harmonic-oscillator Hamiltonian belongs to the class of quadratic Hamiltonians that generate squeezed states. An illustrative example is also considered. (Author)
Time-dependent Hypercritical Accretion onto Black Holes
Zampieri, Luca
1996-01-01
Results are presented from a time-dependent, numerical investigation of super-Eddington spherical accretion onto black holes with different initial conditions. We have studied the stability of stationary solutions, the non-linear evolution of shocked models and the time-dependent accretion from an expanding medium.
AMPX-77, Modular System for Coupled Neutron-Gamma Multigroup Cross-Sections from ENDF/B-5
1 - Description of program or function: The AMPX system is a system of computer programs (modules) capable of producing coupled multigroup neutron-gamma-ray cross section sets. The system is one of the standards for producing multigroup neutron, gamma-ray production, gamma-ray interaction, and coupled neutron-gamma cross-section sets from ENDF data. AMPX-produced cross sections can be used directly with a variety of diffusion theory, discrete ordinates, and Monte Carlo radiation transport computer codes. A one-dimensional Sn calculation capability is provided for general use and for cross section collapsing. Treatments are included for resonance self-shielding effects. 2 - Method of solution: The system includes a full range of features needed to: (1) produce multigroup neutron, gamma-ray production, and/or gamma-ray interaction cross-section data, (2) resonance self-shield, (3) spectrally collapse, (4) convert cross-section libraries from one format to another format, (5) execute a one- dimensional (1-D) discrete-ordinates calculation, and (6) perform miscellaneous cross section-operations. 3 - Restrictions on the complexity of the problem: The principal restriction is the availability of adequate core storage. All large modules are variably dimensioned. Certain modules will automatically use external storage (disk,tape), if in-core storage is inadequate. While these procedures are of little consequence on today's large computers with 'virtual memory' capabilities, they can be important when small-core PC's or workstations are used
Hoffman, Adam J.; Lee, John C.
2016-02-01
A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.
Petruk, Oleh
2016-01-01
Three approaches are considered to solve the equation which describes the time-dependent diffusive shock acceleration of test particles at the non-relativistic shocks. At first, the solution of Drury (1983) for the particle distribution function at the shock is generalized to any relation between the acceleration time-scales upstream and downstream and for the time-dependent injection efficiency. Three alternative solutions for the spatial dependence of the distribution function are derived. Then, the two other approaches to solve the time-dependent equation are presented, one of which does not require the Laplace transform. At the end, our more general solution is discussed, with a particular attention to the time-dependent injection in supernova remnants. It is shown that, comparing to the case with the dominant upstream acceleration time-scale, the maximum momentum of accelerated particles shifts toward the smaller momenta with increase of the downstream acceleration time-scale. The time-dependent injectio...
Time-dependent behavior of positrons in noble gases
Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Zeff) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs
Exact factorization of the time-dependent electron-nuclear wavefunction
Abedi, Ali; Agostini, Federica; Suzuki, Yasumitsu; Gross, E.K.U. [Max-Planck Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany); European Theoretical Spectroscopy Facility (ETSF) (Germany)
2013-07-01
Non-adiabatic couplings between electronic and nuclear motion play a prominent role in many photo-induced processes. As a first step towards a full ab-initio treatment of the coupled electron-nuclear dynamics, we deduce an exact decomposition of the electronic and nuclear degrees of freedom and derive a set of coupled equations of motion for the electrons and nuclei that describe the evolution of the complete electron-nuclear system. These exact equations lead to a rigorous definition of time-dependent potential energy surfaces as well as time-dependent vector potentials. Employing a 1D model-system, we show that the TDPES exhibits a dynamical step that bridges between piecewise adiabatic shapes. We analytically investigate the position of steps and the nature of the switching between the adiabatic pieces of the TDPES.
Exact factorization of the time-dependent electron-nuclear wavefunction
Non-adiabatic couplings between electronic and nuclear motion play a prominent role in many photo-induced processes. As a first step towards a full ab-initio treatment of the coupled electron-nuclear dynamics, we deduce an exact decomposition of the electronic and nuclear degrees of freedom and derive a set of coupled equations of motion for the electrons and nuclei that describe the evolution of the complete electron-nuclear system. These exact equations lead to a rigorous definition of time-dependent potential energy surfaces as well as time-dependent vector potentials. Employing a 1D model-system, we show that the TDPES exhibits a dynamical step that bridges between piecewise adiabatic shapes. We analytically investigate the position of steps and the nature of the switching between the adiabatic pieces of the TDPES.
Ambiguities in the Lagrangians formalism: the time-dependent case
An intrinsic formulation of the equivalence problem for time-dependent Lagrangians is given. A new demostration of a theorem derived by Henneaux (1982) is obtained. The relationship to transformation groups is discussed. (Author)
Time-dependent rheological behaviour of bacterial cellulose hydrogel.
Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V
2016-01-01
This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. PMID:26478298
Time-dependent pseudo-reciprocity relations in neutronics
Earlier, certain reciprocity-like relations have been shown to hold in some restricted steady state cases in neutron diffusion and transport theories. Here, the possibility of existence of similar relations in time-dependent situations is investigated
Memory loss for time-dependent dynamical systems
Ott, William; Young, Lai-Sang; Stenlund, Mikko
2012-01-01
This paper discusses the evolution of probability distributions for certain time-dependent dynamical systems. Exponential loss of memory is proved for expanding maps and for one-dimensional piecewise expanding maps with slowly varying parameters.
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
An analytically solvable time dependent Jaynes Cummings model
Das-Gupta, A
1998-01-01
Using the underlying su(2) algebra of the Jaynes-Cummings Model (JCM), we construct a time dependent interaction term that allows analytical solution for even off-resonance conditions. Exact solutions for the time evolution of any state has been found. The effect of detuning on the Rabi oscillations and the collapse and revival of inversion is indicated. It is also shown that at resonance, the time dependent JCM is analytically solvable for an arbitrary interaction term.
Spike timing-dependent plasticity induces complexity in the brain
Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Batista, Antonio Marcos; Iarosz, Kelly C.; Caldas, Iberê L.; Antonopoulos, Chris G.; Baptista, Murilo S.
2016-01-01
To study neuroplasticity, the capacity of neurons and neural networks to change temporarily or permanently their connections and behavior, we investigate the effects of spike timing-dependent plasticity (STDP) on synchronization in Hodgkin-Huxley neural networks. We consider spike timing-dependent plasticity of excitatory and inhibitory synapses according to the known Hebbian rules for synaptic plasticity. With regard to network architecture, initially the network presents an all-to-all topol...
Unitary relations in time-dependent harmonic oscillators
Song, Dae-Yup
1998-01-01
For a harmonic oscillator with time-dependent (positive) mass and frequency, an unitary operator is shown to transform the quantum states of the system to those of a harmonic oscillator system of unit mass and time-dependent frequency, as well as operators. For a driven harmonic oscillator, it is also shown that, there are unitary transformations which give the driven system from the system of same mass and frequency without driving force. The transformation for a driven oscillator depends on...
Jet-Ricci Geometry of Time-Dependent Human Biomechanics
Ivancevic, Tijana T.
2009-01-01
We propose the time-dependent generalization of an `ordinary' autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds derived from the extended musculo-skeletal configuration manifold. The corresponding Riemannian geometrical evolution follows the Ricci flow diffusion. In particular, we show that the exponential-like decay of total biomechanical energy (due to exh...
Jet Methods in Time-Dependent Lagrangian Biomechanics
Ivancevic, Tijana T.
2009-01-01
In this paper we propose the time-dependent generalization of an `ordinary' autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for ...
Optimal Control Theory for Time-Dependent Quantum Transport
Zhang, Yu
2015-01-01
Optical techniques have been employed to coherently control the quantum transport through nanojunctions. Conventional works on optical control of quantum transport usually applied a tailored electrical pulses to perform specific tasks. In this work, an opposite way is employed and a time-dependent driving field is searched to force the system behave in desired pattern. In order to achieve the goal, an optimal control theory for time-dependent quantum transport is developed. The theory provide...
The Suppression of Energy Discretization Errors in Multigroup Transport Calculations
Larsen, Edward
2013-06-17
The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to "coarsen" the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial and energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.
A general multigroup formulation of the analytic nodal method
In this paper the theoretical description of an alternative approach to the Analytic Nodal Method is given, in which a full multigroup formulations is developed. This approach differs from the well known QUANDRY approach in three aspects. Firstly, a notation which is more widely used in Quantum Mechanics has been adopted to enable a clear and concise presentation of this multigroup approach. A basis transformation is then used to reduce the directional equations to a scalar form and finally, Green's secondary identity is used to rewrite each of the resulting scalar equations in a form which eventually leads to a response matrix, as opposed to using classical methods to actually solve the coupled multigroup directional equations
The Suppression of Energy Discretization Errors in Multigroup Transport Calculations
The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to 'coarsen' the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.
An algorithm for Monte-Carlo time-dependent radiation transfer
Harries, Tim J.
2011-01-01
A new Monte-Carlo algorithm for calculating time-dependent radiative-transfer under the assumption of LTE is presented. Unlike flux-limited diffusion the method is polychromatic, includes scattering, and is able to treat the optically thick and free-streaming regimes simultaneously. The algorithm is tested on a variety of 1-d and 2-d problems, and good agreement with benchmark solutions is found. The method is used to calculate the time-varying spectral energy distribution from a circumstella...
Computational complexity of time-dependent density functional theory
Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn–Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn–Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn–Sham potential with controllable error bounds. (paper)
Time-dependent density functional theory for quantum transport
Zheng, Xiao; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing
2010-01-01
Based on our earlier works [Phys. Rev. B 75, 195127 (2007) & J. Chem. Phys. 128, 234703 (2008)], we propose a formally exact and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.
Jet Methods in Time-Dependent Lagrangian Biomechanics
Ivancevic, Tijana T
2009-01-01
In this paper we propose the time-dependent generalization of an `ordinary' autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associat...
Time-dependent CP asymmetries in D and B decays
Bevan, Adrian
2011-01-01
The measurement of time-dependent CP asymmetries in charm decays can provide a unique insight into the flavor changing structure of the Standard Model. We examine a number of different CP eigenstate decays of D mesons and describe a method that can be used to measure time-dependent CP asymmetries at existing and future experiments, with a preliminary assessment, based on statistical considerations, of their various capabilities. Any asymmetry observed in time-dependent analysis of neutral D mesons could signify new physics. We discuss the measurements required to perform direct and indirect tests of the charm unitarity triangle and the relationship between this and the B_d unitarity triangle. We also highlight that current experimental bounds on DeltaGamma(B_d) translate into a significant systematic uncertainty on the measurement of beta from b to c c-bar s decays.
Multigroup Confirmatory Factor Analysis: Locating the Invariant Referent Sets
French, Brian F.; Finch, W. Holmes
2008-01-01
Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…
Error growth in the time-dependent logistic equation
Sancho, Pedro [GPV de Valladolid, Centro Zonal en Castilla y Leon, Orion 1, 47014, Valladolid (Spain)], E-mail: psancho@inm.es
2008-01-15
In order to analyze the impact of time-dependent forcings in the behavior of the error growth we study a non-autonomous logistic equation. The sign of the Lyapunov exponent of the system depends on the frequency of the forcing. For finite initial errors, at initial stages the growth occurs in sub- and super-exponential ways, and finally oscillates around the saturation level. The form of the errors of the autonomous case is recovered when we average over many initial times, showing the importance of this parameter in time-dependent systems.
Time-dependent fracture of early age concrete
Østergaard, Lennart; Stang, Henrik; Olesen, John Forbes
2002-01-01
fracture energy or the stress crack opening relationship as defined in the fictitious crack model by Hillerborg. The setup is designed in a way that eliminates self weight loading of the fracture process region and allows for determination of the time-dependent crack mouth opening displacement for a......An experimental method suitable for the determination of the time-dependent tension softening response of early age concrete is presented. The method is based on the wedge splitting test by Tschegg, which is well known to be suited for the determination of fracture mechanical parameters, i.e. the...
Time dependent Pais-Uhlenbeck oscillator and its decomposition
Kuwabara, H; Harada, H
2015-01-01
The Pais-Uhlenbeck(PU) oscillator is the simplest model with higher time derivatives. Its properties were studied for a long time. In this paper, we extend the 4th order free PU oscillator to a more non-trivial case, dubbed the 4th order time dependent PU oscillator, which has time dependent frequencies. We show that this model cannot be decomposed into two harmonic oscillators in contrast to the original PU oscillator. An interaction is added by the coordinate transformation of Smilga.
Evaluation of Time-Dependent Behavior of Soils
Augustesen, Anders; Liingaard, Morten; Lade, Poul V.
2004-01-01
The time-dependent behavior of soils has been investigated extensively through one-dimensional and triaxial test conditions. Most of the observations in literature have focused on the determination of the time-dependent behavior of clayey soils, whereas the reported experimental studies of granular...... materials are few. This paper presents an up-to-date review of the various observed time- and rate-dependent phenomena that are known to exist for both clay and sand. The description is carried out separately for creep, stress relaxation, rate dependency, and structuration in laboratory experiments. All of...
Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin
2016-08-01
Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)
A time-dependent Fleck factor to enhance the accuracy of the Implicit Monte Carlo equations
In the derivation of the Fleck and Cummings Implicit Monte Carlo (IMC) equations, an approximation is made that equates the time-averaged values of two unknowns with their 'instantaneous' values. We demonstrate how this approximation can be avoided, thereby improving the accuracy of the resulting IMC equations and eliminating the need for defining the numerical parameter a. This leads to IMC equations that contain a time-dependent Fleck factor fn(t) instead of the traditional constant Fleck factor fn during the nth time step. We refer to the resulting equations as the IMC-TDF equations (IMC equations with a time-dependent Fleck factor). These equations May be solved using a Monte Carlo procedure that is comparable to the standard IMC procedure except for 'extra' calculations to account for the time-dependence in fn(t). For linear problems, the IMC-TDF equations are second-order accurate with regard to reductions of the time step size (as are the IMC equations with α=0.5, although in practice most users set α=1 for stability considerations). For larger time steps, the IMC-TDF method behaves more like IMC with α=1. Numerical results are presented for 1-D, nonlinear gray and frequency-dependent problems. These demonstrate that computational solutions of the IMC-TDF equations are comparable in expense for small or moderate time steps, but can be more expensive than the IMC equations for large time steps. (authors)
Spike-timing-dependent BDNF secretion and synaptic plasticity.
Lu, Hui; Park, Hyungju; Poo, Mu-Ming
2014-01-01
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)-the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite. PMID:24298135
A Time Dependent Version of the Quantum WKB Approximation
Bracken, Paul
2006-01-01
The phenomenon of quantum tunneling is reviewed and an overview of applying approximate methods for studying this effect is given. An approach to a time-dependent formalism is proposed in one dimension and generalized to higher dimensions. Some physical examples involving the resulting wavefunction which is determined are presented.
The time-dependent prize-collecting arc routing problem
Black, Dan; Eglese, Richard; Wøhlk, Sanne
2013-01-01
A new problem is introduced named the Time-Dependent Prize-Collecting Arc Routing Problem (TD-PARP). It is particularly relevant to situations where a transport manager has to choose between a number of full truck load pick-ups and deliveries on a road network where travel times change with the...
Advances in time-dependent methods for multiphoton processes
This paper discusses recent theoretical results on above threshold ionization harmonic generation and high-frequency, high intensity suppression of ionization. These studies of multiphoton processes in atoms and molecules for short, intense pulsed optical lasers have been carried out using techniques which involve the explicit solution of the time-dependent Schroedinger equation. 43 refs., 5 figs
Separation of Variable Treatment for Solving Time-Dependent Potentials
QIAN Shang-Wu; GU Zhi-Yu; XIE Guo-Qiang
2001-01-01
We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable treatment is interrelated with the quantum-invariant method and the propagator method. We directly use the separation of potential.
Time-dependent density functional theory for open spin chains
D. De Falco; D. Tamascelli
2011-01-01
The application of methods of time-dependent density functional theory (TDDFT) to systems of qubits provided the interesting possibility of simulating an assigned Hamiltonian evolution by means of an auxiliary Hamiltonian having different two-qubit interactions and hence a possibly simpler wave function evolution. In this note we extend these methods to some instances of Lindblad evolution of a spin chain.
Time-dependent effects of cardiovascular exercise on memory
Roig, Marc; Thomas, Richard; Mang, Cameron S;
2016-01-01
We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is temporally coupled with specific phases of the memory formation process, a single bout of cardiovascular exercise may be...
On the Time Dependence of Adiabatic Particle Number
Dabrowski, Robert
2016-01-01
We consider quantum field theoretic systems subject to a time-dependent perturbation, and discuss the question of defining a time dependent particle number not just at asymptotic early and late times, but also during the perturbation. Naively, this is not a well-defined notion for such a non-equilibrium process, as the particle number at intermediate times depends on a basis choice of reference states with respect to which particles and anti-particles are defined, even though the final late-time particle number is independent of this basis choice. The basis choice is associated with a particular truncation of the adiabatic expansion. The adiabatic expansion is divergent, and we show that if this divergent expansion is truncated at its optimal order, a universal time dependence is obtained, confirming a general result of Dingle and Berry. This optimally truncated particle number provides a clear picture of quantum interference effects for perturbations with non-trivial temporal sub-structure. We illustrate the...
Simulation of compressible viscous flow in time-dependent domains
Česenek, J.; Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopova, J.
2013-01-01
Roč. 219, č. 13 (2013), s. 7139-7150. ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : time dependent domain * ALE method * semi-implicit time discretization * shock indicator Subject RIV: BI - Acoustics Impact factor: 1.600, year: 2013
Dynamic structure evolution of time-dependent network
Zhang, Beibei; Zhou, Yadong; Xu, Xiaoyan; Wang, Dai; Guan, Xiaohong
2016-08-01
In this paper, we research the long-voided problem of formulating the time-dependent network structure evolution scheme, it focus not only on finding new emerging vertices in evolving communities and new emerging communities over the specified time range but also formulating the complex network structure evolution schematic. Previous approaches basically applied to community detection on time static networks and thus failed to consider the potentially crucial and useful information latently embedded in the dynamic structure evolution process of time-dependent network. To address these problems and to tackle the network non-scalability dilemma, we propose the dynamic hierarchical method for detecting and revealing structure evolution schematic of the time-dependent network. In practice and specificity, we propose an explicit hierarchical network evolution uncovering algorithm framework originated from and widely expanded from time-dependent and dynamic spectral optimization theory. Our method yields preferable results compared with previous approaches on a vast variety of test network data, including both real on-line networks and computer generated complex networks.
Linear-response thermal time-dependent density functional theory
Pribram-Jones, Aurora; Burke, Kieron
2015-01-01
The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.
Student Understanding of Time Dependence in Quantum Mechanics
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Effect of loading history on time dependent deformation of rockfill
Romero Morales, Enrique Edgar; Alonso Pérez de Agreda, Eduardo; Alvarado, Clara; Wacker, F
2012-01-01
The paper explores the time-dependent compressibility of coarse crushed quartzitic slate, focusing on the effects of the previous loading history. Large diameter oedometer tests were performed at different relative humidity (or total suctions) and different overconsolidation ratios (OCR). Preliminary results suggested that pre-compressing the rockfill material at increasing OCRs lead to the progressive vanishing of rockfill delayed deformations.
Time-dependent magnetohydrodynamic simulations of the inner heliosphere
Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.
2016-04-01
This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process
We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers
We study the electron localization dynamics in the dissociation of H2+ using a 1D model Hamiltonian. To this end we calculate the exact time-dependent potential energy surfaces (TDPES) both for the electron and for the nuclei. The exact electronic TDPES shows that the final electron localization is determined when the interatomic barrier becomes large and prohibits electron tunneling. The exact nuclear TDPES shows the mechanism of slowdown of the dissociation. It is found that the nuclear potential cannot be approximated by the weighted average of the quasi-static state potential energy surfaces, but can be approximated well by the transition between them. We show these two time-dependent potentials are the exact potential functionals of the time-dependent multicomponent density functional theory and can reproduce the whole phenomena of electron localization dynamics.
SCALE 6 computes problem-dependent multigroup (MG) cross sections through a combination of the conventional Bondarenko shielding-factor method and a deterministic pointwise (PW) transport calculation of the fine-structure spectra in the resolved resonance and thermal energy ranges. The PW calculation is performed by the CENTRM code using a 1-D cylindrical Wigner-Seitz model with the white boundary condition instead of the real rectangular cell shape to represent a lattice unit cell. The pointwise fluxes computed by CENTRM are not exact because a 1-D model is used for the transport calculation, which introduces discrepancies in the MG self-shielded cross sections, resulting in some deviation in the eigenvalue. In order to solve this problem, the method of characteristics (MOC) has been applied to enable the CENTRM PW transport calculation for a 2-D square pin cell. The computation results show that the new BONAMI/CENTRM-MOC procedure produces very precise self-shielded cross sections compared to MCNP reaction rates.
Nonlinear time-dependent simulation of helix traveling wave tubes
A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)
Time-dependent nonlinear cosmic ray shocks confirming abstract
Dorfi, E. A.
1985-01-01
Numerical studies of time dependent cosmic ray shock structures in planar geometry are interesting because analytical time-independent solutions are available which include the non-linear reactions on the plasma flow. A feature of these time asymptotic solutions is that for higher Mach numbers (M approximately 5) and for a low cosmic ray upstream pressure the solution is not uniquely determined by the usual conservation laws of mass, momentum and energy. These numerical solutions clearly indicate that much work needs to be done before we understand shock acceleration as a time dependent process. The slowness of the process is possibly due to the fact that there is a diffusive flux into the downstream region in addition to the usual advective losses. Analytic investigations of thie phenomenon are required.
Scintillation time dependence and pulse shape discrimination in liquid argon
Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10-7 between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence
Tokamak power reactor ignition and time dependent fractional power operation
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve
Time-dependent coupled harmonic oscillators: classical and quantum solutions
In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0. (author)
Time-dependent delayed signatures from energetic photon interrogations
Pulsed photonuclear interrogation environments generated by 8-24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods
Time-Dependent Delayed Signatures from Energetic Photon Interrogations
Pulsed photonuclear interrogation environments generated by 8-24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in the pulsed photonuclear assessment (PPA) environments. These developments demonstrate that pulsed, high-energy, photon- inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods
Adiabatic theorem for the time-dependent wave operator
The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system
Student understanding of time dependence in quantum mechanics
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
Eisenhart lifts and symmetries of time-dependent systems
Cariglia, M; Gibbons, G W; Horvathy, P A
2016-01-01
Certain dissipative systems, such as Caldirola and Kannai's damped simple harmonic oscillator, may be modelled by time-dependent Lagrangian and hence time dependent Hamiltonian systems with $n$ degrees of freedom. In this paper we treat these systems, their projective and conformal symmetries as well as their quantisation from the point of view of the Eisenhart lift to a Bargmann spacetime in $n+2$ dimensions, equipped with its covariantly constant null Killing vector field. Reparametrization of the time variable corresponds to conformal rescalings of the Bargmann metric. We show how the Arnold map lifts to Bargmann spacetime. We contrast the greater generality of the Caldirola-Kannai approach with that of Arnold and Bateman. At the level of quantum mechanics, we are able to show how the relevant Schr\\"odinger equation emerges naturally using the techniques of quantum field theory in curved spacetimes, since a covariantly constant null Killing vector field gives rise to well defined one particle Hilbert space...
Sublinear scaling for time-dependent stochastic density functional theory
A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory
Sublinear scaling for time-dependent stochastic density functional theory
Gao, Yi; Baer, Roi; Rabani, Eran
2014-01-01
A stochastic approach to time-dependent density functional theory (TDDFT) is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are fi?rst projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is in?finite, but even a small number (? 16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals (NCs) using real-space grids and ?find that the overall scaling of the algorithm is sublinear with computational time and memory.
K shortest paths in stochastic time-dependent networks
Nielsen, Lars Relund; Pretolani, Daniele; Andersen, Kim Allan
2004-01-01
A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks, the...... best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. In some particular cases, the shortest origin-destination path must nevertheless be chosen a priori, since time-adaptive choices are not allowed. Unfortunately......, finding the a priori shortest path is NP-hard, while the best time-adaptive strategy can be found in polynomial time. In this paper, we propose a solution method for the a priori shortest path problem, and we show that it can be easily adapted to the ranking of the first K shortest paths. Moreover, we...
Time-dependent viscoelastic behavior of an LDPE melt
Shuxin Huang; Chuanjing Lu; Yurun Fan
2006-01-01
Two differential constitutive equations,i.e.Giesekus model and Johnson-Segalman model were employed here to predict the time-dependent viscoelastic behavior of an LDPE melt in thixotropy-loop experiments and step shear rate experiment. Multiple relaxation modes were adopted, and the parameters used to describe the nonlinear viscoelasticity in the two models were obtained by fitting the shear-thinning viscosity. The predictions on those transient shear characteristics by the two models are found in qualitative agreement with our previous experiments. Johnson-Segalman model predicts oscillation behavior in the thixotropy-loop and step shear rate experiments, whereas Giesekus model does not. Both models predict higher shear stresses than the experimental data in the case of long time shearing, implying that both models are not able to completely characterize the time-dependent shear stress of the-melt at high shear rate.
Time-dependent perturbation theories using normal forms
A time-dependent perturbation theory based on normal from techniques is studies within a rigorous Hilbert space formalism in the context of Schroedinger initial value problems associate with Hamiltonians having time-dependent perturbations to arrived at approximations that deviate in norm from the exact solution by a term of order εm+1t provided the initial vector is restricted to an appropriate linear submanifold. This new method of approximations is compared with other method described previously by the present author. It turns out that operators involved in the new method have simpler construction. Computation aspects of normal from theory are the main goal of this paper. The theory is applied to the one-dimensional quantum-mechanical harmonic oscillator coupled via a quasiperiodic interaction which initially is 4εq4 where q is the position operator, to obtain an explicit construction of second-order approximation
Thermal state of the general time-dependent harmonic oscillator
Jeong-Ryeol Choi
2003-07-01
Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator satisfying Leouville–von Neumann equation to calculate various expectation values in the thermal state. We applied our theory to a special case which is the forced Caldirola–Kanai oscillator.
Error budget in systems with time-dependent forcings
Sancho, P.
1998-01-01
The behaviour of the error growth is analyzed in several simple examples of systems with external time-dependent forcings. in some systems oscillations of the error around the saturation level can be observed. A common feature of these examples is the error growth dependence on initial time. In the examples here considered the improvement in the predictability derived from an adequate choice of the Initial time is comparable to those obtained by reducing the initial errors.
Effects of Age on Time-Dependent Cognitive Change
Salthouse, Timothy A.
2011-01-01
Interpretation of cognitive change has been complicated because different influences on change are not easily distinguished. In this study, longitudinal cognitive change was decomposed into a component related to the length of the interval between test occasions (i.e., time-dependent change) and a component unrelated to the test-retest interval (i.e., time-independent change). Influences of age on the two hypothesized components were investigated in a sample of more than 1,500 adults for whom...
Residual equilibrium schemes for time dependent partial differential equations
Pareschi, Lorenzo; Rey, Thomas
2016-01-01
Many applications involve partial differential equations which admits nontrivial steady state solutions. The design of schemes which are able to describe correctly these equilibrium states may be challenging for numerical methods, in particular for high order ones. In this paper, inspired by micro-macro decomposition methods for kinetic equations, we present a class of schemes which are capable to preserve the steady state solution and achieve high order accuracy for a class of time dependent...
Relating Time-Dependent Acceleration and Height Using an Elevator
Kinser, Jason M.
2015-01-01
A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time, a(t), the velocity function and position functions are determined through integration as in v(t)=? a(t) dt (1) and x(t)=? v(t) dt. Mobile devices such as…
Making Cold Molecules by Time-dependent Feshbach Resonances
Julienne, P. S.; Tiesinga, E.; Koehler, T.
2003-01-01
Pairs of trapped atoms can be associated to make a diatomic molecule using a time dependent magnetic field to ramp the energy of a scattering resonance state from above to below the scattering threshold. A relatively simple model, parameterized in terms of the background scattering length and resonance width and magnetic moment, can be used to predict conversion probabilities from atoms to molecules. The model and its Landau-Zener interpretation are described and illustrated by specific calcu...
Price and wage inflation inertia under time-dependent adjustments
Di Bartolomeo Giovanni; Di Pietro Marco
2013-01-01
We derive and estimate a small-scale DSGE model augmented with price and wage adjustment governed by a time-dependent mechanisms. Byusing positively sloping hazard functions, we micro-found price and wage inflation intrinsic persistence, as we derive price and wage Phillips curves characterized by both forward and backward terms for inflation. Our estimation confirms upward-sloping hazard functions. Finally, we compare the empirical performance of our model to several popular alternatives bas...
Time dependent quantum transport through Kondo correlated quantum dots
Goker, Ali; Gedik, Elif
2013-01-01
In this article, we review recent work about time dependent quantum transport through a quantum dot in Kondo regime. This represents a major step towards designing next generation transistors that are expected to replace current MOSFET's in a few years. We first discuss the effects of the density of states of gold contacts on the instantaneous conductance of an asymmetrically coupled quantum dot that is abruptly moved into Kondo regime via a gate voltage. Next, we investigate the effect of st...
Schwinger pair creation in constant and time-dependent fields
The effect of pair creation from the vacuum in a strong electric field, predicted by Schwinger in 1951, may conceivably be confirmed experimentally with some of the ultrastrong lasers presently under construction. However, it is not easy to calculate the effect for realistic laser fields. We will shortly review here the intermediate case of a purely time-dependent but otherwise generic electric field, which is still relatively amenable to calculation.
Quasinormal modes in time-dependent black hole background
Shao, C G; Abdalla, Elcio; Su, R K; Shao, Cheng-Gang; Wang, Bin; Abdalla, Elcio; Su, Ru-Keng
2005-01-01
We have studied the evolution of the massless scalar field propagating in time-dependent charged Vaidya black hole background. A generalized tortoise coordinate transformation were used to study the evolution of the massless scalar field. It is shown that, for the slowest damped quasinormal modes, the approximate formulae in stationary Reissner-Nordstr\\"{o}m black hole turn out to be a reasonable prescription, showing that results from quasinormal mode analysis are rather robust.
An Analytical Air Pollution Model with Time Dependent Eddy Diffusivity
Tiziano Tirabassi; Marco Túllio Vilhena; Daniela Buske; Gervásio Annes Degrazia
2013-01-01
Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional soluti...
Time-dependent crack growth and fracture in concrete
The objectives of this thesis are to study time-dependent fracture behaviour in concrete. The thesis consists of an experimental study, costitutive modelling and numerical analysis. The experimental study was undertaken to investigate the influences of time on material properties for the fracture process zone and on crack growth and fracture in plain concrete structures. The experiments include tensile relaxation tests, bending tests on notched beams to determine fracture energy at varying deflection rates, and sustained bending and compact tensile tests. From the tensile relaxation tests, the envelope of the σ-w relation does not seem to be influenced by holding periods, though some local detrimental effect does occur. Fracture energy seems to decrease as rates become slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves display three stages, as usually observed in a creep rupture test. The secondary stage dominates the whole failure lifetime, and the secondary deformation rate appears to have good correlation with the failure lifetime. A crack model for time-dependent fracture is proposed, by applying the idea of the Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the fracture process zone incorporated with the static σ-w curve as a failure criterion, based on the observation of the tensile relaxation tests. The time-dependent σ-w curve is expressed in an incremental law. The proposed model has been implemented in a finite element program and applied to simulating sustained flexural and compact tensile tests. Numerical analysis includes simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size effects on failure life etc. The numerical results indicate that the model seems to be able to properly predict the main features of time-dependent fracture behaviour in concrete, as compared with the experimental results. 97 refs
Time-dependent induced potentials in convoy electron emission
Acuña, G. P.; Miraglia, J. E.
2006-11-01
We study the time-dependent induced potentials at the convoy electron position due to the self-interaction with a metal surface and to the shock wave created by the positive hole (vacancy) left. The time evolution of these potentials are calculated using the linear response theory. Results obtained are fitted with simple functions. We find that those two potentials nearly cancel each other in the first ten atomic units of time.
The time dependence of molecular iodine emission from Laminaria digitata
J. Orphal
2009-02-01
Full Text Available We present the first in situ detection of molecular iodine emitted from the brown macroalga Laminaria digitata under natural stress conditions. We show that the release of I2 occurs in short, strong bursts with a complex time signature. The new data indicate that algal control of I2 release in the form of an oscillatory time-dependence may be based on a nonlinear autocatalytic reaction scheme which is closely linked to the production of H2O2.
The time dependence of molecular iodine emission from Laminaria digitata
J. Orphal
2008-08-01
Full Text Available We present the first in situ detection of molecular iodine emitted from the brown macroalga Laminaria digitata under natural stress conditions. We show that the release of I2 occurs in short, strong bursts with a complex time signature. The new data indicate that algal control of I2 release in the form of an oscillatory time-dependence may be based on a nonlinear autocatalytic reaction scheme which is closely linked to the production of H2O2.
Gamma time-dependency in Blaxter's compartmental model.
Matis, J. H.
1972-01-01
A new two-compartment model for the passage of particles through the gastro-intestinal tract of ruminants is proposed. In this model, a gamma distribution of lifetimes is introduced in the first compartment; thereby, passage from that compartment becomes time-dependent. This modification is strongly suggested by the physical alteration which certain substances, e.g. hay particles, undergo in the digestive process. The proposed model is applied to experimental data.
Time-dependent fatigue--phenomenology and life prediction
The time-dependent fatigue behavior of materials used or considered for use in present and advanced systems for power generation is outlined. A picture is first presented to show how basic mechanisms and phenomenological information relate to the performance of the component under consideration through the so-called local strain approach. By this means life prediction criteria and design rules can be formulated utilizing laboratory test information which is directly translated to predicting the performance of a component. The body of phenomenological information relative to time-dependent fatigue is reviewed. Included are effects of strain range, strain rate and frequency, environment and wave shape, all of which are shown to be important in developing both an understanding and design base for time dependent fatigue. Using this information, some of the current methods being considered for the life prediction of components are reviewed. These include the current ASME code case, frequency-modified fatigue equations, strain range partitioning, the damage function method, frequency separation and damage rate equations. From this review, it is hoped that a better perspective on future directions for basic material science at high temperature can be achieved
Time-dependent dynamic behavior of light diffraction in ferrofluid
Chung, Min-Feng; Chou, S. E.; Fu, Chao-Ming
2012-04-01
The time-dependent dynamic behavior of diffraction patterns induced by external magnetic field in a suspension of nano-sized magnetic particles (Fe3O4) in a water-based magnetic fluid was investigated. It was observed that the diffraction pattern changed with time as the magnetic field was applied. In the absence of applied magnetic field, there was no diffraction pattern in the screen. When the magnetic field was applied, the transmitted light was perpendicular to the magnetic field, and the diffraction pattern was unstable. There were many small lines and points moving with time. After one minute, the diffraction pattern turned stable, and the small lines became longer. This time-dependent behavior helps us to understand the evolution of the forming chains of magnetic nanoparticles. Moreover, we have measured the other diffraction pattern, the transmitted light propagating parallel to the applied field. These time-dependent diffraction patterns give a new point to understand the dynamic three-dimensional structure of magnetic fluid under a dc magnetic field.
Neutrino flavor instabilities in a time-dependent supernova model
Sajad Abbar
2015-12-01
Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
Shoulder pain and time dependent structure in wheelchair propulsion variability.
Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J
2016-07-01
Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;pshoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;pshoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;pshoulder pain. PMID:27134151
The multi-configurational time-dependent Hartree approach revisited
The multi-configurational time-dependent Hartree (MCTDH) approach facilitates accurate high-dimensional quantum dynamics simulations. In the approach, the wavefunction is expanded in a direct product of self-adapting time-dependent single-particle functions (SPFs). The equations of motion for the expansion coefficients and the SPFs are obtained via the Dirac-Frenkel variational principle. While this derivation yields well-defined differential equations for the motion of occupied SPFs, singularities in the working equations resulting from unoccupied SPFs have to be removed by a regularization procedure. Here, an alternative derivation of the MCTDH equations of motion is presented. It employs an analysis of the time-dependence of the single-particle density matrices up to second order. While the analysis of the first order terms yields the known equations of motion for the occupied SPFs, the analysis of the second order terms provides new equations which allow one to identify optimal choices for the unoccupied SPFs. The effect of the optimal choice of the unoccupied SPFs on the structure of the MCTDH equations of motion and their regularization is discussed. Generalized equations applicable in the multi-layer MCTDH framework are presented. Finally, the effects resulting from the initial choice of the unoccupied SPFs are illustrated by a simple numerical example
Time-Dependent Delayed Signatures From Energetic Photon Interrogations
A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors
Progress Report on Alloy 617 Time Dependent Allowables
Wright, Julie Knibloe [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-06-01
Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary and secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant
Multigroup cross sections of resonant nuclei considering moderator mass differences
The multigroup constants library MGCL in the nuclear criticality safety evaluation code system JACS has been produced by the Bondarenko method to treat self-shielding effects. For estimating errors of this treatment, the multigroup cross sections of MGCL are compared with those obtained by precise treatment, i.e. with the weighted cross sections by ultra-fine spectra of neutron. The precise calculations are made for homogeneous mixtures of a resonant nucleus (235U, 238U, 239Pu, 240Pu, 242Pu or 56Fe) and a fictitious moderator nucleus with mass number 1, 12 or 200. The ultra-fine spectrum is calculated by the RABBLE code. Distinct differences are found in the self-shielding factors by comparisons between both treatments. Moreover, as the mass number increases, depressions of the self-shielding factor at the resonance peaks and its enhancements at the window of resonances are observed. (author)
Cyclotron radiation by a multi-group method
A multi-energy group technique is developed to study conditions under which cyclotron radiation emission can shift a Maxwellian electron distribution into a non-Maxwellian; and if the electron distribution is non-Maxwellian, to study the rate of cyclotron radiation emission as compared to that emitted by a Maxwellian having the same mean electron density and energy. The assumptions in this study are: the electrons should be in an isotropic medium and the magnetic field should be uniform. The multi-group technique is coupled into a multi-group Fokker-Planck computer code to study electron behavior under the influence of cyclotron radiation emission in a self-consistent fashion. Several non-Maxwellian distributions were simulated to compare their cyclotron emissions with the corresponding energy and number density equivalent Maxwellian distribtions
Multigroup-multiwaves Lisrel modeling in tourist satisfaction analysis
Cristina Bernini; Silvia Cagnone
2013-01-01
The paper analyzes the influence of tourist heterogeneity on the Tourist Local System Overall Satisfaction and its changes over time. We investigate two aspects: if different tourists segmented according to their trip motivation (seaside, conference and sport) show the same pattern of evaluation toward some relevant features of the TLS and if the evaluation scheme is dynamic. At this aim, a Multigroup-Multiwaves Lisrel model is estimated on a data set from the Tourist Satisfaction Survey, con...
Optimal calculational schemes for solving multigroup photon transport problem
A scheme of complex algorithm for solving multigroup equation of radiation transport is suggested. The algorithm is based on using the method of successive collisions, the method of forward scattering and the spherical harmonics method, and is realized in the FORAP program (FORTRAN, BESM-6 computer). As an example the results of calculating reactor photon transport in water are presented. The considered algorithm being modified may be used for solving neutron transport problems
Development and validation of Apros multigroup nodal diffusion model
Rintala, Antti
2015-01-01
The development of a steady state and transient multigroup nodal diffusion model for process simulation software Apros was continued and the models were validated. The initial implementation of the model was performed in 2009 and it has not been under continuous development afterwards. Some errors in the steady state model were corrected. The transient model was found to be incorrect. The solution method of the transient model was derived, and the program code not common with the steady s...
Nuclear data and multigroup methods in fast reactor calculations
The work deals with fast reactor multigroup calculations, and the efficient treatment of basic nuclear data, which serves as raw material for the calculations. Its purpose is twofold: to build a computer code system that handles a large, detailed library of basic neutron cross section data, (such as ENDF/B-III) and yields a compact set of multigroup cross sections for reactor calculations; to use the code system for comparative analysis of different libraries, in order to discover basic uncertainties that still exist in the measurement of neutron cross sections, and to determine their influence upon uncertainties in nuclear calculations. A program named NANICK which was written in two versions is presented. The first handles the American basic data library, ENDF/B-III, while the second handles the German basic data library, KEDAK. The mathematical algorithm is identical in both versions, and only the file management is different. This program calculates infinitely diluted multigroup cross sections and scattering matrices. It is complemented by the program NASIF that calculates shielding factors from resonance parameters. Different versions of NASIF were written to handle ENDF/B-III or KEDAK. New methods for evaluating in reactor calculations the long term behavior of the neutron flux as well as its fine structure are described and an efficient calculation of the shielding factors from resonance parameters is offered. (B.G.)
Characterizing time-dependent mechanics in metallic MEMS
Geers M.G.D.
2010-06-01
Full Text Available Experiments for characterization of time-dependent material properties in free-standing metallic microelectromechanical system (MEMS pose challenges: e.g. fabrication and handling (sub-μm sized specimens, control and measurement of sub-μN loads and sub-μm displacements over long periods and various temperatures [1]. A variety of experimental setups have been reported each having their pros and cons. One example is a micro-tensile tester with an ingenious electro-static specimen gripping system [2] aiding simple specimen design giving good results at μN and sub-μm levels, but without in-situ full-field observations. Other progressive examples assimilate the specimen, MEMS actuators and load cells on a single chip [3,4] yielding significant results at nN and nm levels with in-situ TEM/SEM observability, though not without complications: complex load actuator/sensor calibration per chip, measures to reduce fabrication failure and unfeasible cofabrication on wafers with commercial metallic MEMS. This work aims to overcome these drawbacks by developing experimental methods with high sensitivity, precision and in-situ full-field observation capabilities. Moreover, these should be applicable to simple free-standing metallic MEMS that can be co-fabricated with commercial devices. These methods will then serve in systematic studies into size-effects in time-dependent material properties. First a numeric-experimental method is developed. It characterizes bending deformation of onwafer μm-sized aluminum cantilevers. A specially designed micro-clamp is used to mechanically apply a constant precise deflection of the beam (zres <50 nm for a prolonged period, see fig. 1. After this period, the deflection by the micro-clamp is removed. Full-field height maps with the ensuing deformation are measured over time with confocal optical profilometry (COP. This yields the tip deflection as function of time with ~3 nm precision, see fig.2. To extract material
Time-dependent radiation dose estimations during interplanetary space flights
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease
Time-dependent Mechanisms in Beta-cell Glucose Sensing
Vagn Korsgaard, Thomas; Colding-Jørgensen, Morten
2006-01-01
The relation between plasma glucose and insulin release from pancreatic beta-cells is not stationary in the sense that a given glucose concentration leads to a specific rate of insulin secretion. A number of time-dependent mechanisms appear to exist that modify insulin release both on a short and a longer time scale. Typically, two phases are described. The first phase, lasting up to 10 min, is a pulse of insulin release in response to fast changes in glucose concentration. The second phase i...
Time-Dependent Mean-Field Games with Logarithmic Nonlinearities
Gomes, Diogo A.
2015-10-06
In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.
Time-dependent, lattice approach to atomic collisions
Recent progress in developing and applying methods of direct numerical solution of atomic collision problems is described. Various forms of the three-body problem are used to illustrate these techniques. Specifically, the process of ionization in proton-, antiproton-, and electron-impact of atomic hydrogen is considered in applications ranging in computational intensity from collisions simulated in two spatial dimensions to treatment of the three-dimensional, fully correlated two-electron Schroedinger equation. These examples demonstrate the utility and feasibility of treating strongly interacting atomic systems through time-dependent, lattice approaches
Time-dependent Integrated Predictive Modeling of ITER Plasmas
R.V. Budny
2007-01-01
@@ Introduction Modeling burning plasmas is important for speeding progress toward practical Tokamak energy production. Examples of issues that can be elucidated by modelinginclude requirements for heating, fueling, torque, and current drive systems, design of diagnostics, and estimates of the plasma performance (e.g., fusion power production) in various plasma scenarios. The modeling should be time-dependent to demonstrate that burning plasmas can be created, maintained (controlled), and terminated successfully. The modeling also should be integrated to treat self-consistently the nonlinearities and strong coupling between the plasma, heating, current drive, confinement, and control systems.
Time-dependent, lattice approach to atomic collisions
Schultz, D.R. [Oak Ridge National Lab., TN (United States). Physics Div.
1995-12-31
Recent progress in developing and applying methods of direct numerical solution of atomic collision problems is described. Various forms of the three-body problem are used to illustrate these techniques. Specifically, the process of ionization in proton-, antiproton-, and electron-impact of atomic hydrogen is considered in applications ranging in computational intensity from collisions simulated in two spatial dimensions to treatment of the three-dimensional, fully correlated two-electron Schroedinger equation. These examples demonstrate the utility and feasibility of treating strongly interacting atomic systems through time-dependent, lattice approaches.
Time-dependent density-functional theory concepts and applications
Ullrich, Carsten A
2011-01-01
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s
Shapes and Dynamics from the Time-Dependent Mean Field
Stevenson, P D; Rios, A
2015-01-01
Explaining observed properties in terms of underlying shape degrees of freedom is a well--established prism with which to understand atomic nuclei. Self--consistent mean--field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time--dependent extension of the mean--field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of $^{28}$Si in the first case, and $^{240}$Pu in the latter case.
Time-Dependent Laminar, Transitional and Turbulent Pipe Flows
Ünsal, Bülent
2008-01-01
This thesis summarises the author's research work carried out at the Institute of Fluid Mechanics of the Friedrich-Alexander Universiät Erlangen-Nüernberg (LSTM-Erlangen) during his time there as a researcher. The work deals with time dependent laminar, transitional, and turbulent pipe flows. Most investigations of pipe flows, available these days in the literature, are of steady state flow cases. The reason for this was found to lie in the fact that no suitable experimental equipment is avai...
Time-dependent phenomena in athermal martensitic transformations
The unexpected finding of time-dependent behaviour in athermal martensitic transformations (MT) above the MS temperature has prompted many experimental studies of incubation time. We review here various data scattered in the literature, emphasising the seminal experimental and theoretical work by Kakeshita et al. Contradicting experimental results and alternative concepts as put forward by Otsuka et al. and Planes et al. are discussed in some detail as well. Future experiments to clarify the situation are suggested, in particular the application of X-ray photon correlation spectroscopy to extend the range of observable time scales into regimes dominated by the dynamics of potential embryonic fluctuations
Building mathematical foundations for time-dependent density functional theory
In this presentation we study the essential mathematical structures for a rigorous foundation of time-dependent density functional theory, a reformulation of many-body quantum mechanics where the wave function as a fundamental variable is replaced by the electronic density. We introduce a new fixed-point proof of the fundamental one-to-one correspondence between densities and external potentials. Our approach not only sharpens the Theorems of Runge and Gross and van Leeuwen, as no additional time regularity is needed, but also yields interesting restrictions on the density and leads to a problem-adapted set of external potentials.
On time dependent scattering theory for identical particles
A time-dependent multichannel nonrelativistic quantum scattering theory is established for systems containing identical particles. The symmetry properties of the theory are rooted in certain abstract algebraic relationships between permutations. The formalism of second quantization is thus avoided. Appropriate wave and scattering operators are defined, including those for systems of particles with long range Coulomb interactions. The cluster properties of the scattering operator are rigorously derived. The transition to time-independent theory is made mathematically thus establishing connection with previous time-independent theories. (author)
Time-dependant cosmological interpretation of quantum mechanics
Moulay, Emmanuel
2015-01-01
The aim of this article is to define a time-dependant cosmological interpretation of quantum mechanics in the context of a multiverse coming from eternal inflation. A common notion of time is defined for observers in similar observable universes by using the holographic principle. It is the time elapsed since the post-inflationary epoch. With this improvement, the cosmological interpretation of quantum mechanics becomes a full interpretation of quantum mechanics where the unitary evolution of quantum states is preserved. Moreover, it is well suited for eternal inflation .
On particle creation by a time-dependent scalar field
The probability of particles creation by a homogeneous scalar field Χ(t) is calculated. Explicit analytical expressions are obtained in two limiting cases in the quasiclassical approximation and in the framework of perturbation theory. In the case when the mass of the created particles is defined by the time-dependent field Χ(t) according to the expression gΧ(t) Ψ-barΨ, where Χ(t)=Χ0cos(ωt), it is shown that the creation probability is suppresed not exponentially, but as ω1/2. Some cosmological consequences of the results are discussed. 13 refs
Perspective: Fundamental aspects of time-dependent density functional theory
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Optimal moving grids for time-dependent partial differential equations
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
An algorithm for Monte-Carlo time-dependent radiation transfer
Harries, Tim J
2011-01-01
A new Monte-Carlo algorithm for calculating time-dependent radiative-transfer under the assumption of LTE is presented. Unlike flux-limited diffusion the method is polychromatic, includes scattering, and is able to treat the optically thick and free-streaming regimes simultaneously. The algorithm is tested on a variety of 1-d and 2-d problems, and good agreement with benchmark solutions is found. The method is used to calculate the time-varying spectral energy distribution from a circumstellar disc illuminated by a protostar whose accretion luminosity is varying. It is shown that the time lag between the optical variability and the infrared variability results from a combination of the photon travel time and the thermal response in the disc, and that the lag is an approximately linear function of wavelength.
Maximum time-dependent space-charge limited diode currents
Griswold, M. E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
2016-01-15
Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.
Maximum time-dependent space-charge limited diode currents
Griswold, M. E.; Fisch, N. J.
2016-01-01
Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.
On the time-dependent resonant width for Landau damping: theory and PIC simulation
We use electrostatic partice-in-cell (PIC) simulations and theory to study the damping of 1D plasma waves. We consider the linear regime where the asymptotic damping rate is much bigger than the bounce frequency. In this regime the waves are typically very small and often below the thermal noise in simulations and experiments. These waves can be studied using a subtraction technique in which two simulations with identical random number generation seeds are carried out. In the first, a small amplitude wave is excited. In the second simulation no wave is excited. The results from each simulation are subtracted providing a clean linear wave that can be studied. Since the Landau derivation does not provide a description of damping in terms of individual particle trajectories, we analyze Landau damping using a Lagrangian approach based on energy conservation and the linearized particle trajectories. This method provides a time-dependent resonance curve and the energy transfer of the particles in the damping process. The time-dependent resonant width measured in the simulations is compared with the theoretical prediction. Simulations in which particles within the resonance width are removed are also presented.
On the time-dependent resonant width for Landau damping: theory and PIC simulation
Grismayer, T.; Fahlen, J. E.; Decyk, V. K.; Mori, W. B.
2011-07-01
We use electrostatic partice-in-cell (PIC) simulations and theory to study the damping of 1D plasma waves. We consider the linear regime where the asymptotic damping rate is much bigger than the bounce frequency. In this regime the waves are typically very small and often below the thermal noise in simulations and experiments. These waves can be studied using a subtraction technique in which two simulations with identical random number generation seeds are carried out. In the first, a small amplitude wave is excited. In the second simulation no wave is excited. The results from each simulation are subtracted providing a clean linear wave that can be studied. Since the Landau derivation does not provide a description of damping in terms of individual particle trajectories, we analyze Landau damping using a Lagrangian approach based on energy conservation and the linearized particle trajectories. This method provides a time-dependent resonance curve and the energy transfer of the particles in the damping process. The time-dependent resonant width measured in the simulations is compared with the theoretical prediction. Simulations in which particles within the resonance width are removed are also presented.
Multi-configuration time-dependent density-functional theory based on range separation
Fromager, Emmanuel; Jensen, Hans Jørgen Aa
2012-01-01
Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. In contrast to regular TD-DFT, TD-MC-srDFT can describe double excitations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [K. Pernal, J. Chem. Phys. 136, 184105 (2012)], the description of both the 1^1D doubly-excited state in Be and the 1^1\\Sigma^+_u state in the stretch...
Time-dependent behavior of passive skeletal muscle
Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.
2016-03-01
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.
A P1 benchmark for time dependent thermal radiative transfer
We present an analytic solution for time-dependent P1 (telegrapher's equation) radiative transfer. This solution will be useful for verifying spherical harmonics based transport codes and to providing in-sight into the properties of the Pn equations. The solution is for a uniform, isotropic and non-scattering medium that has a heat capacity proportional to the material temperature cubed (T3). We first derive the time-dependent Greens function for the P1 equations in planar geometry. This result is then used to generate a P1 solution to one of the Su-Olson problems. We also use the planar Greens function to generate the Greens function for a pulsed point source in an infinite medium. With this point source we have reduced the problem of solving the P1 equations in a uniform medium to quadrature. The solution for a pulsed line source is developed, again because of its utility for verifying Pn based thermal radiation transport codes. (authors)
Inverse problem of quadratic time-dependent Hamiltonians
Guo, Guang-Jie; Meng, Yan; Chang, Hong; Duan, Hui-Zeng; Di, Bing
2015-08-01
Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wave-packet obeying the quadratic time-dependent Hamiltonian (QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific time-dependent periodic harmonic oscillator, the Berry phase is obtained exactly. Project supported by the National Natural Science Foundation of China (Grant No. 11347171), the Natural Science Foundation of Hebei Province of China (Grant No. A2012108003), and the Key Project of Educational Commission of Hebei Province of China (Grant No. ZD2014052).
Time Circular Birefringence in Time-Dependent Magnetoelectric Media
Zhang, Ruo-Yang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin
2015-01-01
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector $\\mathbf{k}$, and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with n...
Time-dependent penetrative mixed convection in a porous layer
In the last few decades, heat and mass transfer in porous media have been studied extensively by many investigators. The main motivations behind these studies were the wide range of applications and the interaction of multiple processes. Examples include geothermal energy production, drying of porous media, high level nuclear waste disposal, and energy-related engineering technologies. Here, a general two-dimensional, time-dependent model has been developed to investigate the transfer of heat and mass in a liquid saturated porous layer locally heated from above. Both free and mixed convection are considered. For mixed convection an eternal flow is assumed to enter the two-dimensional domain in the horizontal direction. At a finite segment of the top wall, two types of heat sources are applied: a constant flux heat source and a time varying heat, constant flux source. The latter is a representation of heat released by spent nuclear fuel in a mined repository located above the layer. Both time-dependent and steady solutions of the flow and temperature fields are obtained. For natural convection, the effects of Rayleigh number on the Nusselt number are obtained. For mixed convection, the effects of both Rayleigh and Peclet numbers are studied. In addition, the effects of the aspect ratio, as well as the length of the heated zone are examined
Time-dependent strains and stresses in a pumpkin balloon
Gerngross, T.; Xu, Y.; Pellegrino, S.
2006-01-01
This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:
Time-dependent response of dissipative electron systems
We present a systematic study of the influence of energy and phase relaxation on dynamic polarizability simulations in the linear response regime. The nonperturbative approach is based on explicit electron dynamics using short laser pulses of low intensities. To include environmental effects on the property calculation, we use the time-dependent configuration-interaction method in its reduced density matrix formulation. Both energy dissipation and nonlocal pure dephasing are included. The explicit treatment of time-resolved electron dynamics gives access to the phase shift between the electric field and the induced dipole moment, which can be used to define a useful uncertainty measure for the dynamic polarizability. The nonperturbative treatment is compared to perturbation theory expressions, as applied to a simple model system, the rigid H2 molecule. It is shown that both approaches are equivalent for low field intensities, but the time-dependent treatment provides complementary information on the phase of the induced dipole moment, which allows for the definition of an uncertainty associated with the computation of the dynamic polarizability in the linear response regime.
Time-dependent modelling of an iodine-filtering facility
Passat a test facility to remove iodine isotopes and aerosols from dissolver off-gas of a large reprocessing plant is located at the Nuclear Research Center Karlsruhe. For the purposes of time-dependent modelling of the iodine-filtering part of Passat the experimental results have been described by mathematical functions. Assuming that a planned reprocessing plant of about 350 tons per year uses the present dissolution process of the reprocessing plant Karlsruhe (WAK), we are able to describe the time-dependence of iodine released by the dissolver. The change of the off-gas temperature is given as a function of time: - behind the HEPA-filter after failure of heater W3, - behind the iodine-sorption-filter after failure of heater W4, as well as after failures of W3 and W4. The transmission factor of the iodine-sorption-filter is dependent on filter bed bepth and realtive humidity of the off-gas as well as on bed depth and NO2-concentration. Based on exponential functions it was possible to describe satisfactorily these two 2-dimensional dependences. (orig.)
Rayleigh-Taylor mixing with time-dependent acceleration
Abarzhi, Snezhana
2015-11-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing -acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. Support of National Science Foundation is warmy appreciated.
Time Dependent Relative Risks in Life Insurance Medical Underwriting.
Kneepkens, Robert F
2015-01-01
Introduction .- Life insurance medicine focuses on mortality hazards in specified periods. People are free to insure their lives for shorter or longer terms. Because the chosen terms range from 1 year to a life time, life insurers have to take into account the fact that the predictive value of risk indicators can and will change over time. The time a risk indicator keeps its predictive value, will be dependent on its biological effects, volatility, and treatability. For a given applicant this implies that the relative hazard (RH) calculated for his/her medical condition should be dependent on the term of the insurance. The main objective of this study is to determine if some commonly used risk indicators - previously used to study age dependency of relative risks - have a predictive value that increases with the observation period. (1) Methods .- This population-based cohort study uses NHANES-data files from the Third National Health and Nutrition Examination Survey (NHANES III) and the NHANES Linked Mortality Files 2010. Only participants aged 20 to 69 that were examined in mobile examination centers, without a history of some prevalent high risk diseases were included. The observed mortality was compared to the expected mortality in a Generalized Linear Model (GLM) with Poisson error structure with two reference populations, which both can serve as preferred reference for life insurers: The United States Life Tables 2008 (USLT) and the 2008 Valuation Basic Tables (VBT) based on the insured population of 35 US Life insurers. The time dependency of the RHs of the systolic blood pressure (SBP), aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), serum albumin and albuminuria, was assessed, with correction for ethnicity, household income, history of diabetes mellitus, BMI and serum cholesterol. To be able to compare the results with the results of the Age Dependency Study (ADS), the same data, risk indicators, statistical analysis method, and the
Graphical abstract: We solve a 1D N-electron system, with N small, by mapping it onto an N-dimensional one-electron problem. We compare the exact solutions to the results from adiabatic density and density matrix functionals for different physical situations. Highlights: ► Static and dynamical correlations. ► Memory dependence of exchange-correlation functionals in TDDFT. ► Linear and non-linear response. ► Laser-induced population control. - Abstract: To address the impact of electron correlations in the linear and non-linear response regimes of interacting many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D) systems where the interacting problem is solved exactly by exploiting the mapping of the 1D N-electron problem onto an N-dimensional single electron problem. We analyze the performance of the recently derived 1D local density approximation as well as the exact-exchange orbital functional for those systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static correlations play a role, we consider the time-evolution of the natural occupation numbers associated to the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence of the exchange and correlation functionals in time-dependent density and density-matrix functional theories.
Size-effects on time-dependent concrete fracture
A realistic description of the behavior of concrete specimens (laboratory-sized) and concrete structures (e.g. concrete dams) requires a nonlinear theory able to predict the well-known phenomenon of size-effects. One of these theories was first proposed by Hillerborg and co-workers (fictitious crack model) and is based on earlier works by Barenblatt and Dugdale for metals (cohesive crack model). It is based on the existence of a fracture process zone (FPZ), where the material undergoes strain-softening while the material outside this zone is linear and elastic. The FPZ, whose existence is borne out by experimental evidence, especially in materials characterized by a heterogeneous microstructure, makes it possible to avoid the stress singularity at the crack tip. This paper analyses the interaction between strain-softening and time-dependent behavior in the case of quasi-static fracture of concrete, with emphasis on size-effects on failure lifetime. A micromechanical model for the fracture process zone, proposed by Santhikumar and Karihaloo, is coupled with a viscous element based on a fractional order rate law (Barpi and Valente). This approach makes it possible to include a whole range of dissipative mechanisms in a single rheological element. The crack propagation rate is slow enough to neglect inertial forces and large enough to ensure that the time-dependent behavior of the process zone remains dominant compared to the behavior of the undamaged and viscoelastic zone. Creep fracture in modeI I conditions is analyzed through the finite element method and the cohesive crack model in the case of laboratory tests where rupture can be achieved by keeping the load constant before peak value. The results obtained with the proposed method in terms of size-effects on failure lifetime are compared with the experimental results reported by Bazant and Xiang. A discussion about the advantages of an object-oriented programming language (like C++ or Java) in the development of
Time-dependent radiation hazard estimations during space flights
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander
Cosmic particle radiation is a limiting factor for the out of magnetosphere crewed flights. The cosmic radiation uncrewed flights inside heliosphere and crewed flights inside of magnetosphere tend to become a routine procedure, whereas there have been only few shot time flights out of it (Apollo missions 1969-1972) with maximum duration less than a month. Long term crewed missions set much higher requirements to the radiation shielding, primarily because of long exposition term. Inside the helosphere there are two main sources of cosmic radiation: galactic cosmic rays (GCR) and coronal mass ejections (CME). GCR come from the outside of heliosphere forming a background of overall radiation that affects the spacecraft. The intensity of GCR is varied according to solar activity, increasing with solar activity decrease and backward, with the modulation time (time between nearest maxima) of 11 yeas. CME are shot term events, comparing to GCR modulation time, but are much more energetic. The probability of CME increases with the increase of solar activity. Time dependences of the intensity of these two components encourage looking for a time window of flight, when intensity and affection of CME and GCR would be minimized. Applying time dependent models of GCR spectra [1] and estimations of CME we show the time dependence of the radiation dose in a realistic human phantom [2] inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and
Bernasconi, Leonardo; Webster, Ross; Tomić, Stanko; Harrison, Nicholas M.
2012-05-01
We describe a unified formulation of time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT) for the accurate and efficient calculation of the optical response of infinite (periodic) systems. The method is formulated within the linear-response approximation, but it can easily be extended to include higher-order response contributions, and, in TD-DFT, it can treat with comparable computational efficiency purely local, semi-local or fully non-local approximations for the ground-state exchange-correlation (XC) functional and for the response TD-DFT XC kernel in the adiabatic approximation. At variance with existing methods for computing excitation energies based on the diagonalisation of suitable coupling matrices, or on the inversion of a dielectric matrix, our approach exploits an iterative procedure similar to a standard self-consistent field calculation. This results in a particularly efficient treatment of the coupling of excitations at different k points in the Brillouin zone. As a consequence, our method has the potential to describe completely from first principles the optically induced formation of bound particle-hole pairs in wide classes of materials. This point is illustrated by computing the optical gaps of a series of representative bulk semiconductors, (non-spin polarised) oxides and ionic insulators.
SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code
A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior
Stochastic domain decomposition for time dependent adaptive mesh generation
Bihlo, Alexander; Walsh, Emily J
2015-01-01
The efficient generation of meshes is an important component in the numerical solution of problems in physics and engineering. Of interest are situations where global mesh quality and a tight coupling to the solution of the physical partial differential equation (PDE) is important. We consider parabolic PDE mesh generation and present a method for the construction of adaptive meshes in two spatial dimensions using stochastic domain decomposition that is suitable for an implementation in a multi- or many-core environment. Methods for mesh generation on periodic domains are also provided. The mesh generator is coupled to a time dependent physical PDE and the system is evolved using an alternating solution procedure. The method uses the stochastic representation of the exact solution of a parabolic linear mesh generator to find the location of an adaptive mesh along the (artificial) subdomain interfaces. The deterministic evaluation of the mesh over each subdomain can then be obtained completely independently us...
Study of Time-Dependent Properties of Thermoplastics
Bolchoun A.
2010-06-01
Full Text Available Simple tests carried out with a common tension/compression testing machine are used to obtain timedependent properties of non-reinforced thermoplastics. These tests include ramp loadings as well as relaxation and creep tests. Two materials (PBT Celanex 2002-2 and POM Hostaform C9021, Ticona GmbH, Kelsterbach were taken for the experiments. The experiments show that an adequate description of the long-term material properties can be obtained from the short-time tests, namely from tests with constant traverse speed $L^.$. Below a model for the time-dependent mechanical behavior is presented and fitted to the obtained measured data. For the evaluation of the fitting quality long-term tests are used. Especially creep and relaxation tests with ”jumps”, i.e. rapid change of loading, are important for this purpose.
Time-dependent density-functional description of nuclear dynamics
Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro
2016-01-01
We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...
Spin-orbit torque induced spike-timing dependent plasticity
Sengupta, Abhronil, E-mail: asengup@purdue.edu; Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
2015-03-02
Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.
Development of constitutive model for composites exhibiting time dependent properties
Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model
Lorentz Transformation as a 'Complementary Time-Dependent Coordinate Transformation
Ceapa, A C V
2006-01-01
We here deduce Lorentz transformation (LT) as a member of a class of time-dependent coordinate transformations, complementary to those already known as spatial translations and rotations. This exercise validates the principle of physical determination of equations within special relativity theory (SRT), in accordance with the derivation of the LT in Einstein's original paper on relativity. This validation is possible because our LT deduction also discloses the real physics warranting Einstein's manipulations of several equations in that paper, thus proving the correctness of his derivation of the LT. The essential role of the revelation in the act of science then results. Far from being an arbitrary dogmatic construction, SRT appears to be a revealed dogmatic theory that can be turned into a truly physical one like operational theory. Radically new technological applications of relativistic quantum field theories then results.
Translation invariant time-dependent solutions to massive gravity
Mourad, J
2013-01-01
Homogeneous time-dependent solutions of massive gravity generalise the plane wave solutions of the linearised Fierz-Pauli equations for a massive spin-two particle, as well as the Kasner solutions of General Relativity. We show that they also allow a clear counting of the degrees of freedom and represent a simplified framework to work out the constraints, the equations of motion and the initial value formulation. We work in the vielbein formulation of massive gravity, find the phase space resulting from the constraints and show that several disconnected sectors of solutions exist some of which are unstable. The initial values determine the sector to which a solution belongs. Classically, the theory is not pathological but quantum mechanically the theory may suffer from instabilities. The latter are not due to an extra ghost-like degree of freedom.
Time-dependent, optically thick accretion onto a black hole
Gilden, D. L.; Wheeler, J. C.
1980-01-01
A fully relativistic hydrodynamics code which incorporates diffusive radiation transport is used to study time-dependent, spherically symmetric, optically thick accretion onto a black hole. It is found that matter free-falls into the hole regardless of whether the diffusion time scale is longer or shorter than the dynamical time. Nonadiabatic heating due to magnetic field reconnection is included. The internal energy thus generated affects the flow in a purely relativistic way, again ensuring free-fall collapse of the inflowing matter. Any matter enveloping a black hole will thus be swallowed on a dynamical time scale with relatively small net release of energy. The inclusion of angular momentum will not necessarily affect this conclusion.
Equation-free analysis of spike-timing-dependent plasticity.
Laing, Carlo R; Kevrekidis, Ioannis G
2015-12-01
Spike-timing-dependent plasticity is the process by which the strengths of connections between neurons are modified as a result of the precise timing of the action potentials fired by the neurons. We consider a model consisting of one integrate-and-fire neuron receiving excitatory inputs from a large number-here, 1000-of Poisson neurons whose synapses are plastic. When correlations are introduced between the firing times of these input neurons, the distribution of synaptic strengths shows interesting, and apparently low-dimensional, dynamical behaviour. This behaviour is analysed in two different parameter regimes using equation-free techniques, which bypass the explicit derivation of the relevant low-dimensional dynamical system. We demonstrate both coarse projective integration (which speeds up the time integration of a dynamical system) and the use of recently developed data mining techniques to identify the appropriate low-dimensional description of the complex dynamical systems in our model. PMID:26577337
The covariant, time-dependent Aharonov–Bohm effect
We discuss two possible covariant generalizations of the Aharonov–Bohm effect – one expression in terms of the space–time line integral of the four-vector potential and the other expression in terms of the space–time “area” integral of the electric and magnetic fields written in terms of the Faraday 2-form. These expressions allow one to calculate the Aharonov–Bohm effect for time-dependent situations. In particular, we use these expressions to study the case of an infinite solenoid with a time varying flux and find that the phase shift is zero due to a cancellation of the Aharonov–Bohm phase shift with a phase shift coming from the Lorentz force associated with the electric field, E=−∂tA, outside the solenoid. This result may already have been confirmed experimentally
The covariant, time-dependent Aharonov–Bohm effect
Singleton, Douglas, E-mail: dougs@csufresno.edu [Physics Department, CSU Fresno, Fresno, CA 93740-8031 (United States); Department of Physics, Institut Teknologi Bandung, Bandung (Indonesia); Vagenas, Elias C., E-mail: evagenas@academyofathens.gr [Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efessiou 4, GR-11527, Athens (Greece)
2013-06-10
We discuss two possible covariant generalizations of the Aharonov–Bohm effect – one expression in terms of the space–time line integral of the four-vector potential and the other expression in terms of the space–time “area” integral of the electric and magnetic fields written in terms of the Faraday 2-form. These expressions allow one to calculate the Aharonov–Bohm effect for time-dependent situations. In particular, we use these expressions to study the case of an infinite solenoid with a time varying flux and find that the phase shift is zero due to a cancellation of the Aharonov–Bohm phase shift with a phase shift coming from the Lorentz force associated with the electric field, E=−∂{sub t}A, outside the solenoid. This result may already have been confirmed experimentally.
The covariant, time-dependent Aharonov-Bohm Effect
Singleton, Douglas
2013-01-01
We discuss two possible covariant generalizations of the Aharonov-Bohm effect - one expression in terms of the space-time line integral of the four-vector potential and the other expression in terms of the space-time "area" integral of the electric and magnetic fields written in terms of the Faraday 2-form. These expressions allow one to calculate the Aharonov-Bohm effect for time-dependent situations. In particular, we use these expressions to study the case of an infinite solenoid with a time varying flux and find that the phase shift is zero due to a cancellation of the Aharonov-Bohm phase shift with a phase shift coming from the Lorentz force associated with the electric field, ${\\bf E} = - \\partial_t {\\bf A}$, outside the solenoid. This result may already have been confirmed experimentally.
Stochastic ranking process with space-time dependent intensities
Hattori, Tetsuya
2012-01-01
We consider the stochastic ranking process with space-time dependent jump rates for the particles. The process is a simplified model of the time evolution of the rankings such as sales ranks at online bookstores. We prove that the joint empirical distribution of jump rate and scaled position converges almost surely to a deterministic distribution, and also the tagged particle processes converge almost surely, in the infinite particle limit. The limit distribution is characterized by a system of inviscid Burgers-like integral-partial differential equations with evaporation terms, and the limit process of a tagged particle is a motion along a characteristic curve of the differential equations except at its Poisson times of jumps to the origin.
Translation invariant time-dependent solutions to massive gravity
Homogeneous time-dependent solutions of massive gravity generalise the plane wave solutions of the linearised Fierz-Pauli equations for a massive spin-two particle, as well as the Kasner solutions of General Relativity. We show that they also allow a clear counting of the degrees of freedom and represent a simplified framework to work out the constraints, the equations of motion and the initial value formulation. We work in the vielbein formulation of massive gravity, find the phase space resulting from the constraints and show that several disconnected sectors of solutions exist some of which are unstable. The initial values determine the sector to which a solution belongs. Classically, the theory is not pathological but quantum mechanically the theory may suffer from instabilities. The latter are not due to an extra ghost-like degree of freedom
Time-dependent isotope effect in recoil implantation Pt. 2
A typical case of time-dependent isotope effect was found in recoil implantation of technetium in tetraphenylporphyrin. When a mixture of metallic molybdenum and tetraphenylporphyrin (free base) was bombarded with 15 MeV deuterons, the difference of chemical distribution between sup(99m)Tc and 95Tc (or 96Tc) was pronounced in the sample which was stored one day after irradiation, whereas no difference was observed just after the irradiation. This effect was ascribed to decay-induced decomposition, by observing behaviours of the purified system of 99Mo-sup(99m)Tc-TPP. The decomposition was not derived directly from the β-decay recoil but from internal excitation associated with the decay. (author)
Time-dependent corona models - A numerical method
Korevaar, P.; van Leer, B.
1988-07-01
A time-dependent numerical method for calculating gas flows is described. The method is implicit and especially suitable for finding stationary flow solutions. Although the method is general in its application to ideal compressible fluids, this paper applies it to a stellar atmosphere, heated to coronal temperatures by dissipation of mechanical energy. The integration scheme is based on conservative upwind spatial differencing. The upwind switching is provided by Van Leer's method of differentiable flux-splitting. It is shown that the code can handle large differences in density: up to 14 orders of magnitude. Special attention is paid to the boundary conditions, which are made completely transparent to disturbances. Besides some test-results, converged solutions for various values of the initial mechanical flux are presented which are in good agreement with previous time-independent calculations.
A time dependent anatomically detailed model of cardiac conduction
Saxberg, B. E.; Grumbach, M. P.; Cohen, R. J.
1985-01-01
In order to understand the determinants of transitions in cardiac electrical activity from normal patterns to dysrhythmias such as ventricular fibrillation, we are constructing an anatomically and physiologically detailed finite element simulation of myocardial electrical propagation. A healthy human heart embedded in paraffin was sectioned to provide a detailed anatomical substrate for model calculations. The simulation of propagation includes anisotropy in conduction velocity due to fiber orientation as well as gradients in conduction velocities, absolute and relative refractory periods, action potential duration and electrotonic influence of nearest neighbors. The model also includes changes in the behaviour of myocardial tissue as a function of the past local activity. With this model, we can examine the significance of fiber orientation and time dependence of local propagation parameters on dysrhythmogenesis.
Time-dependent corona models: coronae with accretion
Models of stationary extended coronae are presented for various values of the interstellar density. These calculations have been performed with the implicit time-dependent numerical method developed by Korevaar and Van Leer (1988). If the interstellar density is sufficiently low, the coronal gas expands through the Parker critical point to supersonic velocities. An increase in the interstellar density moves the interstellar shock closer to the star. When it comes closer than the critical point, the flow changes to a breeze solution that is subsonic everywhere. A further increase in the interstellar density reverses the flow. First an accretion breeze solution is found and then an inflow with a stationary accretion shock. This is the first numerical calculation of the complete set of stationary stellar wind solutions in spherical symmetry with boundary conditions specified at the stellar surface and at infinity, including the solutions with an interstellar shock or an accretion shock
Time dependent linear transport II Properties of weak solutions
In this paper properties of weak solutions of the time-dependent linear transport equation posed in a multidimensional rectangular parallelepiped with partially reflecting walls are established. Nonnegative constituent functions are shown to guarantee that a weak solution is nonnegative. This implies a monotnoicity principle which is established. Sufficient continuity properties of the constituent functions are shown to guarantee that a weak solution will be uniformly continuous in each of its variables independently of the others on compact subsets of the interior of its domain of definition. Continuity with respect to time follows from continuity with respect to space; but continuity with respect to velocity seems to require continuity with respect to space as a precondition
Observation of Broadband Time-Dependent Rabi Shifting in Microplasmas
Coherent broadband radiation in the form of Rabi sidebands is observed when a ps probe laser propagates through a weakly ionized, electronically excited microplasma generated in the focus of an intense pump beam. The sidebands arise from the interaction of the probe beam with pairs of excited states of a constituent neutral atom via the probe-induced Rabi oscillation. Sideband shifting of >90 meV from the probe carrier frequency results in an effective bandwidth of 200 meV. The sidebands are controlled by the intensity and temporal profile of the probe pulse; with amplitude and shift in agreement with the predictions of a time-dependent generalized Rabi cycling model.
Time-dependent resonant magneto-optical rotation
Dziczek, Dariusz
2015-01-01
Results of a fairly straightforward experiment on resonant magneto-optical rotation by rubidium-87 atoms revealed strong time-dependence of the polarization plane of light emerging from atomic vapors following a sudden irradiation with a laser beam. The rotation of the plane appears as a not direct consequence of the influence of the magnetic field on atoms. Reported measurements conducted using a vapor cell without any buffer gas or an anti-relaxation wall coating show that transmitted light has initially the same (linear) polarization as the incident one. Rotation of the polarization plane caused by an axial magnetic field develops in time scales similar to the pace of establishing the optical pumping/relaxation equilibrium in the atomic ensemble. The traditional passive Faraday rotation picture providing working description for the resonant magneto-optical effects in steady-state conditions does not explain the observed sequence of evolution of the polarization. The picture has to be augmented with analysi...