WorldWideScience

Sample records for 1,3-dihydroxybenzene

  1. Structural aspects of adducts of N-phthaloylglycine and its derivatives

    Barooah, Nilotpal; Sarma, Rupam J.; Batsanov, Andrei S.; Baruah, Jubaraj B.

    2006-06-01

    N-phthaloylglycine forms 2:1 adduct with 1,3-dihydroxybenzene and 1:2 adduct with 2-aminopyrimidine. Whereas N-phthaloylglycine form salts with 2,6-diaminopyridine and with 8-hydroxyquinoline. The 1:1 adduct of N, N'-bis(glycinyl)pyromellitic diimide with dimethylsulphoxide, 2-aminopyrimidine and 4,4'-dihydroxybiphenyl are prepared and characterised. The reaction of N, N'-bis(glycinyl)pyromellitic diimide with 2,6-diaminopyridine gives corresponding salt.

  2. Organization of the interior of molecular capsules by hydrogen bonding.

    Atwood, Jerry L; Barbour, Leonard J; Jerga, Agoston

    2002-04-16

    The enclosure of functional entities within a protective boundary is an essential feature of biological systems. On a molecular scale, free-standing capsules with an internal volume sufficiently large to house molecular species have been synthesized and studied for more than a decade. These capsules have been prepared by either covalent synthesis or self-assembly, and the internal volumes have ranged from 200 to 1,500 A(3). Although biological systems possess a remarkable degree of order within the protective boundaries, to date only steric constraints have been used to order the guests within molecular capsules. In this article we describe the synthesis and characterization of hexameric molecular capsules held together by hydrogen bonding. These capsules possess internal order of the guests brought about by hydrogen bond donors within, but not used by, the framework of the capsule. The basic building blocks of the hexameric capsules are tetrameric macrocycles related to resorcin[4]arenes and pyrogallol[4]arenes. The former contain four 1,3-dihydroxybenzene rings bridged together by -CHR- units, whereas the latter contain four 1,2,3-trihydroxybenzene rings bridged together. We now report the synthesis of related mixed macrocycles, and the main focus is on the macrocycle composed of three 1,2,3-trihydroxybenzene rings and one 1,3-dihydroxybenzene ring bridged together. The mixed macrocycles self-assemble from a mixture of closely related compounds to form the hexameric capsule with internally ordered guests. PMID:11943875

  3. Radiation degradation of aromatic pollutants exit in wastewater and ph dependence

    Takriti, S

    2002-01-01

    The effect of gamma radiation on the degradation of phenol (hydroxybenzene), resorcinol (1,3 dihydroxybenzen) and hydroquinone (1,4 dihydroxybenzen) exit in waste water was investigated. The concentrations of these pollutants as well as the irradiated solution ph were studied. The results showed that the phenol is very resistance against the radiation doses comparing the other phenol compounds. Phenol was also a product of radiolysis of resorcinol and hydroquinone. On the other hand, the acid phase of the irradiation sample increased the degradation rate of pollutants. Spectrophotometer (UV-VIS) and chromatography (HPLC) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many substances such as organic alcohol, aldehyde, ketone and acidic functional groups as a final radiation products. The degradation of benzene, monochlorobenzene (CB) and 1,2 dichlorobenzene (1,2 DCB) exit in waste water by gamma irradiation was investigated. The effect of the irradi...

  4. Effects of structural isomerism on solution behaviour of solutes: Apparent molar volumes and isentropic compression of catechol, resorcinal, and hydroquinone in aqueous solution at T = (283.15, 293.15, 298.15, 303.15, and 313.15) K

    Effects of structural isomerism on solution behaviour of dihydroxybenzenes were examined through the determination of volumetric properties such as apparent molar volumes, apparent molar isentropic compressions, and isobaric expansions. The isomers were 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), and 1,4-dihydroxybenzene (hydroquinone). The volumetric properties were determined from accurate density and speed of sound measurements at T = (283.15, 293.15, 298.15, 303.15, and 313.15) K and at various concentrations. Values at infinite dilution of these parameters were obtained by suitable extrapolation procedures. The results are discussed in terms of hydrophobic, hydrogen bonding, and dipole-dipole interactions between the three isomers and water. Catechol was found to have the strongest hydrophilic and the weakest hydrophobic interactions with water among the three isomers.

  5. Effects of structural isomerism on solution behaviour of solutes: Apparent molar volumes and isentropic compression of catechol, resorcinal, and hydroquinone in aqueous solution at T = (283.15, 293.15, 298.15, 303.15, and 313.15) K

    Bayram, Edip [Department of Chemistry, Akdeniz University, Antalya 07058 (Turkey); Ayranci, Erol, E-mail: eayranci@akdeniz.edu.t [Department of Chemistry, Akdeniz University, Antalya 07058 (Turkey)

    2010-09-15

    Effects of structural isomerism on solution behaviour of dihydroxybenzenes were examined through the determination of volumetric properties such as apparent molar volumes, apparent molar isentropic compressions, and isobaric expansions. The isomers were 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), and 1,4-dihydroxybenzene (hydroquinone). The volumetric properties were determined from accurate density and speed of sound measurements at T = (283.15, 293.15, 298.15, 303.15, and 313.15) K and at various concentrations. Values at infinite dilution of these parameters were obtained by suitable extrapolation procedures. The results are discussed in terms of hydrophobic, hydrogen bonding, and dipole-dipole interactions between the three isomers and water. Catechol was found to have the strongest hydrophilic and the weakest hydrophobic interactions with water among the three isomers.

  6. Cure Kinetics of DGEBA with Hyperbranched Poly(3-hydroxyphenyl) Phosphate as Curing Agent Studied by Non-isothermal DSC

    2006-01-01

    The cure kinetics of diglycidyl ether of bisphenol A(DGEBA) with hyperbranched poly(3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry(DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible -P-O- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Málek. It was found that the two-parameter autocatalytic model(esták-Berggren equation) is the most adequate one to describe the cure kinetics of the studied system at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.

  7. Spherical Resorcinol-Formaldehyde Synthesis by Inverse Suspension Polymerization

    Base catalyzed sol-gel polycondensation of resorcinol (1,3-dihydroxybenzene) with formaldehyde by inverse suspension polymerization leads to the formation of uniform, highly cross-linked, translucent, spherical gels, which have increased selectivity and capacity for cesium ion removal from high alkaline solutions. Because of its high selectivity for cesium ion, resorcinol-formaldehyde (R-F) resins are being considered for process scale column radioactive cesium removal by ion-exchange at the Waste Treatment and Immobilization Plant (WTP), which is now under construction at the Hanford site. Other specialty resins such as Superlig(regsign) 644 have been ground and sieved and column tested for process scale radioactive cesium removal but show high pressure drops across the resin bed during transition from column regeneration to loading and elution. Furthermore, van Deemter considerations indicate better displacement column chromatography by the use of spherical particle beads rather than irregularly shaped ground or granular particles. In our studies batch contact equilibrium experiments using a high alkaline simulant show a definite increase in cesium loading onto spherical R-F resin. Distribution coefficient (Kd) values ranged from 777 to 429 mL/g in the presence of 0.1M and 0.7M potassium ions, respectively. Though other techniques for making R-F resins have been employed, to our knowledge no one has made spherical R-F resins by inverse suspension polymerization. Moreover, in this study we discuss the data comparisons to known algebraic isotherms used to evaluate ion-exchange resins for WTP plant scale cesium removal operations

  8. Radiation degradation of aromatic pollutants exit in wastewater and ph dependence

    The effect of gamma radiation on the degradation of phenol (hydroxybenzene), resorcinol (1,3 dihydroxybenzen) and hydroquinone (1,4 dihydroxybenzen) exit in waste water was investigated. The concentrations of these pollutants as well as the irradiated solution ph were studied. The results showed that the phenol is very resistance against the radiation doses comparing the other phenol compounds. Phenol was also a product of radiolysis of resorcinol and hydroquinone. On the other hand, the acid phase of the irradiation sample increased the degradation rate of pollutants. Spectrophotometer (UV-VIS) and chromatography (HPLC) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many substances such as organic alcohol, aldehyde, ketone and acidic functional groups as a final radiation products. The degradation of benzene, monochlorobenzene (CB) and 1,2 dichlorobenzene (1,2 DCB) exit in waste water by gamma irradiation was investigated. The effect of the irradiated solution composition was studied. The results showed that the benzene is very resistance against the radiation doses comparing to other chlorobenzene. However, the existence of oxidizing substances in the irradiation phase leads to increase the degradation rate of pollutants. The dechlorination of CB and 1,2 DCB that is a result of the hydrated electron reaction with studied compounds was observed. Chromatography (HPLC) and spectrophotometer (UV-VIS) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many species as a final radiation product. On the other, the irradiation phase containing scavengers such as methanol and ethanol requires large doses to decompose the pollutants, while the oxidizing phase accelerates the degradation. (author)