Sample records for 1,2,3-propanetriol

  1. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  2. Characteristic responses of a phospholipid molecular layer to polyols.

    Nakata, Satoshi; Deguchi, Ayano; Seki, Yota; Furuta, Miyuki; Fukuhara, Koichi; Nishihara, Sadafumi; Inoue, Katsuya; Kumazawa, Noriyuki; Mashiko, Shun; Fujihira, Shota; Goto, Makiko; Denda, Mitsuhiro


    Polyols (sugar alcohols) are widely used in foods, pharmaceutical formulations and cosmetics, and therefore it is important to understand their effects on cell membranes and skin. To address this issue, we examined the effect of polyols (1,2-ethanediol (ethylene glycol), 1,3-butanediol, 1,2,3-propanetriol (glycerol), and 1,2,3,4-butanetetraol) on artificial membrane systems (liposomes, monolayers, or dry films) prepared from phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)). 1,2-Ethanediol and 1,3-butanediol had little effect on the size of the DMPC liposomes or the surface pressure (π)-surface area (A) isotherm of DMPC monolayers at an air-water interface, whereas 1,2,3-propanetriol or 1,2,3,4-butanetetraol increased both liposome size and surface pressure. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and differential scanning calorimetry (DSC) were used to evaluate the interaction between DMPC and polyols. These experimental results suggest that the chemical structure of polyol plays an important role in the characteristic interaction between polyol and DMPC. PMID:26454550

  3. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Robson Fleming Ribeiro


    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  4. Liquisolid systems to improve the dissolution of furosemide.

    Akinlade, Babatunde; Elkordy, Amal A; Essa, Ebtessam A; Elhagar, Sahar


    A liquisolid system has the ability to improve the dissolution properties of poorly water soluble drugs. Liquisolid compacts are flowing and compactable powdered forms of liquid medications. The aim of this study was to enhance the in vitro dissolution properties of the practically water insoluble loop diuretic furosemide, by utilising liquisolid technique. Several liquisolid tablets were prepared using microcrystalline cellulose (Avicel pH-101) and fumed silica (Cab-O-Sil M-5) as the carrier and coating materials, respectively. Polyoxy-ethylene-polyoxypropylene-polyoxyethylene block copolymer (Synperonic PE/L 81); 1,2,3-propanetriol, homopolymer, (9Z)-9-octadecenoate (Caprol PGE-860) and polyethylene glycol 400 (PEG 400) were used as non- volatile water-miscible liquid vehicles. The liquid loading factors for such liquid vehicles were calculated to obtain the optimum amounts of carrier and coating materials necessary to produce acceptable flowing and compactible powder admixtures viable to produce compacts. The ratio of carrier to coating material was kept constant in all formulations at 20 to 1. The formulated liquisolid tablets were evaluated for post compaction parameters such as weight variation, hardness, drug content uniformity, percentage friability and disintegration time. The in-vitro release characteristics of the drug from tablets formulated by direct compression (as reference) and liquisolid technique, were studied in two different dissolution media. Differential scanning calorimetry (DSC) and Fourier-Transform infrared spectroscopy (FT-IR) were performed. The results showed that all formulations exhibited higher percentage of drug dissolved in water (pH 6.4â6.6) compared to that at acidic medium (pH 1.2). Liquisolid compacts containing Synperonic PE/L 81 demonstrated higher release rate at the different pH values. Formulations with PEG 400 displayed lower drug release rate, compared to conventional and liquisolid tablets. DSC and FT

  5. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    Bohon, Myles


    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde